WO2016002222A1 - 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス - Google Patents

多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス Download PDF

Info

Publication number
WO2016002222A1
WO2016002222A1 PCT/JP2015/003320 JP2015003320W WO2016002222A1 WO 2016002222 A1 WO2016002222 A1 WO 2016002222A1 JP 2015003320 W JP2015003320 W JP 2015003320W WO 2016002222 A1 WO2016002222 A1 WO 2016002222A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer structure
group
compound
container
Prior art date
Application number
PCT/JP2015/003320
Other languages
English (en)
French (fr)
Inventor
清水 裕司
佐々木 良一
康貴 犬伏
中谷 正和
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to AU2015285809A priority Critical patent/AU2015285809B2/en
Priority to JP2015555472A priority patent/JP5957154B2/ja
Priority to EP15815981.4A priority patent/EP3165359B1/en
Priority to US15/323,181 priority patent/US20170129216A1/en
Priority to KR1020177000934A priority patent/KR101982478B1/ko
Priority to CN201580046470.4A priority patent/CN106660323B/zh
Publication of WO2016002222A1 publication Critical patent/WO2016002222A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/052Forming heat-sealable coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/02Homopolymers or copolymers of monomers containing phosphorus

Definitions

  • the present invention relates to a multilayer structure and a manufacturing method thereof, a packaging material and a product using the same, and an electronic device.
  • a laminate in which a gas barrier layer containing aluminum or aluminum oxide as a constituent component is formed on a plastic film has been well known.
  • Such a laminate is used as a packaging material for protecting an article (for example, food) that is easily deteriorated by oxygen.
  • Many of these gas barrier layers are formed on a plastic film by a dry process such as physical vapor deposition or chemical vapor deposition.
  • Aluminum vapor deposition films have light shielding properties in addition to gas barrier properties, and are mainly used as packaging materials for dry foods.
  • the aluminum oxide vapor-deposited film having transparency has a feature that the contents can be visually recognized, and foreign matter inspection and microwave heating can be performed by a metal detector. Therefore, the film is used as a packaging material in a wide range of applications including retort food packaging.
  • Patent Document 1 discloses a method of forming the transparent gas barrier layer by a reactive sputtering method.
  • Patent Document 2 discloses a transparent gas barrier layer constituted by a reaction product of aluminum oxide particles and a phosphorus compound. As one of the methods for forming the gas barrier layer, Patent Document 2 discloses a method in which a coating liquid containing aluminum oxide particles and a phosphorus compound is applied on a plastic film, followed by drying and heat treatment.
  • the conventional gas barrier layer has excellent initial gas barrier properties, defects such as cracks and pinholes may occur when subjected to physical stress such as deformation or impact.
  • Patent Document 3 discloses a multilayer structure that has excellent gas barrier properties and can maintain the gas barrier properties at a high level even when subjected to physical stress such as deformation or impact.
  • the packaging material using the multilayer structure described in Patent Document 3 may have poor adhesion between layers under more severe conditions (high temperature and high humidity), resulting in poor appearance such as delamination.
  • the interlaminar adhesive strength is reduced after retorting, and appearance defects such as delamination may occur. Therefore, there is a demand for a multilayer structure that maintains an interlayer adhesion and exhibits a good appearance even after retorting. In actual use, the gas barrier property of the multilayer structure may be insufficient.
  • the multilayer structure When the multilayer structure is used as a food packaging material, the multilayer structure is subjected to various physical stresses at each stage of printing, lamination, bag making, food filling, transportation, display, and consumption. Therefore, a multilayer structure that can maintain a high gas barrier property even under such physical stress has been demanded. In view of the above, a multilayer structure having higher performance is currently demanded.
  • the present invention shows that interlayer adhesion is reduced at high temperatures and high humidity, and appearance defects such as delamination may occur. They confirmed. Therefore, an electronic device provided with a protective sheet having more excellent characteristics is required.
  • One of the objects of the present invention is to provide a novel multilayer structure capable of maintaining high performance even after being subjected to physical stress or after retorting, a packaging material including the multilayer structure, and a method for producing the multilayer structure.
  • Another object of the present invention is to provide a packaging material that can maintain gas barrier properties at a high level even when subjected to physical stress, and that does not cause poor appearance even under high temperature and high humidity, and a product using the same. It is to provide.
  • another object of the present invention is that the gas barrier property can be maintained at a high level even when subjected to physical stress, and the lowering of the interlayer adhesive force is suppressed even under high temperature and high humidity, and appearance defects are less likely to occur.
  • the present inventors have found that the above object can be achieved by a multilayer structure including a specific layer, and have reached the present invention.
  • the present invention provides one multilayer structure.
  • the multilayer structure is a multilayer structure including a base (X), a layer (Y), and a layer (Z) disposed adjacent to the layer (Y), and the layer (Y) Including the compound (A) containing a phosphorus atom and the polymer (B) having a hydroxyl group and / or a carboxyl group, the mass of the compound (A) and the polymer (B) in the layer (Y) The ratio is in the range of 15:85 to 99: 1, and the layer (Z) is a layer containing aluminum atoms.
  • the compound (A) is at least one selected from the group consisting of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, and a phosphinic acid group. It may be a polymer having various functional groups.
  • the compound (A) may be poly (vinyl phosphonic acid).
  • the polymer (B) may be a polyvinyl alcohol polymer.
  • the layer (Z) may include a layer (Z1) containing the reaction product (E).
  • the reaction product (E) is a reaction product obtained by reacting a metal oxide (C) containing aluminum with a phosphorus compound (D).
  • the maximum absorption wave number in the region of 800 to 1,400 cm ⁇ 1 may be in the range of 1,080 to 1,130 cm ⁇ 1 .
  • the layer (Z) may include an aluminum deposition layer (Z2) or an aluminum oxide deposition layer (Z3).
  • the base material (X) may include at least one selected from the group consisting of a thermoplastic resin film layer and a paper layer.
  • the present invention relates to (Yi) a compound (A) containing a phosphorus atom, a polymer (B) having a hydroxyl group and / or a carboxyl group, and a coating liquid (S) containing them by mixing them with a solvent.
  • the layer (Y) and the layer (Z) are disposed so as to be adjacent to each other.
  • the compound (A) and the polymer (B) have a mass ratio of 15:85 to 99.
  • a method for producing the multilayer structure is provided, wherein the multilayer structure is mixed in a range of 1: 1.
  • the present invention also provides a packaging material including the multilayer structure.
  • the packaging material may further have a layer formed by extrusion coating lamination.
  • the packaging material of the present invention may be a vertical bag-filling sealing bag, a vacuum packaging bag, a pouch, a laminate tube container, an infusion bag, a paper container, a strip tape, a container lid, or an in-mold label container.
  • the present invention provides a product using at least a part of any of the packaging materials described above.
  • the product of the present invention may contain a content, the content is a core material, the inside of the product is decompressed, and may function as a vacuum heat insulator.
  • the present invention provides an electronic device including the multilayer structure.
  • the electronic device of the present invention may include a protective sheet for protecting the surface of the electronic device body, and the protective sheet may include the multilayer structure.
  • the electronic device of the present invention may be a photoelectric conversion device, an information display device, or a lighting device.
  • a novel multilayer structure that can maintain high performance even after being subjected to physical stress or after retorting is obtained. Moreover, according to the manufacturing method of this invention, the said multilayer structure can be manufactured easily. Furthermore, according to the present invention, it is possible to obtain a packaging material that can maintain gas barrier properties at a high level even when subjected to physical stress, and that does not easily cause poor appearance even under high temperature and high humidity, and a product using the same. Furthermore, according to the present invention, an electronic device can be obtained in which gas barrier properties can be maintained at a high level even when subjected to physical stress, and a decrease in interlayer adhesion is suppressed even under high temperature and high humidity, and appearance defects are unlikely to occur. It is done.
  • FIG. 1 is a partial cross-sectional view of an electronic device according to an embodiment of the present invention. It is a perspective view which shows typically a part of extrusion coat laminating apparatus of this invention.
  • the meaning of “lamination of a specific layer on a specific member (substrate, layer, etc.)” means that the specific layer is in contact with the member.
  • the case where the specific layer is laminated above the member with another layer interposed therebetween is included.
  • a specific layer is formed on a specific member (base material, layer, etc.)” and “a specific layer is arranged on a specific member (base material, layer, etc.)”.
  • the meaning of “application of a liquid (coating liquid, etc.) on a specific member (base material, layer, etc.)” means that the liquid is directly applied to the member.
  • the case where the liquid is applied to another layer formed on the member is included.
  • a layer (Y) may be distinguished from other layers by attaching a symbol (Y), such as “layer (Y)”. Unless otherwise noted, the symbol (Y) has no technical meaning. The same applies to the substrate (X), the layer (Z), the compound (A), and other symbols. However, the case where it is clear to show a specific element like a hydrogen atom (H) is excluded.
  • the multilayer structure of the present invention includes a substrate (X), a layer (Y), and a layer (Z) disposed adjacent to the layer (Y).
  • the layer (Y) includes a compound (A) containing a phosphorus atom and a polymer (B) having a hydroxyl group and / or a carboxyl group.
  • Layer (Z) contains aluminum atoms.
  • the phrase “multilayer structure” means a multilayer structure including a substrate (X) and a layer (Y).
  • the mass ratio of the compound (A) to the polymer (B) is in the range of 15:85 to 99: 1. When the mass ratio is in this range, high performance can be maintained even after physical stress or after retorting.
  • the layer (Y) at least a part of the compound (A) and at least a part of the polymer (B) may be reacted. Even when the compound (A) is reacted in the layer (Y), the part of the compound (A) constituting the reaction product is regarded as the compound (A). In this case, the mass of the compound (A) used for forming the reaction product (the mass of the compound (A) before the reaction) is included in the mass of the compound (A) in the layer (Y). Even when the polymer (B) is reacted in the layer (Y), the part of the polymer (B) constituting the reaction product is regarded as the polymer (B). In this case, the mass of the polymer (B) used for forming the reaction product (the mass of the polymer (B) before the reaction) is included in the mass of the polymer (B) in the layer (Y).
  • the polymer (B) does not contain a phosphorus atom. More specifically, the polymer (B) does not contain a functional group (phosphorus atom-containing functional group) described later.
  • fills the property of both a compound (A) and a polymer (B), it considers as a compound (A) and calculates mass ratio.
  • the mass ratio of the compound (A) and the polymer (B) is preferably in the range of 20:80 to 99: 1, and preferably in the range of 60:40 to 99: 1. More preferably, it is in the range of 65:35 to 91: 9, more preferably in the range of 65:35 to 80:20. By being in the above range, high performance can be maintained even after physical stress or after retorting.
  • the substrate (X) and the layer (Y) will be described below.
  • the base material which consists of various materials can be used.
  • the material of the substrate (X) include resins such as thermoplastic resins and thermosetting resins; fiber aggregates such as fabrics and papers; wood; glass and the like. Among these, a thermoplastic resin and paper are preferable.
  • a preferable example of the substrate (X) includes at least one selected from the group consisting of a thermoplastic resin film layer and a paper layer.
  • the substrate (X) may be a composite made of a plurality of materials, may be a single layer, or may be a multilayer.
  • the form of the substrate (X) is not particularly limited, and may be a layered substrate such as a film or a sheet, or may be various molded bodies having a three-dimensional shape such as a sphere, a polyhedron, and a pipe.
  • a layered substrate is particularly useful when a multilayer structure (laminated structure) is used for a packaging material, a solar cell member, or the like.
  • a multilayer structure using such a substrate (X) is excellent in processability to a packaging material and various properties required when used as a packaging material.
  • thermoplastic resin used for the substrate (X) examples include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate and copolymers thereof.
  • Polyamide resins such as nylon-6, nylon-66, nylon-12, etc .; hydroxyl group-containing polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymer; polystyrene; poly (meth) acrylic acid ester; polyacrylonitrile; Polycarbonate, polyarylate, regenerated cellulose, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, ionomer resin, and the like.
  • the material of the substrate (X) is preferably at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, nylon-6, and nylon-66. .
  • the substrate (X) may be a stretched film or an unstretched film.
  • a stretched film, particularly a biaxially stretched film is preferred because the processability (printing, laminating, etc.) of the resulting multilayer structure is excellent.
  • the biaxially stretched film may be a biaxially stretched film produced by any one of a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tubular stretching method.
  • Examples of the paper used for the substrate (X) include craft paper, fine paper, imitation paper, glassine paper, parchment paper, synthetic paper, white paperboard, Manila ball, milk carton base paper, cup base paper, ivory paper and the like. It is done. By using paper for the substrate, a multilayer structure for a paper container can be obtained.
  • the thickness is preferably in the range of 1 to 1,000 ⁇ m from the viewpoint of improving the mechanical strength and workability of the resulting multilayer structure. More preferably, it is in the range of 9 to 200 ⁇ m.
  • Layer (Y) contains a compound (A) and a polymer (B).
  • Compound (A) is a compound containing a phosphorus atom.
  • the polymer (B) has a hydroxyl group and / or a carboxyl group.
  • a compound (A) and a polymer (B) are demonstrated below.
  • Examples of the compound (A) containing a phosphorus atom include phosphorus oxoacids and derivatives thereof.
  • the oxo acid derivative of phosphorus has at least one functional group selected from the group consisting of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, and a phosphinic acid group.
  • Compounds, and derivatives thereof salts, (partial) ester compounds, halides (eg, chlorides), dehydrates, etc.).
  • the compound (A) containing a phosphorus atom for example, phosphoric acid, diphosphoric acid, triphosphoric acid, polyphosphoric acid condensed with 4 or more molecules of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, phosphinic acid Phosphorus oxoacids such as phosphinic acid and their salts (eg sodium phosphate), and derivatives thereof (eg halides (eg phosphoryl chloride), dehydrates (eg diphosphorus pentoxide)), Examples thereof include a polymer (Aa) having a specific functional group containing a phosphorus atom.
  • the polymer (Aa) at least one phosphorus atom-containing functional group selected from the group consisting of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, and a phosphinic acid group
  • a functional group which a polymer (Aa) has a phosphoric acid group and / or a phosphonic acid group are preferable, and a phosphonic acid group is more preferable.
  • Examples of the polymer (Aa) include 6-[(2-phosphonoacetyl) oxy] hexyl acrylate, 2-phosphonooxyethyl methacrylate, phosphonomethyl methacrylate, 11-phosphonoundecyl methacrylate, 1,1-di- Polymers of phosphono (meth) acrylic esters such as phosphonoethyl methacrylate; vinyl phosphonic acids such as vinylphosphonic acid, 2-propene-1-phosphonic acid, 4-vinylbenzylphosphonic acid, 4-vinylphenylphosphonic acid Polymers; Polymers of vinylphosphinic acids such as vinylphosphinic acid and 4-vinylbenzylphosphinic acid; phosphorylated starch and the like.
  • the polymer (Aa) may be a homopolymer of a monomer having at least one phosphorus atom-containing functional group, or may be a copolymer of two or more types of monomers. Further, as the polymer (Aa), two or more kinds of polymers composed of a single monomer may be mixed and used. Among these, a polymer of phosphono (meth) acrylic acid esters and a polymer of vinylphosphonic acids are preferable, and a polymer of vinylphosphonic acids is more preferable. That is, a preferred example of the polymer (Aa) is poly (vinyl phosphonic acid).
  • the polymer (Aa) can also be obtained by hydrolyzing a vinylphosphonic acid derivative such as vinylphosphonic acid halide or vinylphosphonic acid ester, either alone or copolymerized.
  • the polymer (Aa) may be a copolymer of at least one monomer having a phosphorus atom-containing functional group and another vinyl monomer.
  • Other vinyl monomers that can be copolymerized with a monomer having a phosphorus atom-containing functional group include, for example, (meth) acrylic acid, (meth) acrylic acid esters, acrylonitrile, methacrylonitrile, styrene, Examples include nucleus-substituted styrenes, alkyl vinyl ethers, alkyl vinyl esters, perfluoroalkyl vinyl ethers, perfluoroalkyl vinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide, and phenylmaleimide. Among these, (meth) acrylic acid esters, acrylonitrile, styrene, maleimide, and phenylmaleimide are preferable.
  • the proportion of the structural unit derived from the monomer having a phosphorus atom-containing functional group in the total structural unit of the polymer (Aa) is 10 mol% or more. It is preferably 20 mol% or more, more preferably 40 mol% or more, particularly preferably 70 mol% or more, and may be 100 mol%.
  • the molecular weight of the polymer (Aa) is not particularly limited, but the number average molecular weight is preferably in the range of 1,000 to 100,000. When the number average molecular weight is in this range, the improvement effect of bending resistance by laminating the layer (Y) and the viscosity stability of the coating liquid (S) described later can be achieved at a high level. Further, when the layer (Z) described later is laminated, the bending resistance improving effect can be further enhanced when the molecular weight of the polymer (Aa) per phosphorus atom is in the range of 100 to 500.
  • Polymer (B) examples of the polymer (B) having a hydroxyl group and / or a carboxyl group include polyvinyl alcohol, modified polyvinyl alcohol containing 1 to 50 mol% of an ⁇ -olefin unit having 4 or less carbon atoms, polyvinyl acetal (polyvinyl butyral, etc.), etc.
  • polyvinyl alcohol polymers are preferable, and specifically, polyvinyl alcohol and modified polyvinyl alcohol containing 1 to 15 mol% of ⁇ -olefin units having 4 or less carbon atoms are preferable.
  • the polymer (B) may be a homopolymer of a monomer having a polymerizable group (for example, vinyl acetate or acrylic acid), or may be a copolymer of two or more types of monomers. It may be a copolymer of a monomer having a hydroxyl group and / or a carboxyl group and a monomer having no such group. In addition, you may mix and use 2 or more types of polymers (B) as a polymer (B).
  • a polymerizable group for example, vinyl acetate or acrylic acid
  • the molecular weight of the polymer (B) is not particularly limited, but in order to obtain a multilayer structure having more excellent gas barrier properties and mechanical properties (such as drop impact strength), the number average molecular weight of the polymer (B) is 5,000 or more, more preferably 8,000 or more, and even more preferably 10,000 or more.
  • the upper limit of the number average molecular weight of a polymer (B) is not specifically limited, For example, it is 1,500,000 or less.
  • the viscosity average degree of polymerization of the polyvinyl alcohol polymer used in the present invention is preferably from 100 to 4,000, more preferably from 200 to 3,500, more preferably from 300 to 4,000 in order to obtain a multilayer structure having excellent interlayer adhesion. 3,000 is more preferable, and 500 to 2,800 is particularly preferable.
  • the viscosity average degree of polymerization is a value determined according to JIS K 6726 (1994).
  • the saponification degree of the polyvinyl alcohol resin used in the present invention is preferably 75.0 to 99.85 mol%, and in order to obtain a multilayer structure having excellent interlayer adhesion, 80.0 to 99.5 mol% Is more preferably 85.0 to 99.3 mol%, particularly preferably 90.0 to 99.1 mol%.
  • the saponification degree is a value obtained according to JIS K 6726 (1994).
  • the viscosity of the polyvinyl alcohol polymer used in the present invention is preferably from 1.0 to 200 mPa ⁇ s, more preferably from 3.0 to 150 mPa ⁇ s in order to obtain a multilayer structure having excellent interlayer adhesion. Is more preferably 90 mPa ⁇ s, particularly preferably 20 to 85 mPa ⁇ s.
  • the viscosity is a value measured with a B-type rotational viscometer using a 4% by mass aqueous solution at 20 ° C. according to JIS K 6726 (1994).
  • the polyvinyl alcohol polymer used in the present invention has a saponification degree of 85.0 to 99.3 mol%, a viscosity average polymerization degree of 200 to 3,500, and a viscosity of 11 to 90 mPa ⁇ s. Some are preferable, the saponification degree is 85.0 to 99.3 mol%, the viscosity average polymerization degree is 500 to 2,800, and the viscosity is more preferably 20 to 85 mPa ⁇ s.
  • the layer (Y) included in the multilayer structure of the present invention may be composed only of the compound (A) and the polymer (B), or may further include other components.
  • other components include inorganic acid metal salts such as carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogen sulfates, borates; oxalates, acetates, tartrate, stearates
  • Organic acid metal salts such as: metal complexes such as cyclopentadienyl metal complexes (such as titanocene) and cyano metal complexes; layered clay compounds; cross-linking agents; polymer compounds other than the polymer (Aa) and the polymer (B); Plasticizers; antioxidants; ultraviolet absorbers; flame retardants and the like.
  • the content of the other component in the layer (Y) in the multilayer structure is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. It is preferably 5% by mass or less, and may be 0% by mass (excluding other components).
  • the layer (Y) does not contain the aluminum atom contained in the layer (Z). In other words, the layer (Y) differs from the layer (Z) in that it does not substantially contain aluminum atoms contained in the layer (Z).
  • the content of the polymer (B) in the layer (Y) is 85% by mass or less based on the mass of the layer (Y) (100% by mass). It is preferably 50% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the polymer (B) may or may not react with the component in the layer (Y).
  • the thickness per layer (Y) is preferably 0.003 ⁇ m or more from the viewpoint of better bending resistance of the multilayer structure of the present invention.
  • the upper limit of the thickness of the layer (Y) is not particularly limited, but the bending resistance improving effect reaches saturation at 1.0 ⁇ m or more. Therefore, the upper limit of the total thickness of the layer (Y) is preferably 1.0 ⁇ m from the viewpoint of economy.
  • the thickness of the layer (Y) can be controlled by the concentration of a coating liquid (S) described later used for forming the layer (Y) and the coating method.
  • the multilayer structure of the present invention includes a layer (Z) containing aluminum atoms.
  • the layer (Y) and the layer (Z) are laminated so as to be adjacent (contact).
  • the multilayer structure of the present invention includes a layer (Z) disposed adjacent to the layer (Y).
  • at least one of the layer (Y) and the layer (Z) is present in plural, it is preferable that at least one pair of the layer (Y) and the layer (Z) is laminated adjacently.
  • the layer (Z) may be a layer (Z1) containing a reaction product (E) formed by a reaction between a metal oxide containing aluminum (C) and a phosphorus compound (D).
  • a compound produced by the reaction of the metal oxide (C), the phosphorus compound (D), and another compound is also included in the reaction product (E).
  • the layer (Z) may be a layer (Z2) that is a vapor deposition layer of aluminum, or may be a layer (Z3) that is a vapor deposition layer of aluminum oxide.
  • Examples of the structure of the reaction product (E) contained in the layer (Z1) include a structure in which particles of the metal oxide (C) are bonded via a phosphorus atom derived from the phosphorus compound (D). .
  • the form bonded via a phosphorus atom includes the form bonded via an atomic group containing a phosphorus atom, for example, bonded via an atomic group containing a phosphorus atom and not containing a metal atom.
  • the layer (Z1) of the multilayer structure of the present invention may partially contain a metal oxide (C) and / or a phosphorus compound (D) that is not involved in the reaction.
  • the molar ratio in the layer (Z1) can be adjusted by the mixing ratio of the metal oxide (C) and the phosphorus compound (D) in the coating liquid for forming the layer (Z1).
  • the molar ratio in the layer (Z1) is usually the same as that in the coating solution.
  • the maximum absorption wave number in the region of 800 to 1,400 cm ⁇ 1 is preferably in the range of 1,080 to 1,130 cm ⁇ 1 .
  • the metal oxide (C) and the phosphorus compound (D) react to form the reaction product (E)
  • a characteristic absorption band derived from the bond is generated in the infrared absorption spectrum of the reaction product (E).
  • the obtained multilayer structure has an excellent gas barrier. It was found to express sex. In particular, when the characteristic absorption band is the strongest absorption in the region of 800 to 1,400 cm ⁇ 1 where absorption derived from bonds between various atoms and oxygen atoms is generally observed, the obtained multilayer structure was found to exhibit even better gas barrier properties.
  • the infrared absorption spectrum of the layer (Z1) 800 half-value width of the maximum absorption band in the region of ⁇ 1,400cm -1, from the gas barrier properties of the viewpoint of the resulting multi-layer structure, is preferably 200 cm -1 or less, More preferably, it is 150 cm ⁇ 1 or less, further preferably 100 cm ⁇ 1 or less, and particularly preferably 50 cm ⁇ 1 or less.
  • the infrared absorption spectrum of the layer (Z1) can be measured by the method described in Examples. However, when measurement by the method described in Examples is not possible, reflection measurement such as reflection absorption method, external reflection method, attenuated total reflection method, etc., scraping the layer (Z1) from the multilayer structure, Nujol method, tablet method, etc. Although it may measure by the method of transmission measurement, it is not limited to these.
  • the layer (Z1) has a structure in which the metal oxide (C) particles are bonded to each other through a phosphorus atom derived from the phosphorus compound (D) and not from a metal atom not derived from the metal oxide (C).
  • the metal oxide (C) particles may be bonded to each other through metal atoms derived from the metal oxide (C), but have a structure in which the other metal atoms are not bonded.
  • the structure bonded through the phosphorus atom derived from the phosphorus compound (D) and not through the metal atom not derived from the metal oxide (C) means the metal oxide (C) to be bonded.
  • the layer (Z1) has a structure in which particles of the metal oxide (C) are bonded to each other through both a phosphorus atom and a metal atom derived from the phosphorus compound (D) (bonded metal oxide (C)).
  • the main chain of the bond between the particles may partially have a structure having both a phosphorus atom and a metal atom derived from the phosphorus compound (D).
  • the number of moles of metal atoms that are bonded to the metal oxide (C) particles and are not derived from the metal oxide (C) is determined by the number of metal oxide (C) particles. It is preferably in the range of 0 to 1 times the number of moles of phosphorus atoms to which is bonded (eg, in the range of 0 to 0.9 times).
  • the metal atom (M) and the phosphorus atom (P) constituting the metal oxide (C) are oxygen.
  • bonded through the atom (O) is mentioned.
  • the particles of the metal oxide (C) may be bonded to each other via a phosphorus atom (P) derived from one molecule of the phosphorus compound (D), but phosphorus derived from two or more molecules of the phosphorus compound (D). It may be bonded via an atom (P).
  • a metal atom constituting one bonded metal oxide (C) particle is represented by (M ⁇ )
  • the metal atom constituting the other metal oxide (C) particle is represented by (M ⁇ )
  • (M ⁇ ) -OPO- (M ⁇ ) bond form for example, (M ⁇ ) -OPO- (M ⁇ ) bond form; (M ⁇ ) -OP— [O—P] n —O— (M ⁇ ) bond form; (M ⁇ ) —OPEPP—O— (M ⁇ ) bond form; (M ⁇ ) —OPEPP— [ O—P—E—P] n —O— (M ⁇ ).
  • n represents an integer of 1 or more
  • E represents a constituent atomic group existing between two phosphorus atoms when the phosphorus compound (D) has two or more phosphorus atoms in the molecule.
  • the description of other substituents bonded to the phosphorus atom is omitted.
  • one metal oxide (C) particle is bonded to a plurality of other metal oxide (C) particles from the viewpoint of gas barrier properties of the resulting multilayer structure.
  • the metal oxide (C) may be a hydrolysis condensate of the compound (G) containing a metal atom (M) to which a hydrolyzable characteristic group is bonded.
  • Examples of the characteristic group include R 1 of the general formula [I] described later.
  • the hydrolysis condensate of compound (G) can be regarded substantially as a metal oxide. Therefore, in this specification, the hydrolysis condensate of the compound (G) may be referred to as “metal oxide (C)”. That is, in this specification, “metal oxide (C)” can be read as “hydrolysis condensate of compound (G)”, and “hydrolysis condensate of compound (G)” is “metal oxidation condensate”. It can also be read as “object (C)”.
  • the thickness of the layer (Z1) (when the multilayer structure has two or more layers (Z1), the total thickness of each layer (Z1)) is preferably in the range of 0.05 ⁇ m to 4.0 ⁇ m, More preferably, it is in the range of 0.1 ⁇ m to 2.0 ⁇ m.
  • the thickness per layer (Z1) is preferably 0.05 ⁇ m or more from the viewpoint of gas barrier properties.
  • the thickness of the layer (Z1) can be controlled by the concentration of the coating liquid (T) described later used for forming the layer (Z1) and the coating method.
  • the thickness of the layer (Z1) can be measured by observing the cross section of the multilayer structure with a scanning electron microscope or a transmission electron microscope.
  • the layer (Y) and other layers can also be measured by the same method.
  • Metal oxide (C) The metal oxide (C) used in the present invention is usually reacted with the phosphorus compound (D) in the form of particles.
  • the metal atom constituting the metal oxide (C) (sometimes collectively referred to as “metal atom (M)”) is at least one metal selected from metal atoms belonging to groups 2 to 14 of the periodic table An atom but at least an aluminum atom.
  • the metal atom (M) may be an aluminum atom alone or may contain an aluminum atom and other metal atoms. In addition, you may mix and use 2 or more types of metal oxides (C) as a metal oxide (C).
  • the proportion of aluminum atoms in the metal atoms (M) is usually 50 mol% or more, and may be in the range of 60 mol% to 100 mol% or in the range of 80 mol% to 100 mol%.
  • the metal oxide (C) include a metal oxide produced by a method such as a liquid phase synthesis method, a gas phase synthesis method, or a solid pulverization method.
  • the compound (G) may contain at least one compound (G1) represented by the following general formula [I]. preferable.
  • R 1 has a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), NO 3 , an optionally substituted alkoxy group having 1 to 9 carbon atoms, or a substituent.
  • R 2 is an optionally substituted alkyl group having 1 to 9 carbon atoms, an optionally substituted aralkyl group having 7 to 10 carbon atoms, and an optionally substituted carbon.
  • k is an integer of 1 to 3.
  • the compound (G) may contain at least one compound (G2) represented by the following general formula [II] in addition to the compound (G1).
  • M 1 is a metal atom other than an aluminum atom and is at least one metal atom selected from metal atoms belonging to Groups 2 to 14 of the periodic table.
  • R 3 may have a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), NO 3 , an optionally substituted alkoxy group having 1 to 9 carbon atoms, or a substituent.
  • R 4 is an optionally substituted alkyl group having 1 to 9 carbon atoms, an optionally substituted aralkyl group having 7 to 10 carbon atoms, and an optionally substituted carbon.
  • m is an integer of 1 to n.
  • n is equal to the valence of M 1 .
  • alkoxy group of R 1 and R 3 examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, benzyloxy group, diphenyl Methoxy group, trityloxy group, 4-methoxybenzyloxy group, methoxymethoxy group, 1-ethoxyethoxy group, benzyloxymethoxy group, 2-trimethylsilylethoxy group, 2-trimethylsilylethoxymethoxy group, phenoxy group, 4-methoxyphenoxy group Etc.
  • Examples of the acyloxy group for R 1 and R 3 include an acetoxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, an isobutylcarbonyloxy group, and a sec-butylcarbonyloxy group. Tert-butylcarbonyloxy group, n-octylcarbonyloxy group and the like.
  • alkenyloxy group for R 1 and R 3 examples include allyloxy group, 2-propenyloxy group, 2-butenyloxy group, 1-methyl-2-propenyloxy group, 3-butenyloxy group, 2-methyl-2-propenyl Oxy group, 2-pentenyloxy group, 3-pentenyloxy group, 4-pentenyloxy group, 1-methyl-3-butenyloxy group, 1,2-dimethyl-2-propenyloxy group, 1,1-dimethyl-2- Propenyloxy group, 2-methyl-2-butenyloxy group, 3-methyl-2-butenyloxy group, 2-methyl-3-butenyloxy group, 3-methyl-3-butenyloxy group, 1-vinyl-2-propenyloxy group, And 5-hexenyloxy group.
  • Examples of the ⁇ -diketonato group for R 1 and R 3 include 2,4-pentandionato group, 1,1,1-trifluoro-2,4-pentandionato group, 1,1,1,5, 5,5-hexafluoro-2,4-pentanedionate group, 2,2,6,6-tetramethyl-3,5-heptanedionate group, 1,3-butanedionate group, 2-methyl-1,3-butanedionate Group, 2-methyl-1,3-butanedionato group, benzoylacetonato group and the like.
  • Examples of the acyl group of the diacylmethyl group of R 1 and R 3 include carbon numbers such as formyl group, acetyl group, propionyl group (propanoyl group), butyryl group (butanoyl group), valeryl group (pentanoyl group), and hexanoyl group.
  • Examples of the alkyl group for R 2 and R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Examples include isopentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the aralkyl group for R 2 and R 4 include a benzyl group and a phenylethyl group (phenethyl group).
  • alkenyl group for R 2 and R 4 examples include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, 1-methyl-2 -Propenyl group, 1-methyl-1-propenyl group, 1-ethyl-1-ethenyl group, 2-methyl-2-propenyl group, 2-methyl-1-propenyl group, 3-methyl-2-butenyl group, 4 -Pentenyl group and the like.
  • Examples of the aryl group for R 2 and R 4 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • Examples of the substituent in R 1 , R 2 , R 3 , and R 4 include alkyl groups having 1 to 6 carbon atoms; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy Group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, n-hexyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, etc.
  • alkoxycarbonyl group having 1 to 6 carbon atoms such as oxycarbonyl group, cyclopropyloxycarbonyl group, cyclobutyloxycarbonyl group, cyclopentyloxycarbonyl group; aromatic hydrocarbon group such as phenyl group, tolyl group, naphthyl group; fluorine atom Halogen atoms such as chlorine atom, bromine atom and iodine atom; acyl group having 1 to 6 carbon atoms; aralkyl group having 7 to 10 carbon atoms; aralkyloxy group having 7 to 10 carbon atoms; aralkyloxy group having 7 to 10
  • R 1 includes a halogen atom, NO 3 , an optionally substituted alkoxy group having 1 to 6 carbon atoms, an optionally substituted acyl group having 2 to 6 carbon atoms, and a substituent.
  • a ⁇ -diketonato group having 5 to 10 carbon atoms which may have, or a diacylmethyl group having an acyl group having 1 to 6 carbon atoms which may have a substituent is preferable.
  • R 2 is preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • K in the formula [I] is preferably 3.
  • R 3 includes a halogen atom, NO 3 , an optionally substituted alkoxy group having 1 to 6 carbon atoms, an optionally substituted acyloxy group having 2 to 6 carbon atoms, and a substituent.
  • a ⁇ -diketonato group having 5 to 10 carbon atoms which may have, or a diacylmethyl group having an acyl group having 1 to 6 carbon atoms which may have a substituent is preferable.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • M 1 is preferably a metal atom belonging to Group 4 of the periodic table, more preferably titanium or zirconium. When M 1 is a metal atom belonging to Group 4 of the periodic table, m in formula [II] is preferably 4.
  • boron and silicon may be classified as semi-metals, but in this specification, these are included in the metal.
  • Examples of the compound (G1) include aluminum chloride, aluminum nitrate, aluminum acetate, tris (2,4-pentanedionato) aluminum, trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, triisopropoxyaluminum, Tri-n-butoxyaluminum, tri-sec-butoxyaluminum, tri-tert-butoxyaluminum and the like can be mentioned, among which triisopropoxyaluminum and tri-sec-butoxyaluminum are more preferable.
  • the compound (G) two or more kinds of compounds (G1) may be mixed and used.
  • Examples of the compound (G2) include tetrakis (2,4-pentanedionato) titanium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium and the like. Titanium compounds; zirconium compounds such as tetrakis (2,4-pentanedionato) zirconium, tetra-n-propoxyzirconium, tetra-n-butoxyzirconium, and the like. These may be used alone or in combination of two or more compounds (G2).
  • the ratio of the compound (G1) to the compound (G) is not particularly limited.
  • the proportion of the compound other than the compound (G1) (for example, the compound (G2)) in the compound (G) is, for example, preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, It may be 0 mol%.
  • the hydrolyzate condenses to form a compound in which the metal atom (M) is bonded through the oxygen atom (O).
  • a compound that can be substantially regarded as a metal oxide is formed.
  • a hydroxyl group usually exists on the surface of the metal oxide (C) thus formed.
  • a compound having a ratio of [number of moles of oxygen atom (O) bonded only to metal atom (M)] / [number of moles of metal atom (M)] of 0.8 or more is metal It shall be included in oxide (C).
  • the oxygen atom (O) bonded only to the metal atom (M) is the oxygen atom (O) in the structure represented by MOM, and the structure represented by MOH.
  • Oxygen atoms bonded to metal atoms (M) and hydrogen atoms (H) such as oxygen atoms (O) in are excluded.
  • the ratio in the metal oxide (C) is preferably 0.9 or more, more preferably 1.0 or more, and further preferably 1.1 or more. Although the upper limit of this ratio is not particularly limited, it is usually represented by n / 2, where n is the valence of the metal atom (M). *
  • the compound (G) has a hydrolyzable characteristic group.
  • the hydrolysis condensation reaction does not occur or becomes extremely slow, so that it becomes difficult to prepare the target metal oxide (C).
  • the hydrolyzed condensate of compound (G) may be produced from a specific raw material by, for example, a method employed in a known sol-gel method.
  • the raw materials include compound (G), partial hydrolyzate of compound (G), complete hydrolyzate of compound (G), compound obtained by partially hydrolyzing and condensing compound (G), and compound (G ) Can be used at least one selected from the group consisting of compounds obtained by condensing a part of the complete hydrolyzate.
  • the metal oxide (C) to be mixed with the phosphorus compound (D) -containing material (phosphorus compound (D) or a composition containing the phosphorus compound (D)) should contain substantially no phosphorus atom. Is preferred.
  • the layer (Z1) has a specific structure in which particles of the metal oxide (C) are bonded via phosphorus atoms derived from the phosphorus compound (D).
  • the shape and size of the provided metal oxide (C) particles may be the same or different. That is, the shape and size of the metal oxide (C) particles used as the raw material for the layer (Z1) may change during the formation of the layer (Z1).
  • the phosphorus compound (D) contains a site capable of reacting with the metal oxide (C), and typically contains a plurality of such sites.
  • the phosphorus compound (D) contains 2 to 20 such sites (atomic groups or functional groups).
  • sites include sites capable of reacting with functional groups (for example, hydroxyl groups) present on the surface of the metal oxide (C).
  • examples of such a site include a halogen atom directly bonded to a phosphorus atom and an oxygen atom directly bonded to a phosphorus atom.
  • halogen atoms and oxygen atoms can cause a condensation reaction (hydrolysis condensation reaction) with a hydroxyl group present on the surface of the metal oxide (C).
  • the functional group for example, hydroxyl group
  • present on the surface of the metal oxide (C) is usually bonded to the metal atom (M) constituting the metal oxide (C).
  • the phosphorus compound (D) a compound having a structure in which a halogen atom or an oxygen atom is directly bonded to a phosphorus atom may be used. Such a phosphorus compound (D) can form a bond by (hydrolysis) condensation with a hydroxyl group present on the surface of the metal oxide (C).
  • the phosphorus compound (D) may have one phosphorus atom or may have two or more phosphorus atoms.
  • Examples of the phosphorus compound (D) include phosphoric acid, diphosphoric acid, triphosphoric acid, polyphosphoric acid condensed with 4 or more molecules of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, phosphinic acid, phosphinic acid And the like, and their derivatives (eg, halides (eg, phosphoryl chloride), dehydrates (eg, phosphorous pentoxide)), and the like.
  • halides eg, phosphoryl chloride
  • dehydrates eg, phosphorous pentoxide
  • These phosphorus compounds (D) may be used alone or in combination of two or more.
  • phosphorus compounds (D) it is preferable to use phosphoric acid alone or to use phosphoric acid and other phosphorus compounds (D) in combination.
  • phosphoric acid By using phosphoric acid, the stability of the coating liquid (T) described later and the gas barrier properties of the resulting multilayer structure are improved.
  • the layer (Z1) may contain a specific polymer (F).
  • the polymer (F) may be a polymer having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a carboxylic acid anhydride group, and a salt of a carboxyl group.
  • the polymer (F) may be, for example, the polymer exemplified for the polymer (B).
  • the layer (Z1) may further contain other components other than the polymer (F). Examples of other components include substances exemplified as other components that may be included in the layer (Y).
  • the content of the other components in the layer (Z1) is preferably 50% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and further 5% by mass. It is particularly preferred that
  • the multilayer structure may include an inorganic vapor deposition layer.
  • An inorganic vapor deposition layer can be formed by vapor-depositing an inorganic substance.
  • inorganic substances include metal (for example, aluminum), metal oxide (for example, silicon oxide, aluminum oxide), metal nitride (for example, silicon nitride), metal nitride oxide (for example, silicon oxynitride), metal carbonization Nitride (for example, silicon carbonitride) etc. are mentioned.
  • an inorganic vapor deposition layer formed of aluminum oxide, silicon oxide, magnesium oxide, or silicon nitride is preferable from the viewpoint of excellent barrier properties against oxygen and water vapor.
  • the layer (Z) in the multilayer structure of the present invention may be an inorganic vapor deposition layer containing aluminum.
  • the layer (Z) may include a layer (Z2) that is a deposited layer of aluminum and / or a layer (Z3) that is a deposited layer of aluminum oxide.
  • the layer (Z) is the layer (Z2) or the layer (Z3).
  • the method for forming the inorganic vapor deposition layer such as vacuum vapor deposition (eg, resistance heating vapor deposition, electron beam vapor deposition, molecular beam epitaxy), physical vapor deposition such as sputtering or ion plating, thermochemistry, etc.
  • Vapor deposition for example, catalytic chemical vapor deposition
  • photochemical vapor deposition for example, plasma chemical vapor deposition (for example, capacitively coupled plasma, inductively coupled plasma, surface wave plasma, electron cyclotron resonance, dual magnetron, atom
  • a chemical vapor deposition method such as a layer deposition method or the like, or a metal organic chemical vapor deposition method can be used.
  • the thickness of the inorganic vapor deposition layer varies depending on the types of components constituting the inorganic vapor deposition layer, but is preferably in the range of 0.002 to 0.5 ⁇ m, more preferably in the range of 0.005 to 0.2 ⁇ m. More preferably, it is in the range of 0.01 to 0.1 ⁇ m. Within this range, a thickness that improves the barrier properties and mechanical properties of the multilayer structure may be selected. If the thickness of the inorganic vapor-deposited layer is less than 0.002 ⁇ m, the reproducibility of the barrier property of the inorganic vapor-deposited layer with respect to oxygen and water vapor tends to decrease, and the inorganic vapor-deposited layer may not exhibit sufficient barrier properties. is there. On the other hand, when the thickness of the inorganic vapor deposition layer exceeds 0.5 ⁇ m, the barrier property of the inorganic vapor deposition layer tends to be lowered when the multilayer structure is pulled or bent.
  • the multilayer structure of the present invention can be produced. Since the matters described for the multilayer structure of the present invention can be applied to the production method of the present invention, redundant description may be omitted. In addition, the matters described for the manufacturing method of the present invention can be applied to the multilayer structure of the present invention.
  • the manufacturing method of the present invention is a manufacturing method of a multilayer structure including a base material (X), a layer (Y), and a layer (Z).
  • This manufacturing method includes steps (Yi) and (Y-ii) as the step of forming the layer (Z) containing aluminum atoms and the step of forming the layer (Y).
  • steps (Yi) and (Y-ii) as the step of forming the layer (Z) containing aluminum atoms and the step of forming the layer (Y).
  • the compound (A) and the polymer (B) having a phosphorus atom, the polymer (B) having a hydroxyl group and / or a carboxyl group, and a solvent are mixed.
  • a coating solution (S) containing B) and a solvent is prepared.
  • the layer (Y) is formed on the substrate (X) or the layer (Z) using the coating liquid (S).
  • the compound (A) and the polymer (B) are mixed in a mass ratio of 15:85 to 99: 1. Thereby, the layer (Y) in which the compound (A) and the polymer (B) are mixed at the ratio is formed. Since the compound (A), the polymer (B), and the mass ratio thereof have been described above, overlapping descriptions are omitted.
  • the coating liquid (S) is a solution in which the compound (A) and the polymer (B) are dissolved in a solvent.
  • the coating liquid (S) may be prepared by dissolving the compound (A) and the polymer (B) in a solvent.
  • you may use the solution obtained when manufacturing a compound (A) and / or a polymer (B) as it is.
  • dissolution may be promoted by heat treatment or ultrasonic treatment.
  • the solvent used in the coating liquid (S) may be appropriately selected according to the types of the compound (A) and the polymer (B), but is preferably water, alcohols, or a mixed solvent thereof.
  • the solvent is an ether such as tetrahydrofuran, dioxane, trioxane or dimethoxyethane; a ketone such as acetone or methyl ethyl ketone; a glycol such as ethylene glycol or propylene glycol.
  • Glycol derivatives such as methyl cellosolve, ethyl cellosolve, n-butyl cellosolve; glycerin; acetonitrile; amides such as dimethylformamide; dimethyl sulfoxide; sulfolane and the like.
  • the solid content concentration of the compound (A) and / or the polymer (B) in the coating liquid (S) may be in the range of 0.01 to 60% by mass from the viewpoint of storage stability of the solution and coating properties. Preferably, it is in the range of 0.1 to 50% by mass, and more preferably in the range of 0.2 to 40% by mass. Solid content concentration can be calculated
  • the pH of the coating liquid (S) is preferably in the range of 0.1 to 6.0, preferably 0.2 to 5.0. More preferably, it is in the range of 0.5 to 4.0.
  • the pH of the coating liquid (S) can be adjusted by a known method, for example, by adding an acidic compound or a basic compound.
  • the coating liquid (S) may be deaerated and / or defoamed as necessary.
  • Examples of the degassing and / or defoaming treatment include a method using reduced pressure, heating, centrifugation, ultrasonic waves, and the like, and a method including reduced pressure is preferable.
  • the coating liquid (S) at the time of coating has a viscosity measured by a Brookfield type rotational viscometer (SB type viscometer: rotor No. 3, rotation speed 60 rpm) at a coating temperature of 3,000 mPa ⁇ It is preferably s or less, more preferably 2,000 mPa ⁇ s or less.
  • the viscosity is 3,000 mPa ⁇ s or less, the leveling property of the coating liquid (S) is improved, and a multilayer structure having a more excellent appearance can be obtained.
  • the viscosity of the coating liquid (S) is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, and further preferably 200 mPa ⁇ s or more.
  • the coating liquid (S) As a method of adjusting the viscosity of the coating liquid (S), for example, a method of adjusting the concentration of solid content, adjusting pH, or adding a viscosity modifier can be employed. As long as the effects of the present invention are obtained, the coating liquid (S) may contain other components contained in the layer (Y) described above.
  • the layer (Y) is formed by removing the solvent after coating the coating liquid (S).
  • the method for applying the coating liquid (S) is not particularly limited, and a known method can be employed. Coating methods include, for example, casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kiss coating method, die coating method, metalling bar coating method, chamber doctor combined coating Method, curtain coating method, bar coating method and the like.
  • the layer (Y) is formed by removing the solvent in the coating liquid (S).
  • the method for removing the solvent of the coating liquid (S) is not particularly limited, and a known drying method can be applied. Examples of the drying method include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method.
  • the drying temperature is preferably 0 to 15 ° C. or lower than the flow start temperature of the substrate (X).
  • the drying temperature is preferably in the range of 70 to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C.
  • the removal of the solvent may be carried out under normal pressure or reduced pressure.
  • the solvent is removed by a heat treatment in the step (Z-iii) described later. Also good.
  • the layer (Y) may be formed on both sides of the layered substrate (X) with or without the layer (Z).
  • the first layer (Y) is formed by applying the coating liquid (S) to one surface and then removing the solvent.
  • the second layer (Y) is formed by removing the solvent.
  • the composition of the coating liquid (S) applied to each surface may be the same or different.
  • the manufacturing method of this invention includes the process of forming the layer (Z) containing an aluminum atom on a base material (X) or a layer (Y). According to the layer (Z) formation step, a multilayer structure including the layer (Z) is obtained. The layer (Z) and the layer (Y) are formed so as to be adjacent to each other.
  • the layer (Z) formation step may be performed at any stage.
  • the layer (Z) formation step may be performed before the step (Yi), may be performed before the step (Y-ii), or may be performed after the step (Y-ii). Alternatively, it may be performed at any stage between them.
  • a layer (Z) forming step is performed after the step (Y-ii).
  • the layer (Z) forming step is performed before the step (Y-ii). In this case, in the step (Y-ii), the coating liquid (S) is applied to the layer (Z).
  • the layer (Z) is a layer (Z2) which is an aluminum vapor deposition layer or a layer (Z3) which is an aluminum oxide vapor deposition layer
  • these layers can be formed by the general vapor deposition method described above. Therefore, below, the formation method of a layer (Z1) is demonstrated in detail. Note that an example of a method for forming the layer (Z1) is described in JP2013-208794A.
  • the layer (Z) forming step may include the following steps (Zi), (Z-ii) and (Z-iii).
  • step (Zi) the coating liquid (T) is prepared by mixing the metal oxide (C), the phosphorus compound (D), and the solvent.
  • step (Z-ii) the coating liquid (T) is applied on the base material (X) to form the precursor layer of the layer (Z1) on the base material (X) or the layer (Y). To do.
  • the precursor layer is heat-treated at a temperature of 110 ° C. or higher to form the layer (Z1) on the substrate (X) or the layer (Y). Details of the steps (Zi) to (Z-iii) will be described later.
  • Step (Y-ii) is performed in this order.
  • the step (Yi) is not particularly limited as long as it is before the step (Y-ii), and may be performed at any stage, and may be performed in parallel with the step (Zi).
  • Step (Y-ii) is performed.
  • step (Y-ii) may be performed between the step (Z-ii) and the step (Z-iii). From the viewpoint of obtaining a multilayer structure having an excellent appearance, it is preferable to carry out the step (Y-ii) after the step (Z-iii).
  • step (Zi) at least a metal oxide (C), a phosphorus compound (D), and a solvent are mixed to prepare a coating liquid (T) containing them.
  • the metal oxide (C) and the phosphorus compound (D) are reacted in a solvent.
  • the metal oxide (C) used for mixing (immediately before mixing) with the phosphorus compound (D) may be the metal oxide (C) itself or a composition containing the metal oxide (C). It may be in the form of a thing.
  • the metal oxide (C) is mixed with the phosphorus compound (D) in the form of a dispersion obtained by dispersing the metal oxide (C) in a solvent.
  • any solvent can be used, water or a mixed solvent containing water is preferable.
  • the preparation of the aluminum oxide dispersion is performed by first hydrolyzing and condensing the aluminum alkoxide in an aqueous solution adjusted to pH by adding an acid as necessary. An aluminum slurry is obtained. Next, the slurry is peptized in the presence of a specific amount of acid to obtain a dispersion of aluminum oxide.
  • the dispersion liquid of the metal oxide (C) containing metal atoms other than aluminum can also be manufactured with the same manufacturing method.
  • the acid catalyst used for the hydrolysis condensation for example, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, lactic acid and butyric acid are preferable, and nitric acid and acetic acid are more preferable.
  • an acid catalyst is used at the time of hydrolysis condensation, it is preferable to use an amount suitable for the type of acid so that the pH before hydrolysis condensation is in the range of 2.0 to 4.0.
  • the step (Zi) preferably includes the following steps (Zi-1) to (Zi-3).
  • Step (Zi-1) a step of preparing a dispersion (J) containing a metal oxide (C)
  • Step (Zi-2) A step of preparing a solution (K) containing the phosphorus compound (D)
  • Step (Zi-3) A step of mixing the dispersion (J) obtained in steps (Zi-1) and (Zi-2) and the solution (K).
  • the step (Zi-2) may be performed before the step (Zi-1), may be performed simultaneously with the step (Zi-1), or may be performed at the step (Zi- It may be performed after 1).
  • a dispersion (J) containing the metal oxide (C) is prepared.
  • the dispersion (J) may be a dispersion of a metal oxide (C).
  • the dispersion (J) is prepared, for example, by mixing a compound (G), water, and, if necessary, an acid catalyst or an organic solvent in accordance with a technique employed in a known sol-gel method. It can be prepared by condensation or hydrolysis condensation.
  • the dispersion of the metal oxide (C) obtained by condensing or hydrolyzing the compound (G) can be used as it is as the dispersion (J) containing the metal oxide (C).
  • a specific treatment (such as peptization as described above, addition or subtraction of a solvent for concentration control) may be performed on the dispersion liquid (J).
  • the solvent used in the step (Zi-1) is not particularly limited, but alcohols such as methanol, ethanol and isopropanol, water and a mixed solvent thereof are preferable.
  • the step (Zi-1) may include a step of condensing (for example, hydrolytic condensation) at least one compound selected from the compound (G) and a hydrolyzate of the compound (G).
  • Step (Zi-2) In the step (Zi-2), a solution (K) containing the phosphorus compound (D) is prepared.
  • the solution (K) is prepared by dissolving the phosphorus compound (B) in a solvent.
  • dissolution may be promoted by heat treatment or ultrasonic treatment.
  • the solvent used for the preparation of the solution (K) may be appropriately selected according to the type of the phosphorus compound (D), but preferably contains water.
  • the solvent is methanol, ethanol, tetrahydrofuran, 1,4-dioxane, trioxane, dimethoxyethane, acetone, methyl ethyl ketone, ethylene glycol, propylene glycol, methyl cellosolve, ethyl cellosolve, n -An organic solvent such as butyl cellosolve, glycerin, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane may be contained.
  • Step (Zi-3) In the step (Zi-3), the dispersion (J) and the solution (K) are mixed.
  • the dispersion (J) and the solution (K) are preferably mixed with stirring.
  • the solution (K) may be added to the stirring dispersion (J), or the dispersion (J) may be added to the stirring solution (K).
  • a coating liquid (T) having excellent storage stability may be obtained.
  • the temperature of the dispersion (J) and the solution (K) when mixing in the step (Zi-3) is preferably 50 ° C. or less, more preferably 30 ° C. or less, and 20 ° C. or less. More preferably it is.
  • the coating liquid (T) may contain a polymer (F). Moreover, the coating liquid (T) may contain at least one acid compound (Q) selected from acetic acid, hydrochloric acid, nitric acid, trifluoroacetic acid, and trichloroacetic acid, if necessary.
  • the solution obtained in the step (Zi-3) can be used as it is as the coating solution (T).
  • the solvent contained in the dispersion liquid (J) or solution (K) is usually the solvent for the coating liquid (T).
  • a solution obtained by subjecting the solution obtained in the step (Zi-3) to treatment such as addition of an organic solvent, adjustment of pH, addition of an additive, or the like may be used as the coating solution (T).
  • An organic solvent may be added to the solution obtained in the step (Zi-3) as long as the stability of the resulting coating liquid (T) is not inhibited.
  • the coating liquid (T) may be easily applied to the substrate (X) or the layer (Y) in the step (Z-ii).
  • an organic solvent what is mixed uniformly in the coating liquid (T) obtained is preferable.
  • organic solvent examples include methanol, ethanol, tetrahydrofuran, 1,4-dioxane, trioxane, dimethoxyethane, acetone, methyl ethyl ketone, ethylene glycol, propylene glycol, methyl cellosolve, ethyl cellosolve, n-butyl cellosolve, glycerin, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane and the like can be mentioned.
  • the solid content concentration of the coating liquid (T) is preferably in the range of 1 to 20% by mass. It is more preferably in the range of 2 to 15% by mass, and further preferably in the range of 3 to 10% by mass.
  • the solid content concentration of the coating liquid (T) can be calculated, for example, by dividing the mass of the solid content remaining after the solvent of the coating liquid (T) is distilled off by the mass of the coating liquid (T) subjected to the treatment. it can.
  • the pH of the coating liquid (T) is preferably in the range of 0.1 to 6.0, preferably 0.2 to 5.0. More preferably, it is in the range of 0.5 to 4.0.
  • the pH of the coating liquid (T) can be adjusted by a known method, for example, by adding an acidic compound or a basic compound.
  • the viscosity of the coating liquid (T) As a method of adjusting the viscosity of the coating liquid (T) to be in the above range, for example, a method of adjusting the concentration of solid content, adjusting pH, or adding a viscosity modifier can be adopted. However, it is not limited to these. As long as the effects of the present invention are obtained, the coating liquid (T) may contain other components contained in the layer (Y) described above.
  • the layer (Z1) is formed on the substrate (X) or the layer (Y) by applying the coating liquid (T) on the substrate (X) or the layer (Y).
  • the precursor layer is formed.
  • the coating liquid (T) may be applied directly on at least one surface of the substrate (X), or may be applied on the substrate (X) via another layer (layer (Y)). May be.
  • the surface of the substrate (X) is treated with a known anchor coating agent, or a known adhesive is applied to the surface of the substrate (X).
  • the adhesive layer (L) may be formed on the surface of the substrate (X).
  • the layer (Z1) is formed on the layer (Y).
  • a precursor layer may be formed.
  • the coating liquid (T) may be degassed and / or defoamed as necessary.
  • Examples of the degassing and / or defoaming treatment include a method using reduced pressure, heating, centrifugation, ultrasonic waves, and the like, and a method including reduced pressure is preferable.
  • the coating liquid (T) applied in the step (Z-ii) has a viscosity measured with a Brookfield type rotational viscometer (SB type viscometer: rotor No. 3, rotation speed 60 rpm). It is preferably 3,000 mPa ⁇ s or less, more preferably 2,000 mPa ⁇ s or less at the hourly temperature. When the viscosity is 3,000 mPa ⁇ s or less, the leveling property of the coating liquid (T) is improved, and a multilayer structure having a more excellent appearance can be obtained.
  • the viscosity of the coating liquid (T) when applied in the step (Z-ii) can be adjusted by the concentration, temperature, stirring time after mixing in the step (Zi-3) and stirring strength.
  • the viscosity can be lowered by long stirring after mixing in the step (Zi-3).
  • the method for coating the coating liquid (T) on the substrate (X) or the layer (Y) is not particularly limited, and a known method can be used. Examples of the coating method include a method of applying the coating liquid (S) in the step (Y-ii).
  • the precursor layer of the layer (Z1) is formed by removing the solvent in the coating liquid (T).
  • a well-known drying method is applicable. Examples of the drying method include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method.
  • the drying temperature is preferably 0 to 15 ° C. or lower than the flow start temperature of the substrate (X).
  • the coating liquid (T) contains the polymer (F)
  • the drying temperature is preferably 15 to 20 ° C. lower than the thermal decomposition start temperature of the polymer (F).
  • the drying temperature is preferably in the range of 70 to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C.
  • the removal of the solvent may be carried out under normal pressure or reduced pressure. Further, the solvent may be removed by a heat treatment in a step (Z-iii) described later.
  • the coating liquid (T) is applied to one surface of the substrate (X), and then the solvent is removed. To form a first layer (a precursor layer of the first layer (Z1)). Next, after coating the coating liquid (T) on the other surface of the substrate (X), the solvent is removed to form a second layer (a precursor layer of the second layer (Z1)). .
  • the composition of the coating liquid (T) applied to each surface may be the same or different.
  • a layer (a precursor layer of the layer (Z1)) may be formed for each surface by the above method. Or you may form a several layer (precursor layer of a layer (Z1)) simultaneously by apply
  • step (Z-iii) the precursor layer (precursor layer of layer (Z1)) formed in step (Z-ii) is heat-treated at a temperature of 110 ° C. or higher to form layer (Z1). .
  • a reaction in which the metal oxide (C) particles are bonded through phosphorus atoms (phosphorus atoms derived from the phosphorus compound (D)) proceeds.
  • a reaction for generating the reaction product (E) proceeds.
  • the temperature of the heat treatment is preferably 110 ° C. or higher, more preferably 140 ° C. or higher, further preferably 170 ° C. or higher, and 190 ° C. or higher. Particularly preferred. If the heat treatment temperature is low, it takes a long time to obtain a sufficient degree of reactivity, which causes a decrease in productivity.
  • the preferable upper limit of the temperature of heat processing changes with kinds etc. of base material (X).
  • the heat treatment temperature is preferably 190 ° C. or lower.
  • the temperature of heat processing is 220 degrees C or less.
  • the heat treatment may be performed in an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.
  • the heat treatment time is preferably in the range of 0.1 second to 1 hour, more preferably in the range of 1 second to 15 minutes, and still more preferably in the range of 5 to 300 seconds.
  • the method of the present invention for producing a multilayer structure may include a step of irradiating the precursor layer of the layer (Z1) or the layer (Z1) with ultraviolet rays.
  • the ultraviolet irradiation may be performed at any stage after the step (Z-ii) (for example, after the removal of the solvent of the coated coating solution (T) is almost completed).
  • the method is not particularly limited, and a known method can be applied.
  • the wavelength of the irradiated ultraviolet light is preferably in the range of 170 to 250 nm, more preferably in the range of 170 to 190 nm and / or in the range of 230 to 250 nm.
  • irradiation with radiation such as an electron beam or ⁇ -ray may be performed. By performing ultraviolet irradiation, the gas barrier performance of the multilayer structure may be expressed more highly.
  • the surface of the base material (X) is coated with a known anchor coating agent before the coating liquid (T) is applied.
  • a known adhesive may be applied to the surface of the substrate (X).
  • the temperature of the aging treatment is preferably less than 110 ° C, more preferably 100 ° C or less, and further preferably 90 ° C or less.
  • the temperature of the aging treatment is preferably 10 ° C or higher, more preferably 20 ° C or higher, and further preferably 30 ° C or higher.
  • the aging time is preferably in the range of 0.5 to 10 days, more preferably in the range of 1 to 7 days, and further preferably in the range of 1 to 5 days.
  • the multilayer structure thus obtained can be used as it is as the multilayer structure of the present invention.
  • a laminate in which another member (for example, another layer) is further bonded or formed on the multilayer structure as described above may be used as the multilayer structure of the present invention.
  • the members can be bonded by a known method.
  • Extruded coat laminate In the multilayer structure of the present invention, for example, after the layer (Y) is laminated directly on the substrate (X) or the layer (Z) or via the adhesive layer (L), another layer is directly or directly adhered to the adhesive layer.
  • a layer formed by extrusion coating lamination can be further provided by forming via (L) by extrusion coating lamination.
  • the extrusion coat laminating method There is no particular limitation on the extrusion coat laminating method that can be used in the present invention, and a known method may be used. In a typical extrusion coat laminating method, a laminated film is produced by sending a molten thermoplastic resin to a T-die and cooling the thermoplastic resin taken out from the flat slit of the T-die.
  • FIG. 11 schematically shows only the main part of the apparatus, which is different from the actual apparatus.
  • the apparatus 50 of FIG. 11 includes an extruder 51, a T die 52, a cooling roll 53, and a rubber roll 54.
  • the cooling roll 53 and the rubber roll 54 are disposed with their roll surfaces in contact with each other.
  • thermoplastic resin is heated and melted in an extruder and is extruded from the flat slit of the T-die 52 to become a resin film 502.
  • This resin film 502 becomes a layer containing a thermoplastic resin.
  • a laminated body 501 is fed from a sheet feeding device (not shown) and is sandwiched between the cooling roll 53 and the rubber roll 54 together with the resin film 502.
  • a laminated film (multilayer structure) in which the laminated body 501 and the resin film 502 are integrated by sandwiching the laminated body 501 and the resin film 502 between the cooling roll 53 and the rubber roll 54. 503 is manufactured.
  • extrusion coat laminating method other than the single laminating method examples include a sandwich laminating method and a tandem laminating method.
  • the sandwich lamination method is a method in which a molten thermoplastic resin is extruded onto one base material, and a second base material is supplied from another unwinder (unwinding machine) and bonded.
  • the tandem laminating method is a method in which two single laminating machines are connected to produce a laminate having a five-layer structure at a time.
  • the layer (Y) and / or the layer (Z) may be laminated so as to be in direct contact with the substrate (X). Moreover, the layer (Y) and / or the layer (Z) may be laminated
  • the adhesive layer (L) may be formed of an adhesive resin.
  • the adhesive layer (L) made of an adhesive resin can be formed by treating the surface of the base material (X) with a known anchor coating agent or applying a known adhesive to the surface of the base material (X). .
  • the adhesive is preferably a two-component reactive polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted.
  • adhesiveness can be further improved by adding a small amount of additives such as a known silane coupling agent to the anchor coating agent or adhesive.
  • the silane coupling agent include, but are not limited to, a silane coupling agent having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group, or a mercapto group.
  • the substrate (X) and the layer (Y) and / or the layer (Z) are strongly bonded via the adhesive layer (L), whereby the multilayer structure of the present invention is subjected to processing such as printing and lamination. In this case, deterioration of gas barrier properties and appearance can be more effectively suppressed, and the drop strength of the packaging material using the multilayer structure of the present invention can be increased.
  • the thickness of the adhesive layer (L) is preferably in the range of 0.01 to 10.0 ⁇ m, more preferably in the range of 0.03 to 5.0 ⁇ m.
  • the multilayer structure of the present invention may include other layers for imparting various properties, for example, heat sealability, and improving barrier properties and mechanical properties.
  • Such a multilayer structure of the present invention is obtained by, for example, laminating the layer (Y) and the layer (Z) directly on the substrate (X) or via the adhesive layer (L), and then further adding the other layer. It can be produced by bonding or forming directly or via an adhesive layer (L).
  • Examples of other layers include, but are not limited to, an ink layer and a polyolefin layer.
  • the multilayer structure of the present invention may include an ink layer for printing a trade name or a pattern.
  • Such a multilayer structure of the present invention is obtained by, for example, laminating the layer (Y) and the layer (Z) directly on the substrate (X) or via the adhesive layer (L), and then directly applying the ink layer. It can be manufactured by forming.
  • the ink layer include a film obtained by drying a liquid obtained by dispersing a polyurethane resin containing a pigment (for example, titanium dioxide) in a solvent, but an ink mainly containing a polyurethane resin not containing a pigment or other resins.
  • a film obtained by drying a resist for forming an electronic circuit wiring may be used.
  • the ink layer As a method of applying the ink layer to the layer (Y), various coating methods such as a wire bar, a spin coater, a die coater, etc. can be used in addition to the gravure printing method.
  • the thickness of the ink layer is preferably in the range of 0.5 to 10.0 ⁇ m, more preferably in the range of 1.0 to 4.0 ⁇ m.
  • the polymer (B) present in the layer (Y) is a hydroxyl group and / or carboxyl having a high affinity for the adhesive layer (L) and other layers (for example, an ink layer). Since it has a group, the adhesion between the layer (Y) and other layers is improved. For this reason, it is possible to maintain the interlayer adhesive force even after the retorting process, and it is possible to suppress appearance defects such as delamination.
  • the polyolefin layer As the outermost surface layer of the multilayer structure of the present invention, heat sealability can be imparted to the multilayer structure or the mechanical properties of the multilayer structure can be improved.
  • the polyolefin is preferably polypropylene or polyethylene.
  • the polyester is preferably polyethylene terephthalate
  • the polyamide is preferably nylon-6
  • the hydroxyl group-containing polymer is preferably an ethylene-vinyl alcohol copolymer.
  • the structure in which the layer (Y) and the layer (Z) are stacked adjacent to each other may be referred to as a layer (YZ).
  • the order in the layer (YZ) may be any of layer (Y) / layer (Z) and layer (Z) / layer (Y).
  • the multilayer structure including the base material (X) and the layer (YZ) laminated on the base material (X) may be referred to as a barrier multilayer film.
  • the multilayer structure of the present invention includes, for example, barrier multilayer film / ink layer / polyolefin layer, barrier multilayer film / ink layer / adhesive layer (L) / polyolefin layer, barrier multilayer film / adhesive layer (L) / polyolefin.
  • the layer may have a structure of polyolefin layer / adhesive layer (L) / multilayer barrier film / adhesive layer (L) / polyolefin layer.
  • the multilayer structure of the present invention may include a first polyolefin layer disposed on one outermost surface and a second polyolefin layer disposed on the other outermost surface. At this time, the first polyolefin layer and the second polyolefin layer may be the same or different.
  • the multilayer structure may have an adhesive layer such as an adhesive layer (L) or other layers, but the description of the adhesive layer and other layers is omitted in the following specific examples.
  • L adhesive layer
  • any one of the structures (1) to (8), (11) to (32), and (48) to (53) is preferred.
  • the present invention it is possible to obtain a multilayer structure having an oxygen permeability of 2 mL / (m 2 ⁇ day ⁇ atm) or less at 20 ° C. and 85% RH.
  • the multilayer structure of the present invention preferably has an oxygen permeability of 1.5 mL / (m 2 ⁇ day ⁇ atm) or less at 20 ° C. and 85% RH, and 1.3 mL / (m 2 (Day.atm) The following are more preferable.
  • the measuring method and measuring conditions of the oxygen permeability are as described in Examples described later.
  • the multilayer structure of the present invention preferably has a moisture permeability of 1.0 g / (m 2 ⁇ day) or less under the conditions of 40 ° C. and 90% RH, preferably 0.50 g / (m 2 ⁇ day). The following are more preferable, and 0.30 g / (m 2 ⁇ day) or less are more preferable.
  • the measurement method and conditions of moisture permeability are as described in the examples described later.
  • the multilayer structure of the present invention is excellent in gas barrier properties, and can maintain gas barrier properties at a high level even when subjected to physical stress such as deformation or impact. Moreover, according to the present invention, a multilayer structure having an excellent appearance can be obtained. Therefore, the multilayer structure of the present invention and the packaging material using the multilayer structure can be applied to various uses.
  • the packaging material of the present invention has a multilayer structure including a substrate (X), a layer (Y) laminated on the substrate (X), and a layer (Z) disposed adjacent to the layer (Y). Including the body.
  • the packaging material may be constituted only by a multilayer structure. That is, in the following description, “packaging material” may be read as “multilayer structure”. Typically, “packaging material” can be read as “packaging”.
  • the packaging material may be composed of a multilayer structure and other members.
  • the packaging material includes an inorganic gas (eg, hydrogen, helium, nitrogen, oxygen, carbon dioxide), natural gas, water vapor, and an organic compound that is liquid at normal temperature and pressure (eg, ethanol, gasoline vapor). It has a barrier property against.
  • an inorganic gas eg, hydrogen, helium, nitrogen, oxygen, carbon dioxide
  • natural gas e.g., hydrogen, helium, nitrogen, oxygen, carbon dioxide
  • water vapor e.g, ethanol, gasoline vapor
  • a multilayer structure may be used for all of the packaging bags, or a multilayer structure may be used for a part of the packaging bag.
  • 50% to 100% of the area of the packaging bag may be constituted by a multilayer structure.
  • the packaging material is other than a packaging bag (for example, a container or a lid).
  • the packaging material of the present invention can be produced by various methods.
  • a container is produced by joining a sheet-like multilayer structure or a film material containing the multilayer structure (hereinafter simply referred to as “film material”) and forming it into a predetermined container shape. May be.
  • the molding method include thermoforming, injection molding, and extrusion blow molding.
  • the container produced as described above may be referred to as a “packaging container” in the present specification.
  • the packaging material including the multilayer structure of the present invention may be used after being secondarily processed into various molded products.
  • a molded product may be a vertical bag-filled sealing bag, vacuum packaging bag, pouch, laminated tube container, infusion bag, paper container, strip tape, container lid, in-mold label container or vacuum insulator. Good. In these molded articles, heat sealing may be performed.
  • the packaging material including the multilayer structure of the present invention may be a vertical bag-filling seal bag.
  • An example is shown in FIG. 1 is formed by sealing a multilayer structure 11 on three sides of two end portions 11a and a body portion 11b.
  • the vertical bag filling and sealing bag 10 can be manufactured by a vertical bag making and filling machine. Various methods are applied to bag making by a vertical bag making and filling machine. In either method, the contents are supplied from the upper opening of the bag to the inside, and then the opening is sealed. A vertical bag filling and sealing bag is manufactured.
  • the vertical bag-filling-seal bag is composed of, for example, a single film material that is heat-sealed in three directions, that is, an upper end, a lower end, and a side portion.
  • the vertical bag-filling and sealing bag including the multilayer structure of the present invention has excellent gas barrier properties and maintains the gas barrier properties even when subjected to physical stress such as deformation and impact. According to the bag, the quality deterioration of the contents can be suppressed over a long period of time.
  • Examples of the structure of the multilayer structure preferable as the vertical bag-filling seal bag include barrier multilayer film / polyamide layer / polyolefin layer, barrier multilayer film / polyolefin layer, polyolefin layer / barrier multilayer film / polyolefin layer, and the like.
  • a polyamide film may be used as the base material of the barrier multilayer film.
  • the vertical bag-filling-sealed sealing bag maintains its gas barrier property even when subjected to physical stress such as deformation or impact.
  • the layer (YZ) of the multilayer structure of the present invention is on one side of the base material, the layer (YZ) may face either the outside or the inside of the vertical bag-filling sealing bag.
  • the seal of the body part is usually a palm seal.
  • the seal of the body part is usually an envelope sticker.
  • the packaging material including the multilayer structure of the present invention may be a vacuum packaging bag.
  • An example is shown in FIG.
  • the vacuum packaging bag 101 of FIG. 2 is a container that includes film materials 131 and 132 as wall members and is joined (sealed) to each other at the peripheral edge 111.
  • the inside of the sealed vacuum packaging bag is depressurized.
  • the film materials 131 and 132 are deformed in the central portion 112 surrounded by the peripheral edge portion 111 so as to be in close contact with the contents 150, and the inside and outside of the bag 101. Functions as a partition wall.
  • the vacuum packaging bag can be manufactured using a nozzle type or chamber type vacuum packaging machine.
  • the vacuum packaging bag as the packaging container of the present invention has excellent gas barrier properties, and the gas barrier properties are maintained even when subjected to physical stress such as deformation or impact. Therefore, the barrier performance of the vacuum packaging bag hardly decreases over a long period of time.
  • Examples of the structure of the multilayer structure preferable as a vacuum packaging bag include a structure of barrier multilayer film / polyamide layer / polyolefin layer, and polyamide layer / barrier multilayer film / polyolefin layer.
  • a polyamide film may be used as the base material of the barrier multilayer film.
  • a vacuum packaging bag using such a multilayer structure is particularly excellent in gas barrier properties after vacuum packaging or after vacuum packaging and heat sterilization.
  • a layer (YZ) may be in the outer side of a vacuum packaging bag with respect to a base material, and may exist inside.
  • the packaging material including the multilayer structure of the present invention may be a pouch.
  • An example is shown in FIG.
  • the flat pouch 20 of FIG. 3 is formed by joining two multilayer structures 11 to each other at the peripheral edge portion 11c.
  • the phrase “pouch” means a container having a film material as a wall member mainly containing food, daily necessities or pharmaceuticals.
  • the pouch include a pouch with a spout, a pouch with a chuck seal, a flat pouch, a stand-up pouch, a horizontal bag-filling seal pouch, and a retort pouch depending on the shape and use.
  • the pouch may be formed by laminating a barrier multilayer film and at least one other layer.
  • the pouch as the packaging container of the present invention has excellent gas barrier properties, and the gas barrier properties are maintained even when subjected to physical stress such as deformation or impact. Therefore, the pouch can prevent the contents from being deteriorated even after transportation or after long-term storage. In addition, since an example of the pouch can maintain good transparency, it is easy to check the contents and the deterioration of the contents due to deterioration.
  • a configuration of a barrier multilayer film / polyamide layer / polyolefin layer and a polyamide layer / barrier multilayer film / polyolefin layer may be mentioned.
  • a layer (YZ) when the layer (YZ) is laminated
  • the packaging material including the multilayer structure of the present invention may be a laminated tube container.
  • An example is shown in FIG.
  • the laminate tube container 301 in FIG. 4 includes a body portion 331 including a laminate film 310 as a partition wall 320 that separates the inside and the outside of the container, and a shoulder portion 332, and the shoulder portion 332 has a through hole (extraction port). It has a cylindrical take-out portion 342 and a base portion 341 having a hollow truncated cone shape.
  • the laminated tube container includes a body portion 331 that is a cylindrical body with one end closed, a shoulder portion 332 disposed at the other end of the body portion 331, and an end seal portion 311.
  • the shoulder portion 332 has a through hole (extraction port), a cylindrical extraction portion 342 having a male screw portion on the outer peripheral surface, and a base portion having a hollow truncated cone shape 341.
  • a lid having a female screw portion corresponding to the male screw portion may be detachably attached to the take-out portion 342.
  • the laminate film 310 constituting the wall member of the body portion 331 preferably has flexibility.
  • a molded body made of metal, resin, or the like can be used for the shoulder portion 332.
  • the laminated tube container as the packaging container of the present invention has excellent gas barrier properties, and the gas barrier properties are maintained even when subjected to physical stress such as deformation or impact. In addition, since the laminated tube container has good transparency, it is easy to confirm the contents and the deterioration of the contents due to deterioration.
  • Preferred configurations for the laminate tube container include configurations of polyolefin layer / barrier multilayer film / polyolefin layer, and polyolefin layer / pigment-containing polyolefin layer / polyolefin layer / barrier multilayer film / polyolefin layer.
  • a layer (YZ) may be in the outer side of a laminate tube container with respect to a base material, and may exist inside.
  • the packaging material including the multilayer structure of the present invention may be an infusion bag.
  • the infusion bag is a container having an infusion preparation as its contents, and includes a film material as a partition that separates the inside and the outside for containing the infusion preparation.
  • FIG. 5 the infusion bag may include a plug member 432 at the peripheral edge 412 of the bag body 431 in addition to the bag body 431 that stores the contents.
  • the plug member 432 functions as a path for taking out the infusion contained in the bag body 431.
  • the infusion bag may be provided with the suspension hole 433 in the peripheral part 411 on the opposite side of the peripheral part 412 to which the plug member 432 is attached.
  • the bag body 431 is formed by joining two film materials 410a and 410b to each other at the peripheral edge portions 411, 412, 413, and 414.
  • the film materials 410 a and 410 b function as a partition wall 420 that separates the inside of the bag from the outside of the bag at the center portion surrounded by the peripheral edge portions 411, 412, 413, and 414 of the bag body 431.
  • the infusion bag as a packaging container according to the present invention has excellent gas barrier properties, and the gas barrier properties are maintained even when subjected to physical stress such as deformation or impact. Therefore, according to the infusion bag, it is possible to prevent the filled liquid medicine from being deteriorated before the heat sterilization treatment, during the heat sterilization treatment, after the heat sterilization treatment, after transportation, and after storage.
  • Preferred configurations of the multilayer structure as an infusion bag include configurations of barrier multilayer / polyamide layer / polyolefin layer and polyamide layer / barrier multilayer / polyolefin layer.
  • a layer (YZ) may exist in the outer side of an infusion bag with respect to a base material, and may exist inside.
  • the packaging material containing the multilayer structure of the present invention may be a paper container.
  • a paper container is a container in which the partition which separates the inside which accommodates the content, and the exterior contains a paper layer.
  • at least a part of the partition wall includes a multilayer structure, and the multilayer structure includes a substrate (X) and a layer (Y).
  • the paper layer may be included in the substrate (X).
  • An example is shown in FIG.
  • the paper container 510 has a window portion 511 on the side surface of the body portion. The paper layer is removed from the base material of the window portion of the windowed container, and the contents can be visually recognized through the window portion 511.
  • the paper container 510 of FIG. 6 can be formed by bending or bonding (sealing) a flat laminate.
  • the paper container may be of a predetermined shape having a bottom such as a brick type or a gable top type.
  • the paper container as a packaging container according to the present invention has little deterioration in gas barrier properties even when it is bent.
  • this paper container is preferably used for a container with a window by using a highly transparent layer (YZ).
  • YZ highly transparent layer
  • the paper container is suitable for heating by a microwave oven.
  • the heat-resistant polyolefin layer is composed of, for example, either a biaxially stretched heat-resistant polyolefin film or an unstretched heat-resistant polyolefin film.
  • the heat-resistant polyolefin layer disposed in the outermost layer of the multilayer structure is preferably an unstretched polypropylene film.
  • the heat-resistant polyolefin layer disposed inside the outermost layer of the multilayer structure is preferably an unstretched polypropylene film.
  • all heat-resistant polyolefin layers constituting the multilayer structure are unstretched polypropylene films.
  • a strip tape When a paper container is manufactured by bonding (sealing) a layered laminate, a strip tape may be used for a seal portion of the laminate.
  • the strip tape is a band-shaped member used for joining wall materials (laminates) constituting the partition walls of the paper container to each other.
  • the paper container by this invention may be equipped with the strip tape in the bonding part to which a laminated body is joined.
  • the strip tape may include a multilayer structure having the same layer configuration as the multilayer structure included in the partition of the paper container.
  • both outermost layers are polyolefin layers for heat sealing.
  • This strip tape can suppress the characteristic fall in the bonding part where gas barrier property and water vapor barrier property are easy to fall. Therefore, this strip tape is useful also for the paper container which does not correspond to the packaging container by this invention.
  • the packaging material including the multilayer structure of the present invention may be a container lid.
  • the container lid member includes a film material that functions as a part of a partition wall that separates the inside of the container from the outside of the container.
  • the container lid is a container (with a lid) that is combined with the container body so as to seal the opening of the container body by heat sealing or bonding (sealing) using an adhesive, etc., and has a sealed space inside.
  • Container The container lid is usually joined to the container main body at the peripheral edge thereof. In this case, the center part surrounded by the peripheral part faces the internal space of the container.
  • the container body is, for example, a molded body having a cup shape, a tray shape, or other shapes.
  • the container body includes a wall surface part, a flange part for sealing the container lid, and the like.
  • the container lid as a packaging container according to the present invention is excellent in gas barrier properties and maintains its gas barrier properties even when subjected to physical stress such as deformation or impact, so that the quality of food as a content is deteriorated. It can be suppressed for a long time.
  • cover material is preferably used as a lid
  • a configuration of barrier multilayer film / polyamide layer / polyolefin layer and barrier multilayer film / polyolefin layer can be mentioned.
  • a polyamide film may be used as the base material of the barrier multilayer film.
  • An adhesive layer may be provided between the layers.
  • the layer (YZ) of the multilayer structure is on one side of the base material, the layer (YZ) may be on the inner side (container side) than the base material, or on the outer side of the base material. Good.
  • the packaging material including the multilayer structure of the present invention may be an in-mold label container.
  • the in-mold label container includes a container body and the multilayer label (multilayer structure) of the present invention disposed on the surface of the container body.
  • the container body is formed by injecting molten resin into the mold.
  • the shape of the container body is not particularly limited, and may be a cup shape, a bottle shape, or the like.
  • An example of a method of the present invention for manufacturing a container includes a first step of placing a multilayer label of the present invention in a cavity between a female mold part and a male mold part, and injecting a molten resin into the cavity Thus, a second step of simultaneously forming the container body and attaching the multilayer label of the present invention to the container body is included. Except for using the multilayer label of the present invention, each step can be performed by a known method.
  • FIG. 7 shows a cross-sectional view of an example of the container of the present invention.
  • a container 360 of FIG. 7 includes a cup-shaped container main body 370 and multilayer labels 361 to 363 attached to the surface of the container main body 370.
  • the multilayer labels 361 to 363 are multilayer labels of the present invention.
  • the container body 370 includes a flange portion 371, a body portion 372, and a bottom portion 373.
  • the flange portion 371 has a convex portion 371a projecting up and down at the tip thereof.
  • the multilayer label 361 is disposed so as to cover the outer surface of the bottom 373. In the center of the multilayer label 361, a through hole 361a for injecting resin at the time of in-mold label molding is formed.
  • the multilayer label 362 is disposed so as to cover the outer surface of the body portion 372 and the lower surface of the flange portion 371.
  • the multilayer label 363 is disposed so as to cover a part of the inner surface of the body portion 372 and the upper surface of the flange portion 371.
  • the multilayer labels 361 to 363 are fused to the container main body 370 by an in-mold label molding method, and are integrated with the container main body 360. As shown in FIG. 7, the end surface of the multilayer label 363 is fused to the container body 360 and is not exposed to the outside.
  • the product of the present invention using at least a part of the packaging material described above may be a vacuum heat insulator.
  • the vacuum heat insulating body of the present invention is a heat insulating body including a covering material and a core material disposed inside the covering material, and the inside where the core material is disposed is decompressed.
  • the vacuum insulator makes it possible to achieve a heat insulation characteristic equivalent to that of a heat insulator made of urethane foam with a thinner and lighter heat insulator.
  • the vacuum heat insulating body of the present invention can maintain a heat insulating effect for a long period of time, it is used for a heat insulating material for household appliances such as a refrigerator, a hot water supply facility, and a rice cooker, a wall portion, a ceiling portion, an attic portion, a floor portion, and the like. It can be used for heat insulation equipment such as heat insulation equipment for houses, heat insulation panels for vehicle roofing materials, vending machines, and heat pump application equipment.
  • the vacuum heat insulating body 601 in FIG. 8 includes a particulate core material 651 and a covering material 610 that covers the particulate core material 651, and the covering material 610 includes two film materials 631 and 632 that are joined to each other at a peripheral edge 611.
  • the core material 651 is disposed inside the covering material 610.
  • the covering material 610 functions as a partition wall that separates the inside and the outside where the core material 651 is accommodated, and is in close contact with the core material 651 due to a pressure difference between the inside and the outside. .
  • the inside where the core material 651 is disposed is decompressed.
  • FIG. 9 shows another example of the vacuum insulator according to the present invention.
  • the vacuum heat insulating body 602 in FIG. 9 has the same configuration as the vacuum heat insulating body 601 except that it includes a core member 652 that is integrally formed instead of the core member 651.
  • the covering material 610 functions as a partition wall 620 that separates the inside and the outside in which the core material 652 is accommodated, and is in close contact with the core material 652 due to a pressure difference between the inside and the outside of the heat insulator.
  • the inside where the core member 652 is disposed is depressurized.
  • the core member 652 is typically a resin foam.
  • the material and shape of the core material are not particularly limited as long as it is suitable for heat insulation.
  • the core material include pearlite powder, silica powder, precipitated silica powder, diatomaceous earth, calcium silicate, glass wool, rock wool, artificial (synthetic) wool, resin foam (eg, styrene foam, urethane foam), and the like. Is mentioned.
  • a hollow container, a honeycomb structure or the like molded into a predetermined shape can also be used.
  • a configuration of a multilayer structure preferable as a vacuum heat insulator a configuration of barrier multilayer film / polyamide layer / polyolefin layer, and polyamide layer / barrier multilayer film / polyolefin layer may be mentioned.
  • An adhesive layer may be provided between the layers.
  • a layer (YZ) may exist in the outer side of a vacuum heat insulating body with respect to a base material, and may exist inside.
  • FIG. 10 A partial cross-sectional view of the electronic device is shown in FIG. 10 includes an electronic device body 41, a sealing material 42 for sealing the electronic device body 41, a protective sheet (multilayer structure) 43 for protecting the surface of the electronic device body 41, and the like. .
  • the sealing material 42 covers the entire surface of the electronic device body 41.
  • the protective sheet 43 is disposed on one surface of the electronic device main body 41 via a sealing material 42.
  • the protective sheet 43 may also be disposed on the surface opposite to the surface on which the protective sheet 43 is disposed. In that case, the protective sheet disposed on the opposite surface may be the same as or different from the protective sheet 43.
  • the protective sheet 43 only needs to be arranged so as to protect the surface of the electronic device main body 41, and may be arranged directly on the surface of the electronic device main body 41, or other members such as the sealing material 42 may be used.
  • the electronic device main body 41 may be disposed on the surface of the electronic device main body 41.
  • the electronic device main body 41 is not particularly limited, and is, for example, a photoelectric conversion device such as a solar battery, an organic EL display, a liquid crystal display, an information display device such as electronic paper, or an illumination device such as an organic EL light emitting element.
  • the sealing material 42 is an arbitrary member that is appropriately added according to the type and application of the electronic device body 41. Examples of the sealing material 42 include ethylene-vinyl acetate copolymer and polyvinyl butyral.
  • a preferred example of the electronic device body 41 is a solar cell.
  • the solar battery include a silicon solar battery, a compound semiconductor solar battery, and an organic thin film solar battery.
  • the silicon-based solar cell include a single crystal silicon solar cell, a polycrystalline silicon solar cell, and an amorphous silicon solar cell.
  • compound semiconductor solar cells include III-V compound semiconductor solar cells, II-VI group compound semiconductor solar cells, and I-III-VI group compound semiconductor solar cells.
  • As an organic thin film solar cell, a pn heterojunction organic thin film solar cell, a bulk heterojunction organic thin film solar cell, etc. are mentioned, for example.
  • the solar cell may be an integrated solar cell in which a plurality of unit cells are connected in series.
  • the electronic device main body 41 can be manufactured by a so-called roll-to-roll method depending on the type.
  • a flexible substrate for example, a stainless steel substrate or a resin substrate
  • an electronic device body 41 is produced by forming elements on this substrate.
  • the electronic device body 41 is taken up by a take-up roll.
  • the protective sheet 43 may be prepared in the form of a long sheet having flexibility, more specifically in the form of a wound body of a long sheet.
  • the protective sheet 43 delivered from the delivery roll is stacked on the electronic device main body 41 before being taken up by the take-up roll, and taken up together with the electronic device main body 41.
  • the electronic device main body 41 wound around the winding roll may be sent out from the roll again and laminated with the protective sheet 43.
  • the electronic device itself is flexible.
  • the protective sheet 43 includes the multilayer structure described above.
  • the protective sheet 43 may be composed of only a multilayer structure.
  • the protective sheet 43 may include a multilayer structure and other members (for example, other layers) laminated on the multilayer structure.
  • the thickness and material of the protective sheet 43 are not particularly limited.
  • the protective sheet 43 may include, for example, a surface protective layer disposed on one surface or both surfaces of the multilayer structure.
  • the surface protective layer is preferably a layer made of a resin that is not easily damaged.
  • the surface protective layer of the device which may be utilized outdoors like a solar cell consists of resin with high weather resistance (for example, light resistance).
  • a surface protective layer with high translucency is preferable.
  • Examples of the material for the surface protective layer include poly (meth) acrylate, polycarbonate, polyethylene terephthalate, polyethylene-2,6-naphthalate, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether Examples thereof include a copolymer (PFA) and a tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • An example of the protective sheet includes a poly (meth) acrylate layer disposed on one surface.
  • various additives for example, ultraviolet absorbers
  • a preferable example of the surface protective layer having high weather resistance is an acrylic resin layer to which an ultraviolet absorber is added.
  • the ultraviolet absorber include, but are not limited to, benzotriazole-based, benzophenone-based, salicylate-based, cyanoacrylate-based, nickel-based, and triazine-based ultraviolet absorbers.
  • other stabilizers, light stabilizers, antioxidants and the like may be used in combination.
  • the multilayer structure of the present invention can have a barrier property against water vapor in addition to the gas barrier property.
  • Such a multilayer structure can maintain its water vapor barrier property at a high level even when subjected to physical stress such as deformation or impact.
  • this characteristic may greatly contribute to the durability of the product.
  • the present invention includes embodiments in which the above-described configurations are variously combined within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • the multilayer structure was cut using a focused ion beam (FIB) to prepare a section (thickness 0.3 ⁇ m) for cross-sectional observation.
  • the prepared section was fixed to the sample base with carbon tape, and platinum ion sputtering was performed at an acceleration voltage of 30 kV for 30 seconds.
  • the cross section of the multilayer structure was observed using a field emission transmission electron microscope, and the thickness of each layer was calculated.
  • the measurement conditions were as follows. Apparatus: JEM-2100F manufactured by JEOL Ltd. Accelerating voltage: 200kV Magnification: 250,000 times
  • the sample was attached to an oxygen permeation measuring device so that the layer of the substrate faced the carrier gas side, and the oxygen permeability was measured.
  • the measurement conditions were as follows. Equipment: MOCON OX-TRAN 2/20 manufactured by Modern Controls Temperature: 20 ° C Oxygen supply side humidity: 85% RH Humidity on the carrier gas side: 85% RH Oxygen pressure: 1 atm Carrier gas pressure: 1 atm
  • the polymer (Aa-1) was obtained by vacuum drying at 50 ° C. for 24 hours.
  • the polymer (Aa-1) is a polymer of 2-phosphonooxyethyl methacrylate.
  • the number average molecular weight of the polymer was 10,000 in terms of polystyrene.
  • Coating Liquids (S-2) to (S-13) and Coating Liquids (CS-1) to (CS-8) were prepared in the same manner as in the production of the coating liquid (S-1) except that the types and ratios of the compound (A) and the polymer (B) were changed according to Table 1 described later. To (S-13) and coating solutions (CS-1) to (CS-8) were produced. In addition, since the layer formed by the coating liquids (CS-1) to (CS-8) does not correspond to the layer (Y), it is indicated as a layer (CY) in Table 1.
  • PET12 Stretched polyethylene terephthalate film; manufactured by Toray Industries, Inc., “Lumirror P60” (trade name), thickness 12 ⁇ m 2)
  • PET50 Polyethylene terephthalate film with improved adhesion to ethylene-vinyl acetate copolymer; “Shinebeam Q1A15” (trade name), 50 ⁇ m thickness, manufactured by Toyobo Co., Ltd.
  • Example 1 ⁇ Example 1-1> First, PET12 was prepared as a base material (X). On this substrate, the coating liquid (T-1) was applied using a bar coater so that the thickness after drying was 0.3 ⁇ m. The coated film was dried at 110 ° C. for 5 minutes, and then heat-treated at 160 ° C. for 1 minute to form a layer (Z1) on the substrate. In this way, a structure having a structure of base material (X) / layer (Z1) was obtained. A result of measuring the infrared absorption spectrum of the resulting structure, the maximum absorption wave number region of 800 ⁇ 1,400cm -1 is 1,108Cm -1, the half width of the absorption band was 37cm -1.
  • a coating liquid (S-1) is applied onto the structure using a bar coater so that the thickness after drying is 0.05 ⁇ m, and dried at 220 ° C. for 1 minute to form a layer (Y ) Was formed.
  • a multilayer structure (1-1) having a structure of base material (X) / layer (Z1) / layer (Y) was obtained.
  • the oxygen permeability and moisture permeability of the obtained multilayer structure (1-1) were measured by the methods described above.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0.2 g / (m 2 ⁇ day).
  • a sample having a size of 15 cm ⁇ 10 cm was cut out from the multilayer structure (1-1), and this sample was allowed to stand for 24 hours under the conditions of 23 ° C. and 50% RH, and then 3% in the major axis direction under the same conditions.
  • a multilayer structure (1-1) after the stretching treatment was obtained.
  • the oxygen permeability after the stretching treatment was measured by the method described above.
  • the appearance of the multilayer structure (1-1) was evaluated.
  • a laminate was obtained by laminating ONY on the adhesive layer.
  • CPP70 was laminated on the adhesive layer, and allowed to stand at 40 ° C. for 5 days for aging.
  • a multilayer structure (1-2) having a structure of substrate (X) / layer (Z1) / layer (Y) / adhesive layer / ONY / adhesive layer / CPP was obtained.
  • Each of the two adhesive layers was formed by applying and drying a two-component reactive polyurethane adhesive using a bar coater so that the thickness after drying was 3 ⁇ m.
  • the two-component reactive polyurethane adhesive includes “Takelac” (registered trademark) “A-525S” (brand name) manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A” manufactured by Mitsui Chemicals, Inc. An adhesive consisting of -50 "(brand) was used.
  • a pouch was prepared by heat-sealing the multilayer structure (1-2), and 100 g of water was filled in the pouch. Subsequently, the obtained pouch was subjected to hot water treatment at 120 ° C. for 30 minutes under the condition of 0.15 MPaG using a retort treatment apparatus (Flavor Ace RSC-60 manufactured by Nisaka Manufacturing Co., Ltd.). . The appearance of the multilayer structure (1-2) after the hydrothermal treatment was evaluated. After the appearance evaluation, the pouch was dried for 24 hours in an environment of 23 ° C. and 50% RH. Then, the T-type peel strength of the multilayer structure (1-2) after drying was measured.
  • Examples 1-2 to 1-13> In the same manner as in the production of the multilayer structure (1-1) in Example 1-1, except that the coating liquid (S-1) was changed to the coating liquids (S-2) to (S-13), an example was prepared. Multilayer structures (2-1) to (13-1) of 1-2 to 1-13 were produced. Further, the same procedure as in the production of the multilayer structure (1-2) of Example 1-1 was performed except that the multilayer structure (1-1) was changed to the multilayer structures (2-1) to (13-1). Thus, multilayer structures (2-2) to (13-2) were obtained.
  • Example 1-14 The multilayer structure of Example 1-14 was prepared in the same manner as the production of the multilayer structure (1-1) of Example 1-1, except that a vapor deposition layer formed by a vacuum deposition method was used instead of the layer (Z1).
  • the multilayer structure (15-1) of (14-1) and Example 1-15 was produced.
  • an aluminum layer (Z2) having a thickness of 0.03 ⁇ m was used as the vapor deposition layer.
  • an aluminum oxide layer (Z3) having a thickness of 0.03 ⁇ m was used as the vapor deposition layer.
  • the multilayer structure (1-1) was changed to the multilayer structures (14-1) to (15-1).
  • multilayer structures (14-2) to (15-2) were obtained.
  • a 0.03 ⁇ m-thick aluminum oxide layer (Z3) was formed on the substrate (X) by a vacuum deposition method.
  • a layer (Z1) was formed on the layer (Z3) using the coating liquid (T-1).
  • a layer (Y) was formed on the layer (Z1) using the coating liquid (S-1).
  • a multilayer structure (16-1) having a structure of base material (X) / layer (Z3) / layer (Z1) / layer (Y) was produced.
  • the multilayer structure (16-1) was produced under the same conditions as in Example 1-1 except for the formation of the layer (Z3).
  • a multilayer structure (1-1) was prepared in the same manner as in the production of the multilayer structure (1-2) of Example 1-1 except that the multilayer structure (1-1) was changed to the multilayer structure (16-1). 16-2) was obtained.
  • Example 1-17> First, the layer (Z1-1) was formed on the substrate (X) using the coating liquid (T-1). Next, a 0.03 ⁇ m thick aluminum oxide layer (Z3) was formed on the layer (Z1) by vacuum evaporation. Next, a layer (Y) was formed on the layer (Z3) using the coating liquid (S-1). Thus, a multilayer structure (17-1) having a structure of base material (X) / layer (Z1) / layer (Z3) / layer (Y) was produced. The multilayer structure (17-1) was produced under the same conditions as in Example 1-1 except for the formation of the layer (Z3). A multilayer structure (1-1) was prepared in the same manner as in the production of the multilayer structure (1-2) of Example 1-1 except that the multilayer structure (1-1) was changed to the multilayer structure (17-1). 17-2) was obtained.
  • Example 1-18> The multilayer structure (Example 1-1) except that the coating liquid (S-1) was changed to the coating liquid (S-6) and an ink layer was formed on the multilayer structure (6-1).
  • the multilayer structure (18-2) having the structure of base material (X) / layer (Z1) / layer (Y) / ink layer / ONY / adhesive layer / CPP is obtained in the same manner as in the preparation of 1-2). It was. And the obtained multilayer structure was evaluated.
  • the ink layer was formed by coating using a bar coater such that the thickness after drying was 2 ⁇ m and drying.
  • “R641AT White” brand name
  • “Fine Star” registered trademark
  • Table 1 shows the production conditions of the multilayer structures (1-1) to (17-1) of the examples and the multilayer structures (C1-1) to (C8-1) of the comparative examples.
  • “A: B” in Table 1 represents “compound (A): polymer (B)”.
  • the polymer (B) in Table 1 represents the following substances.
  • PVA124 Polyvinyl alcohol (Kuraray Co., Ltd. Kuraray Poval (registered trademark), saponification degree 98.5 mol%, viscosity average polymerization degree 2,400, viscosity of 4 mass% aqueous solution at 20 ° C. 60 mPa ⁇ s)
  • PVA424H Polyvinyl alcohol (Kuraray Co., Ltd.
  • Kuraray Poval (registered trademark), saponification degree 79.5 mol%, viscosity average polymerization degree 2,400, viscosity of 4% by weight aqueous solution at 20 ° C. 48 mPa ⁇ s)
  • RS-2117 Water-soluble polymer containing a hydroxyl group (Exeval (registered trademark) manufactured by Kuraray Co., Ltd., saponification degree 98.2 mol%, viscosity average polymerization degree 1,700, viscosity of 4 mass% aqueous solution at 20 ° C.
  • PAA polyacrylic acid (“Aron-15H” (registered trademark) manufactured by Toa Gosei Co., Ltd., number average molecular weight 210,000, weight average molecular weight 1.29 million)
  • Starch Starch manufactured by Wako Pure Chemical Industries, Ltd. (solubility, purity: Wako first grade)
  • Table 2 shows the evaluation results of the multilayer structures (1-1) to (17-1) and (C1-1) to (C8-1).
  • Table 3 shows the evaluation results of the multilayer structures (1-2) to (18-2) and (C1-2) to (C9-2).
  • the multilayer structure of the present invention showed a good appearance even after heat treatment. Moreover, the multilayer structure of the present invention maintained gas barrier properties at a high level even when subjected to strong stretching stress. Moreover, the multilayer structure of the present invention showed good adhesion even after retorting.
  • the multilayer structure of Example 1-14 on which aluminum was vapor-deposited was opaque due to the aluminum layer, but no unevenness was observed and the appearance was good.
  • Example 1-19> Using the multilayer structure (1-2) obtained in Example 1-1, a vertical bag-filled sealing bag was produced. Specifically, first, the multilayer structure (1-2) is cut to a width of 400 mm and supplied to a vertical bag making and filling machine (manufactured by ORIHIRO Co., Ltd.). (Width 160 mm, length 470 mm) was produced. Next, using a bag making and filling machine, 2 kg of water was filled into a vertical bag making and sealing bag made of the multilayer structure (1-2). The processability of the multilayer structure (1-2) in the bag making and filling machine was good, and no defects such as wrinkles and streaks were found in the appearance of the obtained vertical bag filling and sealing bag.
  • Example 1-20> A vacuum packaging bag was produced using the multilayer structure (1-2) obtained in Example 1-1. Specifically, first, two 22 cm ⁇ 30 cm rectangular laminates were cut from the multilayer structure (1-2). Then, two multilayer structures (1-2) were overlaid so that the CPP layer was inside, and a bag was formed by heat-sealing the three sides of the rectangle. The bag was filled with wooden spheres (diameter 30 mm) as a solid food model in a state where they were spread in one layer so that the spheres were in contact with each other. Thereafter, the air inside the bag was evacuated, and the last side was heat-sealed to produce a vacuum package. In the obtained vacuum package, the multilayer structure (1-2) was in close contact along the irregularities of the sphere.
  • Example 1-21> A spout-attached pouch was produced using the multilayer structure (1-2) obtained in Example 1-1. Specifically, first, two multilayer structures (1-2) were cut into a predetermined shape. Next, the two multilayer structures (1-2) were superposed so that the CPP layer was on the inside, the periphery was heat sealed, and a polypropylene spout was attached by heat sealing. In this way, a flat pouch-type pouch with a spout could be produced without problems.
  • Example 1-22> A laminated tube container was produced using the multilayer structure (1-1) obtained in Example 1-1. Specifically, first, a two-component reactive polyurethane adhesive was applied to each of the two CPPs 100 using a bar coater so that the thickness after drying was 3 ⁇ m and dried. As the two-component reactive polyurethane adhesive, the two-component reactive polyurethane adhesive used in Example 1-1 was used. Next, two CPPs 100 and the multilayer structure (1-1) were laminated. In this way, a multilayer structure (22) was obtained.
  • a cylindrical body was produced by heat-sealing the overlapped portions in a cylindrical shape.
  • the cylindrical body was attached to a mandrel for forming a tube container, and a frustoconical shoulder portion and a leading end portion continuous therewith were produced at one end of the cylindrical body.
  • the shoulder and the tip were formed by compression molding polypropylene.
  • a polypropylene cap was attached to the tip.
  • the other open end of the cylindrical body was heat sealed.
  • Example 1-23 An infusion bag was produced using the multilayer structure (1-2) obtained in Example 1-1. Specifically, first, two multilayer structures (1-2) were cut into a predetermined shape. Next, the two multilayer structures (1-2) were superposed so that the CPP layer was on the inside, the periphery was heat sealed, and a polypropylene spout was attached by heat sealing. In this way, an infusion bag could be produced without problems.
  • Example 1-24> A container lid was produced using the multilayer structure (1-2) obtained in Example 1-1. Specifically, the multilayer structure (1-2) was cut into a circle having a diameter of 88 mm as a container lid. Subsequently, a cylindrical container having a diameter of 78 mm, a flange width of 6.5 mm, and a height of 30 mm and comprising three layers of polyolefin layer / steel layer / polyolefin layer (High Leto Flex HR78-84 manufactured by Toyo Seikan Co., Ltd.) The container lid was made of a multilayer structure (1-2) and heat sealed to the flange. In this way, a lidded container using the container lid material could be produced without problems.
  • Example 1-25> A paper container was produced using the multilayer structure (1-1) obtained in Example 1-1. Specifically, first, an adhesive was applied to both sides of a 400 g / m 2 board, and then polypropylene was extruded and laminated on both sides to form polypropylene layers having a thickness of 20 ⁇ m on both sides of the board. Next, an adhesive was applied to the surface of one of the polypropylene layers, and the multilayer structure (1-1) was laminated thereon. Next, an adhesive was applied to the surface of the laminated multilayer structure (1-1) and bonded to CPP70. Using the multilayer structure thus obtained, a brick-type paper container could be produced without problems.
  • Example 1-26> A vacuum heat insulator was produced using the multilayer structure (1-2) obtained in Example 1-1. Specifically, first, two multilayer structures (1-2) were cut into a predetermined shape. Next, two multilayer structures (1-2) were overlaid so that the CPP layer was on the inside, and bags were formed by heat-sealing the three sides of the rectangle. Next, a heat insulating core material was filled from the opening of the bag, and the bag was sealed using a vacuum packaging machine (VAC-STAR 2500 type manufactured by Frimark GmbH) at a temperature of 20 ° C. and an internal pressure of 10 Pa. Thus, the vacuum heat insulating body was able to be produced without a problem. In addition, the silica fine powder dried at 120 degreeC for 4 hours was used for the heat insulating core material.
  • VAC-STAR 2500 type manufactured by Frimark GmbH a vacuum packaging machine
  • Example 2 Container First, plasma treatment was performed on the surface of a PET bottle (volume 500 mL, surface area 0.041 m 2 , weight 35 g) serving as a base material. The surface of this PET bottle was coated with the coating liquid (T-1) by the dipping method and then dried at 110 ° C. for 5 minutes. Subsequently, the structure which has a structure of base material (X) / layer (Z1) was obtained by performing heat processing for 5 minutes at 120 degreeC. Next, the coating liquid (S-1) described above was applied to the surface of the obtained structure by a dipping method so that the thickness after drying was 0.3 ⁇ m, and dried at 110 ° C. for 5 minutes. In this way, a container (2-1) was obtained. The wall portion of the container (2-1) has a configuration of base material (X) / layer (Z1) / layer (Y).
  • a sample for measurement having a size of 15 cm (circumferential direction) ⁇ 10 cm (longitudinal direction) was cut out from the body of the container (2-1), and the oxygen permeability and moisture permeability before stretching were measured.
  • the oxygen permeability before the stretching treatment was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0.1 g / (m 2 ⁇ day).
  • the oxygen permeability after the stretching treatment was 0.6 mL / (m 2 ⁇ day ⁇ atm), and the container of the present invention maintained the oxygen barrier property at a high level even when subjected to strong physical stress.
  • the stretching process was performed under the same conditions as in Example 1-1.
  • Example 3 Vertical bag filling and sealing bag First, PET12 was used as the base material (X), and the coating liquid (T-1) was dried on this base material using a bar coater with a thickness of 0. The film was applied to 3 ⁇ m and dried at 110 ° C. for 5 minutes. Furthermore, the structure which has a structure of a base material (X) / layer (Z1) was produced by heat-processing at 160 degreeC for 1 minute. Result of infrared absorption spectrum of the resulting structure was measured, the maximum absorption wave number region of 800 ⁇ 1,400cm -1 is 1,108Cm -1, the half-value width of the maximum absorption band in the region at 37cm -1 there were.
  • Example 1-1 the coating liquid (S-1) used in Example 1-1 was applied to the structure using a bar coater so that the thickness after drying was 0.05 ⁇ m, and the structure was heated at 220 ° C. Layer (Y) was formed by drying for 1 minute. In this way, a multilayer structure (3-1) having a structure of base material (X) / layer (Z1) / layer (Y) was obtained. The appearance of this multilayer structure (3-1) was evaluated. Further, the oxygen permeability and moisture permeability of the multilayer structure (3-1) were measured by the methods described above. The oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm). The water vapor transmission rate was 0.2 g / (m 2 ⁇ day).
  • the two-component reactive polyurethane adhesive includes “Takelac” (registered trademark) “A-525S” (brand name) manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A” manufactured by Mitsui Chemicals, Inc.
  • An adhesive consisting of -25 "(brand) was used.
  • the multilayer structure (3-1-2) was cut into a width of 400 mm and supplied to a vertical bag making and packaging machine (manufactured by Orihiro Co., Ltd.) so that the CPP layers were in contact with each other and heat sealed.
  • a vertical bag-filling and sealing bag (3-1) (width 160 mm, length 470 mm) as shown in FIG. 1 was produced by a vertical bag-filling and packaging machine.
  • a sample for measurement was cut out from the vertical bag filling and sealing bag (3-1), and the oxygen permeability and moisture permeability before the stretching treatment were measured.
  • the oxygen permeability before the stretching treatment was 0.2 mL / (m 2 ⁇ day ⁇ atm)
  • moisture permeability was 0.2 g / (m 2 ⁇ day)
  • oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the bag (3-1) was filled with 2 kg of water as the contents. Subsequently, the obtained bag was retorted under the same conditions as in Example 1-1. In the appearance evaluation of the bag (3-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good.
  • a sample for measurement was cut out from the retort-treated bag (3-1), and the sample was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the oxygen permeability and moisture permeability of the sample were measured. 0.4 mL / (m 2 ⁇ day ⁇ atm), and the water vapor transmission rate was 0.2 g / (m 2 ⁇ day).
  • the sample after retort treatment was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and as a result of measuring the T-type peel strength, the peel strength was 420 gf / 15 mm.
  • Example 4 Vacuum Packaging Bag Two 22 cm ⁇ 30 cm rectangular laminates were cut from the multilayer structure (3-1-2) produced in Example 3. Then, two multilayer structures (3-1-2) were overlaid so that the CPP layer was on the inside, and bags were formed by heat-sealing the three sides of the rectangle.
  • the bag was filled with wooden spheres (diameter 30 mm) as a solid food model in a state where they were spread in one layer so that the spheres were in contact with each other. Thereafter, the air inside the bag was evacuated and the last side was heat-sealed to obtain a vacuum-packed bag (4-1) that was vacuum-packed in close contact along the irregularities of the sphere.
  • a sample for measurement was cut out from the vacuum packaging bag (4-1), and the oxygen permeability and moisture permeability before stretching were measured.
  • the oxygen permeability before stretching was 0.2 mL / (m 2 ⁇ day ⁇ atm. )
  • the moisture permeability was 0.2 g / (m 2 ⁇ day)
  • the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the vacuum packaging bag (4-1) was retorted in hot water steam at 120 ° C. and 0.15 MPaG for 30 minutes using a retort processing apparatus (RCS-60 manufactured by Nisaka Manufacturing Co., Ltd.). went.
  • a retort processing apparatus RCS-60 manufactured by Nisaka Manufacturing Co., Ltd.
  • a sample for measurement was cut out from the vacuum packaging bag after the retort treatment, and the sample was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the oxygen permeability of the sample was measured. (M 2 ⁇ day ⁇ atm).
  • the sample after the retort treatment was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and as a result of measuring T-type peel strength, the peel strength was 400 gf / 15 mm.
  • Example 5 Laminated tube container An adhesive layer was formed on each of the two CPPs 100 and laminated with the multilayer structure (3-1-2) obtained in Example 3. In this way, a laminate film having a structure of CPP / adhesive layer / multilayer structure / adhesive layer / CPP was obtained.
  • the adhesive layer was coated with a two-component reactive adhesive (“A-520” and “A-50” used in Example 1-1) using a bar coater so that the thickness after drying was 3 ⁇ m. And formed by drying.
  • a cylindrical body part was manufactured by heat-sealing the overlapped part. This heat sealing was performed between the inner CPP layer and the outer CPP layer.
  • drum part formed the laminate body so that the polyethylene terephthalate film which is a base material (X) might become a cylindrical inner side.
  • drum part was mounted
  • the shoulder was formed by compression molding a polypropylene resin.
  • kneaded wasabi was filled as the contents from the other end portion of the opened body portion, and this end portion was heat sealed by bringing the inner peripheral surfaces of the inner CPP layer into contact with each other.
  • a laminated tube container (5-1) filled with kneaded wasabi was obtained.
  • a sample for measurement was cut out from the laminate tube container (5-1), and the oxygen permeability and moisture permeability before stretching were measured.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm).
  • the oxygen permeability after the stretching treatment was 0.4 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the laminate tube container (5-1) was retorted under the same conditions as in Example 4. In the appearance evaluation of the container (5-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good. A sample for measurement was cut out from the laminated tube container (5-1) after the retort treatment, and the sample was left in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the oxygen permeability and moisture permeability of the sample were measured. As a result, 0.4 mL / (m 2 ⁇ day ⁇ atm) and moisture permeability were 0.2 g / (m 2 ⁇ day). The sample after the retort treatment was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and as a result of measuring the T-type peel strength, the peel strength was 450 gf / 15 mm.
  • a squeeze test was performed by sandwiching the body of the laminate tube container (5-1) with fingers and reciprocating the fingers along the longitudinal direction of the body while applying a certain force. After 5,000 round trips, the kneaded wasabi of the contents was taken out. A sample for measurement was cut out from the laminate tube container (5-1) after the squeeze test, and the oxygen permeability was measured. As a result, the oxygen permeability after the squeeze test was 0.8 mL / (m 2 ⁇ day ⁇ atm). there were.
  • the laminated tube container of the present invention maintained the barrier performance at a high level even under strong physical stress.
  • Example 6 Pouch with spout Two laminates having a size of 20 cm x 13 cm were cut from the multilayer structure (3-1-2) obtained in Example 3. Subsequently, the two laminates that were cut were overlapped so that the CPP layer was inside, the outer periphery was heat-sealed with a width of 0.5 cm, and a polypropylene spout was attached by heat sealing. In this manner, a flat pouch-type pouch with a spout (6-1) was produced. A sample for measurement was cut out from the pouch (6-1), and the oxygen permeability and moisture permeability before stretching were measured.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0. 0.2 g / (m 2 ⁇ day), and the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the pouch (6-1) was filled with 400 mL of distilled water. Subsequently, the obtained pouch was retorted in hot water at 130 ° C. and 0.18 MPaG for 30 minutes using a retort treatment device (manufactured by Nisaka Seisakusho, Flavor Ace RCS-60). . In the appearance evaluation of the pouch (6-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good. A sample for measurement was cut out from the pouch (6-1) after the retort treatment, and the sample was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the oxygen permeability and moisture permeability of the sample were measured.
  • the pouch (6-1) after the retort treatment was dropped five times from a height of 1.5 m with the side of the pouch (heat seal side) down, and a bending test was performed. A sample for measurement was cut out from the pouch (6-1) after the bending test and the oxygen permeability was measured. As a result, the oxygen permeability was 0.8 mL / (m 2 ⁇ day ⁇ atm).
  • the spout pouch of the present invention maintained a high level of barrier performance even under strong physical stress.
  • Example 7 Flat Pouch Two laminates each having a size of 20 cm ⁇ 13 cm were cut from the multilayer structure (3-1-2) produced in Example 3. Subsequently, the two laminated bodies cut were overlapped so that the CPP layer was inside, and the outer periphery of the three sides was heat-sealed with a width of 0.5 cm. Further, a pouch opening having a length of 30 mm was formed at the end of the opening on the other side. Next, a polytetrafluoroethylene sheet having a width of 30 mm was inserted into the end of the opening, and heat sealing was performed in that state. After heat sealing, a flat pouch (7-1) was obtained by removing the polytetrafluoroethylene sheet.
  • a sample for measurement was cut out from the flat pouch (7-1), and the oxygen permeability and moisture permeability before the stretching treatment were measured.
  • the oxygen permeability before the stretching treatment was 0.2 mL / (m 2 ⁇ day ⁇ atm).
  • the moisture permeability was 0.2 g / (m 2 ⁇ day), and the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the flat pouch (7-1) was evaluated in the same manner as the pouch with a spout of Example 6.
  • Example 7 as a retort treatment, after filling a flat pouch with 500 mL of distilled water, a hot water steam retort treatment was performed at 130 ° C. and 0.18 MPaG for 30 minutes.
  • a sample for measurement was cut out from the pouch (7-1) after the retort treatment, and the sample was allowed to stand in an atmosphere of 23 ° C.
  • the flat pouch (7-1) was left at 20 ° C. and 65% RH for 1 hour, and then water was extracted from the opening of the pouch. Subsequently, 400 mL of distilled water was filled in the pouch, and the head space portion was reduced as much as possible. Next, it sealed so that the filled distilled water might not leak by heat-sealing an opening part.
  • the bending test was done by the method similar to Example 6. FIG. A sample for measurement was cut out from the pouch (7-1) after the bending test and the oxygen permeability was measured. As a result, the oxygen permeability was 0.7 mL / (m 2 ⁇ day ⁇ atm).
  • the flat pouch of the present invention maintained the barrier performance at a high level even under strong physical stress.
  • Example 8 Pouch with gusset
  • the multilayer structure (3-1-2) obtained in Example 3 was cut into two rolls (a roll having a width of 450 mm ⁇ a length of 200 m and a roll having a width of 60 mm ⁇ a length of 200 m) ) was produced. Subsequently, these rolls are supplied to a standing bag three-sided seal bag making machine (Seibu Kikai Co., Ltd.), and the unstretched polypropylene part is heat-sealed to form a pouch with a bottom gusset (width 130mm, length) 200 mm, gusset folding width 25 mm at the bottom gusset portion).
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0. 0.2 g / (m 2 ⁇ day), and the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the stretching process was performed under the same conditions as in Example 1-1.
  • the produced pouch (8-1) was evaluated in the same manner as the pouch with a spout of Example 6. However, in Example 8, as a retort treatment, after filling a pouch with a gusset with 500 mL of distilled water, a steam retort treatment was performed at 130 ° C. and 0.18 MPaG for 30 minutes. In the appearance evaluation of the pouch (8-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good. A sample for measurement was cut out from the gusseted pouch (8-1) after the retort treatment, and the sample was left in an atmosphere of 20 ° C.
  • the pouch (8-1) after the retort treatment was allowed to stand at 20 ° C. and 65% RH for 1 hour, and then water was extracted from the opening of the pouch. Subsequently, 500 ml of distilled water was filled to reduce the head space portion as much as possible. Next, it sealed so that the filled distilled water might not leak by heat-sealing an opening part.
  • a bending test was performed on the gusseted pouch sealed with distilled water in the same manner as in Example 6. A sample for measurement was cut out from the pouch (8-1) after the bending test, and the oxygen permeability and moisture permeability were measured. As a result, the oxygen permeability was 0.8 mL / (m 2 ⁇ day ⁇ atm).
  • the gusseted pouch of the present invention maintained the barrier performance at a high level even under strong physical stress.
  • Example 9 Infusion bag Two multilayer structures 12 cm x 10 cm were cut out from the multilayer structure (3-1-2) produced in Example 3. Subsequently, the two multilayer structures cut out were overlapped so that the CPP layer was inside, and the periphery was heat sealed, and a polypropylene spout (plug member) was attached by heat sealing. Thus, an infusion bag (9-1) having the same structure as that shown in FIG. 5 was produced. A sample for measurement was cut out from the infusion bag (9-1), and the oxygen permeability and moisture permeability before stretching were measured. As a result, the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm). Was 0.2 g / (m 2 ⁇ day), and the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm). The stretching process was performed under the same conditions as in Example 1-1.
  • the produced infusion bag (9-1) was evaluated in the same manner as the pouch with a spout of Example 6. However, in Example 9, as the retort treatment, the infusion bag (8-1) was filled with 100 mL of distilled water and then retorted in hot water at 120 ° C. and 0.15 MPaG for 30 minutes. In the appearance evaluation of the infusion bag (9-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good. A sample for measurement was cut out from the infusion bag (9-1) after the retort treatment, and the sample was left in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the oxygen permeability and moisture permeability of the sample were measured.
  • the infusion bag (9-1) after the retort treatment was filled with 100 mL of distilled water, then dropped 5 times from a height of 1.5 m with the side surface (heat seal side) down, and a bending test was performed. A sample for measurement was cut out from the infusion bag (9-1) after the bending test, and the oxygen permeability and moisture permeability were measured. As a result, the oxygen permeability was 0.9 mL / (m 2 ⁇ day ⁇ atm).
  • the infusion bag of the present invention maintained the barrier performance at a high level even under strong physical stress.
  • Example 10 Paper container An unstretched PP layer (20 ⁇ m in thickness) was formed on both sides of the paperboard by extrusion-coating and laminating polypropylene resin (PP) on both sides of the 400 g / m 2 paperboard. Thereafter, an adhesive layer was formed on the surface of one PP layer, and the multilayer structure (3-1-2) obtained in Example 3 was laminated thereon. The adhesive layer was formed using the two-component adhesive used in Example 1-1. Next, the adhesive was applied to the surface of the multilayer structure, and the multilayer structure and CPP 50 were bonded together.
  • PP polypropylene resin
  • a multilayer structure (10-1-2) having a configuration of (outer) PP / paperboard / PP / multilayer structure / CPP (inner side) was produced.
  • the multilayer structure (3-1-2) was laminated so that the layer (Y) was closer to the board than the base (X).
  • the multilayer structure (10-1-2) is bent and molded so that the CPP of the multilayer structure (10-1-2) faces the inside of the container, and further heat-sealed, so that the brick type A paper container (10-1) (with an internal volume of 500 mL) was prepared.
  • a circular sample (diameter: 6.5 cm) not including a bent portion was cut out from the flat wall portion constituting the side surface of the paper container (10-1).
  • the cut circular sample flat part circular sample
  • the cut circular sample is placed on a circle of 4.5 cm in diameter opened on a 10 cm square aluminum foil (thickness 30 ⁇ m), and two-part curing is performed between the sample and the aluminum foil.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm)
  • the moisture permeability was 0.2 g / (m 2 ⁇ day).
  • a 6.5 cm ⁇ 9.0 cm range not including a bent portion is cut out from the flat wall portion constituting the side surface of the paper container (10-1) as a sample, and the sample is subjected to the same conditions as in Example 1-1.
  • the oxygen permeability was 1.4 mL / (m 2 ⁇ day ⁇ atm).
  • a paper container (10-1) 500 g of distilled water was poured as a content and sealed. Subsequently, a retort process was performed under the same conditions as in Example 9. In the appearance evaluation of the paper container (10-1) after the retort treatment, there was no peeling between the layers of the multilayer structure, and the appearance was good. The paper container (10-1) after the retort treatment was left at 20 ° C. and 65% RH for 1 hour, and water was extracted. Subsequently, a flat circular sample was cut out from the flat wall constituting the side surface of the paper container (10-1) in the same manner as before the retorting, and the oxygen permeability and moisture permeability of the sample were measured.
  • a circular sample (diameter: 6.5 cm) is cut out from the portion including the bent portion of the paper container (10-1) after the retort treatment, and the oxygen permeability of the sample is measured in the same manner as the flat circular sample. did. As a result, the oxygen permeability was 1.0 mL / (m 2 ⁇ day ⁇ atm).
  • the paper container of the present invention maintained the barrier performance at a high level even when subjected to strong physical stress during bending deformation.
  • Example 11 Strip Tape
  • a brick type paper container using a strip tape was produced and evaluated.
  • the two-component adhesive used in Example 1-1 was applied and dried, and this was laminated with CPP50 for lamination. Got the body.
  • the two-component adhesive was applied and dried, and this was laminated with CPP50.
  • a multilayer structure (11-1-2) having a configuration of CPP / adhesive layer / multilayer structure / adhesive layer / CPP was obtained. This multilayer structure (11-1-2) was cut into strips to produce strip tapes.
  • Example 11 After heat-sealing the CPP and the polypropylene resin layer (PP) at the center of one of the four side surfaces, the heat-sealed portion at the center of the side surface is further replaced with the multilayer structure (11 It was covered with a strip tape consisting of -1-2). Then, the multi-layer structure was bonded by heating the strip tape portion from the inside of the paper container to produce a paper container (11-1). The paper container (11-1) was retorted in the same manner as in Example 10.
  • a circular sample (diameter: 6.5 cm) was cut out from the paper container (11-1) after the retort treatment so that the ratio of the pasted portion at the center of the side surface of the paper container to the sample was maximized.
  • the oxygen permeability was 0.4 mL / (m 2 ⁇ day ⁇ atm).
  • the strip tape of the present invention maintained the barrier performance at a high level even after being subjected to strong physical stress accompanying pressure and heat during heat sealing.
  • Example 12 Container lid material From the multilayer structure (3-1-2) produced in Example 3, a circular multilayer structure with a diameter of 100 mm was cut out to obtain a container lid.
  • a flanged container manufactured by Toyo Seikan Co., Ltd., “High Reflex” (registered trademark), “HR78-84” (trade name) was prepared.
  • This container has a cup shape with an upper surface diameter of 78 mm and a height of 30 mm. The upper surface of the container is open, and the width of the flange portion formed on the periphery thereof is 6.5 mm.
  • the container is constituted by a laminate of three layers of olefin layer / steel layer / olefin layer.
  • the container body was almost completely filled with water, and the lid member was heat-sealed to the flange portion, whereby a lidded container (12-1) was obtained.
  • the lid material was heat sealed by placing the lid so that the CPP layer of the lid material was in contact with the flange portion.
  • the oxygen permeability of the said container by the measuring method used in a present Example was substantially zero.
  • a sample for measurement was cut out from the lid of the lidded container (12-1), and the oxygen permeability and moisture permeability were measured. As a result, the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0. It was 2 g / (m 2 ⁇ day).
  • the retort treatment was performed on the lidded container (12-1) under the same conditions as in Example 9.
  • the container with a lid (12-1) after the retort treatment was left at 20 ° C. and 65% RH for 1 hour, and a hole was made in the bottom of the container body to drain water.
  • a sample for measurement was cut out from the lid of the lidded container (12-1), and the oxygen permeability and moisture permeability of the sample were measured.
  • Example 13 In-mold label container For each of two CPPs 100, a two-component adhesive ("A-" used in Example 1-1 was used by using a bar coater so that the thickness after drying was 3 ⁇ m. 520 "and” A-50 ") were applied and dried. Next, two CPPs and the multilayer structure (1-1) of Example 1-1 were laminated and aged by standing at 40 ° C. for 5 days. In this way, a multilayer label (13-1-2) having a structure of CPP / adhesive layer / base material (X) / layer (Y) / adhesive layer / CPP was obtained.
  • the multilayer label (13-1-2) was cut in accordance with the shape of the inner wall surface of the female mold part of the container mold and attached to the inner wall surface of the female mold part.
  • the male part was pushed into the female part.
  • melted polypropylene (“EA7A” of “NOVATEC” (registered trademark) manufactured by Nippon Polypro Co., Ltd.) was injected into the cavity between the male part and the female part at 220 ° C. In this way, injection molding was performed, and the target container (13-1-3) was molded.
  • the container body had a thickness of 700 ⁇ m and a surface area of 83 cm 2 .
  • the entire outside of the container is covered with the multilayer label (13-1-2), the joint is overlapped with the multilayer label (13-1-2), and the part where the multilayer label (13-1-2) does not cover the outside of the container is There wasn't. At this time, the appearance of the container (13-1-3) was good.
  • a sample for measurement was cut out from the body of the container so as not to include the joint of the multilayer label, and the oxygen permeability and moisture permeability of the sample were measured.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm)
  • the moisture permeability was 0.2 g / (m 2 ⁇ day).
  • the in-mold label container of the present invention achieved barrier performance at a high level even when subjected to strong physical stress accompanying pressure or heat during in-mold label molding.
  • Example 14 Extrusion Coat Lamination After forming an adhesive layer on the layer (Y) on the multilayer structure (1-1) in Example 1-1, a polyethylene resin (density: 0.917 g / cm 3 , melt (Flow rate; 8 g / 10 min) was extrusion coated and laminated at 295 ° C. on the adhesive layer so as to have a thickness of 20 ⁇ m. In this way, a multilayer structure (14-1-2) having a structure of base material (X) / layer (Y) / adhesive layer / polyethylene was obtained. The adhesive layer was formed by applying a two-component adhesive using a bar coater so that the thickness after drying was 0.3 ⁇ m and drying.
  • This two-part adhesive includes “Takelac” (registered trademark) “A-3210” manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A-3070” manufactured by Mitsui Chemicals, Inc. A two-component reactive polyurethane adhesive was used.
  • the oxygen permeability and moisture permeability of the multilayer structure (14-1-2) were measured by the methods described above. As a result, the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0.2 g / (m 2 ⁇ day). Thus, by using the multilayer structure used in the present invention, high barrier performance was achieved even after being subjected to strong physical stress accompanying pressure or heat during extrusion coating.
  • Example 15 Vacuum insulation body The two-component reactive polyurethane adhesive used in Example 1-1 was applied onto CPP60 so that the thickness after drying would be 3 ⁇ m, and the adhesive layer was dried by drying. Formed. A laminate (15-1-1) was obtained by laminating this CPP and the PET layer of the multilayer structure (3-1-2) produced in Example 3. Subsequently, the adhesive layer was formed by applying the two-component adhesive on the ONY so that the thickness after drying was 3 ⁇ m and drying. Then, by laminating this ONY and the laminate (15-1-1), a multilayer structure (15-1-2) having a structure of CPP / adhesive layer / multilayer structure / adhesive layer / ONY is obtained. Obtained.
  • the multilayer structure (15-1-2) was cut to obtain two laminates having a size of 70 cm ⁇ 30 cm.
  • the two laminates were overlapped so that the CPP layers were the inner surfaces, and the three sides were heat-sealed with a width of 10 mm to produce a three-sided bag.
  • the heat insulating core material was filled from the opening of the three-sided bag, and the three-sided bag was sealed at 20 ° C. and an internal pressure of 10 Pa using a vacuum packaging machine.
  • a vacuum heat insulator (15-1) was obtained.
  • Silica fine powder was used for the heat insulating core material.
  • the vacuum insulator (15-1) was allowed to stand for 360 days under the conditions of 40 ° C. and 15% RH, and then the pressure inside the vacuum insulator was measured using a Pirani vacuum gauge. As a result, it was 37.0 Pa.
  • a sample for measurement was cut out from the vacuum insulator (15-1), and the oxygen permeability and moisture permeability before stretching were measured.
  • the oxygen permeability before the stretching treatment was 0.2 mL / (m 2 ⁇ day ⁇ atm)
  • the moisture permeability was 0.2 g / (m 2 ⁇ day)
  • the oxygen permeability after the stretching treatment was 0. It was 4 mL / (m 2 ⁇ day ⁇ atm).
  • the sample was allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and then the state in which the sample was stretched by 3% in one direction corresponding to the major axis direction was maintained for 10 seconds.
  • the multilayer structure of the present invention maintained the barrier performance at a high level even when subjected to strong physical stress, and the vacuum insulator using the same maintained the internal pressure well.
  • the vacuum insulator (15-1) was stored in an atmosphere of 85 ° C. and 85% RH for 1,000 hours, and then allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours. Thereafter, a sample for measurement was cut out from the vacuum insulator (15-1), and T-type peel strength was measured. As a result, the peel strength was 450 gf / 15 mm.
  • Example 16 Effect of packing ⁇ Example 16-1>
  • the flat pouch (7-1) described in Example 7 was charged with 500 mL of a liquid material.
  • As liquids 1.5% ethanol aqueous solution (Example 16-1), edible vinegar (Example 16-2), pH 2 citric acid aqueous solution (Example 16-3), edible oil (Example 16-4) Ketchup (Example 13-5), soy sauce (Example 16-6), ginger paste (Example 16-7), and a liquid containing 200 g of mandarin orange (Example 16-8) were used.
  • the produced flat pouch was stored for 6 months under conditions of 23 ° C. and 50% RH.
  • a sample for measurement was cut out from the flat pouch after storage, and the oxygen permeability of the sample was measured.
  • the oxygen permeability of the samples of Examples 16-1 to 16-8 was 0.2 mL / (m 2 ⁇ day ⁇ atm).
  • Example 16-2 The lidded container (12-1) described in Example 12 was filled with a liquid material and sealed.
  • As liquids 1.5% ethanol aqueous solution (Example 16-9), edible vinegar (Example 16-10), pH 2 citric acid aqueous solution (Example 16-11), edible oil (Example 16-12) , Ketchup (Example 16-13), soy sauce (Example 16-14), ginger paste (Example 16-15), and a liquid containing 100 g of mandarin orange (Example 16-16) were used.
  • the produced container with a lid was stored for 6 months under conditions of 23 ° C. and 50% RH.
  • a sample for measurement was cut out from the lid of the container with lid after storage, and the oxygen permeability of the sample was measured.
  • the oxygen permeability of the samples of Examples 16-9 to 16-16 was 0.2 mL / (m 2 ⁇ day ⁇ atm).
  • the packaging material using the multilayer structure of the present invention showed good barrier performance even after a storage test was conducted in a state filled with food.
  • Example 17 Electronic device ⁇ Example 17-1> Using PET12 as the base material, the coating liquid (T-1) was applied on the base material (PET) using a bar coater so that the thickness after drying was 0.5 ⁇ m, and the temperature was 110 ° C. After drying for 5 minutes, heat treatment was performed at 180 ° C. for 1 minute. In this way, a multilayer structure (17-1) having a structure of base material (X) / layer (Y) was obtained. A result of measuring the infrared absorption spectrum of the resulting structure, the maximum absorption wave number region of 800 ⁇ 1,400cm -1 is 1,107Cm -1, the half width of said maximum absorption band was 37cm -1 .
  • the obtained protective sheet (17-1) was measured for oxygen permeability and moisture permeability.
  • the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm), and the moisture permeability was 0.2 g / (m 2 ⁇ day).
  • a measurement sample having a size of 15 cm ⁇ 10 cm was cut out from the protective sheet (17-1). The sample was allowed to stand for 24 hours under conditions of 23 ° C. and 50% RH, and then stretched by 3% in the major axis direction under the same conditions, and the stretched state was maintained for 10 seconds.
  • the oxygen permeability of the protective sheet (17-1) after the stretching treatment was measured.
  • the oxygen permeability after the stretching treatment was 0.5 mL / (m 2 ⁇ day ⁇ atm).
  • the protective sheet (17-1) was stored in an atmosphere of 85 ° C. and 85% RH for 1,000 hours, and then a sample for measurement was cut out from the protective sheet (17-1). As a result of measuring the T-type peel strength of the sample, the peel strength was 420 gf / 15 mm.
  • a multilayer structure (C17-1) was prepared in the same manner as in the production of the multilayer structure (17-1) of Example 17-1, except that the coating liquid (CS-1) was used instead of the coating liquid (S-1). ) was produced.
  • a protective sheet (C17-) was prepared in the same manner as in the production of the protective sheet (17-1) of Example 17-1, except that the multilayer structure (C17-1) was used instead of the multilayer structure (17-1). 1) was produced.
  • the protective sheet (C17-1) was evaluated in the same manner as in Example 17-1.
  • the oxygen permeability before the stretching treatment is 0.2 mL / (m 2 ⁇ day ⁇ atm)
  • the moisture permeability is 0.2 g / (m 2 ⁇ day)
  • the oxygen permeability after the stretching treatment is 0.5 mL / ( m 2 ⁇ day ⁇ atm).
  • the protective sheet (C17-1) was stored in an atmosphere of 85 ° C. and 85% RH for 1,000 hours, and then a measurement sample was cut out from the protective sheet (C17-1). As a result of measuring the T-type peel strength of the sample, the peel strength was 150 gf / 15 mm.
  • the protective sheet (multilayer structure) of the example did not cause appearance defects such as delamination even at a higher temperature and higher humidity than the protective sheet of the comparative example.
  • Example 17-2 The protection sheet (17-1) obtained in Example 17-1 was tested for flexibility. Specifically, a test was conducted in which the protective sheet (17-1) was wound 20 times along the outer peripheral surface of a stainless steel cylinder (outer diameter 30 cm). Damage to the protective sheet (17-1) by this test was not observed. From this, it was confirmed that the protective sheet (17-1) has flexibility.
  • the present invention can be used for a multilayer structure, a packaging material using the multilayer structure, and a method for manufacturing the multilayer structure. According to the present invention, it is possible to obtain a multilayer structure that has excellent gas barrier properties and can maintain the gas barrier properties at a high level even when subjected to physical stress such as deformation or impact. Furthermore, according to the present invention, it is possible to obtain a multilayer structure that has excellent interlayer adhesion and does not cause appearance defects such as delamination even after retorting. Further, by using the multilayer structure of the present invention, an excellent packaging material can be obtained.
  • the multilayer structure of the present invention is particularly preferably used as a packaging material.
  • uses other than packaging materials include LCD substrate films, organic EL substrate films, electronic paper substrate films, electronic device sealing films, PDP film and other display members, LED films, and IC tag films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Packages (AREA)

Abstract

 本発明は、基材(X)と層(Y)と前記層(Y)に隣接して配置された層(Z)とを含む多層構造体であって、前記層(Y)は、リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)とを含み、前記層(Y)において、前記化合物(A)と前記重合体(B)との質量比が15:85~99:1の範囲にあり、前記層(Z)はアルミニウム原子を含む層である、多層構造体に関する。

Description

多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス
 本発明は、多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスに関する。
 アルミニウムや酸化アルミニウムを構成成分とするガスバリア層をプラスチックフィルム上に形成した積層体は従来からよく知られている。そのような積層体は、酸素によって変質しやすい物品(例えば、食品)を保護するための包装材料として用いられている。それらのガスバリア層の多くは、物理気相成長法や化学気相成長法といったドライプロセスによってプラスチックフィルム上に形成される。アルミニウム蒸着フィルムは、ガスバリア性に加えて遮光性も有しており、主として乾燥食品の包装材料として使用されている。一方、透明性を有する酸化アルミニウム蒸着フィルムは、内容物を視認することが可能であり、また、金属探知機による異物検査や電子レンジ加熱が可能であるという特徴を有する。そのため、該フィルムは、レトルト食品包装をはじめとして、幅広い用途で包装材料として使用されている。
 アルミニウムを含むガスバリア層として、例えば、アルミニウム原子、酸素原子および硫黄原子によって構成される透明ガスバリア層が特許文献1に開示されている。特許文献1には、反応性スパッタリング法によって該透明ガスバリア層を形成する方法が開示されている。
 また、酸化アルミニウム粒子とリン化合物との反応生成物によって構成される透明ガスバリア層が特許文献2に開示されている。該ガスバリア層を形成する方法の1つとして、プラスチックフィルム上に酸化アルミニウム粒子とリン化合物を含むコーティング液を塗工し、次いで乾燥および熱処理を行う方法が特許文献2に開示されている。
 しかしながら、従来のガスバリア層は、初期のガスバリア性は優れているものの、変形や衝撃等の物理的ストレスを受けた際にクラックやピンホールといった欠陥が生じる場合があった。
 特許文献3には、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもガスバリア性を高いレベルで維持することができる多層構造体が開示されている。
 しかしながら、特許文献3に記載の多層構造体を用いた包装材料は、より厳しい条件下(高温・高湿下)において層間接着力が低下し、デラミネーション等の外観不良が生じる場合があった。特に、従来の多層構造体をレトルト包装材として使用した場合、レトルト処理後に層間接着力が低下し、デラミネーション等の外観不良が生じる場合があった。そのため、レトルト処理後においても層間接着力を維持して良好な外観を呈する多層構造体が求められている。また、実際の使用時において、多層構造体のガスバリア性が不足する場合もあった。多層構造体が食品包装材料として使用される場合には、印刷、ラミネート、製袋、食品充填、輸送、陳列、消費の各段階で、多層構造体は様々な物理的ストレスを受ける。そのため、そのような物理的なストレスを受けても高いガスバリア性を維持できる多層構造体が求められていた。以上のことから、現在、より高い性能を有する多層構造体が求められている。
 また、特許文献3に記載の多層構造体を電子デバイスの保護シートとして使用した場合、高温・高湿下において層間接着力が低下し、デラミネーション等の外観不良が生じる場合があることを本発明者らは確認した。そのため、特性がより優れた保護シートを備える電子デバイスが求められている。
特開2003-251732号公報 国際公開2011/122036号 特開2013-208794号公報
 本発明の目的の1つは、物理的ストレスを受けた後やレトルト処理後においても高い性能を維持できる新規な多層構造体、およびそれを含む包装材、ならびに多層構造体の製造方法を提供することにある。また、本発明の目的の他の1つは、物理的ストレスを受けてもガスバリア性を高いレベルで維持でき、高温・高湿下においても外観不良が生じにくい包装材およびそれを用いた製品を提供することにある。さらに、本発明の目的の他の1つは、物理的ストレスを受けてもガスバリア性を高いレベルで維持でき、高温・高湿下においても層間接着力の低下が抑制され、外観不良が生じにくい電子デバイスを提供することである。
 鋭意検討した結果、本発明者らは、特定の層を含む多層構造体によって上記目的を達成できることを見出し、本発明に至った。
 本発明は1つの多層構造体を提供する。その多層構造体は、基材(X)と層(Y)と前記層(Y)に隣接して配置された層(Z)とを含む多層構造体であって、前記層(Y)は、リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)とを含み、前記層(Y)において、前記化合物(A)と前記重合体(B)との質量比が15:85~99:1の範囲にあり、前記層(Z)はアルミニウム原子を含む層である。
 本発明の多層構造体において、前記化合物(A)が、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、および亜ホスフィン酸基からなる群より選ばれる少なくとも1種の官能基を有する重合体であってもよい。
 本発明の多層構造体において、前記化合物(A)が、ポリ(ビニルホスホン酸)であってもよい。
 本発明の多層構造体において、前記重合体(B)が、ポリビニルアルコール系重合体であってもよい。
 本発明の多層構造体において、前記層(Z)が、反応生成物(E)を含む層(Z1)を備えてもよい。前記反応生成物(E)は、アルミニウムを含む金属酸化物(C)とリン化合物(D)とが反応してなる反応生成物である。前記層(Z1)の赤外線吸収スペクトルにおいて、800~1,400cm-1の領域における最大吸収波数が1,080~1,130cm-1の範囲にあってもよい。
 本発明の多層構造体において、前記層(Z)が、アルミニウムの蒸着層(Z2)または酸化アルミニウムの蒸着層(Z3)を備えてもよい。
 本発明の多層構造体において、前記基材(X)が、熱可塑性樹脂フィルム層および紙層からなる群より選ばれる少なくとも1種を含んでもよい。
 本発明は、(Y-i)リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)と、溶媒とを混合することによってそれらを含むコーティング液(S)を調製する工程と、
 (Y-ii)前記コーティング液(S)を用い層(Y)を形成する工程とアルミニウム原子を含む層(Z)を形成する、層(Z)の形成工程とを含む。層(Y)と層(Z)とは隣接するように配置され、前記(Y-i)の工程において、前記化合物(A)と前記重合体(B)とは質量比が15:85~99:1の範囲で混合される、前記多層構造体の製造方法を提供する。
 また、本発明は、前記多層構造体を含む、包装材を提供する。
 前記包装材は、押出しコートラミネートにより形成された層をさらに有するものであってもよい。
 本発明の包装材は、縦製袋充填シール袋、真空包装袋、パウチ、ラミネートチューブ容器、輸液バッグ、紙容器、ストリップテープ、容器用蓋材またはインモールドラベル容器であってもよい。
 本発明は、前記したいずれかの包装材を少なくとも一部に用いる、製品を提供する。
 本発明の製品は、内容物を含み、前記内容物が芯材であり、前記製品の内部が減圧されており、真空断熱体として機能するものであってもよい。
 さらに、本発明は、前記多層構造体を含む、電子デバイスを提供する。
 本発明の電子デバイスは、前記電子デバイス本体の表面を保護する保護シートを含んでもよく、前記保護シートが前記多層構造体を含んでもよい。
 本発明の電子デバイスは、光電変換装置、情報表示装置または照明装置であってもよい。
 本発明によれば、物理的ストレスを受けた後やレトルト処理後においても高い性能を維持できる新規な多層構造体が得られる。また、本発明の製造方法によれば、前記多層構造体を容易に製造できる。さらに、本発明によれば、物理的ストレスを受けてもガスバリア性を高いレベルで維持でき、高温・高湿下においても外観不良が生じにくい包装材およびそれを用いた製品が得られる。さらにまた、本発明によれば、物理的ストレスを受けてもガスバリア性を高いレベルで維持でき、高温・高湿下においても層間接着力の低下が抑制され、外観不良が生じにくい電子デバイスが得られる。
本発明の一実施形態に係る縦製袋充填シール袋の構成図である。 本発明の一実施形態に係る真空包装袋の概略断面図である。 本発明の一実施形態に係る平パウチの構成図である。 本発明の一実施形態に係るラミネートチューブ容器の構成図である。 本発明の一実施形態に係る輸液バッグの構成図である。 本発明の一実施形態に係る紙容器の構成図である。 本発明の一実施形態に係るインモールドラベル容器の構成図である。 本発明の一実施形態に係る真空断熱体の概略断面図である。 本発明の他の一実施形態に係る真空断熱体の概略断面図である。 本発明の一実施形態に係る電子デバイスの一部断面図である。 本発明の押出しコートラミネート装置の一部を模式的に示す斜視図である。
 本発明について、以下に例を挙げて説明する。なお、以下の説明において、物質、条件、方法、数値範囲等を例示する場合があるが、本発明はそのような例示に限定されない。また、例示される物質は、特に注釈がない限り、1種を単独で使用してもよいし2種以上を併用してもよい。
 特に注釈がない限り、この明細書において、「特定の部材(基材や層等)上に特定の層を積層する」という記載の意味には、該部材と接触するように該特定の層を積層する場合に加え、他の層を挟んで該部材の上方に該特定の層を積層する場合が含まれる。「特定の部材(基材や層等)上に特定の層を形成する」、「特定の部材(基材や層等)上に特定の層を配置する」という記載も同様である。また、特に注釈がない限り、「特定の部材(基材や層等)上に液体(コーティング液等)を塗工する」という記載の意味には、該部材に該液体を直接塗工する場合に加え、該部材上に形成された他の層に該液体を塗工する場合が含まれる。
 この明細書において、「層(Y)」のように、符号(Y)を付して層(Y)を他の層と区別する場合がある。特に注釈がない限り、符号(Y)には技術的な意味はない。基材(X)、層(Z)、化合物(A)、その他の符号についても同様である。ただし、水素原子(H)のように、特定の元素を示すことが明らかである場合を除く。
[多層構造体]
 本発明の多層構造体は、基材(X)と層(Y)と前記層(Y)に隣接して配置された層(Z)とを含む。層(Y)は、リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)とを含む。層(Z)はアルミニウム原子を含む。以下の説明において、特に注釈がない限り、「多層構造体」という語句は基材(X)と層(Y)とを含む多層構造体を意味する。層(Y)において、化合物(A)と重合体(B)との質量比(化合物(A):重合体(B))は、15:85~99:1の範囲にある。該質量比がこの範囲にあることによって、物理的ストレスを受けた後やレトルト処理後においても高い性能を維持できる。
 層(Y)において、化合物(A)の少なくとも一部と重合体(B)の少なくとも一部とが反応していてもよい。層(Y)において化合物(A)が反応している場合でも、反応生成物を構成する化合物(A)の部分を化合物(A)とみなす。この場合、反応生成物の形成に用いられた化合物(A)の質量(反応前の化合物(A)の質量)を、層(Y)中の化合物(A)の質量に含める。また、層(Y)において重合体(B)が反応している場合でも、反応生成物を構成する重合体(B)の部分を重合体(B)とみなす。この場合、反応生成物の形成に用いられた重合体(B)の質量(反応前の重合体(B)の質量)を、層(Y)中の重合体(B)の質量に含める。
 典型的には、重合体(B)はリン原子を含有しない。より具体的には、重合体(B)は、後述する官能基(リン原子含有官能基)を含有しない。なお、化合物(A)と重合体(B)の両方の性質を満たす化合物については、化合物(A)とみなして質量比を算出する。
 層(Y)において、化合物(A)と重合体(B)との質量比は、20:80~99:1の範囲にあることが好ましく、60:40~99:1の範囲にあることがより好ましく、65:35~91:9の範囲にあることがさらに好ましく、65:35~80:20の範囲にあることが特に好ましい。上記範囲にあることで、物理的ストレスを受けた後やレトルト処理後においても高い性能を維持できる。基材(X)および層(Y)について以下に説明する。
[基材(X)]
 基材(X)の材質に特に制限はなく、様々な材質からなる基材を用いることができる。基材(X)の材質としては、例えば、熱可塑性樹脂、熱硬化性樹脂等の樹脂;布帛、紙類等の繊維集合体;木材;ガラス等が挙げられる。これらの中でも、熱可塑性樹脂および紙が好ましい。基材(X)の好ましい一例は、熱可塑性樹脂フィルム層および紙層からなる群より選ばれる少なくとも1種を含む。基材(X)は複数の材質からなる複合体であってもよいし、単層であってもよいし、複層であってもよい。
 基材(X)の形態に特に制限はなく、フィルムやシート等の層状の基材であってもよいし、球、多面体およびパイプ等の立体形状を有する各種成形体であってもよい。これらの中でも、層状の基材は、包装材や太陽電池部材等に多層構造体(積層構造体)を用いる場合に、特に有用である。このような基材(X)を用いた多層構造体は、包装材への加工性や包装材として使用する際に求められる諸特性に優れる。
 基材(X)に用いられる熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートやこれらの共重合体等のポリエステル系樹脂;ナイロン-6、ナイロン-66、ナイロン-12等のポリアミド系樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体等の水酸基含有ポリマー;ポリスチレン;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルエーテルケトン;アイオノマー樹脂等が挙げられる。多層構造体を包装材に用いる場合、基材(X)の材料としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン-6、およびナイロン-66からなる群より選ばれる少なくとも1種の熱可塑性樹脂が好ましい。
 前記熱可塑性樹脂からなるフィルムを前記基材(X)として用いる場合、基材(X)は延伸フィルムであってもよいし無延伸フィルムであってもよい。得られる多層構造体の加工適性(印刷やラミネート等)が優れることから、延伸フィルム、特に二軸延伸フィルムが好ましい。二軸延伸フィルムは、同時二軸延伸法、逐次二軸延伸法、およびチューブラ延伸法のいずれかの方法で製造された二軸延伸フィルムであってもよい。
 基材(X)に用いられる紙としては、例えば、クラフト紙、上質紙、模造紙、グラシン紙、パーチメント紙、合成紙、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙等が挙げられる。基材に紙を用いることによって、紙容器用の多層構造体を得ることができる。
 基材(X)が層状である場合、その厚みは、得られる多層構造体の機械的強度や加工性が良好になる観点から、1~1,000μmの範囲にあることが好ましく、5~500μmの範囲にあることがより好ましく、9~200μmの範囲にあることがさらに好ましい。
[層(Y)]
 層(Y)は、化合物(A)と重合体(B)とを含む。化合物(A)はリン原子を含有する化合物である。重合体(B)は、水酸基および/またはカルボキシル基を有する。化合物(A)および重合体(B)について以下に説明する。
[化合物(A)]
 リン原子を含有する化合物(A)としては、例えばリンのオキソ酸、およびその誘導体が挙げられる。リンのオキソ酸の誘導体としては、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、および亜ホスフィン酸基からなる群より選ばれる少なくとも1種の官能基を有する化合物、およびその誘導体(塩、(部分)エステル化合物、ハロゲン化物(例えば、塩化物)、脱水物等)が挙げられる。
 リン原子を含有する化合物(A)としては、例えば、リン酸、二リン酸、三リン酸、4分子以上のリン酸が縮合したポリリン酸、亜リン酸、ホスホン酸、亜ホスホン酸、ホスフィン酸、亜ホスフィン酸等のリンのオキソ酸およびこれらの塩(例えば、リン酸ナトリウム)、ならびにこれらの誘導体(例えば、ハロゲン化物(例えば、塩化ホスホリル)、脱水物(例えば、五酸化二リン))、リン原子を含有する特定の官能基を有する重合体(Aa)が挙げられる。重合体(Aa)としては、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、および亜ホスフィン酸基からなる群より選ばれる少なくとも1種のリン原子含有官能基を有する重合体が挙げられる。重合体(Aa)が有する官能基としては、リン酸基および/またはホスホン酸基が好ましく、ホスホン酸基がより好ましい。
 重合体(Aa)としては、例えば、6-[(2-ホスホノアセチル)オキシ]ヘキシルアクリレート、2-ホスホノオキシエチルメタクリレート、ホスホノメチルメタクリレート、11-ホスホノウンデシルメタクリレート、1,1-ジホスホノエチルメタクリレート等のホスホノ(メタ)アクリル酸エステル類の重合体;ビニルホスホン酸、2-プロペン-1-ホスホン酸、4-ビニルベンジルホスホン酸、4-ビニルフェニルホスホン酸等のビニルホスホン酸類の重合体;ビニルホスフィン酸、4-ビニルベンジルホスフィン酸等のビニルホスフィン酸類の重合体;リン酸化デンプン等が挙げられる。重合体(Aa)は、少なくとも1種の前記リン原子含有官能基を有する単量体の単独重合体であってもよいし、2種類以上の単量体の共重合体であってもよい。また、重合体(Aa)として、単一の単量体からなる重合体を2種以上混合して使用してもよい。中でも、ホスホノ(メタ)アクリル酸エステル類の重合体およびビニルホスホン酸類の重合体が好ましく、ビニルホスホン酸類の重合体がより好ましい。すなわち、重合体(Aa)の好ましい一例は、ポリ(ビニルホスホン酸)である。また、重合体(Aa)は、ビニルホスホン酸ハロゲン化物やビニルホスホン酸エステル等のビニルホスホン酸誘導体を単独または共重合した後、加水分解することによっても得ることができる。
 また、重合体(Aa)は、少なくとも1種の前記リン原子含有官能基を有する単量体と他のビニル単量体との共重合体であってもよい。リン原子含有官能基を有する単量体と共重合することができる他のビニル単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル類、アクリロニトリル、メタクリロニトリル、スチレン、核置換スチレン類、アルキルビニルエーテル類、アルキルビニルエステル類、パーフルオロアルキルビニルエーテル類、パーフルオロアルキルビニルエステル類、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、マレイミド、フェニルマレイミド等が挙げられる。これらの中でも、(メタ)アクリル酸エステル類、アクリロニトリル、スチレン、マレイミド、およびフェニルマレイミドが好ましい。
 より優れた耐屈曲性を有する多層構造体を得るために、リン原子含有官能基を有する単量体に由来する構成単位が重合体(Aa)の全構成単位に占める割合は、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、100モル%であってもよい。
 重合体(Aa)の分子量に特に制限はないが、数平均分子量が1,000~100,000の範囲にあることが好ましい。数平均分子量がこの範囲にあると、層(Y)を積層することによる耐屈曲性の改善効果と、後述するコーティング液(S)の粘度安定性とを、高いレベルで両立することができる。また、後述する層(Z)を積層する場合、リン原子1つあたりの重合体(Aa)の分子量が100~500の範囲にある場合に耐屈曲性の改善効果をより高めることができる。
[重合体(B)]
 水酸基および/またはカルボキシル基を有する重合体(B)としては、例えば、ポリビニルアルコール、炭素数4以下のα-オレフィン単位を1~50モル%含有する変性ポリビニルアルコール、ポリビニルアセタール(ポリビニルブチラール等)等のポリビニルアルコール系重合体;セルロース、デンプン等の多糖類;ポリヒドロキシエチル(メタ)アクリレート、ポリ(メタ)アクリル酸、エチレン-アクリル酸共重合体等の(メタ)アクリル酸系重合体;エチレン-無水マレイン酸共重合体の加水分解物、スチレン-無水マレイン酸共重合体の加水分解物、イソブチレン-無水マレイン酸交互共重合体の加水分解物等のマレイン酸系重合体等が挙げられる。これらの中でも、ポリビニルアルコール系重合体が好ましく、具体的には、ポリビニルアルコール、および炭素数4以下のα-オレフィン単位を1~15モル%含有する変性ポリビニルアルコールが好ましい。
 重合体(B)は、重合性基を有する単量体(例えば、酢酸ビニル、アクリル酸)の単独重合体であってもよいし、2種類以上の単量体の共重合体であってもよいし、水酸基および/またはカルボキシル基を有する単量体と該基を有さない単量体との共重合体であってもよい。なお、重合体(B)として、2種以上の重合体(B)を混合して用いてもよい。
 重合体(B)の分子量に特に制限はないが、より優れたガスバリア性および力学的物性(落下衝撃強さ等)を有する多層構造体を得るために、重合体(B)の数平均分子量は、5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましい。重合体(B)の数平均分子量の上限は特に限定されず、例えば、1,500,000以下である。
 本発明に用いるポリビニルアルコール系重合体の粘度平均重合度は、100~4,000が好ましく、優れた層間接着力を有する多層構造体を得るために、200~3,500がより好ましく、300~3,000がさらに好ましく、500~2,800が特に好ましい。粘度平均重合度は、JIS K 6726(1994年)に従って求めた値である。
 本発明に用いるポリビニルアルコール系樹脂のケン化度は、75.0~99.85モル%が好ましく、優れた層間接着力を有する多層構造体を得るために、80.0~99.5モル%がより好ましく、85.0~99.3モル%がさらに好ましく、90.0~99.1モル%が特に好ましい。ケン化度は、JIS K 6726(1994年)に従って求めた値である。
 本発明に用いるポリビニルアルコール系重合体の粘度は、1.0~200mPa・sが好ましく、優れた層間接着力を有する多層構造体を得るために、3.0~150mPa・sがより好ましく、11~90mPa・sがさらに好ましく、20~85mPa・sが特に好ましい。粘度は、JIS K 6726(1994年)に従って20℃において4質量%水溶液を用いてB型回転粘度計で測定した値である。
 本発明に用いるポリビニルアルコール系重合体としては、ケン化度が85.0~99.3モル%であり、粘度平均重合度が200~3,500であり、かつ粘度が11~90mPa・sであるものが好ましく、ケン化度が85.0~99.3モル%であり、粘度平均重合度が500~2,800であり、かつ粘度が20~85mPa・sであるものがより好ましい。
 本発明の多層構造体に含まれる層(Y)は、化合物(A)および重合体(B)のみによって構成されていてもよいし、他の成分をさらに含んでいてもよい。他の成分としては、例えば、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩等の無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩等の有機酸金属塩;シクロペンタジエニル金属錯体(チタノセン等)、シアノ金属錯体等の金属錯体;層状粘土化合物;架橋剤;重合体(Aa)および重合体(B)以外の高分子化合物;可塑剤;酸化防止剤;紫外線吸収剤;難燃剤等が挙げられる。多層構造体中の層(Y)における前記の他の成分の含有率は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましく、0質量%(他の成分を含まない)であってもよい。層(Y)は、層(Z)に含まれるアルミニウム原子を含まない。換言すれば、層(Y)は、層(Z)に含まれるアルミニウム原子を実質的に含まない点で、層(Z)とは異なる。
 多層構造体の外観を良好に保つ観点から、層(Y)における重合体(B)の含有率は、層(Y)の質量を基準(100質量%)として、85質量%以下であることが好ましく、50質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。重合体(B)は、層(Y)中の成分と反応していてもよいし、反応していなくてもよい。
 層(Y)の一層当たりの厚みは、本発明の多層構造体の耐屈曲性がより良好になる観点から、0.003μm以上であることが好ましい。層(Y)の厚みの上限は特に限定されないが、1.0μm以上では耐屈曲性の改善効果は飽和に達する。そのため、層(Y)の合計の厚みの上限は、経済性の観点から1.0μmとすることが好ましい。層(Y)の厚みは、層(Y)の形成に用いられる後述するコーティング液(S)の濃度や、その塗工方法によって制御することができる。
[層(Z)]
 本発明の多層構造体は、アルミニウム原子を含有する層(Z)を含む。層(Y)と層(Z)とは隣接するように(接触するように)積層される。換言すれば、本発明の多層構造体は、層(Y)に隣接して配置された層(Z)を含む。層(Y)および層(Z)の少なくとも一方が複数存在する場合、少なくとも一組の層(Y)と層(Z)とが隣接して積層されていることが好ましい。
 層(Z)は、アルミニウムを含む金属酸化物(C)とリン化合物(D)とが反応してなる反応生成物(E)を含む層(Z1)であってもよい。ここで、金属酸化物(C)とリン化合物(D)とさらに他の化合物とが反応することで生成する化合物も反応生成物(E)に含まれる。また、層(Z)は、アルミニウムの蒸着層である層(Z2)であってもよく、酸化アルミニウムの蒸着層である層(Z3)であってもよい。
[層(Z1)]
 層(Z1)に含まれる反応生成物(E)の構造としては、例えば、金属酸化物(C)の粒子同士がリン化合物(D)に由来するリン原子を介して結合された構造が挙げられる。リン原子を介して結合している形態には、リン原子を含む原子団を介して結合している形態が含まれ、例えば、リン原子を含み金属原子を含まない原子団を介して結合している形態が含まれる。また、本発明の多層構造体が有する層(Z1)は、反応に関与していない金属酸化物(C)および/またはリン化合物(D)を部分的に含んでいてもよい。
 層(Z1)において、金属酸化物(C)を構成する金属原子とリン化合物(D)に由来するリン原子とのモル比は、[金属酸化物(C)を構成する金属原子]:[リン化合物(D)に由来するリン原子]=1.0:1.0~3.6:1.0の範囲にあることが好ましく、1.1:1.0~3.0:1.0の範囲にあることがより好ましい。この範囲外ではガスバリア性能が低下する。層(Z1)における該モル比は、層(Z1)を形成するためのコーティング液における金属酸化物(C)とリン化合物(D)との混合比率によって調整できる。層(Z1)における該モル比は、通常、コーティング液における比と同じである。
 層(Z1)の赤外線吸収スペクトルにおいて、800~1,400cm-1の領域における最大吸収波数は1,080~1,130cm-1の範囲にあることが好ましい。金属酸化物(C)とリン化合物(D)とが反応して反応生成物(E)となる過程において、金属酸化物(C)に由来する金属原子(M)とリン化合物(D)に由来するリン原子(P)とが酸素原子(O)を介してM-O-Pで表される結合を形成する。その結果、反応生成物(E)の赤外線吸収スペクトルにおいて該結合由来の特性吸収帯が生じる。本発明者らによる検討の結果、M-O-Pの結合に基づく特性吸収帯が1,080~1,130cm-1の領域に見られる場合には、得られた多層構造体が優れたガスバリア性を発現することがわかった。特に、該特性吸収帯が、一般に各種の原子と酸素原子との結合に由来する吸収が見られる800~1,400cm-1の領域において最も強い吸収である場合には、得られた多層構造体がさらに優れたガスバリア性を発現することがわかった。
 これに対し、金属アルコキシドや金属塩等の金属化合物とリン化合物(D)とを予め混合した後に加水分解縮合させた場合には、金属化合物に由来する金属原子とリン化合物(D)に由来するリン原子とがほぼ均一に混ざり合い反応した複合体が得られる。その場合、赤外線吸収スペクトルにおいて、800~1,400cm-1の領域における最大吸収波数が1,080~1,130cm-1の範囲から外れるようになる。
 層(Z1)の赤外線吸収スペクトルにおいて、800~1,400cm-1の領域における最大吸収帯の半値幅は、得られる多層構造体のガスバリア性の観点から、200cm-1以下であることが好ましく、150cm-1以下であることがより好ましく、100cm-1以下であることがさらに好ましく、50cm-1以下であることが特に好ましい。
 層(Z1)の赤外線吸収スペクトルは実施例に記載の方法で測定できる。ただし、実施例に記載の方法で測定できない場合には、反射吸収法、外部反射法、減衰全反射法等の反射測定、多層構造体から層(Z1)をかきとり、ヌジョール法、錠剤法等の透過測定という方法で測定してもよいが、これらに限定されるものではない。
 層(Z1)は、金属酸化物(C)の粒子同士がリン化合物(D)に由来するリン原子を介し、かつ金属酸化物(C)に由来しない金属原子を介さずに結合された構造を有する。すなわち、金属酸化物(C)の粒子同士は金属酸化物(C)に由来する金属原子を介して結合されていてもよいが、それ以外の金属原子を介さずに結合された構造を有する。ここで、「リン化合物(D)に由来するリン原子を介し、かつ金属酸化物(C)に由来しない金属原子を介さずに結合された構造」とは、結合される金属酸化物(C)の粒子間の結合の主鎖が、リン化合物(D)に由来するリン原子を有し、かつ金属酸化物(C)に由来しない金属原子を有さない構造であることを意味しており、該結合の側鎖に金属原子を有する構造も包含する。ただし、層(Z1)は、金属酸化物(C)の粒子同士がリン化合物(D)に由来するリン原子と金属原子の両方を介して結合された構造(結合される金属酸化物(C)の粒子間の結合の主鎖が、リン化合物(D)に由来するリン原子と金属原子の両方を有する構造)を一部有していてもよい。
 層(Z1)において、金属酸化物(C)の粒子同士を結合させている金属原子であって金属酸化物(C)に由来しない金属原子のモル数は、金属酸化物(C)の粒子同士を結合させているリン原子のモル数の0~1倍の範囲(例えば、0~0.9倍の範囲)にあることが好ましい。
 層(Z1)において、金属酸化物(C)の各粒子とリン原子との結合形態としては、例えば、金属酸化物(C)を構成する金属原子(M)とリン原子(P)とが酸素原子(O)を介して結合した形態が挙げられる。金属酸化物(C)の粒子同士は1分子のリン化合物(D)に由来するリン原子(P)を介して結合していてもよいが、2分子以上のリン化合物(D)に由来するリン原子(P)を介して結合していてもよい。結合している2つの金属酸化物(C)の粒子間の具体的な結合形態としては、結合している一方の金属酸化物(C)の粒子を構成する金属原子を(Mα)と表し、他方の金属酸化物(C)の粒子を構成する金属原子を(Mβ)と表すと、例えば、(Mα)-O-P-O-(Mβ)の結合形態;(Mα)-O-P-[O-P]n-O-(Mβ)の結合形態;(Mα)-O-P-E-P-O-(Mβ)の結合形態;(Mα)-O-P-E-P-[O-P-E-P]n-O-(Mβ)の結合形態等が挙げられる。前記結合形態の例において、nは1以上の整数を表し、Eはリン化合物(D)が分子中に2つ以上のリン原子を有する場合における2つのリン原子間に存在する構成原子群を表し、リン原子に結合しているその他の置換基の記載は省略している。
 層(Z1)は、得られる多層構造体のガスバリア性の観点から、金属酸化物(C)の粒子1個が複数の他の金属酸化物(C)の粒子と結合していることが好ましい。
 金属酸化物(C)は、加水分解可能な特性基が結合した金属原子(M)を含有する化合物(G)の加水分解縮合物であってもよい。該特性基の例には、後述する一般式〔I〕のR1が含まれる。化合物(G)の加水分解縮合物は、実質的に金属酸化物とみなすことが可能である。そのため、この明細書では、化合物(G)の加水分解縮合物を「金属酸化物(C)」という場合がある。すなわち、この明細書において、「金属酸化物(C)」は「化合物(G)の加水分解縮合物」と読み替えることができ、また、「化合物(G)の加水分解縮合物」を「金属酸化物(C)」と読み替えることもできる。
 層(Z1)の厚み(多層構造体が2層以上の層(Z1)を有する場合には各層(Z1)の厚みの合計)は、0.05μm~4.0μmの範囲にあることが好ましく、0.1μm~2.0μmの範囲にあることがより好ましい。層(Z1)を薄くすることによって、印刷やラミネート等の加工時における多層構造体の寸法変化を低く抑えることができる。また、多層構造体の柔軟性が増すため、その力学的特性を基材自体の力学的特性に近づけることもできる。本発明の多層構造体が2層以上の層(Z1)を有する場合、ガスバリア性の観点から、層(Z1)1層当たりの厚みは0.05μm以上であることが好ましい。層(Z1)の厚みは、層(Z1)の形成に用いられる後述するコーティング液(T)の濃度や、その塗工方法によって制御できる。
 層(Z1)の厚みは、多層構造体の断面を走査型電子顕微鏡または透過型電子顕微鏡で観察することによって測定できる。なお、層(Y)およびその他の層についても、同様の方法で測定できる。
[金属酸化物(C)]
 本発明に用いられる金属酸化物(C)は、通常、粒子の形態でリン化合物(D)と反応させる。
 金属酸化物(C)を構成する金属原子(それらを総称して「金属原子(M)」という場合がある)は、周期表の2~14族に属する金属原子から選ばれる少なくとも1種の金属原子であるが、少なくともアルミニウム原子を含む。金属原子(M)は、アルミニウム原子単独であってもよいし、アルミニウム原子とそれ以外の金属原子とを含んでもよい。なお、金属酸化物(C)として、2種以上の金属酸化物(C)を混合して用いてもよい。
 金属原子(M)に占めるアルミニウム原子の割合は、通常、50モル%以上であり、60モル%~100モル%の範囲や、80モル%~100モル%の範囲にあってもよい。金属酸化物(C)の例には、液相合成法、気相合成法、固体粉砕法等の方法によって製造された金属酸化物が含まれる。
[化合物(G)]
 反応の制御が容易になり、得られる多層構造体のガスバリア性が優れることから、化合物(G)は、以下の一般式〔I〕で表される少なくとも1種の化合物(G1)を含むことが好ましい。
  Al(R1k(R23-k   〔I〕
 式中、R1は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、NO3、置換基を有していてもよい炭素数1~9のアルコキシ基、置換基を有していてもよい炭素数2~9のアシロキシ基、置換基を有していてもよい炭素数3~9のアルケニルオキシ基、置換基を有していてもよい炭素数5~15のβ-ジケトナト基、または置換基を有していてもよい炭素数1~9のアシル基を有するジアシルメチル基である。R2は、置換基を有していてもよい炭素数1~9のアルキル基、置換基を有していてもよい炭素数7~10のアラルキル基、置換基を有していてもよい炭素数2~9のアルケニル基、または置換基を有していてもよい炭素数6~10のアリール基である。kは1~3の整数である。R1が複数存在する場合は、R1は互いに同一であってもよいし異なっていてもよい。R2が複数存在する場合は、R2は互いに同一であってもよいし異なっていてもよい。
 化合物(G)は、化合物(G1)に加えて、以下の一般式〔II〕で表される少なくとも1種の化合物(G2)を含んでいてもよい。
  M1(R3m(R4n-m   〔II〕
 式中、M1は、アルミニウム原子以外の金属原子であって周期表の2~14族に属する金属原子から選ばれる少なくとも1種の金属原子である。R3は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、NO3、置換基を有していてもよい炭素数1~9のアルコキシ基、置換基を有していてもよい炭素数2~9のアシロキシ基、置換基を有していてもよい炭素数3~9のアルケニルオキシ基、置換基を有していてもよい炭素数5~15のβ-ジケトナト基、または置換基を有していてもよい炭素数1~9のアシル基を有するジアシルメチル基である。R4は、置換基を有していてもよい炭素数1~9のアルキル基、置換基を有していてもよい炭素数7~10のアラルキル基、置換基を有していてもよい炭素数2~9のアルケニル基、または置換基を有していてもよい炭素数6~10のアリール基である。mは1~nの整数である。nはM1の原子価に等しい。R3が複数存在する場合、R3は互いに同一であってもよいし異なっていてもよい。R4が複数存在する場合、R4は互いに同一であってもよいし異なっていてもよい。
 R1およびR3のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ベンジロキシ基、ジフェニルメトキシ基、トリチルオキシ基、4-メトキシベンジロキシ基、メトキシメトキシ基、1-エトキシエトキシ基、ベンジルオキシメトキシ基、2-トリメチルシリルエトキシ基、2-トリメチルシリルエトキシメトキシ基、フェノキシ基、4-メトキシフェノキシ基等が挙げられる。
 R1およびR3のアシロキシ基としては、例えば、アセトキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ、イソブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基、n-オクチルカルボニルオキシ基等が挙げられる。
 R1およびR3のアルケニルオキシ基としては、例えば、アリルオキシ基、2-プロペニルオキシ基、2-ブテニルオキシ基、1-メチル-2-プロペニルオキシ基、3-ブテニルオキシ基、2-メチル-2-プロペニルオキシ基、2-ペンテニルオキシ基、3-ペンテニルオキシ基、4-ペンテニルオキシ基、1-メチル-3-ブテニルオキシ基、1,2-ジメチル-2-プロペニルオキシ基、1,1-ジメチル-2-プロペニルオキシ基、2-メチル-2-ブテニルオキシ基、3-メチル-2-ブテニルオキシ基、2-メチル-3-ブテニルオキシ基、3-メチル-3-ブテニルオキシ基、1-ビニル-2-プロペニルオキシ基、5-ヘキセニルオキシ基等が挙げられる。
 R1およびR3のβ-ジケトナト基としては、例えば、2,4-ペンタンジオナト基、1,1,1-トリフルオロ-2,4-ペンタンジオナト基、1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオナト基、2,2,6,6-テトラメチル-3,5-ヘプタンジオナト基、1,3-ブタンジオナト基、2-メチル-1,3-ブタンジオナト基、2-メチル-1,3-ブタンジオナト基、ベンゾイルアセトナト基等が挙げられる。
 R1およびR3のジアシルメチル基のアシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基(プロパノイル基)、ブチリル基(ブタノイル基)、バレリル基(ペンタノイル基)、ヘキサノイル基等の炭素数1~6の脂肪族アシル基;ベンゾイル基、トルオイル基等の芳香族アシル基(アロイル基)等が挙げられる。
 R2およびR4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1,2-ジメチルブチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R2およびR4のアラルキル基としては、例えば、ベンジル基、フェニルエチル基(フェネチル基)等が挙げられる。
 R2およびR4のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、3-ブテニル基、2-ブテニル基、1-ブテニル基、1-メチル-2-プロペニル基、1-メチル-1-プロペニル基、1-エチル-1-エテニル基、2-メチル-2-プロペニル基、2-メチル-1-プロペニル基、3-メチル-2-ブテニル基、4-ペンテニル基等が挙げられる。
 R2およびR4のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 R1、R2、R3、およびR4における置換基としては、例えば、炭素数1~6のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、n-ヘキシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数1~6のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、シクロプロピルオキシカルボニル基、シクロブチルオキシカルボニル基、シクロペンチルオキシカルボニル基等の炭素数1~6のアルコキシカルボニル基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;炭素数1~6のアシル基;炭素数7~10のアラルキル基;炭素数7~10のアラルキルオキシ基;炭素数1~6のアルキルアミノ基;炭素数1~6のアルキル基を有するジアルキルアミノ基等が挙げられる。
 R1としては、ハロゲン原子、NO3、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数2~6のアシロキシ基、置換基を有していてもよい炭素数5~10のβ-ジケトナト基、または置換基を有していてもよい炭素数1~6のアシル基を有するジアシルメチル基が好ましい。
 R2としては、置換基を有していてもよい炭素数1~6のアルキル基が好ましい。式〔I〕のkは、好ましくは3である。
 R3としては、ハロゲン原子、NO3、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数2~6のアシロキシ基、置換基を有していてもよい炭素数5~10のβ-ジケトナト基、または置換基を有していてもよい炭素数1~6のアシル基を有するジアシルメチル基が好ましい。
 R4としては、置換基を有していてもよい炭素数1~6のアルキル基が好ましい。M1としては、周期表の4族に属する金属原子が好ましく、チタン、ジルコニウムがより好ましい。M1が周期表の4族に属する金属原子の場合、式〔II〕のmは好ましくは4である。
 なお、ホウ素およびケイ素は半金属に分類される場合があるが、本明細書ではこれらを金属に含めるものとする。
 化合物(G1)としては、例えば、塩化アルミニウム、硝酸アルミニウム、酢酸アルミニウム、トリス(2,4-ペンタンジオナト)アルミニウム、トリメトキシアルミニウム、トリエトキシアルミニウム、トリ-n-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム等が挙げられ、中でも、トリイソプロポキシアルミニウムおよびトリ-sec-ブトキシアルミニウムがより好ましい。化合物(G)として、2種以上の化合物(G1)を混合して用いてもよい。
 化合物(G2)としては、例えば、テトラキス(2,4-ペンタンジオナト)チタン、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン等のチタン化合物;テトラキス(2,4-ペンタンジオナト)ジルコニウム、テトラ-n-プロポキシジルコニウム、テトラ-n-ブトキシジルコニウム等のジルコニウム化合物等が挙げられる。これらは、1種を単独で使用してもよく、2種以上の化合物(G2)を併用して用いてもよい。
 本発明の効果が得られる限り、化合物(G)に占める化合物(G1)の割合に特に限定はない。化合物(G1)以外の化合物(例えば、化合物(G2))が化合物(G)に占める割合は、例えば、20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましく、0モル%であってもよい。
 化合物(G)が加水分解されることによって、化合物(G)が有する加水分解可能な特性基の少なくとも一部が水酸基に変換される。さらに、その加水分解物が縮合することによって、金属原子(M)が酸素原子(O)を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物が形成される。なお、このようにして形成された金属酸化物(C)の表面には、通常、水酸基が存在する。
 本明細書においては、[金属原子(M)のみに結合している酸素原子(O)のモル数]/[金属原子(M)のモル数]の比が0.8以上である化合物を金属酸化物(C)に含めるものとする。ここで、金属原子(M)のみに結合している酸素原子(O)は、M-O-Mで表される構造における酸素原子(O)であり、M-O-Hで表される構造における酸素原子(O)のように金属原子(M)と水素原子(H)に結合している酸素原子は除外される。金属酸化物(C)における前記比は、0.9以上であることが好ましく、1.0以上であることがより好ましく、1.1以上であることがさらに好ましい。この比の上限は特に限定されないが、金属原子(M)の原子価をnとすると、通常、n/2で表される。 
 前記加水分解縮合が起こるためには、化合物(G)が加水分解可能な特性基を有していることが重要である。それらの基が結合していない場合、加水分解縮合反応が起こらないか、もしくは極めて緩慢となるため、目的とする金属酸化物(C)の調製が困難になる。
 化合物(G)の加水分解縮合物は、例えば、公知のゾルゲル法で採用される手法によって特定の原料から製造してもよい。該原料には、化合物(G)、化合物(G)の部分加水分解物、化合物(G)の完全加水分解物、化合物(G)が部分的に加水分解縮合してなる化合物、および化合物(G)の完全加水分解物の一部が縮合してなる化合物からなる群より選ばれる少なくとも1種を用いることができる。
 リン化合物(D)含有物(リン化合物(D)、または、リン化合物(D)を含む組成物)との混合に供される金属酸化物(C)は、リン原子を実質的に含有しないことが好ましい。
 層(Z1)においては、金属酸化物(C)の粒子同士が、リン化合物(D)に由来するリン原子を介して結合された特定の構造を有する。該層(Z1)における金属酸化物(C)の粒子の形状やサイズと、リン化合物(D)含有物(リン化合物(D)、または、リン化合物(D)を含む組成物)との混合に供される金属酸化物(C)の粒子の形状やサイズとは、それぞれ同一であってもよいし異なっていてもよい。すなわち、層(Z1)の原料として用いられる金属酸化物(C)の粒子は、層(Z1)を形成する過程で、形状やサイズが変化してもよい。
[リン化合物(D)]
 リン化合物(D)は、金属酸化物(C)と反応可能な部位を含有し、典型的には、そのような部位を複数含有する。好ましい一例では、リン化合物(D)は、そのような部位(原子団または官能基)を2~20個含有する。そのような部位の例には、金属酸化物(C)の表面に存在する官能基(例えば、水酸基)と反応可能な部位が含まれる。例えば、そのような部位の例には、リン原子に直接結合したハロゲン原子や、リン原子に直接結合した酸素原子が含まれる。それらのハロゲン原子や酸素原子は、金属酸化物(C)の表面に存在する水酸基と縮合反応(加水分解縮合反応)を起こすことができる。金属酸化物(C)の表面に存在する官能基(例えば水酸基)は、通常、金属酸化物(C)を構成する金属原子(M)に結合している。
 リン化合物(D)として、ハロゲン原子または酸素原子がリン原子に直接結合した構造を有するものを用いてもよい。そのようなリン化合物(D)は、金属酸化物(C)の表面に存在する水酸基と(加水分解)縮合することによって結合を形成できる。リン化合物(D)は、1つのリン原子を有するものであってもよいし、2つ以上のリン原子を有するものであってもよい。
 リン化合物(D)としては、例えば、リン酸、二リン酸、三リン酸、4分子以上のリン酸が縮合したポリリン酸、亜リン酸、ホスホン酸、亜ホスホン酸、ホスフィン酸、亜ホスフィン酸等のリンのオキソ酸およびこれらの塩(例えば、リン酸ナトリウム)、ならびにこれらの誘導体(例えば、ハロゲン化物(例えば、塩化ホスホリル)、脱水物(例えば、五酸化二リン))等が挙げられる。
 これらのリン化合物(D)は、1種を単独で使用してもよいし、2種以上を併用してもよい。これらのリン化合物(D)の中でも、リン酸を単独で使用するか、リン酸とそれ以外のリン化合物(D)とを併用することが好ましい。リン酸を用いることによって、後述するコーティング液(T)の安定性と得られる多層構造体のガスバリア性が向上する。
 層(Z1)は、特定の重合体(F)を含んでいてもよい。重合体(F)は、水酸基、カルボキシル基、カルボン酸無水物基、およびカルボキシル基の塩からなる群より選ばれる少なくとも1種の官能基を有する重合体であってもよい。重合体(F)は、例えば重合体(B)について例示した重合体であってもよい。また、層(Z1)は、重合体(F)以外の他の成分をさらに含んでいてもよい。他の成分としては、例えば、層(Y)に含まれてもよい他の成分として例示した物質が挙げられる。層(Z1)における前記の他の成分の含有率は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。
[無機蒸着層、層(Z2)、層(Z3)]
 多層構造体は、無機蒸着層を含んでもよい。無機蒸着層は、無機物を蒸着することによって形成することができる。無機物としては、例えば、金属(例えば、アルミニウム)、金属酸化物(例えば、酸化ケイ素、酸化アルミニウム)、金属窒化物(例えば、窒化ケイ素)、金属窒化酸化物(例えば、酸窒化ケイ素)、金属炭化窒化物(例えば、炭窒化ケイ素)等が挙げられる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、または窒化ケイ素で形成される無機蒸着層は、酸素や水蒸気に対するバリア性が優れる観点から好ましい。本発明の多層構造体中の層(Z)は、アルミニウムを含有する無機蒸着層であってもよい。例えば、層(Z)は、アルミニウムの蒸着層である層(Z2)および/または酸化アルミニウムの蒸着層である層(Z3)を含んでもよい。一例では、層(Z)は、層(Z2)または層(Z3)である。
 無機蒸着層の形成方法に特に限定はなく、真空蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、分子線エピタキシー法等)、スパッタリング法やイオンプレーティング法等の物理気相成長法、熱化学気相成長法(例えば、触媒化学気相成長法)、光化学気相成長法、プラズマ化学気相成長法(例えば、容量結合プラズマ、誘導結合プラズマ、表面波プラズマ、電子サイクロトロン共鳴、デュアルマグネトロン、原子層堆積法等)、有機金属気相成長法等の化学気相成長法を用いることができる。
 無機蒸着層の厚みは、無機蒸着層を構成する成分の種類によって異なるが、0.002~0.5μmの範囲にあることが好ましく、0.005~0.2μmの範囲であることがより好ましく、0.01~0.1μmの範囲であることがさらに好ましい。この範囲で、多層構造体のバリア性や機械的物性が良好になる厚みを選択すればよい。無機蒸着層の厚みが0.002μm未満であると、酸素や水蒸気に対する無機蒸着層のバリア性発現の再現性が低下する傾向があり、また、無機蒸着層が充分なバリア性を発現しない場合もある。また、無機蒸着層の厚みが0.5μmを超えると、多層構造体を引っ張ったり屈曲させたりした場合に無機蒸着層のバリア性が低下しやすくなる傾向がある。
[多層構造体の製造方法]
 本発明の製造方法によれば、本発明の多層構造体を製造できる。本発明の多層構造体について説明した事項は本発明の製造方法に適用できるため、重複する説明を省略する場合がある。また、本発明の製造方法について説明した事項は、本発明の多層構造体に適用できる。
 本発明の製造方法は、基材(X)と層(Y)と層(Z)とを含む多層構造体の製造方法である。この製造方法は、アルミニウム原子を含む層(Z)を形成する工程と、層(Y)形成工程として、工程(Y-i)および(Y-ii)を含む。工程(Y-i)では、リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)と、溶媒とを混合することによって、化合物(A)と重合体(B)と溶媒とを含むコーティング液(S)を調製する。工程(Y-ii)では、コーティング液(S)を用いて基材(X)上または層(Z)上に層(Y)を形成する。工程(Y-i)において、化合物(A)と重合体(B)とは質量比が15:85~99:1の範囲で混合される。これによって、化合物(A)と重合体(B)とが当該比率で混合された層(Y)が形成される。化合物(A)、重合体(B)、およびそれらの質量比については上述したため、重複する説明を省略する。
[コーティング液(S)]
 通常、コーティング液(S)は、化合物(A)および重合体(B)が溶媒に溶解された溶液である。コーティング液(S)は、化合物(A)および重合体(B)を溶媒に溶解することによって調製してもよい。また、化合物(A)および/または重合体(B)を製造した際に得られた溶液をそのまま使用してもよい。化合物(A)および/または重合体(B)の溶解性が低い場合には、加熱処理や超音波処理を施すことによって溶解を促進してもよい。
 コーティング液(S)に用いられる溶媒は、化合物(A)および重合体(B)の種類に応じて適宜選択すればよいが、水、アルコール類、またはそれらの混合溶媒であることが好ましい。化合物(A)および/または重合体(B)の溶解の妨げにならない限り、溶媒は、テトラヒドロフラン、ジオキサン、トリオキサン、ジメトキシエタン等のエーテル;アセトン、メチルエチルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル;ジメチルホルムアミド等のアミド;ジメチルスルホキシド;スルホラン等を含んでもよい。
 コーティング液(S)における化合物(A)および/または重合体(B)の固形分濃度は、溶液の保存安定性や塗工性の観点から、0.01~60質量%の範囲にあることが好ましく、0.1~50質量%の範囲にあることがより好ましく、0.2~40質量%の範囲にあることがさらに好ましい。固形分濃度は、後述するコーティング液(T)に関して記載する方法と同様の方法によって求めることができる。
 コーティング液(S)の保存安定性および多層構造体のガスバリア性の観点から、コーティング液(S)のpHは0.1~6.0の範囲にあることが好ましく、0.2~5.0の範囲にあることがより好ましく、0.5~4.0の範囲にあることがさらに好ましい。コーティング液(S)のpHは公知の方法で調整することができ、例えば、酸性化合物や塩基性化合物を添加することによって調整することができる。
 また、コーティング液(S)は、必要に応じて、脱気および/または脱泡処理してもよい。脱気および/または脱泡処理の方法としては、例えば、減圧、加熱、遠心、超音波、等による方法があるが、減圧を含む方法であることが好ましい。
 塗工される際のコーティング液(S)は、ブルックフィールド形回転粘度計(SB型粘度計:ローターNo.3、回転速度60rpm)で測定された粘度が、塗工時の温度において3,000mPa・s以下であることが好ましく、2,000mPa・s以下であることがより好ましい。該粘度が3,000mPa・s以下であることによって、コーティング液(S)のレベリング性が向上し、外観がより優れる多層構造体を得ることができる。また、コーティング液(S)の粘度としては、50mPa・s以上が好ましく、100mPa・s以上がより好ましく、200mPa・s以上がさらに好ましい。
 コーティング液(S)の粘度を調整する方法として、例えば、固形分の濃度を調整する、pHを調整する、粘度調節剤を添加する、といった方法を採用することができる。本発明の効果が得られる限り、コーティング液(S)は、上述した層(Y)に含まれる他の成分を含んでもよい。
 通常、工程(Y-ii)において、コーティング液(S)を塗工した後に溶媒を除去することによって、層(Y)が形成される。コーティング液(S)を塗工する方法は特に限定されず、公知の方法を採用することができる。塗工方法としては、例えば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法、バーコート法等が挙げられる。
 通常、工程(Y-ii)において、コーティング液(S)中の溶媒が除去されることによって、層(Y)が形成される。コーティング液(S)の溶媒の除去方法は特に限定されず、公知の乾燥方法を適用することができる。乾燥方法としては、例えば、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等が挙げられる。乾燥温度は、基材(X)の流動開始温度よりも0~15℃以上低いことが好ましい。乾燥温度は70~200℃の範囲にあることが好ましく、80~180℃の範囲にあることがより好ましく、90~160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。また、工程(Y-ii)を、後述する工程(Z-ii)と工程(Z-iii)との間に実施する場合は、後述する工程(Z-iii)における熱処理によって溶媒を除去してもよい。
 層状の基材(X)の両面に、層(Z)を介して、または介さずに層(Y)を形成してもよい。その場合の一例では、コーティング液(S)を一方の面に塗工した後に溶媒を除去することによって第1の層(Y)を形成する。次に、コーティング液(S)を他方の面に塗工した後に溶媒を除去することによって第2の層(Y)を形成する。それぞれの面に塗工するコーティング液(S)の組成は同一であってもよいし、異なってもよい。
[層(Z)形成工程]
 本発明の製造方法は、基材(X)上または層(Y)上にアルミニウム原子を含む層(Z)を形成する工程を含む。層(Z)形成工程によれば、層(Z)を含む多層構造体が得られる。層(Z)と層(Y)とは隣接するように形成される。
 層(Z)形成工程は、いずれの段階で行ってもよい。例えば、層(Z)形成工程は、工程(Y-i)の前に行ってもよいし、工程(Y-ii)の前に行ってもよいし、工程(Y-ii)の後に行ってもよいし、それらの間の任意の段階で行ってもよい。基材(X)と層(Z)との間に層(Y)を配置する場合には、工程(Y-ii)の後に層(Z)形成工程が行われる。また、基材(X)と層(Y)との間に層(Z)を配置する場合には、工程(Y-ii)の前に層(Z)形成工程が行われる。この場合、工程(Y-ii)において、コーティング液(S)は層(Z)に塗工される。
 層(Z)が、アルミニウムの蒸着層である層(Z2)、または酸化アルミニウムの蒸着層である層(Z3)である場合には、それらの層は上述した一般的な蒸着法によって形成できる。そのため、以下では、層(Z1)の形成方法について詳細に説明する。なお、層(Z1)の形成方法の一例は、特開2013-208794号公報に記載されている。
 層(Z1)を形成する場合、層(Z)形成工程は、以下の工程(Z-i)、(Z-ii)および(Z-iii)を含んでもよい。工程(Z-i)では、金属酸化物(C)、リン化合物(D)および溶媒を混合することによってコーティング液(T)を調製する。工程(Z-ii)では、基材(X)上にコーティング液(T)を塗工することによって、基材(X)上または層(Y)上に層(Z1)の前駆体層を形成する。工程(Z-iii)では、その前駆体層を110℃以上の温度で熱処理することによって、基材(X)上または層(Y)上に層(Z1)を形成する。工程(Z-i)~(Z-iii)の詳細については後述する。
 基材(X)と層(Y)との間に層(Z1)が形成される場合、各工程は、通常、工程(Z-i)、工程(Z-ii)、工程(Z-iii)、工程(Y-ii)の順で実施される。工程(Y-i)は、工程(Y-ii)の前であれば、特に限定されず、いずれの段階で行ってもよく、工程(Z-i)と並行して行ってもよい。一方、基材(X)と層(Z1)の間に層(Y)が形成される場合には、工程(Z-ii)の前(工程(Z-i)の前であってもよい)に工程(Y-ii)が実施される。また、工程(Z-ii)と工程(Z-iii)との間に工程(Y-ii)を実施してもよい。外観に優れた多層構造体を得る観点からは、工程(Z-iii)の後に工程(Y-ii)を実施することが好ましい。
[工程(Z-i)]
 工程(Z-i)では、金属酸化物(C)、リン化合物(D)および溶媒を少なくとも混合することによってそれらを含むコーティング液(T)を調製する。1つの観点では、工程(Z-i)において、金属酸化物(C)とリン化合物(D)とを溶媒中で反応させる。
 金属酸化物(C)、リン化合物(D)および溶媒を混合する際に、他の化合物(例えば、重合体(F))を共存させてもよい。
[金属酸化物(C)の分散液]
 リン化合物(D)との混合に供される(混合される直前の)金属酸化物(C)は、金属酸化物(C)そのものであってもよいし、金属酸化物(C)を含む組成物の形態であってもよい。好ましい一例では、金属酸化物(C)を溶媒に分散させることによって得られる分散液の形態で、金属酸化物(C)がリン化合物(D)と混合される。溶媒としては任意のものを使用できるが、水または水を含む混合溶媒が好ましい。
 金属酸化物(C)が酸化アルミニウムである場合、酸化アルミニウムの分散液の調製では、まず、必要に応じて酸を添加してpH調整した水溶液中でアルミニウムアルコキシドを加水分解縮合することによって、酸化アルミニウムのスラリーを得る。次に、そのスラリーを特定量の酸の存在下において解膠することによって、酸化アルミニウムの分散液が得られる。なお、アルミニウム以外の金属原子を含有する金属酸化物(C)の分散液も、同様の製造方法で製造できる。
 加水分解縮合に使用する酸触媒としては、例えば、塩酸、硫酸、硝酸、酢酸、乳酸および酪酸が好ましく、硝酸および酢酸がより好ましい。加水分解縮合時に酸触媒を使用する場合には、加水分解縮合前のpHが2.0~4.0の範囲にあるように酸の種類に応じて適した量を使用することが好ましい。
 工程(Z-i)は、以下の工程(Z-i-1)~(Z-i-3)を含むことが好ましい。
工程(Z-i-1):金属酸化物(C)を含む分散液(J)を調製する工程、
工程(Z-i-2):リン化合物(D)を含む溶液(K)を調製する工程、
工程(Z-i-3):工程(Z-i-1)および(Z-i-2)で得られた分散液(J)と溶液(K)とを混合する工程。
 工程(Z-i-2)は工程(Z-i-1)より先に行われてもよいし、工程(Z-i-1)と同時に行われてもよいし、工程(Z-i-1)の後に行われてもよい。
[工程(Z-i-1)]
 工程(Z-i-1)では、金属酸化物(C)を含む分散液(J)を調製する。分散液(J)は金属酸化物(C)の分散液であってもよい。該分散液(J)は、例えば、公知のゾルゲル法で採用されている手法に従い、例えば、化合物(G)、水、および必要に応じて酸触媒や有機溶媒を混合し、化合物(G)を縮合または加水分解縮合することによって調製することができる。化合物(G)を縮合または加水分解縮合することによって得られる金属酸化物(C)の分散液は、そのまま金属酸化物(C)を含む分散液(J)として使用することができるが、必要に応じて、分散液(J)に対して特定の処理(前記したような解膠や濃度制御のための溶媒の加減等)を行ってもよい。工程(Z-i-1)で使用する溶媒は特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール類、水およびこれらの混合溶媒が好ましい。さらに、工程(Z-i-1)は、化合物(G)および化合物(G)の加水分解物から選ばれる少なくとも1種の化合物を縮合(例えば加水分解縮合)させる工程を含んでもよい。
[工程(Z-i-2)]
 工程(Z-i-2)では、リン化合物(D)を含む溶液(K)を調製する。溶液(K)はリン化合物(B)を溶媒に溶解させて調製する。リン化合物(D)の溶解性が低い場合には、加熱処理や超音波処理を施すことによって溶解を促進してもよい。
 溶液(K)の調製に用いられる溶媒は、リン化合物(D)の種類に応じて適宜選択すればよいが、水を含むことが好ましい。リン化合物(D)の溶解の妨げにならない限り、溶媒は、メタノール、エタノール、テトラヒドロフラン、1,4-ジオキサン、トリオキサン、ジメトキシエタン、アセトン、メチルエチルケトン、エチレングリコール、プロピレングリコール、メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ、グリセリン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン等の有機溶媒を含んでいてもよい。
[工程(Z-i-3)]
 工程(Z-i-3)では、分散液(J)と溶液(K)とを混合する。分散液(J)と溶液(K)との混合は攪拌下で行うことが好ましい。この際、攪拌している分散液(J)に溶液(K)を添加してもよいし、攪拌している溶液(K)に分散液(J)を添加してもよい。混合完了時点からさらに30分程度攪拌を続けることによって、保存安定性に優れたコーティング液(T)を得ることができる場合がある。
 工程(Z-i-3)で混合する際の分散液(J)および溶液(K)の温度は、50℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましい。
 コーティング液(T)は、重合体(F)を含んでもよい。また、コーティング液(T)は、必要に応じて、酢酸、塩酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸から選ばれる少なくとも1種の酸化合物(Q)を含んでもよい。
 工程(Z-i-3)で得られた溶液は、そのままコーティング液(T)として使用できる。この場合、通常、分散液(J)や溶液(K)に含まれる溶媒が、コーティング液(T)の溶媒となる。また、工程(Z-i-3)で得られた溶液に、有機溶媒の添加、pHの調製、添加物の添加等処理を行ったものをコーティング液(T)としてもよい。
 工程(Z-i-3)で得られた溶液に、得られるコーティング液(T)の安定性が阻害されない範囲で有機溶剤を添加してもよい。有機溶剤を添加することによって、工程(Z-ii)における基材(X)または層(Y)へのコーティング液(T)の塗工が容易になる場合がある。有機溶剤としては、得られるコーティング液(T)において均一に混合されるものが好ましい。有機溶剤としては、例えば、メタノール、エタノール、テトラヒドロフラン、1,4-ジオキサン、トリオキサン、ジメトキシエタン、アセトン、メチルエチルケトン、エチレングリコール、プロピレングリコール、メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ、グリセリン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン等が挙げられる。
 コーティング液(T)の保存安定性、およびコーティング液(T)の基材に対する塗工性の観点から、コーティング液(T)の固形分濃度は、1~20質量%の範囲にあることが好ましく、2~15質量%の範囲にあることがより好ましく、3~10質量%の範囲にあることがさらに好ましい。コーティング液(T)の固形分濃度は、例えば、コーティング液(T)の溶媒留去後に残存した固形分の質量を、処理に供したコーティング液(T)の質量で除して算出することができる。
 コーティング液(T)の保存安定性および多層構造体のガスバリア性の観点から、コーティング液(T)のpHは0.1~6.0の範囲にあることが好ましく、0.2~5.0の範囲にあることがより好ましく、0.5~4.0の範囲にあることがさらに好ましい。コーティング液(T)のpHは公知の方法で調整することができ、例えば、酸性化合物や塩基性化合物を添加することによって調整することができる。
 コーティング液(T)の粘度が前記範囲にあるように調整する方法として、例えば、固形分の濃度を調整する、pHを調整する、粘度調節剤を添加する、といった方法を採用することができるが、これらに限定されるものではない。本発明の効果が得られる限り、コーティング液(T)は、上述した層(Y)に含まれる他の成分を含んでもよい。
[工程(Z-ii)]
 工程(Z-ii)では、基材(X)上または層(Y)上にコーティング液(T)を塗工することによって、基材(X)上または層(Y)上に層(Z1)の前駆体層を形成する。コーティング液(T)は、基材(X)の少なくとも一方の面の上に直接塗工してもよいし、他の層(層(Y))を介して基材(X)上に塗工してもよい。また、コーティング液(T)を塗工する前に、基材(X)の表面を公知のアンカーコーティング剤で処理したり、基材(X)の表面に公知の接着剤を塗工したりする等して、基材(X)の表面に接着層(L)を形成しておいてもよい。また、前記の工程(Y-ii)によって基材(X)上に形成された層(Y)上にコーティング液(T)を塗工することによって、層(Y)上に層(Z1)の前駆体層を形成してもよい。
 コーティング液(T)は、必要に応じて、脱気および/または脱泡処理してもよい。脱気および/または脱泡処理の方法としては、例えば、減圧、加熱、遠心、超音波、等による方法があるが、減圧を含む方法であることが好ましい。
 工程(Z-ii)で塗工される際のコーティング液(T)は、ブルックフィールド形回転粘度計(SB型粘度計:ローターNo.3、回転速度60rpm)で測定された粘度が、塗工時の温度において3,000mPa・s以下であることが好ましく、2,000mPa・s以下であることがより好ましい。該粘度が3,000mPa・s以下であることによって、コーティング液(T)のレベリング性が向上し、外観がより優れる多層構造体を得ることができる。工程(Z-ii)で塗工される際のコーティング液(T)の粘度は、濃度、温度、工程(Z-i-3)の混合後の攪拌時間や攪拌強度によって調整できる。例えば、工程(Z-i-3)の混合後の攪拌を長く行うことによって、粘度を低くすることができる場合がある。コーティング液(T)を基材(X)上または層(Y)上に塗工する方法は、特に限定されず、公知の方法を用いることができる。塗工方法としては、例えば、工程(Y-ii)においてコーティング液(S)を塗工する方法が挙げられる。
 通常、工程(Z-ii)において、コーティング液(T)中の溶媒を除去することによって、層(Z1)の前駆体層が形成される。溶媒の除去方法に特に制限はなく、公知の乾燥方法を適用することができる。乾燥方法としては、例えば、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等が挙げられる。乾燥温度は、基材(X)の流動開始温度よりも0~15℃以上低いことが好ましい。コーティング液(T)が重合体(F)を含む場合には、乾燥温度は、重合体(F)の熱分解開始温度よりも15~20℃以上低いことが好ましい。乾燥温度は70~200℃の範囲にあることが好ましく、80~180℃の範囲にあることがより好ましく、90~160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。また、後述する工程(Z-iii)における熱処理によって、溶媒を除去してもよい。
 層状の基材(X)の両面に層(Z1)を積層する場合の一例では、まず、コーティング液(T)を基材(X)の一方の面に塗工した後、溶媒を除去することによって第1の層(第1の層(Z1)の前駆体層)を形成する。次に、コーティング液(T)を基材(X)の他方の面に塗工した後、溶媒を除去することによって第2の層(第2の層(Z1)の前駆体層)を形成する。それぞれの面に塗工するコーティング液(T)の組成は同一であってもよいし、異なってもよい。
 立体形状を有する基材(X)の複数の面に層(Z1)を積層する場合、前記の方法でそれぞれの面ごとに層(層(Z1)の前駆体層)を形成してもよい。あるいは、コーティング液(T)を基材(X)の複数の面に同時に塗工して乾燥させることによって、複数の層(層(Z1)の前駆体層)を同時に形成してもよい。
[工程(Z-iii)]
 工程(Z-iii)では、工程(Z-ii)で形成された前駆体層(層(Z1)の前駆体層)を、110℃以上の温度で熱処理することによって層(Z1)を形成する。
 工程(Z-iii)では、金属酸化物(C)の粒子同士がリン原子(リン化合物(D)に由来するリン原子)を介して結合される反応が進行する。別の観点では、工程(Z-iii)では、反応生成物(E)が生成する反応が進行する。該反応を充分に進行させるため、熱処理の温度は、110℃以上であることが好ましく、140℃以上であることがより好ましく、170℃以上であることがさらに好ましく、190℃以上であることが特に好ましい。熱処理温度が低いと、充分な反応度を得るのにかかる時間が長くなり、生産性が低下する原因となる。熱処理の温度の好ましい上限は、基材(X)の種類等によって異なる。例えば、ポリアミド系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は190℃以下であることが好ましい。また、ポリエステル系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は220℃以下であることが好ましい。熱処理は、空気雰囲気下、窒素雰囲気下、アルゴン雰囲気下等で実施してもよい。
 熱処理の時間は、0.1秒~1時間の範囲にあることが好ましく、1秒~15分の範囲にあることがより好ましく、5~300秒の範囲にあることがさらに好ましい。
 多層構造体を製造するための本発明の方法は、層(Z1)の前駆体層または層(Z1)に紫外線を照射する工程を含んでもよい。紫外線照射は、工程(Z-ii)の後(例えば塗工されたコーティング液(T)の溶媒の除去がほぼ終了した後)のいずれの段階で行ってもよい。その方法は特に限定されず、公知の方法を適用することができる。照射する紫外線の波長は170~250nmの範囲にあることが好ましく、170~190nmの範囲および/または230~250nmの範囲にあることがより好ましい。また、紫外線照射に代えて、電子線やγ線等の放射線の照射を行ってもよい。紫外線照射を行うことによって、多層構造体のガスバリア性能がより高度に発現する場合がある。
 基材(X)と層(Z1)との間に接着層(L)を配置するために、コーティング液(T)を塗工する前に、基材(X)の表面を公知のアンカーコーティング剤で処理したり、基材(X)の表面に公知の接着剤を塗工したりしてもよい。その場合には、熟成処理を行うことが好ましい。具体的には、コーティング液(T)を塗工した後であって工程(Z-iii)の熱処理工程の前に、コーティング液(T)が塗工された基材(X)を比較的低温下に長時間放置することが好ましい。熟成処理の温度は、110℃未満であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがさらに好ましい。また、熟成処理の温度は、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることがさらに好ましい。熟成処理の時間は、0.5~10日の範囲にあることが好ましく、1~7日の範囲にあることがより好ましく、1~5日の範囲にあることがさらに好ましい。このような熟成処理を行うことによって、基材(X)と層(Z1)との間の接着力がより強固になる。
 こうして得られた多層構造体は、そのまま本発明の多層構造体として使用できる。しかし、該多層構造体に、前記したように他の部材(例えば、他の層)をさらに接着または形成した積層体を本発明の多層構造体としてもよい。該部材の接着は、公知の方法で行うことができる。
[押出しコートラミネート]
 本発明の多層構造体は、例えば、基材(X)もしくは層(Z)に直接または接着層(L)を介して層(Y)を積層させた後に、さらに他の層を直接または接着層(L)を介して押出しコートラミネート法により形成することによって、押出しコートラミネートにより形成された層をさらに有することができる。本発明で用いることができる押出しコートラミネート法に特に限定はなく、公知の方法を用いてもよい。典型的な押出しコートラミネート法では、溶融した熱可塑性樹脂をTダイに送り、Tダイのフラットスリットから取り出した熱可塑性樹脂を冷却することによって、ラミネートフィルムが製造される。
 押出しコートラミネート法の中でも最も一般的なシングルラミネート法の一例について、図面を参照しながら以下に説明する。シングルラミネート法に用いられる装置の一例を図11に示す。なお、図11は装置の主要部のみを模式的に示した図であり、実際の装置とは異なっている。図11の装置50は、押出機51、Tダイ52、冷却ロール53、およびゴムロール54を含む。冷却ロール53およびゴムロール54は、そのロール面が互いに接触した状態で配置されている。
 熱可塑性樹脂は、押出機内で加熱溶融され、Tダイ52のフラットスリットから押し出されて樹脂フィルム502となる。この樹脂フィルム502は、熱可塑性樹脂を含む層となる。一方、シート給送装置(図示せず)からは積層体501が送られ、樹脂フィルム502とともに、冷却ロール53とゴムロール54との間に挟まれる。冷却ロール53とゴムロール54との間に、積層体501と樹脂フィルム502とが積層された状態で挟まれることによって、積層体501と樹脂フィルム502とが一体化されたラミネートフィルム(多層構造体)503が製造される。
 前記シングルラミネート法以外の押出しコートラミネート法の例には、サンドイッチラミネート法およびタンデムラミネート法等が含まれる。サンドイッチラミネート法は、溶融した熱可塑性樹脂を一方の基材に押出し、別のアンワインダー(巻出し機)から第2基材を供給して貼り合わせる方法である。タンデムラミネート法は、シングルラミネート機を2台つないで一度に5層構成の積層体を作製する方法である。
 前述した積層体を用いることによって、押出しコートラミネート後も高いバリア性能を維持する多層構造体が得られる。
[接着層(L)]
 本発明の多層構造体において、層(Y)および/または層(Z)は、基材(X)と直接接触するように積層されていてもよい。また、層(Y)および/または層(Z)は、他の層を介して基材(X)に積層されていてもよい。例えば、層(Y)および/または層(Z)は、接着層(L)を介して基材(X)に積層されていてもよい。この構成によれば、基材(X)と層(Y)および/または層(Z)との接着性を高めることができる場合がある。接着層(L)は、接着性樹脂で形成してもよい。接着性樹脂からなる接着層(L)は、基材(X)の表面を公知のアンカーコーティング剤で処理するか、基材(X)の表面に公知の接着剤を塗工することによって形成できる。該接着剤としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる2液反応型ポリウレタン系接着剤が好ましい。また、アンカーコーティング剤や接着剤に、公知のシランカップリング剤等の少量の添加剤を加えることによって、さらに接着性を高めることができる場合がある。シランカップリング剤としては、例えば、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基等の反応性基を有するシランカップリング剤が挙げられるが、これらに限定されるものではない。基材(X)と層(Y)および/または層(Z)とを接着層(L)を介して強く接着することによって、本発明の多層構造体に対して印刷やラミネート等の加工を施す際に、ガスバリア性や外観の悪化をより効果的に抑制することができ、さらに、本発明の多層構造体を用いた包装材の落下強度を高めることができる。接着層(L)の厚みは0.01~10.0μmの範囲が好ましく、0.03~5.0μmの範囲がより好ましい。
[他の層]
 本発明の多層構造体は、様々な特性、例えば、ヒートシール性を付与したり、バリア性や力学物性を向上させるための他の層を含んでもよい。このような本発明の多層構造体は、例えば、基材(X)に直接または接着層(L)を介して層(Y)および層(Z)を積層させた後に、さらに該他の層を直接または接着層(L)を介して接着または形成することによって製造できる。他の層としては、例えば、インク層やポリオレフィン層等が挙げられるが、これらに限定されない。
 本発明の多層構造体は、商品名や絵柄を印刷するためのインク層を含んでもよい。このような本発明の多層構造体は、例えば、基材(X)に直接または接着層(L)を介して層(Y)および層(Z)を積層させた後に、さらに該インク層を直接形成することによって製造できる。インク層としては、例えば、溶剤に顔料(例えば、二酸化チタン)を包含したポリウレタン樹脂を分散した液体を乾燥した皮膜が挙げられるが、顔料を含まないポリウレタン樹脂や、その他の樹脂を主剤とするインクや電子回路配線形成用レジストを乾燥した皮膜でもよい。層(Y)へのインク層の塗工方法としては、グラビア印刷法のほか、ワイヤーバー、スピンコーター、ダイコーター等各種の塗工方法を用いることができる。インク層の厚みは0.5~10.0μmの範囲が好ましく、1.0~4.0μmの範囲がより好ましい。
 本発明の多層構造体において、層(Y)中に存在する重合体(B)は、接着層(L)や他の層(例えば、インク層等)との親和性が高い水酸基および/またはカルボキシル基を有しているため、層(Y)とその他の層との密着性が向上する。このため、レトルト処理後も層間接着力を維持することができ、デラミネーション等の外観不良を抑制することが可能となる。
 本発明の多層構造体の最表面層をポリオレフィン層とすることによって、多層構造体にヒートシール性を付与したり、多層構造体の力学的特性を向上させたりすることができる。ヒートシール性や力学的特性の向上等の観点から、ポリオレフィンはポリプロピレンまたはポリエチレンであることが好ましい。また、多層構造体の力学的特性を向上させるために、ポリエステルからなるフィルム、ポリアミドからなるフィルム、および水酸基含有ポリマーからなるフィルムからなる群より選ばれる少なくとも1つのフィルムを積層することが好ましい。力学的特性の向上の観点から、ポリエステルとしてはポリエチレンテレフタレートが好ましく、ポリアミドとしてはナイロン-6が好ましく、水酸基含有ポリマーとしてはエチレン-ビニルアルコール共重合体が好ましい。なお各層の間には必要に応じて、アンカーコート層や接着剤からなる層を設けてもよい。
 以下では、層(Y)と層(Z)が隣接して積層された構造を層(YZ)という場合がある。層(YZ)における順序は、層(Y)/層(Z)および層(Z)/層(Y)のいずれでもよい。さらに、以下では、基材(X)と基材(X)に積層された層(YZ)とを含む多層構造体を、バリア性多層膜という場合もある。本発明の多層構造体は、例えば、バリア性多層膜/インク層/ポリオレフィン層、バリア性多層膜/インク層/接着層(L)/ポリオレフィン層、バリア性多層膜/接着層(L)/ポリオレフィン層、ポリオレフィン層/接着層(L)/バリア性多層膜/接着層(L)/ポリオレフィン層、といった構成を有してもよい。また、本発明の多層構造体は、一方の最表面に配置された第1のポリオレフィン層と、他方の最表面に配置された第2のポリオレフィン層とを含んでもよい。このとき、第1のポリオレフィン層と第2のポリオレフィン層とは同じでもよいし、異なってもよい。
[多層構造体の構成]
 本発明の多層構造体の構成の具体例を以下に示す。また、多層構造体は接着層(L)等の接着層や他の層を有していてもよいが、以下の具体例において、該接着層や他の層の記載は省略している。
(1)層(YZ)/ポリエステル層、
(2)層(YZ)/ポリエステル層/層(YZ)、
(3)層(YZ)/ポリアミド層、
(4)層(YZ)/ポリアミド層/層(YZ)、
(5)層(YZ)/ポリオレフィン層、
(6)層(YZ)/ポリオレフィン層/層(YZ)、
(7)層(YZ)/水酸基含有ポリマー層、
(8)層(YZ)/水酸基含有ポリマー層/層(YZ)、
(9)層(YZ)/紙層、
(10)層(YZ)/紙層/層(YZ)、
(11)層(YZ)/無機蒸着層/ポリエステル層、
(12)層(YZ)/無機蒸着層/ポリアミド層、
(13)層(YZ)/無機蒸着層/ポリオレフィン層、
(14)層(YZ)/無機蒸着層/水酸基含有ポリマー層、
(15)層(YZ)/ポリエステル層/ポリアミド層/ポリオレフィン層、
(16)層(YZ)/ポリエステル層/層(YZ)/ポリアミド層/ポリオレフィン層、
(17)ポリエステル層/層(YZ)/ポリアミド層/ポリオレフィン層、
(18)層(YZ)/ポリアミド層/ポリエステル層/ポリオレフィン層、
(19)層(YZ)/ポリアミド層/層(YZ)/ポリエステル層/ポリオレフィン層、
(20)ポリアミド層/層(YZ)/ポリエステル層/ポリオレフィン層、
(21)層(YZ)/ポリオレフィン層/ポリアミド層/ポリオレフィン層、
(22)層(YZ)/ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(23)ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(24)層(YZ)/ポリオレフィン層/ポリオレフィン層、
(25)層(YZ)/ポリオレフィン層/層(YZ)/ポリオレフィン層、
(26)ポリオレフィン層/層(YZ)/ポリオレフィン層、
(27)層(YZ)/ポリエステル層/ポリオレフィン層、
(28)層(YZ)/ポリエステル層/層(YZ)/ポリオレフィン層、
(29)ポリエステル層/層(YZ)/ポリオレフィン層、
(30)層(YZ)/ポリアミド層/ポリオレフィン層、
(31)層(YZ)/ポリアミド層/層(YZ)/ポリオレフィン層、
(32)ポリアミド層/層(YZ)/ポリオレフィン層、
(33)層(YZ)/ポリエステル層/紙層、
(34)層(YZ)/ポリアミド層/紙層、
(35)層(YZ)/ポリオレフィン層/紙層、
(36)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリエステル層/ポリオレフィン層、
(37)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(38)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層、
(39)紙層/ポリオレフィン層/層(YZ)/ポリエステル層/ポリオレフィン層、
(40)ポリオレフィン層/紙層/層(YZ)/ポリオレフィン層、
(41)紙層/層(YZ)/ポリエステル層/ポリオレフィン層、
(42)紙層/層(YZ)/ポリオレフィン層、
(43)層(YZ)/紙層/ポリオレフィン層、
(44)層(YZ)/ポリエステル層/紙層/ポリオレフィン層、
(45)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/水酸基含有ポリマー層、
(46)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/ポリアミド層、
(47)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/ポリエステル層、
(48)無機蒸着層/層(YZ)/ポリエステル層、
(49)無機蒸着層/層(YZ)/ポリエステル層/層(YZ)/無機蒸着層、
(50)無機蒸着層/層(YZ)/ポリアミド層、
(51)無機蒸着層/層(YZ)/ポリアミド層/層(YZ)/無機蒸着層、
(52)無機蒸着層/層(YZ)/ポリオレフィン層、
(53)無機蒸着層/層(YZ)/ポリオレフィン層/層(YZ)/無機蒸着層
 本発明の多層構造体を電子デバイスの保護シートに用いる場合、前記構成のうち、(1)~(8)、(11)~(32)、および(48)~(53)のいずれかの構成が好ましい。
 本発明によれば、20℃、85%RHの条件下における酸素透過度が2mL/(m2・day・atm)以下である多層構造体を得ることが可能である。また、本発明の多層構造体としては、20℃、85%RHの条件下における酸素透過度が1.5mL/(m2・day・atm)以下のものが好ましく、1.3mL/(m2・day・atm)以下のものがより好ましい。酸素透過度の測定方法および測定条件は、後記する実施例に記載のとおりである。
 本発明によれば、40℃、90%RHの条件下における透湿度が2.0g/(m2・day)以下である多層構造体を得ることが可能である。また、本発明の多層構造体としては、40℃、90%RHの条件下における透湿度が1.0g/(m2・day)以下のものが好ましく、0.50g/(m2・day)以下のものがより好ましく、0.30g/(m2・day)以下がさらに好ましい。透湿度の測定方法および条件は、後述する実施例に記載のとおりである。
[用途]
 本発明の多層構造体は、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にも、ガスバリア性を高いレベルで維持することができる。また、本発明によれば、外観に優れる多層構造体を得ることができる。そのため、本発明の多層構造体および該多層構造体を用いた包装材は、様々な用途に適用できる。
[包装材]
 本発明の包装材は、基材(X)と、基材(X)上に積層された層(Y)と前記層(Y)に隣接して配置された層(Z)とを含む多層構造体を含む。包装材は、多層構造体のみによって構成されてもよい。すなわち、以下の説明において、「包装材」を「多層構造体」に読み替えてもよい。また、典型的には、「包装材」を「包装」と読み替えることが可能である。包装材は、多層構造体と他の部材とによって構成されてもよい。
 本発明の好ましい実施形態による包装材は、無機ガス(例えば、水素、ヘリウム、窒素、酸素、二酸化炭素)、天然ガス、水蒸気および常温常圧で液体状の有機化合物(例えば、エタノール、ガソリン蒸気)に対するバリア性を有する。
 本発明の包装材が包装袋である場合、その包装袋のすべてに多層構造体が用いられていてもよいし、その包装袋の一部に多層構造体が用いられていてもよい。例えば、包装袋の面積の50%~100%が、多層構造体によって構成されていてもよい。包装材が包装袋以外のもの(例えば、容器や蓋材)である場合も同様である。
 本発明の包装材は、様々な方法で作製できる。例えば、シート状の多層構造体または該多層構造体を含むフィルム材(以下、単に「フィルム材」という)を接合して所定の容器の形状に成形することによって、容器(包装材)を作製してもよい。成形方法は、熱成形、射出成形、押出ブロー成形等が挙げられる。また、所定の容器の形状に成形された基材(X)の上に層(Y)を形成することによって、容器(包装材)を作製してもよい。これらのように作製された容器を、本明細書では「包装容器」という場合がある。
 また、本発明の多層構造体を含む包装材は、種々の成形品に二次加工して使用してもよい。このような成形品は、縦製袋充填シール袋、真空包装袋、パウチ、ラミネートチューブ容器、輸液バッグ、紙容器、ストリップテープ、容器用蓋材、インモールドラベル容器または真空断熱体であってもよい。これらの成形品では、ヒートシールが行われてもよい。
[縦製袋充填シール袋]
 本発明の多層構造体を含む包装材は、縦製袋充填シール袋であってもよい。一例を図1に示す。図1の縦製袋充填シール袋10は、多層構造体11が、2つの端部11aと胴体部11bとの三方でシールされることによって形成されている。縦製袋充填シール袋10は、縦型製袋充填機により製造できる。縦型製袋充填機による製袋には様々な方法が適用されるが、いずれの方法においても、内容物は袋の上方の開口からその内部へと供給され、その後にその開口がシールされて縦製袋充填シール袋が製造される。縦製袋充填シール袋は、例えば、上端、下端および側部の三方においてヒートシールされた1枚のフィルム材により構成される。本発明の多層構造体を含む縦製袋充填シール袋は、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持されるため、該縦製袋充填シール袋によれば、内容物の品質劣化を長期間にわたって抑制できる。
 縦製袋充填シール袋として好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、バリア性多層膜/ポリオレフィン層、ポリオレフィン層/バリア性多層膜/ポリオレフィン層等が挙げられる。これらの構成において、バリア性多層膜の基材として、ポリアミドフィルムを用いてもよい。該縦製袋充填シール袋は、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。また、本発明の多層構造体の層(YZ)が基材の片面にある場合、層(YZ)は、該縦製袋充填シール袋の外側および内側のいずれの方向を向いていてもよい。ヒートシール可能な層が、包装材(袋)の内側となる側にのみある場合は、通常、胴体部のシールは合掌貼りシールとなる。ヒートシール可能な層が、成形品の内側となる側および外側となる側の両方にある場合は、通常、胴体部のシールは封筒貼りシールとなる。
[真空包装袋]
 本発明の多層構造体を含む包装材は、真空包装袋であってもよい。一例を図2に示す。図2の真空包装袋101は、フィルム材131、132を壁部材として備え、周縁部111において互いに接合(シール)されている容器である。密閉された真空包装袋の内部は減圧され、通常、フィルム材131、132は、周縁部111に囲まれた中央部112において、変形して内容物150に密着し、袋101の内部と外部とを隔てる隔壁として機能する。真空包装袋は、ノズル式またはチャンバー式の真空包装機を用いて製造することができる。本発明の包装容器としての真空包装袋は、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。そのため、該真空包装袋のバリア性能は、長期間にわたってほとんど低下しない。
 真空包装袋として好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、および、ポリアミド層/バリア性多層膜/ポリオレフィン層、という構成が挙げられる。これらの構成において、バリア性多層膜の基材として、ポリアミドフィルムを用いてもよい。このような多層構造体を用いた真空包装袋は、真空包装後や、真空包装・加熱殺菌後のガスバリア性に特に優れる。また、層(YZ)が基材の片面のみに積層されている場合、層(YZ)は、基材に対して真空包装袋の外側にあってもよいし内側にあってもよい。
[パウチ]
 本発明の多層構造体を含む包装材は、パウチであってもよい。一例を図3に示す。図3の平パウチ20は、2枚の多層構造体11が、その周縁部11cで互いに接合されることによって形成されている。本明細書において、「パウチ」という語句は主として食品、日用品または医薬品を内容物とする、フィルム材を壁部材として備えた容器を意味する。パウチは、例えば、その形状および用途から、スパウト付きパウチ、チャックシール付きパウチ、平パウチ、スタンドアップパウチ、横製袋充填シールパウチ、レトルトパウチ等が挙げられる。パウチは、バリア性多層膜と、少なくとも1層の他の層とを積層することによって形成してもよい。本発明の包装容器としてのパウチは、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。そのため、該パウチは、輸送後や長期保存後においても、内容物の変質を防ぐことが可能である。また、該パウチの一例では、透明性を良好に保持できるため、内容物の確認や、劣化による内容物の変質の確認が容易である。
 パウチとして好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、および、ポリアミド層/バリア性多層膜/ポリオレフィン層、という構成が挙げられる。また、層(YZ)が基材の片面のみに積層されている場合、層(YZ)は、基材に対してスパウト付パウチの外側にあってもよいし内側にあってもよい。
[ラミネートチューブ容器]
 本発明の多層構造体を含む包装材は、ラミネートチューブ容器であってもよい。一例を図4に示す。図4のラミネートチューブ容器301は、容器の内部と外部とを隔てる隔壁320としてラミネートフィルム310を備えた胴体部331と、肩部332とを備え、肩部332は、貫通孔(取り出し口)を有する筒状の取り出し部342と、中空の円錐台形状を有する基台部341とを備える。より具体的には、ラミネートチューブ容器は、一方の端部が閉じた筒状体である胴体部331と、胴体部331の他方の端部に配置された肩部332と、端部シール部311と、側面シール部312とを備え、肩部332は、貫通孔(取り出し口)を有し、外周面に雄ねじ部を有する筒状の取り出し部342と、中空の円錐台形状を有する基台部341とを備える。取り出し部342には、着脱自在に、雄ねじ部に対応する雌ねじ部を有する蓋が取り付けられていてもよい。胴体部331の壁部材を構成するラミネートフィルム310は、柔軟性を有していることが好ましい。肩部332には、金属や樹脂等からなる成形体を使用できる。本発明の包装容器としてのラミネートチューブ容器は、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。また、該ラミネートチューブ容器は透明性が良好であるため、内容物の確認や、劣化による内容物の変質の確認が容易である。
 ラミネートチューブ容器として好ましい構成としては、ポリオレフィン層/バリア性多層膜/ポリオレフィン層、および、ポリオレフィン層/顔料含有ポリオレフィン層/ポリオレフィン層/バリア性多層膜/ポリオレフィン層、という構成が挙げられる。また、層(YZ)が基材の片面のみに積層されている場合、層(YZ)は、基材に対してラミネートチューブ容器の外側にあってもよいし内側にあってもよい。
[輸液バッグ]
 本発明の多層構造体を含む包装材は、輸液バッグであってもよい。輸液バッグは、輸液製剤をその内容物とする容器であり、輸液製剤を収容するための内部と外部とを隔てる隔壁としてフィルム材を備える。一例を図5に示す。図5に示されるように、輸液バッグは、内容物を収容するバッグ本体431に加え、バッグ本体431の周縁部412に口栓部材432を備えていてもよい。口栓部材432は、バッグ本体431の内部に収容された輸液類を取り出す経路として機能する。また、輸液バッグは、バッグを吊り下げるために、口栓部材432が取り付けられた周縁部412の反対側の周縁部411に吊り下げ孔433を備えていてもよい。バッグ本体431は、2枚のフィルム材410a、410bがその周縁部411、412、413、414において互いに接合されることによって形成されている。フィルム材410a、410bは、バッグ本体431の周縁部411、412、413、414に囲まれた中央部において、バッグ内部とバッグ外部とを隔てる隔壁420として機能する。本発明による包装容器としての輸液バッグは、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。そのため、該輸液バッグによれば、加熱殺菌処理前、加熱殺菌処理中、加熱殺菌処理後、輸送後、保存後においても、充填されている液状医薬品が変質することを防止できる。
 輸液バッグとして好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、および、ポリアミド層/バリア性多層膜/ポリオレフィン層、という構成が挙げられる。また、層(YZ)が基材の一方の表面のみに積層されている場合、層(YZ)は、基材に対して輸液バッグの外側にあってもよいし内側にあってもよい。
[紙容器]
 本発明の多層構造体を含む包装材は、紙容器であってもよい。紙容器は、内容物を収容する内部と外部とを隔てる隔壁が紙層を含む容器である。好ましい一例では、隔壁の少なくとも一部が多層構造体を含み、多層構造体は基材(X)および層(Y)を含む。紙層は、基材(X)に含まれていてもよい。一例を図6に示す。紙容器510は胴体部の側面に窓部511を有する。この窓付き容器の窓部の基材からは紙層が除去され、窓部511を通して内容物を視認できる。紙層を除去した窓部511においてもガスバリア性を高めた多層構造体の層構成がそのまま維持される。図6の紙容器510は、平板状の積層体を折り曲げたり接合(シール)したりすることによって形成できる。紙容器は、ブリック型、ゲーブルトップ型等、底を有する所定の形状のものであってもよい。本発明による包装容器としての紙容器は、折り曲げ加工を行ってもガスバリア性の低下が少ない。また、該紙容器は、透明性が高い層(YZ)を用いることによって、窓付き容器に好ましく用いられる。さらに、該紙容器は、電子レンジによる加熱にも適している。
 紙容器として好ましい多層構造体の構成としては、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/バリア性多層膜/耐熱性ポリオレフィン層、という構成が挙げられる。前記の例において、耐熱性ポリオレフィン層は、例えば、二軸延伸耐熱性ポリオレフィンフィルムまたは無延伸耐熱性ポリオレフィンフィルムのいずれかで構成される。成型加工の容易さの観点から、多層構造体の最外層に配置される耐熱性ポリオレフィン層は無延伸ポリプロピレンフィルムであることが好ましい。同様に、多層構造体の最外層よりも内側に配置される耐熱性ポリオレフィン層は無延伸ポリプロピレンフィルムであることが好ましい。好ましい一例では、多層構造体を構成するすべての耐熱性ポリオレフィン層が、無延伸ポリプロピレンフィルムである。
[ストリップテープ]
 層状の積層体を接合(シール)して紙容器を作製する際に、積層体のシール部にストリップテープが使用されることがある。ストリップテープは、紙容器の隔壁を構成する壁材(積層体)を互いに接合するために用いられる帯状の部材である。本発明による紙容器は、積層体が接合される貼り合わせ部にストリップテープを備えていてもよい。この場合、ストリップテープは、紙容器の隔壁に含まれる多層構造体と同じ層構成を有する多層構造体を含んでいてもよい。好ましいストリップテープの一例では、両最外層が、ヒートシールのためのポリオレフィン層である。このストリップテープは、ガスバリア性や水蒸気バリア性が低下しやすい貼り合わせ部における特性低下を抑制できる。そのため、このストリップテープは、本発明による包装容器には該当しない紙容器に対しても有用である。
[容器用蓋材]
 本発明の多層構造体を含む包装材は、容器用蓋材であってもよい。容器用蓋材は、容器の内部と容器の外部とを隔てる隔壁の一部として機能するフィルム材を備える。容器用蓋材は、ヒートシールや接着剤を用いた接合(シール)等によって、容器本体の開口部を封止するように容器本体と組み合わされ、内部に密閉された空間を有する容器(蓋付き容器)を形成する。容器用蓋材は、通常、その周縁部において容器本体と接合される。この場合、周縁部に囲まれた中央部が容器の内部空間に面することになる。容器本体は、例えば、カップ状、トレー状、その他の形状を有する成形体である。容器本体は、壁面部や、容器用蓋材をシールするためのフランジ部等を備える。本発明による包装容器としての容器用蓋材は、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持されるため、内容物である食品の品質劣化を長期間にわたって抑制できる。そして、該容器用蓋材は、食料品等の内容物の保存用に使用される容器の蓋材として、好ましく用いられる。
 容器用蓋材として好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、および、バリア性多層膜/ポリオレフィン層、という構成が挙げられる。これらの構成において、バリア性多層膜の基材として、ポリアミドフィルムを用いてもよい。前記各層の層間には、接着層を設けてもよい。また、多層構造体の層(YZ)が基材の片面にある場合、層(YZ)は、基材よりも内側(容器側)にあってもよいし、基材よりも外側にあってもよい。
[インモールドラベル容器]
 本発明の多層構造体を含む包装材は、インモールドラベル容器であってもよい。インモールドラベル容器は、容器本体と、容器本体の表面に配置された本発明の多層ラベル(多層構造体)とを含む。容器本体は、型の内部に溶融樹脂を注入することによって形成される。容器本体の形状に特に限定はなく、カップ状、ボトル状等であってもよい。
 容器を製造するための本発明の方法の一例は、メス型部とオス型部との間のキャビティ内に本発明の多層ラベルを配置する第1工程と、該キャビティ内に溶融樹脂を注入することによって、容器本体の成形と該容器本体への本発明の多層ラベルの貼着とを同時に行う第2工程とを含む。本発明の多層ラベルを用いることを除いて、各工程は、公知の方法で実施することが可能である。
 本発明の容器の一例の断面図を図7に示す。図7の容器360は、カップ状の容器本体370と、容器本体370の表面に貼着された多層ラベル361~363とを含む。多層ラベル361~363は、本発明の多層ラベルである。容器本体370は、フランジ部371と胴体部372と底部373とを含む。フランジ部371は、その先端に、上下に突出している凸部371aを有する。多層ラベル361は、底部373の外側の表面を覆うように配置されている。多層ラベル361の中央には、インモールドラベル成形の際に樹脂を注入するための貫通孔361aが形成されている。多層ラベル362は、胴体部372の外側の表面とフランジ部371の下面とを覆うように配置されている。多層ラベル363は、胴体部372の内側の表面の一部とフランジ部371の上面とを覆うように配置されている。多層ラベル361~363は、インモールドラベル成形法によって、容器本体370に融着され、容器本体360と一体となっている。図7に示すように、多層ラベル363の端面は、容器本体360に融着されており、外部に露出していない。
[真空断熱体]
 前記した包装材を少なくとも一部に用いる、本発明の製品は、真空断熱体であってもよい。本発明の真空断熱体は、被覆材と、被覆材により囲まれた内部に配置された芯材とを備える断熱体であり、芯材が配置された内部は減圧されている。真空断熱体は、ウレタンフォームからなる断熱体による断熱特性と同等の断熱特性を、より薄くより軽い断熱体で達成することを可能にする。本発明の真空断熱体は、長期間にわたって断熱効果を保持できるため、冷蔵庫、給湯設備および炊飯器等の家電製品用の断熱材、壁部、天井部、屋根裏部、および床部等に用いられる住宅用断熱材、車両屋根材、自動販売機等の断熱パネル、ヒートポンプ応用機器等の熱移動機器等に利用できる。
 本発明による真空断熱体の一例を図8に示す。図8の真空断熱体601は、粒子状の芯材651と、それを覆う被覆材610とを備え、被覆材610は周縁部611で互いに接合されている2枚のフィルム材631、632により構成され、芯材651は、該被覆材610によって囲まれた内部に配置されている。周縁部611で囲まれた中央部において、被覆材610は、芯材651が収容された内部と外部とを隔てる隔壁として機能し、内部と外部との圧力差によって芯材651に密着している。芯材651が配置された内部は減圧されている。
 本発明による真空断熱体の別の一例を図9に示す。図9の真空断熱体602は、芯材651の代わりに一体に成形された芯材652を備えることを除き、真空断熱体601と同一の構成を有する。被覆材610は、芯材652が収容された内部と外部とを隔てる隔壁620として機能し、断熱体の内部と外部との圧力差によって芯材652に密着している。芯材652が配置された内部は減圧されている。芯材652は、典型的には樹脂の発泡体である。
 芯材の材料および形状は、断熱に適している限り特に制限されない。芯材としては、例えば、パーライト粉末、シリカ粉末、沈降シリカ粉末、ケイソウ土、ケイ酸カルシウム、ガラスウール、ロックウール、人工(合成)ウール、樹脂の発泡体(例えば、スチレンフォーム、ウレタンフォーム)等が挙げられる。芯材としては、所定形状に成形された中空容器、ハニカム構造体等を用いることもできる。
 真空断熱体として好ましい多層構造体の構成としては、バリア性多層膜/ポリアミド層/ポリオレフィン層、および、ポリアミド層/バリア性多層膜/ポリオレフィン層、という構成が挙げられる。前記各層の層間には、接着層を設けてもよい。また、層(YZ)が基材の一方の表面のみに積層されている場合、層(YZ)は、基材に対して真空断熱体の外側にあってもよいし内側にあってもよい。
[電子デバイス]
 本発明の電子デバイスの一例について説明する。電子デバイスの一部断面図を図10に示す。図10の電子デバイス40は、電子デバイス本体41と、電子デバイス本体41を封止するための封止材42と、電子デバイス本体41の表面を保護するための保護シート(多層構造体)43と、を備える。封止材42は、電子デバイス本体41の表面全体を覆っている。保護シート43は、電子デバイス本体41の一方の表面上に、封止材42を介して配置されている。保護シート43が配置された表面とは反対側の表面にも、保護シート43が配置されてもよい。その場合、その反対側の表面に配置される保護シートは、保護シート43と同じであってもよいし異なっていてもよい。保護シート43は、電子デバイス本体41の表面を保護できるように配置されていればよく、電子デバイス本体41の表面上に直接配置されていてもよいし、封止材42等の他の部材を介して電子デバイス本体41の表面上に配置されていてもよい。
 電子デバイス本体41は、特に限定されないが、例えば、太陽電池等の光電変換装置、有機ELディスプレイ、液晶ディスプレイ、電子ペーパー等の情報表示装置、有機EL発光素子等の照明装置である。封止材42は、電子デバイス本体41の種類および用途等に応じて適宜付加される任意の部材である。封止材42としては、エチレン-酢酸ビニル共重合体やポリビニルブチラール等が挙げられる。
 電子デバイス本体41の好ましい一例は、太陽電池である。太陽電池としては、例えば、シリコン系太陽電池、化合物半導体太陽電池、有機薄膜太陽電池等が挙げられる。シリコン系太陽電池としては、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、非晶質シリコン太陽電池等が挙げられる。化合物半導体太陽電池としては、例えば、III-V族化合物半導体太陽電池、II-VI族化合物半導体太陽電池、I-III-VI族化合物半導体太陽電池等が挙げられる。有機薄膜太陽電池としては、例えば、pnヘテロ接合有機薄膜太陽電池、バルクへテロ接合有機薄膜太陽電池等が挙げられる。また、太陽電池は、複数のユニットセルが直列接続された集積形の太陽電池であってもよい。
 電子デバイス本体41は、その種類によっては、いわゆるロール・ツー・ロール方式で作製することが可能である。ロール・ツー・ロール方式では、送り出しロールに巻かれたフレキシブルな基板(例えば、ステンレス基板や樹脂基板等)が送り出され、この基板上に素子を形成することによって電子デバイス本体41が作製され、この電子デバイス本体41が巻き取りロールで巻き取られる。この場合、保護シート43も、可撓性を有する長尺のシートの形態、より具体的には長尺のシートの捲回体の形態として準備しておくとよい。一例では、送り出しロールから送り出された保護シート43は、巻き取りロールに巻き取られる前の電子デバイス本体41上に積層され、電子デバイス本体41とともに巻き取られる。他の一例では、巻き取りロールに巻き取った電子デバイス本体41を改めてロールから送り出し、保護シート43と積層してもよい。本発明の好ましい一例では、電子デバイス自体が可撓性を有する。
 保護シート43は、上述した多層構造体を含む。保護シート43は、多層構造体のみから構成されていてもよい。あるいは、保護シート43は、多層構造体と、多層構造体に積層された他の部材(例えば、他の層)とを含んでもよい。保護シート43は、電子デバイスの表面の保護に適した層状の積層体であって上述の多層構造体を含んでいる限り、その厚みおよび材料に特に制限はない。
 保護シート43は、例えば、多層構造体の一方の表面または両方の表面に配置された表面保護層を含んでもよい。表面保護層としては、傷がつきにくい樹脂からなる層が好ましい。また、太陽電池のように室外で利用されることがあるデバイスの表面保護層は、耐候性(例えば、耐光性)が高い樹脂からなることが好ましい。また、光を透過させる必要がある面を保護する場合には、透光性が高い表面保護層が好ましい。表面保護層(表面保護フィルム)の材料としては、例えば、ポリ(メタ)アクリル酸エステル、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。保護シートの一例は、一方の表面に配置されたポリ(メタ)アクリル酸エステル層を含む。
 表面保護層の耐久性を高めるために、表面保護層に各種の添加剤(例えば、紫外線吸収剤)を添加してもよい。耐候性が高い表面保護層の好ましい一例は、紫外線吸収剤が添加されたアクリル樹脂層である。紫外線吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系、ニッケル系、トリアジン系の紫外線吸収剤が挙げられるが、これらに限定されるものではない。また、他の安定剤、光安定剤、酸化防止剤等を併用してもよい。
 本発明の多層構造体は、ガスバリア性に加えて、水蒸気に対するバリア性を有することもできる。そのような多層構造体は、変形や衝撃等の物理的ストレスを受けた際にも、その水蒸気バリア性を高いレベルで維持することができる。特に、太陽電池部材やディスプレイ部材等に本発明の多層構造体を使用する場合には、この特性が製品の耐久性に大きく寄与する場合がある。
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、前記の構成を種々組み合わせた態様を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。以下の実施例および比較例における測定および評価は次のようにして行った。
(1)赤外線吸収スペクトルの測定
 フーリエ変換赤外分光光度計を用い、減衰全反射法で測定した。測定条件は以下の通りとした。
  装置:パーキンエルマー社製Spectrum One
  測定モード:減衰全反射法
  測定領域:800~1,400cm-1
(2)各層の厚み測定
 多層構造体を収束イオンビーム(FIB)を用いて切削し、断面観察用の切片(厚み0.3μm)を作製した。作製した切片を試料台座にカーボンテープで固定し、加速電圧30kVで30秒間白金イオンスパッタを行った。多層構造体の断面を電界放出形透過型電子顕微鏡を用いて観察し、各層の厚みを算出した。測定条件は以下の通りとした。
  装置:日本電子株式会社製JEM-2100F
  加速電圧:200kV
  倍率:250,000倍
(3)多層構造体の外観評価
(3-1)レトルト処理前の多層構造体の外観評価
 多層構造体の外観を目視によって評価し、下記のランクに分類した。
  AA:無色透明で均一であり、極めて良好な外観であった。
  A:透明で均一であり、良好な外観であった。
  B:不透明であるが、ムラは認められず、良好な外観であった。
  C:くもりまたはムラが見られた。
(3-2)レトルト処理後の多層構造体の外観評価
 レトルト処理後の多層構造体の外観を目視によって評価し、下記のランクに分類した。
  A:多層構造体の層間に剥離はなく、良好な外観であった。
  B:多層構造体の層間が一部剥離していることを確認した。
(4)酸素透過度の測定
 キャリアガス側に基材の層が向くように、サンプルを酸素透過量測定装置に取り付け、酸素透過度を測定した。測定条件は以下の通りとした。
  装置:モダンコントロールズ社製MOCON OX-TRAN2/20
  温度:20℃
  酸素供給側の湿度:85%RH
  キャリアガス側の湿度:85%RH
  酸素圧:1気圧
  キャリアガス圧力:1気圧
(5)水蒸気透過度の測定
 キャリアガス側に基材の層が向くように、サンプルを水蒸気透過量測定装置に取り付け、透湿度(水蒸気透過度)を測定した。測定条件は以下の通りとした。
  装置:モダンコントロールズ社製MOCON PERMATRAN3/33
  温度:40℃
  水蒸気供給側の湿度:90%RH
  キャリアガス側の湿度:0%RH
(6)接着性評価
 T型剥離強度(幅15mmあたりの接着力)を測定することによって、層(Y)と層(Y)に隣接する層(この実施例では接着層およびインク層)との接着性を評価した。測定は5回行い、平均値を採用した。測定条件は以下の通りとした。
  装置:株式会社島津製作所製オートグラフAGS-H
  剥離速度:250mm/分
  温度:23℃
  湿度:50%RH
<層(Z)を形成するためのコーティング液(T-1)の製造例>
 蒸留水230質量部を撹拌しながら70℃に昇温した。その蒸留水に、トリイソプロポキシアルミニウム88質量部を1時間かけて滴下し、液温を徐々に95℃まで上昇させ、発生するイソプロパノールを留出させることによって加水分解縮合を行った。得られた液体に、60質量%の硝酸水溶液4.0質量部を添加し、95℃で3時間撹拌することによって加水分解縮合物の粒子の凝集体を解膠させた。その後、その液体を、固形分濃度が酸化アルミニウム換算で10質量%になるように濃縮した。こうして得られた分散液18.66質量部に対して、蒸留水58.19質量部、メタノール19.00質量部、および5質量%のポリビニルアルコール水溶液(株式会社クラレ製PVA124;ケン化度98.5モル%、粘度平均重合度2,400、20℃での4質量%水溶液粘度60mPa・s)0.50質量部を加え、均一になるように撹拌することによって、分散液を得た。続いて、液温を15℃に維持した状態で分散液を攪拌しながら85質量%のリン酸水溶液3.66質量部を滴下して加え、粘度が1,500mPa・sになるまで15℃で攪拌を続け、目的のコーティング液(T-1)を得た。該コーティング液(T-1)における、アルミニウム原子とリン原子とのモル比は、アルミニウム原子:リン原子=1.15:1.00であった。
<重合体(Aa-1)の合成例>
 窒素雰囲気下、2-ホスホノオキシエチルメタクリレート8.5gおよびアゾビスイソブチロニトリル0.1gをメチルエチルケトン17gに溶解させ、80℃で12時間攪拌した。得られた重合体溶液を冷却した後、1,2-ジクロロエタン170gに加え、デカンテーションによって重合体を沈殿物として回収した。続いて、重合体をテトラヒドロフランに溶解させ、1,2-ジクロロエタンを貧溶媒として用いて再沈精製を行った。再沈精製を3回行った後、50℃で24時間真空乾燥することによって、重合体(Aa-1)を得た。重合体(Aa-1)は、2-ホスホノオキシエチルメタクリレートの重合体である。GPC分析の結果、該重合体の数平均分子量はポリスチレン換算で10,000であった。
<重合体(Aa-2)の合成例>
 2-ホスホノオキシエチルメタクリレートに代えて、2-ホスホノオキシエチルメタクリレートとアクリロニトリルの混合物(モル比で2-ホスホノオキシエチルメタクリレート:アクリロニトリル=2:1)を用いたこと以外は重合体(Aa-1)の合成例と同様にして、重合体(Aa-2)を得た。重合体(Aa-2)は、2-ホスホノオキシエチルメタクリレートとアクリロニトリルとの共重合体である。GPC分析の結果、該重合体の数平均分子量はポリスチレン換算で10,000であった。
<重合体(Aa-3)の合成例>
 窒素雰囲気下、ビニルホスホン酸10gおよび2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.025gを水5gに溶解させ、80℃で3時間攪拌した。冷却後、重合溶液に水15gを加えて希釈し、セルロース膜であるスペクトラムラボラトリーズ社製の「Spectra/Por」(登録商標)を用いてろ過した。ろ液中の水を留去した後、50℃で24時間真空乾燥することによって、重合体(Aa-3)を得た。重合体(Aa-3)は、ポリ(ビニルホスホン酸)である。GPC分析の結果、該重合体の数平均分子量はポリエチレングリコール換算で10,000であった。
<層(Y)を形成するためのコーティング液(S-1)の製造例>
 まず、前記合成例で得た重合体(Aa-1)を91質量%、ポリビニルアルコール(株式会社クラレ製PVA124)を9質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(S-1)を得た。
<コーティング液(S-2)~(S-13)およびコーティング液(CS-1)~(CS-8)の製造例>
 化合物(A)と重合体(B)の種類および比率を、後掲の表1に従って変更したこと以外は、コーティング液(S-1)の製造と同様の方法によって、コーティング液(S-2)~(S-13)およびコーティング液(CS-1)~(CS-8)を製造した。なお、コーティング液(CS-1)~(CS-8)によって形成される層は層(Y)には該当しないため、表1において層(CY)と表示する。
 実施例および比較例で使用したフィルムの詳細は以下のとおりである。
 1)PET12:延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー P60」(商品名)、厚さ12μm
 2)PET50:エチレン-酢酸ビニル共重合体との接着性を向上させたポリエチレンテレフタレートフィルム;東洋紡株式会社製、「シャインビーム Q1A15」(商品名)、厚さ50μm
 3)ONY:延伸ナイロンフィルム;ユニチカ株式会社製、「エンブレム ONBC」(商品名)、厚さ15μm
 4)CPP50:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-18」(商品名)、厚さ50μm
 5)CPP60:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-18」(商品名)、厚さ60μm
 6)CPP70:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-21」(商品名)、厚さ70μm
 7)CPP100:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-21」(商品名)、厚さ100μm
[実施例1]
<実施例1-1>
 まず、基材(X)としてPET12を準備した。この基材上に、乾燥後の厚みが0.3μmとなるようにバーコーターを用いてコーティング液(T-1)を塗工した。塗工後のフィルムを、110℃で5分間乾燥させた後、160℃で1分間熱処理することによって、基材上に層(Z1)を形成した。このようにして、基材(X)/層(Z1)という構造を有する構造体を得た。得られた構造体の赤外線吸収スペクトルを測定した結果、800~1,400cm-1の領域における最大吸収波数は1,108cm-1であり、該吸収帯の半値幅は37cm-1であった。続いて、前記構造体上に、乾燥後の厚みが0.05μmとなるようにバーコーターを用いてコーティング液(S-1)を塗工し、220℃で1分間乾燥することによって層(Y)を形成した。このようにして、基材(X)/層(Z1)/層(Y)という構造を有する多層構造体(1-1)を得た。
 得られた多層構造体(1-1)の酸素透過度および透湿度を上述した方法によって測定した。酸素透過度は0.2mL/(m2・day・atm)、透湿度は、0.2g/(m2・day)であった。多層構造体(1-1)から15cm×10cmの大きさのサンプルを切り出し、このサンプルを23℃、50%RHの条件下で24時間静置した後、同条件下で長軸方向に3%延伸し、延伸した状態を10秒間保持することで、延伸処理後の多層構造体(1-1)とした。また、得られた多層構造体(1-1)について、延伸処理後の酸素透過度を上述した方法によって測定した。また、多層構造体(1-1)について外観を評価した。
 得られた多層構造体(1-1)上に接着層を形成した後、該接着層上にONYをラミネートすることによって積層体を得た。次に、該積層体の延伸ナイロンフィルム上に接着層を形成した後、該接着層上に、CPP70をラミネートし、40℃で5日間静置してエージングした。このようにして、基材(X)/層(Z1)/層(Y)/接着層/ONY/接着層/CPPという構造を有する多層構造体(1-2)を得た。前記2つの接着層はそれぞれ、乾燥後の厚みが3μmとなるようにバーコーターを用いて2液反応型ポリウレタン系接着剤を塗工し、乾燥させることによって形成した。2液反応型ポリウレタン系接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-525S」(銘柄)と三井化学株式会社製の「タケネート」(登録商標)の「A-50」(銘柄)とからなる接着剤を用いた。
 多層構造体(1-2)をヒートシールすることによってパウチを作製し、水100gをパウチ内に充填した。続いて、得られたパウチに対して、レトルト処理装置(株式会社日阪製作所製フレーバーエースRSC-60)を使用して、120℃、30分間、0.15MPaGの条件で熱水処理を行った。熱水処理後の多層構造体(1-2)について外観を評価した。外観評価後、23℃、50%RHの環境下においてパウチを24時間乾燥した。そして、乾燥後の多層構造体(1-2)のT型剥離強度を測定した。
<実施例1-2~1-13>
 コーティング液(S-1)をコーティング液(S-2)~(S-13)に変更したこと以外は実施例1-1の多層構造体(1-1)の作製と同様にして、実施例1-2~1-13の多層構造体(2-1)~(13-1)を作製した。また、多層構造体(1-1)を多層構造体(2-1)~(13-1)に変更したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、多層構造体(2-2)~(13-2)を得た。
<比較例1-1~1-8>
 コーティング液(S-1)をコーティング液(CS-1)~(CS-8)に変更したこと以外は実施例1-1の多層構造体(1-1)の作製と同様にして、比較例1-1~1-8の多層構造体(C1-1)~(C8-1)を作製した。また、多層構造体(1-1)を多層構造体(C1-1)~(C8-1)に変更したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、多層構造体(C1-2)~(C8-2)を得た。
<実施例1-14、1-15>
 層(Z1)の代わりに真空蒸着法によって形成した蒸着層を用いること以外は実施例1-1の多層構造体(1-1)の作製と同様にして、実施例1-14の多層構造体(14-1)および実施例1-15の多層構造体(15-1)を作製した。実施例1-14では、蒸着層として、厚み0.03μmのアルミニウムの層(Z2)を用いた。実施例1-15では、蒸着層として、厚み0.03μmの酸化アルミニウムの層(Z3)を用いた。また、多層構造体(1-1)を多層構造体(14-1)~(15-1)に変更したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、多層構造体(14-2)~(15-2)を得た。
<実施例1-16>
 まず、基材(X)上に、厚み0.03μmの酸化アルミニウムの層(Z3)を真空蒸着法によって形成した。次に、コーティング液(T-1)を用いて、層(Z3)上に層(Z1)を形成した。次に、コーティング液(S-1)を用いて、層(Z1)上に層(Y)を形成した。このようにして、基材(X)/層(Z3)/層(Z1)/層(Y)という構造を有する多層構造体(16-1)を作製した。多層構造体(16-1)は、層(Z3)の形成を除いて実施例1-1と同様の条件で作製した。また、多層構造体(1-1)を多層構造体(16-1)に変更したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、多層構造体(16-2)を得た。
<実施例1-17>
 まず、基材(X)上に、コーティング液(T-1)を用いて層(Z1-1)を形成した。次に、厚み0.03μmの酸化アルミニウムの層(Z3)を真空蒸着法によって層(Z1)上に形成した。次に、コーティング液(S-1)を用いて、層(Z3)上に層(Y)を形成した。このようにして、基材(X)/層(Z1)/層(Z3)/層(Y)という構造を有する多層構造体(17-1)を作製した。多層構造体(17-1)は、層(Z3)の形成を除いて実施例1-1と同様の条件で作製した。また、多層構造体(1-1)を多層構造体(17-1)に変更したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、多層構造体(17-2)を得た。
<実施例1-18>
 コーティング液(S-1)をコーティング液(S-6)に変更したこと、および、多層構造体(6-1)上にインク層を形成したこと以外は実施例1-1の多層構造体(1-2)の作製と同様にして、基材(X)/層(Z1)/層(Y)/インク層/ONY/接着層/CPPという構造を有する多層構造体(18-2)を得た。そして、得られた多層構造体について評価した。前記インク層は乾燥後の厚みが2μmとなるようにバーコーターを用いて塗工し、乾燥させることによって形成した。インク層には、東洋インキ株式会社製の「ファインスター」(登録商標)の「R641AT白」(銘柄名)を用いた。
<比較例1-9>
 コーティング液(S-6)をコーティング液(CS-2)に変更したこと以外は実施例1-18の多層構造体(18-2)の作製と同様にして、多層構造体(C9-2)を得た。
 実施例の多層構造体(1-1)~(17-1)、および比較例の多層構造体(C1-1)~(C8-1)の製造条件を表1に示す。表1中の「A:B」は、「化合物(A):重合体(B)」を表す。なお、表1中の重合体(B)は、以下の物質を表す。
 PVA124:ポリビニルアルコール(株式会社クラレ製クラレポバール(登録商標)、ケン化度98.5モル%、粘度平均重合度2,400、20℃での4質量%水溶液粘度60mPa・s)
 PVA424H:ポリビニルアルコール(株式会社クラレ製クラレポバール(登録商標)、ケン化度79.5モル%、粘度平均重合度2,400、20℃での4質量%水溶液粘度48mPa・s)
 RS-2117:水酸基を含有する水溶性重合体(株式会社クラレ製エクセバール(登録商標)、ケン化度98.2モル%、粘度平均重合度1,700、20℃での4質量%水溶液粘度26.5mPa・s、エチレン変性度3.0モル%)
 PAA:ポリアクリル酸(東亜合成株式会社製「アロン-15H」(登録商標)、数平均分子量21万、重量平均分子量129万)
 デンプン:和光純薬工業株式会社製のでんぷん(溶性、純度:和光一級)
Figure JPOXMLDOC01-appb-T000001
 多層構造体(1-1)~(17-1)および(C1-1)~(C8-1)の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 多層構造体(1-2)~(18-2)および(C1-2)~(C9-2)の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 前記の表に示されるように、本発明の多層構造体は、熱処理後も良好な外観を示した。また、本発明の多層構造体は、強い延伸ストレスを受けてもガスバリア性を高いレベルで維持した。また、本発明の多層構造体は、レトルト処理後においても良好な密着性を示した。なお、アルミニウムを蒸着した実施例1-14の多層構造体は、アルミニウム層によって不透明であったが、ムラは認められず、良好な外観であった。
<実施例1-19>
 実施例1-1で得た多層構造体(1-2)を用いて縦製袋充填シール袋を作製した。具体的には、まず、多層構造体(1-2)を幅400mmに切断して、縦型製袋充填包装機(オリヒロ株式会社製)に供給し、合掌貼りタイプの縦製袋充填シール袋(幅160mm、長さ470mm)を作製した。次に、製袋充填包装機を用いて、多層構造体(1-2)からなる縦製袋充填シール袋に水2kgを充填した。製袋充填包装機における多層構造体(1-2)の加工性は良好であり、得られた縦製袋充填シール袋の外観には、皺や筋のような欠点は見られなかった。
<実施例1-20>
 実施例1-1で得た多層構造体(1-2)を用いて真空包装袋を作製した。具体的には、まず、多層構造体(1-2)から、22cm×30cmの長方形の積層体2枚を切り取った。そして、CPP層が内側となるように2枚の多層構造体(1-2)を重ね合わせ、長方形の3辺をヒートシールすることによって袋を形成した。その袋に、固形食品のモデルとして木製の球体(直径30mm)を、球体同士が接触するように1層に敷き詰めた状態で充填した。その後、袋の内部の空気を脱気して、最後の1辺をヒートシールすることによって、真空包装体を作製した。得られた真空包装体において、多層構造体(1-2)は球体の凹凸に沿って密着した状態となっていた。
<実施例1-21>
 実施例1-1で得た多層構造体(1-2)を用いてスパウト付パウチを作製した。具体的には、まず、多層構造体(1-2)を所定の形状に2枚切り出した。次に、CPP層が内側となるように2枚の多層構造体(1-2)を重ね合わせ、周縁をヒートシールし、さらに、ポリプロピレン製のスパウトをヒートシールによって取り付けた。このようにして、平パウチ型のスパウト付パウチを問題なく作製できた。
<実施例1-22>
 実施例1-1で得た多層構造体(1-1)を用いてラミネートチューブ容器を作製した。具体的には、まず、2枚のCPP100のそれぞれに、乾燥後の厚みが3μmとなるようにバーコーターを用いて2液反応型ポリウレタン系接着剤を塗工して乾燥させた。2液反応型ポリウレタン系接着剤には、実施例1-1で用いた2液反応型ポリウレタン系接着剤を用いた。次に、2枚のCPP100と多層構造体(1-1)とをラミネートした。このようにして、多層構造体(22)を得た。
 多層構造体(22)を所定の形状に切り出した後、筒状にして重ね合わせた部分をヒートシールすることによって、筒状体を作製した。次に、その筒状体をチューブ容器成形用のマンドレルに装着し、筒状体の一端に円錐台状の肩部とそれに連続する先端部とを作製した。肩部および先端部は、ポリプロピレンを圧縮成形することによって形成した。次に、前記先端部に、ポリプロピレン製のキャップを取り付けた。次に、筒状体の開放している他端をヒートシールした。このようにして、ラミネートチューブ容器を問題なく作製できた。
<実施例1-23>
 実施例1-1で得た多層構造体(1-2)を用いて輸液バッグを作製した。具体的には、まず、多層構造体(1-2)を所定の形状に2枚切り出した。次に、CPP層が内側となるように2枚の多層構造体(1-2)を重ね合わせ、周縁をヒートシールし、さらに、ポリプロピレン製のスパウトをヒートシールによって取り付けた。このようにして、輸液バッグを問題なく作製できた。
<実施例1-24>
 実施例1-1で得た多層構造体(1-2)を用いて容器用蓋材を作製した。具体的には、多層構造体(1-2)を、容器用蓋材として、直径88mmの円形に切り出した。続いて、直径78mm、フランジ幅が6.5mm、高さ30mmで、ポリオレフィン層/スチール層/ポリオレフィン層の3層で構成される円柱状容器(東洋製罐株式会社製ハイレトフレックスHR78-84)に水をほぼ満杯に充填し、多層構造体(1-2)からなる容器用蓋材を、フランジ部にヒートシールした。このようにして、容器用蓋材を用いた蓋付き容器を問題なく作製できた。
<実施例1-25>
 実施例1-1で得た多層構造体(1-1)を用いて紙容器を作製した。具体的には、まず、400g/m2の板紙の両面に接着剤を塗工した後、その両面にポリプロピレンを押出ラミネートすることによって、板紙の両面に厚み20μmのポリプロピレン層をそれぞれ形成した。次に、一方のポリプロピレン層の表面に接着剤を塗工し、その上に多層構造体(1-1)をラミネートした。次に、ラミネートした多層構造体(1-1)の表面に接着剤を塗工し、CPP70と貼り合わせた。このようにして得た多層構造体を用いて、ブリック型の紙容器を問題なく作製できた。
<実施例1-26>
 実施例1-1で得た多層構造体(1-2)を用いて真空断熱体を作製した。具体的には、まず、多層構造体(1-2)を所定の形状に2枚切り出した。次に、CPP層が内側となるように2枚の多層構造体(1-2)を重ね合わせ、長方形の3辺をヒートシールすることによって袋を形成した。次に、袋の開口部から断熱性の芯材を充填し、真空包装機(Frimark GmbH製VAC-STAR 2500型)を用いて、温度20℃で内部圧力10Paの状態で袋を密封した。このようにして、真空断熱体を問題なく作製できた。なお、断熱性の芯材には120℃で4時間乾燥したシリカ微粉末を用いた。
[実施例2]容器
 まず、基材となるPETボトル(容積500mL、表面積0.041m2、重量35g)の表面にプラズマ処理を施した。このPETボトルの表面に、浸漬法によってコーティング液(T-1)を塗工した後、110℃で5分間乾燥した。次いで、120℃で5分間の熱処理を行うことによって、基材(X)/層(Z1)という構成を有する構造体を得た。次に、得られた構造体の表面に、乾燥後の厚みが0.3μmとなるように上述したコーティング液(S-1)を浸漬法によって塗工し、110℃で5分間乾燥した。このようにして、容器(2-1)を得た。容器(2-1)の壁部は、基材(X)/層(Z1)/層(Y)という構成を有する。
 容器(2-1)の胴部から、15cm(円周方向)×10cm(長さ方向)の大きさの測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.1g/(m2・day)であった。また、延伸処理後の酸素透過度は0.6mL/(m2・day・atm)であり、本発明の容器は、強い物理的ストレスを受けても酸素バリア性を高いレベルで維持した。なお、延伸処理は、実施例1-1と同一条件で行った。
[実施例3]縦製袋充填シール袋
 まず、基材(X)として、PET12を用い、この基材上に、バーコーターを用いてコーティング液(T-1)を乾燥後の厚さが0.3μmとなるように塗工し、110℃で5分間乾燥させた。さらに160℃で1分間熱処理を行うことによって、基材(X)/層(Z1)という構成を有する構造体を作製した。得られた構造体の赤外線吸収スペクトルを測定した結果、800~1,400cm-1の領域における最大吸収波数は1,108cm-1であり、前記領域における最大吸収帯の半値幅は37cm-1であった。続いて、前記構造体上に、乾燥後の厚みが0.05μmとなるように、バーコーターを用いて実施例1-1で用いたコーティング液(S-1)を塗工し、220℃で1分間乾燥することによって層(Y)を形成した。このようにして、基材(X)/層(Z1)/層(Y)という構造を有する多層構造体(3-1)を得た。この多層構造体(3-1)の外観を評価した。また、多層構造体(3-1)の酸素透過度および透湿度を上述した方法によって測定した。酸素透過度は、0.2mL/(m2・day・atm)であった。透湿度は、0.2g/(m2・day)であった。
 得られた多層構造体(3-1)上に接着層を形成した後、該接着層上にONYをラミネートすることによって積層体を得た。次に、該積層体のONY上に接着層を形成した後、該接着層上に、CPP70をラミネートし、40℃で5日間静置してエージングした。このようにして、基材(X)/層(Y)/接着層/ONY/接着層/CPPという構造を有する多層構造体(3-1-2)を得た。前記2つの接着層はそれぞれ、乾燥後の厚さが3μmとなるようにバーコーターを用いて2液反応型接着剤を塗工し、乾燥させることによって形成した。2液反応型ポリウレタン系接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-525S」(銘柄)と三井化学株式会社製の「タケネート」(登録商標)の「A-25」(銘柄)とからなる接着剤を用いた。多層構造体(3-1-2)を幅400mmに裁断し、CPP層が互いに接触してヒートシールされるように縦型製袋充填包装機(オリヒロ株式会社製)に供給した。縦型製袋充填包装機によって、図1に示したような合掌貼りタイプの縦製袋充填シール袋(3-1)(幅160mm、長さ470mm)を作製した。縦製袋充填シール袋(3-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 袋(3-1)に、内容物として水2kgを充填した。続いて、得られた袋に対して、実施例1-1と同一条件でレトルト処理を行った。レトルト処理後の袋(3-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理の袋(3-1)から、測定用のサンプルを切り出し、該サンプルを23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを23℃、50%RHの雰囲気下に24時間放置し、T型剥離強度測定を行った結果、剥離強度は420gf/15mmであった。
 レトルト処理後の縦製袋充填シール袋(3-1)10個をダンボール箱(15×35×45cm)に入れた。真空包装袋とダンボール箱との隙間には、緩衝材を詰めた。そして縦製袋充填シール袋(3-1)が入ったダンボール箱をトラックに積み、岡山県と東京都の間(距離約700km)を10往復させる輸送試験を実施した。輸送試験後の縦製袋充填シール袋(3-1)から測定用のサンプルを切り出し、酸素透過度を測定した結果、輸送試験後の酸素透過度は0.5mL/(m2・day・atm)であった。本発明の縦製袋充填シール袋は、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例4]真空包装袋
 実施例3で作製した多層構造体(3-1-2)から、22cm×30cmの長方形の積層体2枚を切り取った。そして、CPP層が内側となるように2枚の多層構造体(3-1-2)を重ね合わせ、長方形の3辺をヒートシールすることによって袋を形成した。その袋に、固形食品のモデルとして木製の球体(直径30mm)を、球体同士が接触するように1層に敷き詰めた状態で充填した。その後、袋の内部の空気を脱気して、最後の1辺をヒートシールすることによって、球体の凹凸に沿って密着した状態で真空包装された真空包装袋(4-1)を得た。真空包装袋(4-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 続いて、真空包装袋(4-1)について、レトルト処理装置(株式会社日阪製作所製RCS-60)を使用して、120℃、0.15MPaGで30分間、熱水スチーム中でレトルト処理を行った。レトルト処理後の袋(4-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後の真空包装袋から測定用のサンプルを切り出し、該サンプルを、23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度を測定した結果、0.4mL/(m2・day・atm)であった。また、レトルト処理後のサンプルを23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は400gf/15mmであった。
 レトルト処理後の真空包装袋(4-1)50個をダンボール箱(15×35×45cm)に入れた。真空包装袋とダンボール箱との隙間には、緩衝材を詰めた。そして真空包装袋(4-1)が入ったダンボール箱をトラックに積み、岡山県と東京都の間を10往復させる輸送試験を実施した。輸送試験後の真空包装袋(4-1)から測定用のサンプルを切り出し、酸素透過度および透湿度を測定した結果、輸送試験後の酸素透過度は0.6mL/(m2・day・atm)であった。本発明の真空包装袋は、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例5]ラミネートチューブ容器
 2枚のCPP100のそれぞれに接着層を形成し、実施例3で得られた多層構造体(3-1-2)とラミネートした。このようにして、CPP/接着層/多層構造体/接着層/CPPという構造を有するラミネートフィルムを得た。接着層は、乾燥後の厚さが3μmとなるようにバーコーターを用いて2液反応型接着剤(実施例1-1で使用した「A-520」および「A-50」)を塗工し乾燥させることによって形成した。
 得られたラミネートフィルムを所定の形状に切断した後、筒状にして重ね合わせた部分をヒートシールすることによって、筒状の胴体部を製造した。このヒートシールは内側のCPP層と外側のCPP層との間で行った。なお、筒状の胴体部は、基材(X)であるポリエチレンテレフタレートフィルムが筒状の内側となるようにラミネート体を巻き込んで形成した。次に、筒状の胴体部をチューブ容器成形用のマンドレルに装着し、胴体部の一端に、取り出し部を備えた肩部を接合した。肩部は、ポリプロピレン樹脂を圧縮成形することによって形成した。次に、取り出し部に、ポリプロピレン樹脂製の蓋(キャップ)を取り付けた。次に、開口している胴体部の他方の端部から、内容物として練りわさびを充填し、この端部を内側のCPP層の内周面同士を接触させてヒートシールした。このようにして、練りわさびが充填されたラミネートチューブ容器(5-1)を得た。ラミネートチューブ容器(5-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.4mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 ラミネートチューブ容器(5-1)に対して、実施例4と同一条件でレトルト処理を行った。レトルト処理後の容器(5-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後のラミネートチューブ容器(5-1)から、測定用のサンプルを切り出し、該サンプルを、23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを、23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は450gf/15mmであった。
 ラミネートチューブ容器(5-1)の胴体部を指で挟み、一定の力を加えながら胴体部の長手方向に沿って指を往復運動させ、スクイーズ試験を行った。5,000往復した後に、内容物の練りわさびを取り出した。スクイーズ試験後のラミネートチューブ容器(5-1)から測定用のサンプルを切り出し、酸素透過度を測定した結果、スクイーズ試験後の酸素透過度は0.8mL/(m2・day・atm)、であった。本発明のラミネートチューブ容器は、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例6]スパウト付きパウチ
 実施例3で得た多層構造体(3-1-2)から20cm×13cmの大きさの2枚のラミネート体を裁断した。続いて、裁断した2枚のラミネート体を、CPP層が内側になるように重ね合わせ、外周を0.5cmの幅でヒートシールし、さらにポリプロピレン製のスパウトをヒートシールによって取り付けた。このようにして、平パウチ型のスパウト付きパウチ(6-1)を作製した。パウチ(6-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 パウチ(6-1)に蒸留水400mLを充填した。続いて、得られたパウチに対して、レトルト処理装置(日阪製作所製、フレーバーエースRCS-60)を使用して、130℃、0.18MPaGで30分間、熱水中においてレトルト処理を行った。レトルト処理後のパウチ(6-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後のパウチ(6-1)から、測定用のサンプルを切り出し、該サンプルを、23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを、23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は450gf/15mmであった。
 レトルト処理後のパウチ(6-1)を、パウチ側面(ヒートシール側)を下にし、1.5mの高さより5回落下させ、屈曲試験を行った。屈曲試験後のパウチ(6-1)から測定用のサンプルを切り出し、酸素透過度を測定した結果、酸素透過度は0.8mL/(m2・day・atm)であった。本発明のスパウト付きパウチは、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例7]平パウチ
 実施例3で作製した多層構造体(3-1-2)から20cm×13cmの大きさの2枚のラミネート体を裁断した。続いて、裁断した2枚のラミネート体を、CPP層が内側になるように重ね合わせ、3辺の外周を0.5cmの幅でヒートシールした。さらに、残る1辺の開口部端部に長さ30mmのパウチ開口部を形成した。次に、幅30mmのポリテトラフルオロエチレンのシートを開口部の端部に挿入し、その状態でヒートシールを行った。ヒートシール後、ポリテトラフルオロエチレンのシートを抜き取ることによって平パウチ(7-1)を得た。平パウチ(7-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 続いて、平パウチ(7-1)について、実施例6のスパウト付きパウチと同様の評価を行った。ただし、実施例7では、レトルト処理として、平パウチに蒸留水500mLを充填した後、130℃、0.18MPaGで30分間熱水スチーム式レトルト処理を行った。レトルト処理後のパウチ(7-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後のパウチ(7-1)から、測定用のサンプルを切り出し、該サンプルを、23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを、23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は440gf/15mmであった。
 レトルト処理後の平パウチ(7-1)を20℃、65%RHで1時間放置した後、パウチの開口部から水を抜き出した。続いて、400mLの蒸留水をパウチに充填し、ヘッドスペース部分を極力減らした。次に、開口部をヒートシールすることによって、充填した蒸留水が漏れないように密封した。蒸留水を密封した平パウチについて、実施例6と同様の方法で屈曲試験を行った。屈曲試験後のパウチ(7-1)から測定用のサンプルを切り出し、酸素透過度を測定した結果、酸素透過度は0.7mL/(m2・day・atm)であった。本発明の平パウチは、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例8]ガセット付きパウチ
 実施例3で得た多層構造体(3-1-2)を裁断して2つのロール(幅450mm×長さ200mのロール、および幅60mm×長さ200mのロール)を作製した。続いて、スタンディング袋三方シール袋兼用製袋機(西部機械株式会社)にこれらのロールを供給し、無延伸ポリプロピレン部分をヒートシールすることによってボトムガセット(底部ガセット)付きパウチ(幅130mm、長さ200mm、底部ガセット部分のガセット折込幅25mm)を作製した。このとき、幅450mmのロールを切断することによって2枚の側壁部を取得し、幅60mmのロールを切断することによって底壁部(ガセット部)を取得した。次に、ヒートシールされていない1辺(開口部)の端部に幅30mmのテフロンのシートを挿入し、その状態でヒートシールを行った後、テフロンのシートを抜き取った。このようにして、長さ30mmのパウチ開口部を有する、ガセット付きパウチ(8-1)を得た。パウチ(8-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 作製したパウチ(8-1)について、実施例6のスパウト付きパウチと同様の評価を行った。ただし、実施例8では、レトルト処理として、ガセット付きパウチに蒸留水500mLを充填した後、130℃、0.18MPaGで30分間、蒸気式レトルト処理を行った。レトルト処理後のパウチ(8-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後のガセット付きパウチ(8-1)から、測定用のサンプルを切り出し、該サンプルを、20℃、65%RHの雰囲気下に1時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを、20℃、65%RHの雰囲気下に1時間放置した後、T型剥離強度測定を行った結果、剥離強度は450gf/15mmであった。
 レトルト処理後のパウチ(8-1)を、20℃、65%RHで1時間放置した後、パウチの開口部から水を抜き出した。続いて、500mlの蒸留水を充填し、ヘッドスペース部分を極力減らした。次に、開口部をヒートシールすることによって、充填した蒸留水が漏れないように密封した。蒸留水を密封したガセット付きパウチについて、実施例6と同様の方法で屈曲試験を行った。屈曲試験後のパウチ(8-1)から測定用のサンプルを切り出し、酸素透過度および透湿度を測定した結果、酸素透過度は0.8mL/(m2・day・atm)であった。本発明のガセット付きパウチは、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例9]輸液バッグ
 実施例3で作製した多層構造体(3-1-2)から、12cm×10cmの多層構造体を2枚切り出した。続いて、切り出した2枚の多層構造体を、CPP層が内側になるように重ね合わせ、周縁をヒートシールするとともに、ポリプロピレン製のスパウト(口栓部材)をヒートシールによって取り付けた。このようにして、図5と同様の構造を備えた輸液バッグ(9-1)作製した。輸液バッグ(9-1)より、測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。なお、延伸処理は、実施例1-1と同一条件で行った。
 作製した輸液バッグ(9-1)について、実施例6のスパウト付きパウチと同様の評価を行った。ただし、実施例9では、レトルト処理として、輸液バッグ(8-1)に蒸留水100mLを充填した後、120℃、0.15MPaGで30分間熱水中においてレトルト処理を行った。レトルト処理後の輸液バッグ(9-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後の輸液バッグ(9-1)から、測定用のサンプルを切り出し、該サンプルを、23℃、50%RHの雰囲気下に24時間放置した後、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを、23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は440gf/15mmであった。
 レトルト処理後の輸液バッグ(9-1)に100mLの蒸留水を充填後、側面(ヒートシール側)を下にして1.5mの高さより5回落下させ、屈曲試験を行った。屈曲試験後の輸液バッグ(9-1)から測定用のサンプルを切り出し、酸素透過度および透湿度を測定した結果、酸素透過度は0.9mL/(m2・day・atm)であった。本発明の輸液バッグは、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。 
[実施例10]紙容器
 400g/m2の板紙の両面にポリプロピレン樹脂(PP)を押出しコートラミネートすることによって、板紙の両面に無延伸PP層(厚さ各20μm)を形成した。その後、一方のPP層の表面に接着層を形成し、その上に、実施例3で得た多層構造体(3-1-2)をラミネートした。接着層は、実施例1-1で用いた2液型接着剤を用いて形成した。次に、多層構造体の表面に前記接着剤を塗布し、多層構造体とCPP50を貼り合わせた。このようにして、(外側)PP/板紙/PP/多層構造体/CPP(内側)という構成を有する多層構造体(10-1-2)を作製した。なお、多層構造体(3-1-2)は、層(Y)が基材(X)よりも板紙側となるようにラミネートした。次に、多層構造体(10-1-2)のCPPが容器の内側に面するように多層構造体(10-1-2)を折り曲げて成形し、さらにヒートシールすることによって、ブリック型の紙容器(10-1)(内容量500mL)を作製した。
 紙容器(10-1)の側面を構成する平坦な壁部から、折り曲げ部分を含まない円形のサンプル(直径:6.5cm)を切り出した。次に、切り出した円形のサンプル(平坦部円形サンプル)を、10cm四方のアルミ箔(厚み30μm)に開けた直径4.5cmの円の上に置き、サンプルとアルミ箔との間を2液硬化型エポキシ系接着剤(ニチバン株式会社製 「アラルダイト」(登録商標))で封止した。該サンプルの酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。
 また、紙容器(10-1)の側面を構成する平坦な壁部から、折り曲げ部分を含まない6.5cm×9.0cmの範囲をサンプルとして切り出し、該サンプルを実施例1-1と同一条件で延伸処理した。この延伸処理後のサンプルの酸素透過度を測定した結果、酸素透過度は1.4mL/(m2・day・atm)であった。
 紙容器(10-1)に、内容物として蒸留水500gを注入し、密封した。続いて、実施例9と同一条件でレトルト処理を行った。レトルト処理後の紙容器(10-1)の外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後の紙容器(10-1)を20℃、65%RHで1時間放置し、水を抜き出した。続いて、レトルト処理前と同様の方法で、紙容器(10-1)の側面を構成する平坦な壁部から、平坦部円形サンプルを切り出し、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は460gf/15mmであった。
 レトルト処理後の紙容器(10-1)の折り曲げ部を含む部分から、円形のサンプル(直径:6.5cm)を切り出し、平坦部円形サンプルと同様の方法で、該サンプルの酸素透過度を測定した。結果、酸素透過度は1.0mL/(m2・day・atm)であった。本発明の紙容器は、折り曲げ変形時の強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例11]ストリップテープ
 実施例11では、ストリップテープを用いたブリック型紙容器を作製して評価した。まず、実施例3で得た多層構造体(3-1-2)上に、実施例1-1で用いた2液型接着剤を塗布して乾燥させ、これとCPP50とをラミネートしてラミネート体を得た。続いて、そのラミネート体の多層構造体上に、前記2液型接着剤を塗布して乾燥させ、これとCPP50とをラミネートした。このようにして、CPP/接着層/多層構造体/接着層/CPP、という構成を有する多層構造体(11-1-2)を得た。この多層構造体(11-1-2)を短冊状に切断し、ストリップテープを作製した。
 次に、実施例10と同様に紙容器を作製した。ただし、実施例11では、四面の側面のうちの一側面の中央でCPPとポリプロピレン樹脂層(PP)をヒートシールしたのちに、さらにこの側面の中央部にあるヒートシール部分を多層構造体(11-1-2)からなるストリップテープで覆った。そして、ストリップテープの部分を紙容器の内側から加熱することによって多層構造体を貼り合せ、紙容器(11-1)を作製した。紙容器(11-1)を、実施例10と同様にレトルト処理した。
 レトルト処理後の紙容器(11-1)から、紙容器の側面中央の貼り合わせ部がサンプルに占める割合が最大となるように円形のサンプル(直径:6.5cm)を切り出した。次に、実施例10の平坦部円形サンプルと同様の方法で、該サンプルの酸素透過度を測定した結果、酸素透過度は0.4mL/(m2・day・atm)であった。本発明のストリップテープは、ヒートシール時に圧力や熱に伴う強い物理的ストレスを受けた後もバリア性能を高いレベルで維持した。
[実施例12]容器用蓋材
 実施例3で作製した多層構造体(3-1-2)から、直径100mmの円形の多層構造体を切り取り、容器用の蓋材とした。また、容器本体として、フランジ付きの容器(東洋製罐株式会社製、「ハイレトフレックス」(登録商標)、「HR78-84」(商品名))を準備した。この容器は、上面の直径が78mmで高さが30mmのカップ形状を有する。容器の上面は解放されており、その周縁に形成されたフランジ部の幅は6.5mmである。容器は、オレフィン層/スチール層/オレフィン層の3層の積層体によって構成されている。次に、前記容器本体に水をほぼ満杯に充填し、蓋材をフランジ部にヒートシールすることによって、蓋付き容器(12-1)を得た。このとき、蓋材のCPP層がフランジ部に接触するように配置して蓋材をヒートシールした。なお、本実施例で用いられる測定方法による前記容器の酸素透過度は、実質的にゼロであった。蓋付き容器(12-1)の蓋材から測定用サンプルを切り出し、酸素透過度および透湿度を測定した結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。
 蓋付き容器(12-1)に対し、実施例9と同一条件でレトルト処理を行った。レトルト処理後の蓋付き容器(12-1)外観評価では、多層構造体の層間に剥離はなく、良好な外観であった。レトルト処理後の蓋付き容器(12-1)を20℃、65%RHで1時間放置し、容器本体の底部に穴を開けて水を抜き出した。続いて、蓋付き容器(12-1)の蓋材から、測定用のサンプルを切り出し、該サンプルの酸素透過度および透湿度を測定した結果、0.4mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、レトルト処理後のサンプルを23℃、50%RHの雰囲気下に24時間放置した後、T型剥離強度測定を行った結果、剥離強度は450gf/15mmであった。
 レトルト処理後の蓋付き容器(12-1)10個をダンボール箱(15×35×45cm)に入れた。蓋付き容器(12-1)とダンボール箱との隙間には、緩衝材を詰めた。そして、蓋付き容器(12-1)が入ったダンボール箱をトラックに積み、岡山県と東京都の間を10往復させる輸送試験を実施した。輸送試験後の蓋付き容器(12-1)を20℃、65%RHで1時間放置した後、容器本体の底部に穴を開けて水を抜き出した。続いて、輸送試験後の蓋付き容器(12-1)の蓋材から測定用のサンプルを切り出し、酸素透過度を測定した結果、酸素透過度は0.4mL/(m2・day・atm)であった。本発明の蓋付き容器は、強い物理的ストレスを受けてもバリア性能を高いレベルで維持した。
[実施例13]インモールドラベル容器
 2枚のCPP100のそれぞれに、乾燥後の厚さが3μmとなるようにバーコーターを用いて2液型接着剤(実施例1-1で使用した「A-520」および「A-50」)を塗工して乾燥させた。次に、2枚のCPPと実施例1-1の多層構造体(1-1)とをラミネートし、40℃で5日間静置してエージングした。このようにして、CPP/接着層/基材(X)/層(Y)/接着層/CPPという構造を有する多層ラベル(13-1-2)を得た。
 多層ラベル(13-1-2)を容器成形型のメス型部の内壁表面の形状にあわせて切断し、メス型部の内壁表面に取り付けた。次に、オス型部をメス型部に押し込んだ。次に、溶融させたポリプロピレン(日本ポリプロ株式会社製の「ノバテック」(登録商標)の「EA7A」)をオス型部とメス型部との間のキャビティに220℃で注入した。このようにして、射出成形を実施し、目的の容器(13-1-3)を成形した。容器本体の厚さは700μmであり、表面積は83cm2であった。容器の外側全体が多層ラベル(13-1-2)で覆われ、つなぎ目は多層ラベル(13-1-2)が重なり、多層ラベル(13-1-2)が容器の外側を覆わない箇所はなかった。このとき、容器(13-1-3)の外観は良好であった。
 容器の胴部から多層ラベルのつなぎ目を含まないように測定用のサンプルを切り出し、該サンプルの酸素透過度および透湿度を測定した。その結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。本発明のインモールドラベル容器は、インモールドラベル成形時に圧力や熱に伴う強い物理的ストレスを受けてもバリア性能を高いレベルで達成した。
[実施例14]押出しコートラミネーション
 実施例1-1において多層構造体(1-1)上の層(Y)上に接着層を形成した後、ポリエチレン樹脂(密度;0.917g/cm3、メルトフローレート;8g/10分)を厚さが20μmになるように該接着層上に295℃で押出しコートラミネートした。このようにして、基材(X)/層(Y)/接着層/ポリエチレンという構造を有する多層構造体(14-1-2)を得た。前記の接着層は、乾燥後の厚さが0.3μmとなるようにバーコーターを用いて2液型接着剤を塗工し、乾燥させることによって形成した。この2液型接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-3210」と三井化学株式会社製の「タケネート」(登録商標)の「A-3070」とからなる2液反応型ポリウレタン系接着剤を用いた。
 多層構造体(14-1-2)の酸素透過度および透湿度を上述した方法によって測定した。その結果、酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。このように、本発明で用いられる多層構造体を用いることによって、押出しコート時に圧力や熱に伴う強い物理的ストレス受けた後も高いバリア性能が達成された。
[実施例15]真空断熱体
 CPP60上に、実施例1-1で用いた2液反応型ポリウレタン系接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって接着層を形成した。このCPPと実施例3で作製した多層構造体(3-1-2)のPET層とを貼り合せることによって積層体(15-1-1)を得た。続いて、ONYの上に、前記の2液型接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって接着層を形成した。そして、このONYと積層体(15-1-1)とを貼り合わせることによって、CPP/接着層/多層構造体/接着層/ONY、という構造を有する多層構造体(15-1-2)を得た。
 多層構造体(15-1-2)を裁断し、サイズが70cm×30cmであるラミネート体を2枚得た。その2枚のラミネート体をCPP層同士が内面となるように重ね合わせ、3方を10mm幅でヒートシールして3方袋を作製した。次に、3方袋の開口部から断熱性の芯材を充填し、真空包装機を用いて20℃、内部圧力10Paの状態で3方袋を密封した。このようにして、真空断熱体(15-1)を得た。断熱性の芯材にはシリカ微粉末を用いた。真空断熱体(15-1)を40℃、15%RHの条件下において360日間放置した後、ピラニー真空計を用いて真空断熱体の内部の圧力を測定した結果、37.0Paであった。
 真空断熱体(15-1)から測定用のサンプルを切り出し、延伸処理前の酸素透過度および透湿度を測定した。その結果、延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.4mL/(m2・day・atm)であった。なお、延伸処理では、サンプルを23℃、50%RHの雰囲気下に24時間放置した後、同雰囲気下で長軸方向に相当する一方向にサンプルを3%延伸した状態を10秒間保持した。このように、本発明の多層構造体は、強い物理的ストレスを受けてもバリア性能を高いレベルで維持し、それを用いた真空断熱体は内部の圧力を良好に維持した。
 真空断熱体(15-1)を85℃、85%RHの雰囲気下に1,000時間保管した後、23℃、50%RHの雰囲気下に24時間放置した。その後、真空断熱体(15-1)から測定用のサンプルを切り出し、T型剥離強度測定を行った結果、剥離強度は450gf/15mmであった。
[実施例16]充填物の影響
<実施例16-1>
 実施例7で説明した平パウチ(7-1)に液状物500mLを充填した。液状物として、1.5%エタノール水溶液(実施例16-1)、食用酢(実施例16-2)、pH2のクエン酸水溶液(実施例16-3)、食用油(実施例16-4)、ケチャップ(実施例13-5)、醤油(実施例16-6)、しょうがペースト(実施例16-7)、および、みかん200gを含む液体(実施例16-8)を用いた。作製した平パウチを23℃、50%RHの条件下で6ヶ月保管した。保管後の平パウチから測定用サンプルを切り出し、該サンプルの酸素透過度を測定した。実施例16-1~16-8のサンプルの酸素透過度はいずれも、0.2mL/(m2・day・atm)であった。
<実施例16-2>
 実施例12で説明した蓋付き容器(12-1)に、液状物を充填してシールした。液状物として、1.5%エタノール水溶液(実施例16-9)、食用酢(実施例16-10)、pH2のクエン酸水溶液(実施例16-11)、食用油(実施例16-12)、ケチャップ(実施例16-13)、醤油(実施例16-14)、しょうがペースト(実施例16-15)、および、みかん100gを含む液体(実施例16-16)を用いた。作製した蓋付き容器を23℃、50%RHの条件下で6ヶ月保管した。保管後の蓋付き容器の蓋材から測定用サンプルを切り出し、該サンプルの酸素透過度を測定した。実施例16-9~16-16のサンプルの酸素透過度はいずれも、0.2mL/(m2・day・atm)であった。
 実施例16-1~16-16から明らかなように、本発明の多層構造体を用いた包装材は、食品を充填した状態で保存試験を行った後でも良好なバリア性能を示した。 
[実施例17]電子デバイス
<実施例17-1>
 基材として、PET12を用い、その基材(PET)上に、バーコーターを用いてコーティング液(T-1)を乾燥後の厚さが0.5μmとなるように塗工し、110℃で5分間乾燥させた後、180℃で1分間熱処理を行った。このようにして、基材(X)/層(Y)という構成を有する多層構造体(17-1)を得た。得られた構造体の赤外線吸収スペクトルを測定した結果、800~1,400cm-1の領域における最大吸収波数は1,107cm-1であり、該最大吸収帯の半値幅は37cm-1であった。
 厚さ50μmのアクリル樹脂フィルム上に接着層を形成した後、これと多層構造体(17-1)とをラミネートすることによって積層体を得た。続いて、該積層体の多層構造体(17-1)上に接着層を形成した後、該積層体とPET50とをラミネートした。このようにして、PET/接着層/基材(X)/層(Y)/接着層/アクリル樹脂フィルム、という構成を有する保護シート(17-1)を得た。前記2つの接着層はそれぞれ、2液型接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって形成した。2液型接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-1102」と三井化学株式会社製の「タケネート」(登録商標)の「A-3070」とからなる2液反応型ポリウレタン系接着剤を用いた。
 得られた保護シート(17-1)の酸素透過度および透湿度を測定した。酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であった。また、保護シート(17-1)について、15cm×10cmの大きさの測定用サンプルを切り出した。そして、そのサンプルを23℃、50%RHの条件下で24時間放置した後、同条件下で長軸方向に3%延伸し、延伸した状態を10秒間保持することによって延伸処理を行った。延伸処理後の保護シート(17-1)の酸素透過度を測定した。延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。
 保護シート(17-1)を85℃、85%RHの雰囲気下に1,000時間保管した後、保護シート(17-1)から測定用のサンプルを切り出した。そのサンプルのT型剥離強度測定を行った結果、剥離強度は420gf/15mmであった。
<比較例17-1>
 コーティング液(S-1)に代えてコーティング液(CS-1)を用いたこと以外は実施例17-1の多層構造体(17-1)の作製と同様にして多層構造体(C17-1)を作製した。
 多層構造体(17-1)に代えて多層構造体(C17-1)を用いたこと以外は実施例17-1の保護シート(17-1)の作製と同様にして、保護シート(C17-1)を作製した。保護シート(C17-1)について、実施例17-1と同様に評価を行った。延伸処理前の酸素透過度は0.2mL/(m2・day・atm)、透湿度は0.2g/(m2・day)であり、延伸処理後の酸素透過度は0.5mL/(m2・day・atm)であった。
 保護シート(C17-1)を85℃、85%RHの雰囲気下に1,000時間保管した後、保護シート(C17-1)から測定用のサンプルを切り出した。そのサンプルのT型剥離強度測定を行った結果、剥離強度は150gf/15mmであった。
 実施例の保護シート(多層構造体)は、比較例の保護シートよりも高温・高湿下においてもデラミネーション等の外観不良が生じなかった。
<実施例17-2>
 実施例17-1で得た保護シート(17-1)について、可撓性の試験を行った。具体的には、ステンレス製の円筒(外径30cm)の外周面に沿って保護シート(17-1)を20周巻き付ける試験を実施した。この試験による保護シート(17-1)の破損は観察されなかった。このことから、保護シート(17-1)が可撓性を有することが確認された。
<実施例17-3>
 実施例17-1で得た多層構造体(17-1)を用いて太陽電池モジュールを作製した。具体的には、まず、10cm角の強化ガラス上に設置されたアモルファスシリコン太陽電池セルを、厚み450μmのエチレン-酢酸ビニル共重合体フィルムで挟み込んだ。次に、そのフィルム上に、多層構造体(17-1)のポリエチレンテレフタレート層が外側となるように多層構造体(17-1)を貼り合わせることによって、太陽電池モジュールを作製した。貼り合わせは、150℃で真空引きを3分間行った後、9分間圧着を行うことによって実施した。このようにして作製された太陽電池モジュールは、良好に作動し、長期に亘って良好な電気出力特性を示した。
 本発明は、多層構造体およびそれを用いた包装材、ならびに多層構造体の製造方法に利用できる。本発明によれば、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもガスバリア性を高いレベルで維持することができる多層構造体を得ることが可能である。また、本発明によれば、層間接着性に優れ、レトルト処理後においてもデラミネーション等の外観不良を生じない多層構造体を得ることが可能である。また、本発明の多層構造体を用いることによって、優れた包装材が得られる。
 本発明の多層構造体は、包装材として特に好ましく用いられる。包装材以外の用途の例には、LCD用基板フィルム、有機EL用基板フィルム、電子ペーパー用基板フィルム、電子デバイス用封止フィルム、PDP用フィルム等のディスプレイ部材、LED用フィルム、ICタグ用フィルム、太陽電池モジュール、太陽電池用バックシート、太陽電池用保護フィルム等の太陽電池部材等の電子デバイス関連部材;光通信用部材、電子機器用フレキシブルフィルム、燃料電池用隔膜、燃料電池用封止フィルム、各種機能性フィルムの基板フィルム等が挙げられる。
 10  縦製袋充填シール袋
 11  多層構造体
 11a 端部
 11b,331 胴体部
 131,132,410a,410b,631,632 フィルム材
 101 真空包装袋
 111,11c,411,412,413,414,611 周縁部
 112 中央部
 150 内容物
 20  平パウチ
 301 ラミネートチューブ容器
 310 ラミネートフィルム
 311 端部シール部
 312 側面シール部
 320,420,620 隔壁
 332 肩部
 341 基台部
 342 取り出し部
 360 容器
 361、362、363 多層ラベル
 361a 貫通孔
 370 容器本体
 371 フランジ部
 372 胴体部
 373 底部
 371a 凸部
 401 輸液バッグ
 431 バッグ本体
 432 口栓部材
 433 吊り下げ孔
 40  電子デバイス
 41  電子デバイス本体
 42  封止材
 43  保護シート(多層構造体)
 50  押出しコートラミネート装置
 51  押出機
 52  Tダイ
 53  冷却ロール
 54  ゴムロール
 501 積層体
 502 樹脂フィルム
 503 ラミネートフィルム(多層構造体)
 510 紙容器
 511 窓部
 601,602 真空断熱体
 610 被覆材
 651,652 芯材

Claims (16)

  1.  基材(X)と層(Y)と前記層(Y)に隣接して配置された層(Z)とを含む多層構造体であって、
     前記層(Y)は、リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)とを含み、
     前記層(Y)において、前記化合物(A)と前記重合体(B)との質量比が15:85~99:1の範囲にあり、
     前記層(Z)はアルミニウム原子を含む層である、多層構造体。
  2.  前記化合物(A)が、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、および亜ホスフィン酸基からなる群より選ばれる少なくとも1種の官能基を有する重合体である、請求項1に記載の多層構造体。
  3.  前記化合物(A)が、ポリ(ビニルホスホン酸)である、請求項1に記載の多層構造体。
  4.  前記重合体(B)が、ポリビニルアルコール系重合体である、請求項1~3のいずれか1項に記載の多層構造体。
  5.  前記層(Z)が、反応生成物(E)を含む層(Z1)を備え、
     前記反応生成物(E)は、アルミニウムを含む金属酸化物(C)とリン化合物(D)とが反応してなる反応生成物であり、
     前記層(Z1)の赤外線吸収スペクトルにおいて、800~1,400cm-1の領域における最大吸収波数が1,080~1,130cm-1の範囲にある、請求項1~4のいずれか1項に記載の多層構造体。
  6.  前記層(Z)が、アルミニウムの蒸着層(Z2)または酸化アルミニウムの蒸着層(Z3)を備える、請求項1~5のいずれか1項に記載の多層構造体。
  7.  前記基材(X)が、熱可塑性樹脂フィルム層および紙層からなる群より選ばれる少なくとも1種を含む、請求項1~6のいずれか1項に記載の多層構造体。
  8.  (Y-i)リン原子を含有する化合物(A)と、水酸基および/またはカルボキシル基を有する重合体(B)と、溶媒とを混合することによってそれらを含むコーティング液(S)を調製する工程と、
     (Y-ii)前記コーティング液(S)を用いて層(Y)を形成する工程と、
     アルミニウム原子を含む層(Z)を形成する、層(Z)の形成工程とを含み、
     層(Y)と層(Z)とは隣接するように配置され、
     前記(Y-i)の工程において、前記化合物(A)と前記重合体(B)とは質量比が15:85~99:1の範囲で混合される、請求項1~7のいずれか1項に記載の多層構造体の製造方法。
  9.  請求項1~7のいずれか1項に記載の多層構造体を含む、包装材。
  10.  押出しコートラミネートにより形成された層をさらに有する、請求項9に記載の包装材。
  11.  縦製袋充填シール袋、真空包装袋、パウチ、ラミネートチューブ容器、輸液バッグ、紙容器、ストリップテープ、容器用蓋材またはインモールドラベル容器である、請求項9または10に記載の包装材。
  12.  請求項9~11のいずれか1項に記載の包装材が少なくとも一部に用いられている、製品。
  13.  製品が内容物を含み、前記内容物が芯材であり、
     前記製品の内部が減圧されており、
     真空断熱体として機能する、請求項12に記載の製品。
  14.  請求項1~7のいずれか1項に記載の多層構造体を含む、電子デバイス。
  15.  前記電子デバイス本体の表面を保護する保護シートを含み、
     前記保護シートが請求項1~7のいずれか1項に記載の多層構造体を含む、請求項14に記載の電子デバイス。
  16.  光電変換装置、情報表示装置または照明装置である、請求項14または15に記載の電子デバイス。
PCT/JP2015/003320 2014-07-02 2015-07-01 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス WO2016002222A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015285809A AU2015285809B2 (en) 2014-07-02 2015-07-01 Multilayer structure, method for producing same, packaging material and product including same, and electronic device
JP2015555472A JP5957154B2 (ja) 2014-07-02 2015-07-01 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス
EP15815981.4A EP3165359B1 (en) 2014-07-02 2015-07-01 Multilayer structure and method for manufacturing same, packaging material and product in which same is used, and electronic device
US15/323,181 US20170129216A1 (en) 2014-07-02 2015-07-01 Multilayer structure, method for producing same, packaging material and product including same, and electronic device
KR1020177000934A KR101982478B1 (ko) 2014-07-02 2015-07-01 다층 구조체 및 그 제조 방법, 이를 사용한 포장재 및 제품, 및 전자 디바이스
CN201580046470.4A CN106660323B (zh) 2014-07-02 2015-07-01 多层结构体及其制造方法、使用了其的包装材料和制品、以及电子设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-136557 2014-07-02
JP2014136555 2014-07-02
JP2014136559 2014-07-02
JP2014136557 2014-07-02
JP2014-136555 2014-07-02
JP2014-136559 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002222A1 true WO2016002222A1 (ja) 2016-01-07

Family

ID=55018794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003320 WO2016002222A1 (ja) 2014-07-02 2015-07-01 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス

Country Status (8)

Country Link
US (1) US20170129216A1 (ja)
EP (1) EP3165359B1 (ja)
JP (1) JP5957154B2 (ja)
KR (1) KR101982478B1 (ja)
CN (1) CN106660323B (ja)
AU (1) AU2015285809B2 (ja)
TW (1) TWI667136B (ja)
WO (1) WO2016002222A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203137A (ja) * 2016-05-13 2017-11-16 Dic株式会社 コーティング材、及びガスバリア性フィルム
JP2019095065A (ja) * 2016-05-24 2019-06-20 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2021091145A (ja) * 2019-12-10 2021-06-17 株式会社クラレ 多層構造体およびその製造方法、それを用いた包装材、真空断熱体並びに電子デバイスの保護シート

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890080B1 (ja) 2014-08-13 2016-03-22 株式会社クラレ 帯電防止シートならびにそれを含む包装材および電子デバイス
US10391743B2 (en) 2014-08-13 2019-08-27 Kurray Co., Ltd. Multilayer structure, packaging material including the same, and method for producing said multilayer structure
WO2016024380A1 (ja) 2014-08-13 2016-02-18 株式会社クラレ 多層ラベルならびにそれを用いた容器および容器の製造方法
CN108910262A (zh) * 2017-04-01 2018-11-30 南京光谷数据处理有限公司 用于氧化干燥型油墨的环保回收包装物
EP3723960A1 (en) * 2017-12-14 2020-10-21 CSP Technologies, Inc. Container with lid having fluorinated polymer internal surface and methods for making the same
WO2019136142A1 (en) * 2018-01-08 2019-07-11 Sigma Technologies Int'l., Llc Recyclable paper-containing packaging with radiant barrier insulation
BR112020018751A2 (pt) * 2018-04-05 2021-01-05 Cryovac, Llc Bolsa para cozinhar um produto alimentício e método relacionado
CN114728499B (zh) * 2019-12-06 2024-07-30 株式会社可乐丽 多层结构体及其制造方法、使用了其的包装材料和制品、以及电子设备的保护片材
KR102393254B1 (ko) * 2020-03-16 2022-05-03 한국제지 주식회사 친환경 종이컵 원지 제조방법
WO2022081625A1 (en) * 2020-10-13 2022-04-21 Packaging Aids Corporation Paper recyclable heat sealable bag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290369A (ja) * 2006-03-29 2007-11-08 Fujifilm Corp ガスバリア性積層フィルムとその製造方法、および画像表示素子
JP2010030290A (ja) * 2008-06-26 2010-02-12 Fujifilm Corp バリア性積層体、ガスバリアフィルム、デバイスおよび積層体の製造方法
WO2011122036A1 (ja) * 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
JP2011200780A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp バリア性積層体とその製造方法、ガスバリアフィルム及びデバイス
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2013208794A (ja) * 2012-03-30 2013-10-10 Kuraray Co Ltd 多層構造体およびそれを用いた製品、ならびに多層構造体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106931B2 (ja) 2002-03-07 2008-06-25 凸版印刷株式会社 透明ガスバリア薄膜被覆フィルム
EP1496091A1 (en) * 2003-07-08 2005-01-12 Rohm And Haas Company Aqueous polymer composition
US8779053B2 (en) * 2003-08-25 2014-07-15 Dow Global Technologies Llc Coating compositions
DE602007000572D1 (de) * 2006-03-29 2009-04-09 Fujifilm Corp Laminatfilm mit Gasbarriereneigenschaften
EP2456679B2 (en) * 2009-07-24 2020-08-19 Dow Global Technologies LLC Method of making a coated container device
US9403998B2 (en) * 2011-10-05 2016-08-02 Kuraray Co., Ltd. Composite structure, product using same, and method for producing composite structure
US10290756B2 (en) * 2012-06-14 2019-05-14 Kuraray Co., Ltd. Multilayer structure, device using the same, method for producing the multilayer structure, and method for producing the device
EP2719735A1 (en) * 2012-10-12 2014-04-16 Celanese Emulsions GmbH Adhesive compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290369A (ja) * 2006-03-29 2007-11-08 Fujifilm Corp ガスバリア性積層フィルムとその製造方法、および画像表示素子
JP2010030290A (ja) * 2008-06-26 2010-02-12 Fujifilm Corp バリア性積層体、ガスバリアフィルム、デバイスおよび積層体の製造方法
JP2011200780A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp バリア性積層体とその製造方法、ガスバリアフィルム及びデバイス
WO2011122036A1 (ja) * 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2013208794A (ja) * 2012-03-30 2013-10-10 Kuraray Co Ltd 多層構造体およびそれを用いた製品、ならびに多層構造体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203137A (ja) * 2016-05-13 2017-11-16 Dic株式会社 コーティング材、及びガスバリア性フィルム
JP2019095065A (ja) * 2016-05-24 2019-06-20 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2021091145A (ja) * 2019-12-10 2021-06-17 株式会社クラレ 多層構造体およびその製造方法、それを用いた包装材、真空断熱体並びに電子デバイスの保護シート
JP7339872B2 (ja) 2019-12-10 2023-09-06 株式会社クラレ 多層構造体およびその製造方法、それを用いた包装材、真空断熱体並びに電子デバイスの保護シート

Also Published As

Publication number Publication date
US20170129216A1 (en) 2017-05-11
TW201615420A (zh) 2016-05-01
EP3165359A1 (en) 2017-05-10
CN106660323A (zh) 2017-05-10
TWI667136B (zh) 2019-08-01
JP5957154B2 (ja) 2016-07-27
JPWO2016002222A1 (ja) 2017-04-27
EP3165359B1 (en) 2019-04-10
AU2015285809A1 (en) 2017-02-02
CN106660323B (zh) 2019-07-02
EP3165359A4 (en) 2018-02-21
AU2015285809B2 (en) 2018-12-13
KR20170018041A (ko) 2017-02-15
KR101982478B1 (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
JP5957154B2 (ja) 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス
JP5873958B1 (ja) 多層構造体およびその製造方法、それを用いた包装材および製品、電子デバイスの保護シートならびにコーティング液
JP6533525B2 (ja) 多層構造体、それを含む包装材および該多層構造体の製造方法
JP6735818B2 (ja) 多層構造体およびその製造方法ならびにコーティング液、包装材、電子デバイスの保護シート
CN108025538B (zh) 多层结构体及其制造方法、使用其得到的包装材料和制品、以及电子设备的保护片材
JP6010262B1 (ja) 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート
JP6014790B1 (ja) 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート
WO2016103715A1 (ja) 多層構造体およびそれを用いた包装材
JP6478736B2 (ja) 包装材およびそれを用いた製品
JP6899733B2 (ja) 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート
JP6564788B2 (ja) 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート
JP5993109B1 (ja) 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015555472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815981

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177000934

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015285809

Country of ref document: AU

Date of ref document: 20150701

Kind code of ref document: A