WO2016002215A1 - 低反射コーティング、低反射コーティング付き基板および光電変換装置 - Google Patents

低反射コーティング、低反射コーティング付き基板および光電変換装置 Download PDF

Info

Publication number
WO2016002215A1
WO2016002215A1 PCT/JP2015/003300 JP2015003300W WO2016002215A1 WO 2016002215 A1 WO2016002215 A1 WO 2016002215A1 JP 2015003300 W JP2015003300 W JP 2015003300W WO 2016002215 A1 WO2016002215 A1 WO 2016002215A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection coating
low
low reflection
substrate
coating
Prior art date
Application number
PCT/JP2015/003300
Other languages
English (en)
French (fr)
Inventor
瑞穂 小用
史佳 近藤
瑶子 宮本
河津 光宏
浩文 松原
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2016531115A priority Critical patent/JP6560210B2/ja
Priority to US15/322,670 priority patent/US10416353B2/en
Priority to EP15815778.4A priority patent/EP3162773B1/en
Priority to CN201580035666.3A priority patent/CN106660863B/zh
Priority to ES15815778T priority patent/ES2812613T3/es
Publication of WO2016002215A1 publication Critical patent/WO2016002215A1/ja
Priority to SA516380631A priority patent/SA516380631B1/ar

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/253Coating containing SnO2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/118Deposition methods from solutions or suspensions by roller-coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a low reflection coating, a substrate with a low reflection coating provided with the low reflection coating, and a photoelectric conversion device.
  • a low reflection coating is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
  • Low reflection coating is used for glass for vehicle, show window or glass plate used for photoelectric conversion device.
  • a so-called thin film type solar cell which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back surface thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially laminated, but a low reflection coating is laminated. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection coating is formed on the sunlight incident side, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
  • the most commonly used low-reflection coating is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD), etc., but a fine particle-containing film containing fine particles such as silica fine particles should be used as the low-reflection coating.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-032248
  • a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method, and after drying at 400 ° C., 610
  • a cover glass for a photoelectric conversion device formed by performing a baking process at 8 ° C. for 8 minutes is disclosed.
  • the low reflection coating applied to the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
  • Patent Document 2 a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds.
  • a glass substrate coated therewith is disclosed.
  • the low reflection coating applied to the glass substrate can improve the average transmittance of light having a wavelength of 300 to 1100 nm by 2.5%.
  • Patent Document 3 discloses colloidal silica having a dispersion particle size larger than the average primary particle size and a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, nitric acid.
  • a coating-coated silicon substrate is disclosed in which a coating composition containing aluminum is applied using a spin coater and is dried at 100 ° C. for 1 minute. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
  • the transmittance gain is an increase in transmittance by applying a low-reflection coating with respect to transmittance, for example, average transmittance in a predetermined wavelength range. Specifically, it is determined as a value obtained by subtracting the transmittance before applying the coating from the transmittance when the coating is applied to the substrate.
  • the applied low reflection coating may be unintentionally damaged or soiled in the manufacturing process of the photoelectric conversion device, or the low reflection characteristics may be deteriorated.
  • the present invention provides a low-reflection coating suitable for applying to a surface on which light is incident on the photoelectric conversion device after manufacturing the photoelectric conversion device using a glass plate that has not been subjected to a low-reflection coating.
  • the purpose is to provide.
  • this invention also aims at providing the board
  • the present invention provides a low reflection coating that can be applied to at least one of the major surfaces of a substrate.
  • the low-reflection coating is a porous film in which silica fine particles having a solid spherical shape and an average particle diameter of 80 to 150 nm are fixed by a binder mainly composed of silica,
  • the binder further includes an aluminum compound,
  • the content of the component in the low reflection coating is expressed in mass%, Silica fine particles 55-70% Silica in the binder 25-40% 2-7% when the aluminum compound is converted to Al 2 O 3
  • the low reflection coating has a thickness of 80 to 800 nm;
  • a low reflection coating having a transmittance gain of 2.5% or more obtained by applying the low reflection coating to a substrate is provided.
  • the transmittance gain is an increase in the average transmittance of the substrate having the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating, with respect to the average transmittance in the wavelength region of 380 to 850 nm.
  • the present invention also provides: A glass plate, The low reflection coating of the present invention, which is formed on at least one of the main surfaces of the glass plate; A substrate with a low reflection coating is provided.
  • the present invention also provides: A photoelectric conversion device provided with a glass plate, Provided is a photoelectric conversion device in which the low reflection coating of the present invention is formed on the main surface of the glass plate on which light is incident.
  • the low reflection coating of the present invention contains solid silica fine particles having an average particle diameter in a predetermined range and a binder mainly composed of silica at a predetermined content, so that the transmittance gain is 2.5%. That's it. Furthermore, since the binder of the low reflection coating of the present invention contains an aluminum compound at a predetermined content, the low reflection coating of the present invention is not performed at a high temperature in the heating step after the coating liquid is applied to the substrate. High salt spray resistance.
  • the low reflection coating of the present invention comprises a porous film in which solid spherical silica fine particles are fixed by a binder mainly composed of silica.
  • the binder further includes an aluminum compound.
  • the porous film, ie, the low reflection coating has a physical thickness of 80 to 800 nm, preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 150 nm or less.
  • the silica fine particles are substantially spherical primary particles having an average particle diameter of 80 to 150 nm, preferably more than 100 nm and 150 nm or less. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of the porous layer composed of the binder and the silica fine particles can be further reduced. Furthermore, primary particles having a substantially spherical shape with a uniform particle size made of silica are produced at a low cost on a commercial scale, and are excellent in quantity, quality and cost.
  • the “average particle size” of the silica fine particles means a particle size (D50) corresponding to 50% volume accumulation in the particle size distribution measured by the laser diffraction particle size distribution measurement method.
  • the aluminum compound contained in the binder is preferably derived from an aluminum halide added to the coating solution for forming the low reflection coating, and a preferred aluminum halide is aluminum chloride.
  • the content of the aluminum compound in the low reflection coating is 2 to 7% by mass, preferably 5 to 7% by mass, when the aluminum compound is converted to Al 2 O 3 .
  • the aluminum compound When the aluminum compound is contained in the low-reflection coating at the above-described content, durability of the low-reflection coating against salt spray increases. When the content is less than 2% by mass, the salt spray durability deteriorates. On the other hand, when the content exceeds 7% by mass, the transmittance gain of the low reflection coating decreases.
  • the effect of increasing the salt spray durability described above is manifested under conditions where the heat treatment after coating is more gradual.
  • the maximum temperature experienced by the surface of the substrate coated with the coating liquid is 350 ° C. or lower, and the substrate surface temperature is 200 ° C. or higher.
  • the time at which the surface of the substrate experiences is preferably 250 ° C. or less and the time at which the substrate surface temperature is 100 ° C. or more is 2 minutes or less.
  • a coating excellent in salt spray durability in which the absolute value of the difference in average transmittance before the salt spray test is 0.15% or less can be obtained.
  • the content of the silica fine particles in the low reflection coating is 55 to 70% by mass, preferably 60 to 70% by mass.
  • the content of silica in the binder is 25 to 40% by mass, and preferably 30 to 40% by mass.
  • the content ratio of the silica fine particles in the low-reflective coating to the silica in the binder is in the range of 70:30 to 30:70, preferably 70:30 to 60 in terms of mass ratio. : 40 range.
  • the reflectance gain of the low reflection coating of the present invention can be increased as the content ratio of the silica fine particles increases. This is because gaps between the silica fine particles and between the fine particles and the transparent substrate become large. However, when the content ratio of the silica fine particles is larger than the limit, the durability of the low reflection coating of the present invention is deteriorated.
  • silica has a function of adhering between the silica fine particles or between the fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles is smaller than the limit, the above-mentioned voids are too small, and the reflectance gain of the low reflection coating of the present invention is lowered.
  • a hydrolyzable silicon compound typified by silicon alkoxide can be used as a silica supply source in the binder.
  • the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method.
  • Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate, but is preferably carried out in a solution containing the silica fine particles.
  • the polycondensation reaction between the silanol groups present on the surface of the fine particles and the silanol groups produced by hydrolysis of hydrolyzable silicon compounds such as silicon alkoxide is promoted, and the proportion of the binder that contributes to improving the binding force of the silica fine particles is increased. It is to increase.
  • it is preferable to prepare a coating liquid by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles.
  • any acid and base can be used for the hydrolysis catalyst, it is preferable to use an acid, particularly an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, and it is more preferable to use hydrochloric acid.
  • an acid particularly an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid
  • hydrochloric acid is more preferable to use.
  • acidity is more basic than silica, and the dispersibility of the silica fine particles is better and the stability of the coating liquid is also better.
  • chlorine ions derived from hydrochloric acid increase the concentration of chlorine ions in the coating solution, and thus promote the effect brought about by the aluminum chloride added to the coating solution described above.
  • the transmittance gain can be 2.5% or more, preferably 2.6% or more, and further 2.7% or more, and the above-described excellent salt water Shows spray durability.
  • the low reflection coating of the present invention can be formed by applying, drying and curing a coating solution.
  • a coating solution any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, etc. can be used, but spray coating is excellent in terms of mass productivity, Roll coating and bar coating are more suitable in terms of homogeneity of the appearance of the coating film in addition to mass production.
  • the substrate to which the low reflection coating of the present invention can be suitably applied may be a glass plate that is not coated.
  • This glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
  • the arithmetic average roughness Ra is a value defined in JIS B0601-1994.
  • the glass plate may be a template glass having irregularities on its surface, and the average interval Sm between the irregularities is preferably 0.3 mm or more, more preferably 0.4 mm or more, and particularly preferably 0.45 mm or more. It is preferable that it is 2.5 mm or less, further 2.1 mm or less, especially 2.0 mm or less, especially 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
  • the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
  • the average interval Sm and the maximum height Ry are values defined in JIS (Japanese Industrial Standards) B0601-1994.
  • a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
  • the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the reduction in reflectivity by applying the low reflection coating of the present invention to the main surface of the glass plate that is, the effect of improving the reflectivity by the low reflection coating of the present invention is that the average reflectivity in the wavelength region of 380 to 850 nm of the main surface is The higher you get, the higher you get.
  • a glass plate having a main surface with an average reflectivity of 5.1% or more in the wavelength range of 380 to 850 nm and applying the low reflection coating of the present invention to the main surface a transmission of 2.5% or more is achieved. It becomes easy to realize the rate gain.
  • the average reflectance of the main surface satisfies 5.2% or more, preferably 5.3% or more, it becomes easy to realize a transmittance gain of 2.7% or more.
  • a glass plate having a main surface having a high average reflectance as described above can be realized, for example, by controlling the concentration of tin oxide on the main surface.
  • concentration of tin oxide on the outermost surface of the main surface is in the range of 3.5 to 24% by mass, preferably 3.5 to 21% by mass, more preferably 5 to 18% by mass, and particularly preferably 6 to 18% by mass.
  • the above high average reflectance can be realized.
  • the glass plate When the glass plate is a float plate glass manufactured by the float process, tin diffuses from the float bath on the surface of the glass plate that has been in contact with the float bath (molten tin) during the manufacture by the float method. Then, the glass plate which has the main surface which has a desired reflectance can be manufactured by controlling the quantity of the tin which penetrate
  • nitrogen gas and hydrogen gas are supplied and a reducing atmosphere is maintained.
  • oxygen in the atmosphere is mixed and melted.
  • a trace amount of oxidizing gas can be supplied into the tin bath.
  • the supply amount of the oxidizing gas supplied into the molten tin bath can also be adjusted by adjusting the concentration of the hydrogen gas in a small amount.
  • the float plate glass when used as a glass plate, it is preferable to apply the low reflection coating of the present invention on the main surface of the glass plate that is in contact with the float bath during the production by the float process. Thereby, the high effect of the reflectance improvement by the low reflection coating of this invention is acquired, As a result, a higher transmittance gain is realizable.
  • a glass plate having a main surface with high reflectivity a glass plate in which the tin oxide concentration on the main surface is controlled has been described.
  • the present invention is not limited to this, and glass is formed by other known methods. You may use the glass plate in which the reflectance of the plate surface was raised.
  • the substrate to which the low reflection coating of the present invention can be suitably applied may be a glass substrate with a transparent conductive film.
  • This glass substrate with a transparent conductive film has a transparent conductive film on one main surface of any of the above glass plates, for example, and has one or more underlayers such as fluorine on the main surface of the glass plate.
  • a transparent conductive layer mainly composed of doped tin oxide is sequentially laminated.
  • the transmittance curve transmission spectrum of the substrate (a glass plate in this example) before and after the formation of the low reflection coating was measured.
  • the average transmittance was calculated by averaging the transmittance at a wavelength of 380 to 850 nm.
  • the increment of the average transmittance of the substrate with the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating was defined as the transmittance gain.
  • the coating was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). Further, from the FE-SEM photograph in the cross section from the upper side of the coating at an angle of 30 °, the average value of the coating thickness at five measurement points was defined as the coating thickness.
  • the alkali resistance of the obtained substrate with low reflection coating was evaluated by the following method.
  • the substrate with low reflection coating was immersed in a saturated aqueous solution of calcium hydroxide at a temperature of 60 ° C. for 3 hours.
  • the transmittance before and after the immersion was measured with the aforementioned spectrophotometer, and the alkali resistance was evaluated by the absolute value of the difference between them.
  • salt water resistance evaluation In order to evaluate the salt water resistance of the obtained low reflection coating, a salt spray test (salt spray test) was performed. The above-mentioned average transmittance is measured for the low-reflective coating applied on the substrate, and then the average transmittance is measured after spraying salt water under the conditions in accordance with JIS C8917: 2005 appendix 4, and the average transmittance before and after spraying the salt water. The absolute value of the difference in rate was defined as salt water resistance. Specifically, the salt spray was sprayed for 96 hours in the form of a mist of a NaCl aqueous solution having a temperature of 35 ° C. and a concentration of 5 mass%.
  • Example 1 ⁇ Preparation of coating solution> Silica fine particle dispersion (Quarton PL-7, substantially spherical primary particles having an average particle diameter of 125 nm, solid content concentration 23 wt%, manufactured by Fuso Chemical Industry Co., Ltd.) 28.3 parts by mass, 1-methoxy-2-propanol (solvent ) 58.6 parts by mass, 1 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed, and further with stirring, tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.) 12.1 parts by weight was added. Subsequently, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a stock solution A.
  • Silica fine particle dispersion substantially spherical primary particles having an average particle diameter of 125 nm, solid content concentration 23 wt%, manufactured by Fus
  • coating liquid A1 70.0 g of the above-mentioned stock solution A, 2.0 g of propylene glycol (solvent), 26.3 g of 1-methoxy-2-propanol (solvent), aluminum chloride aqueous solution (concentration 47.6 wt% as AlCl 3 , aluminum chloride hexahydrate, 1.7 g of reagent grade (manufactured by Sigma Aldrich, dissolved in deionized water) was stirred and mixed to obtain coating liquid A1.
  • coating liquid A1 the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 is 7.0 wt%, and silicon oxide converted to SiO 2 is 100 parts by mass.
  • the aluminum compound in terms of Al 2 O 3 was 5 parts by mass.
  • Example 1 a low reflective coating was formed on the main surface on one side of a glass plate with a transparent conductive film to obtain a substrate with a low reflective coating.
  • This glass plate is made of a normal soda lime silicate composition, and a transparent conductive film including a transparent conductive layer is formed on one main surface using an on-line CVD method. is there.
  • This glass plate is cut into 200 ⁇ 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. And a glass plate for forming a low reflection coating.
  • the average transmittance was 80.0%.
  • Example 1 the coating liquid A1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied, using a roll coater. At this time, the film thickness of the coating solution was adjusted to 1 to 5 ⁇ m. Next, the coating liquid applied to the glass plate was dried and cured with hot air.
  • This hot air drying uses a belt-conveying hot air drying device, the hot air set temperature is set to 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was performed by reciprocating four times and passing under the nozzle four times.
  • the time during which the glass plate coated with the coating solution was in contact with hot air was 140 seconds, and the maximum temperature reached on the glass surface coated with the coating solution of the glass plate was 199 ° C.
  • the glass plate after drying and curing was allowed to cool to room temperature, and a low reflection coating was applied to the glass plate.
  • FIG. 1 shows the result of observing the cross section of the substrate with the low reflection coating using the FE-SEM.
  • the ratio of the mass of silica fine particles converted to SiO 2 to the mass of silicon oxide components contained in the binder converted to SiO 2 (hereinafter referred to as “fine particles: binder ratio”) is 65:35, and silicon.
  • the aluminum compound (hereinafter referred to as “aluminum compound content ratio”) is 100 parts by mass of the oxide (the mass of the silica fine particles converted to SiO 2 and the mass of the silicon oxide component contained in the binder converted to SiO 2 ).
  • the coating solution A2 was prepared in the same manner as the coating solution A1 except that the above-described aluminum chloride aqueous solution and the above-mentioned solvent were changed so as to be 3 parts by mass.
  • the solid content concentration of silicon oxide was 7.0 wt%.
  • Example 2 ⁇ Formation of low-reflection coating>
  • Example 2 a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid A2 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 3 ⁇ Preparation of coating solution>
  • the above-mentioned coating liquid A1 except that the above-described aluminum chloride aqueous solution and the above-mentioned solvent were changed so that the fine particle: binder ratio was 65:35 and the aluminum compound content was 7 parts by mass.
  • a coating solution A3 was prepared in the same manner as above. In coating liquid A3, the solid content concentration of the oxide of silicon was 7.0 wt%.
  • Example 3 a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid A3 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 4 Preparation of coating solution>
  • the above-described aqueous aluminum chloride solution was used by using a stock solution prepared so that the fine particle: binder ratio was 70:30 by the same procedure as that for stock solution A, and so that the aluminum compound content was 5.5 parts by mass.
  • a coating solution A4 was prepared in the same manner as the coating solution A1 except that the above was changed.
  • the solid content concentration of the oxide of silicon was 7.0 wt%.
  • Example 4 a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid A4 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 5 ⁇ Preparation of coating solution> The above-mentioned aluminum chloride aqueous solution was changed so that the stock solution prepared so that the fine particle: binder ratio was 60:40 in the same procedure as the stock solution A, and the aluminum compound content was 5 parts by mass.
  • a coating solution A5 was prepared in the same manner as the coating solution A1 described above except that. In the coating liquid A5, the solid content concentration of the silicon oxide was 7.0 wt%.
  • Example 5 ⁇ Formation of low-reflection coating>
  • a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid A5 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 6 ⁇ Aging treatment after drying / curing>
  • the low reflection coating of Example 1 was subjected to aging treatment. This aging treatment was performed by holding the low reflection coating for 7 days in an electric furnace set at 70 ° C. and then allowing it to cool to room temperature. This aging treatment corresponds to a temperature history experienced by the low-reflection coating when the photoelectric conversion device including the glass plate on which the low-reflection coating of the present invention is applied is installed and generates power with sunlight.
  • Coating liquid B2 was prepared.
  • the solid content concentration of the silicon oxide was 7.0 wt%.
  • Coating liquid B3 was prepared.
  • the solid content concentration of the silicon oxide is 7.0 wt%.
  • coating liquid D4 the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 is 7.0 wt%, the fine particle: binder ratio is 91: 9, and the aluminum compound The content of was 0.15 parts by mass.
  • This coating liquid D4 is different from Example 1 of Patent Document 1 in that it is prepared with an aqueous solvent and has a solid content concentration suitable for coating with a roll coater, but silica fine particles: SiO derived from tetraalkoxysilane. 2 : The mass ratio of Al 2 O 3 in terms of aluminum nitrate was the same.
  • the fine particle: binder ratio was 70:30, and the solid concentration in terms of SiO 2 was 10 wt%.
  • the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 is 7.0 wt%, and the silicon oxide converted to SiO 2 is 100 parts by mass.
  • the zirconium compound in terms of ZrO 2 was 5 parts by mass.
  • This coating liquid E5 differs from Example 13 of Patent Document 1 in that it has a solid content concentration suitable for application on a roll coater and does not contain a surfactant, but is derived from silica fine particles: tetraalkoxysilane.
  • the mass ratio of ZrO 2 converted from SiO 2 : zirconium compound was the same.
  • coating solution E6 the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 was 7.0 wt%, and the silicon oxide converted to SiO 2 was 100 parts by mass.
  • the titanium compound in terms of TiO 2 was 5 parts by mass.
  • This coating liquid E6 is different from Example 15 of Patent Document 2 in that it has a solid content concentration suitable for application on a roll coater and does not contain a surfactant, but is derived from silica fine particles: tetraalkoxysilane.
  • the mass ratio of TiO 2 in terms of SiO 2 : titanium compound was the same.
  • Comparative Example 7 ⁇ Aging treatment after drying / curing> The same aging treatment as in Example 6 was performed on the low reflection coating of Comparative Example 1. Each characteristic mentioned above was evaluated with respect to the low reflection coating after an aging process. The results are shown in Table 1.
  • the low-reflection coating only by curing with hot air drying is 2.5% or more, and in Example 4, it has an extremely high transmittance gain of 2.99% and 0.15% or less.
  • Example 5 a very high salt spray durability with an average transmittance change of 0.05% before and after the salt spray test could be obtained.
  • the high alkali resistance whose average transmittance before and after the alkali resistance test was 0.6% or less and the high moisture resistance whose average transmittance before and after the pressure cooker test was 0.2% or less were shown.
  • Example 6 the low-reflective coating subjected to aging after curing by hot air drying showed extremely excellent salt spray durability that the average transmittance did not change before and after the salt spray test. Moreover, the alkali resistance and the moisture resistance were also improved by aging.
  • the low reflectance coating of the present invention applied to the photoelectric conversion device is formed in a relatively short period of time after the photoelectric conversion device is installed and placed in a state where it is irradiated with sunlight. This means that the improvement of salt spray durability / alkali resistance and moisture resistance is promoted more than in the case of water.
  • Comparative Examples 1 and 2 in which the content of the aluminum compound in the low-reflection coating is less than 2% by mass are inferior in salt spray durability because the change in transmittance exceeds 0.15% before and after the salt spray test. Further, the moisture resistance is inferior to the moisture resistance because the change in average transmittance before and after the pressure cooker test is 0.6% or more.
  • Comparative Example 3 since the content of the aluminum compound exceeds 7% by mass, the transmittance gain is as low as 2.4%, and the low reflection characteristics are impaired. Moreover, it is inferior to salt spray durability, alkali resistance, and moisture resistance.
  • the aluminum compound in the low reflection coating is derived from aluminum nitrate contained in the coating liquid, and the content of the aluminum compound in the low reflection coating is less than 2% by mass, so that the salt spray durability is poor. Moreover, alkali resistance and moisture resistance are inferior.
  • Comparative Examples 5 and 6 are poor in salt spray durability and inferior in moisture resistance because the low reflection coating contains zirconium oxide and titanium oxide in place of the aluminum compound. Zirconium oxide and titanium oxide are known as components for improving the durability, but such effects cannot be obtained in drying and curing at low temperatures.
  • Comparative Examples 5 and 6 have low transmittance gains of 2.4% and 2.3%, respectively, and the low reflection characteristics are impaired.
  • Comparative Example 7 the salt spray durability is improved as compared with Comparative Example 1 in which aging is not performed, but it is still 0.15% or more, sufficient salt spray durability is not obtained, and the moisture resistance is unsatisfactory. It is.
  • the glass plate used in Reference Example 1 is a glass plate with a transparent conductive film manufactured by Nippon Sheet Glass Co., Ltd., which is composed of a normal soda lime silicate composition, and has a transparent conductive layer on one main surface using an on-line CVD method. A transparent conductive film was formed, and the thickness was 3.2 mm.
  • the low reflection coating in Reference Example 1 has improved the transmittance as a glass plate with a transparent conductive film, and evaluated the transmission characteristics of the glass plate with a transparent conductive film before applying the low reflection coating as described above. The average transmittance was 83.64%.
  • the glass plates used in Reference Examples 2 to 5 are also glass plates with a transparent conductive film manufactured by Nippon Sheet Glass Co., Ltd., and the transparent conductive film is equivalent to that of Reference Example 1, but the tin oxide concentration in the float bath By adjusting the float bath atmosphere, the tin oxide concentration on the main surface side where the transparent conductive film was not formed was manufactured to be different.
  • the glass composition was a normal soda lime silicate composition, and the glass plate had a thickness of 3.2 mm. The average transmittance of these glass plates was about 80%.
  • the glass plates used in Reference Examples 6 and 8 are float plate glass manufactured by Nippon Sheet Glass Co., Ltd., which has a thickness of 3.2 mm and is composed of a normal soda lime silicate composition. It was not formed.
  • the main surface of the glass plate that was in contact with the float bath was the main surface to which the low-reflection coating was applied, and the main surface of the glass plate that was not in contact with the float bath was the main surface to which the low-reflection coating was applied.
  • Reference Example 8 As shown in Table 2, tin oxide was not detected on the main surface of the glass plate that was not in contact with the float bath (Reference Example 8). The average transmittance of these glass plates was about 90%.
  • the glass plate used in Reference Examples 7 and 9 was a float plate glass having a thickness of 3.2 mm by Nippon Sheet Glass Co., Ltd., and a soda lime silicate composition on which no transparent conductive film was formed on either main surface.
  • the main surface of the glass plate that was in contact with the float bath was the main surface to which the low-reflection coating was applied, and the main surface of the glass plate that was not in contact with the float bath was the main surface to which the low-reflection coating was applied.
  • tin oxide was not detected on the main surface of the glass plate that was not in contact with the float bath (Reference Example 9).
  • the average transmittance of these glass plates was higher than that of the reference examples 6 and 8, and was about 90.8%.
  • Example 1 the glass plates of Reference Examples 1 to 9 were cut, washed and dried to form a low reflection coating.
  • the transmission characteristics of the glass plates of Reference Examples 1 to 9 before applying the low reflection coating were evaluated as described above. Further, with respect to the main surface on which the low reflection coating of the glass plate was applied, the average reflectance in the wavelength region of 380 to 850 nm and the tin oxide concentration on the outermost surface were also measured.
  • the average reflectance is calculated by measuring a reflectance curve (reflection spectrum) at an incident angle of 8 ° using a spectrophotometer (UV-3100PC, manufactured by Shimadzu Corporation), and averaging the reflectance at 380 to 850 nm. did.
  • the main surface opposite to the incident side was previously treated so as not to affect the reflectance measurement.
  • the black coating material was apply
  • the tin oxide concentration on the outermost surface was measured using an electron beam probe microanalyzer (EPMA) and a wavelength dispersion X-ray detector (WDX) attached thereto. Specifically, it is performed by WDX analysis (acceleration voltage: 15 kV, sample current: 2.5 ⁇ 10 ⁇ 7 A, scan speed: 6 ⁇ m / min, spectral crystal: PET) by EPMA (JXA8600, manufactured by JEOL Ltd.) It was.
  • EPMA electron beam probe microanalyzer
  • WDX wavelength dispersion X-ray detector
  • a low-reflective coating was applied to one main surface of each glass plate (main surface where the average reflectance and tin oxide concentration were measured) using the same coating liquid A1 as in Example 1 and in the same procedure as in Example 1.
  • the average reflectance on the surface of the low reflection coating was measured by the same method as the average reflectance of the glass plate, and the above-mentioned transmission characteristics were evaluated.
  • Table 2 shows the average transmittance of the substrate with a low-reflection coating (transmittance after coating), the transmittance gain as an increment to the average transmittance of the glass plate before applying the low-reflection coating, and the low-reflection coating.
  • substrate with a low reflection coating with respect to the average reflectance of the glass plate before giving a low reflection coating are shown.
  • the transmittance gain is about 80% of the reflectance loss. In the case of a substrate with a low reflection coating using 6 to 9 float glass, it can be determined that the transmittance gain is about 90% of the reflectance loss.
  • the decrease in average reflectance is about 3.15% or more, it is considered that a transmittance gain of 2.5% or more can be easily realized.
  • the reduction in reflectance of 3.15% or more can be realized by the surface of the glass plate having an average reflectance of 5.1% or more. That is, it is considered that a transmittance gain of 2.5% or more can be easily realized by applying the low reflection coating of the present invention to a glass plate having a reflectance of 5.1% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 本発明の低反射コーティングは、中実な球状で平均粒径が80~150nmであるシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜である。バインダは、アルミニウム化合物をさらに含む。低反射コーティングにおける成分の含有率は、質量%表示で、シリカ微粒子55~70%、バインダにおけるシリカ25~40%、アルミニウム化合物をAl23に換算して2~7%、である。低反射コーティングの膜厚は80~800nmである。低反射コーティングを基板に施すことにより得られる透過率ゲインは2.5%以上である。ここで、透過率ゲインは、波長域380~850nmにおける平均透過率に関し、前記低反射コーティングを施す前の基板の平均透過率に対する、前記低反射コーティングを施した前記基板の平均透過率の増分、である。

Description

低反射コーティング、低反射コーティング付き基板および光電変換装置
 本発明は、低反射コーティング、該低反射コーティングを備えた低反射コーティング付き基板および光電変換装置に関する。
 ガラス、セラミックなどの基材の表面には、その基材の用途における機能改善を目的として、光をより多く透過させるため、または反射による眩惑を防止するために、低反射コーティングが形成される。
 低反射コーティングは、車両用ガラス、ショーウィンドウまたは光電変換装置に用いるガラス板などに利用される。光電変換装置の一種であるいわゆる薄膜型太陽電池では、下地膜、透明導電膜、アモルファスシリコンなどからなる光電変換層および裏面薄膜電極を順次積層したガラス板を用いるが、低反射コーティングはこれら積層した主表面とは対向する主表面、つまり太陽光が入射する側の主表面に形成される。このように太陽光の入射側に低反射コーティングが形成された太陽電池では、より多くの太陽光が光電変換層または太陽電池素子に導かれ、その発電量が向上することになる。
 最もよく用いられる低反射コーティングは、真空蒸着法、スパッタリング法、化学蒸着法(CVD法)などによる誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が低反射コーティングとして用いられることもある。微粒子含有膜は、微粒子を含むコーティング液を、ディッピング法、フローコート法、スプレー法などによって透明基体上に塗布することにより成膜される。
 例えば、特開2014-032248号公報(特許文献1)には、表面凹凸を有するガラス板に、微粒子とバインダ前駆体とを含むコーティング液をスプレー法により塗布し、これに400℃で乾燥後610℃で8分間の焼成工程を実施することにより形成された光電変換装置用カバーガラスが開示されている。このカバーガラスに施された低反射コーティングによって、波長380~1100nmの光の平均透過率を少なくとも2.37%向上させることができる。
 さらに、特表2013-537873号公報(特許文献2)には、テトラエトキシシラン、アルミニウムアセチルアセトネート、コロイドシリカを含むゾルを浸漬被覆法によりガラス板に付着させ、680℃180秒間の熱処理を行なうことで被覆されたガラス基板が開示されている。このガラス基板に施された低反射コーティングによって、波長300~1100nmの光の平均透過率を2.5%向上させることができる。
 また、特開2014-015543号公報(特許文献3)には、平均一次粒子径より分散粒子径が大きく、形状係数とアスペクト比が1よりある程度以上大きいコロイダルシリカと、テトラアルルコキシシラン、硝酸アルミニウムを含むコーティング組成物をスピンコーターを用いて塗布し、100℃1分間の乾燥工程による被膜付きシリコン基板が開示されている。この被膜による光の平均透過率の向上については記載がないが、この被膜は1.40以下の屈折率を有する。
特開2014-032248号公報 特表2013-537873号公報 特開2014-015543号公報
 ところで、低反射コーティングの効果について、透過率ゲインと呼ばれる性能が重要である。透過率ゲインとは、透過率、例えば所定の波長範囲の平均透過率に関し、低反射コーティングを施すことによる透過率の増分のことである。具体的には、基板に該コーティングを施した際の透過率から、該コーティングを施す前のそれを差し引いた値として求める。
 たとえば、光電変換装置にガラス板が用いられ、その光入射側表面に低反射コーティングが施される場合、透過率ゲインが高いほど、そのガラス板を透過する光線量が増加し、光電変換装置の効率が向上する。しかしながら、特許文献1に記載のカバーガラスや、特許文献2に記載のガラス基板は、透過率ゲインをさらに向上させる余地があった。
 一方、ガラス板を用いた光電変換装置を製造する際、ガラス板にあらかじめ低反射コーティングを施したものを用いて光電変換装置を製造することが行われてきた。しかし、この方法では、施された低反射コーティングが、光電変換装置の製造工程において意図せず破損・汚損したり、低反射特性が劣化したりすることがあった。
 本発明は、かかる事情に鑑み、低反射コーティングを施していないガラス板を用いて光電変換装置を製造した後、その光電変換装置への光が入射する表面に施すのに適した低反射コーティングを提供することを目的とする。さらに、本発明は、そのような低反射コーティングを備えた低反射コーティング付き基板および光電変換装置を提供することも目的とする。
 本発明は、基板の主表面の少なくとも片方に施され得る低反射コーティングにおいて、
 前記低反射コーティングは、中実な球状で平均粒径が80~150nmであるシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜であって、
 前記バインダはアルミニウム化合物をさらに含み、
 前記低反射コーティングにおける成分の含有率が、質量%表示で、
  前記シリカ微粒子              55~70%
  前記バインダにおけるシリカ         25~40%
  前記アルミニウム化合物をAl23に換算して 2~7%
であり、
 前記低反射コーティングの膜厚が80~800nmであり、
 前記低反射コーティングを基板に施すことにより得られる透過率ゲインが2.5%以上である、低反射コーティングを提供する。ここで、透過率ゲインは、波長域380~850nmにおける平均透過率に関し、前記低反射コーティングを施す前の前記基板の平均透過率に対する、前記低反射コーティングを施した前記基板の平均透過率の増分、として定義する。
 また、本発明は、
 ガラス板と、
 前記ガラス板の主表面の少なくとも片方に形成されている、上記本発明の低反射コーティングと、
を有する低反射コーティング付き基板を提供する。
 また、本発明は、
 ガラス板を備えた光電変換装置であって、
 前記ガラス板の光が入射する主表面に、上記本発明の低反射コーティングが形成されている、光電変換装置を提供する。
 本発明の低反射コーティングは、所定の範囲の平均粒径を有する中実なシリカ微粒子と、シリカを主成分とするバインダとを、所定の含有率で含むので、透過率ゲインが2.5%以上である。さらに本発明の低反射コーティングのバインダはアルミニウム化合物を所定の含有率で含むので、本発明の低反射コーティングは、コーティング液を基板に塗布したのちの加熱工程において高温での処理を行なうことなく、高い耐塩水噴霧性を有する。
実施例1で得た低反射コーティング付き基板を電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 参考例1~9の低反射コーティング付き基板において、低反射コーティングを施す前のガラス板の一方の主表面の平均反射率と、そのガラス板の主表面に低反射コーティングを施した後の、低反射コーティング面における反射率ロスおよび透過率ゲインとの関係を示すグラフである。
 本発明の低反射コーティングは、中実な球状のシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜からなる。前記バインダは、アルミニウム化合物をさらに含む。前記多孔質膜、すなわち低反射コーティングは、物理的厚さが80~800nmであり、好ましくは100nmを超え500nm以下であり、より好ましくは100nmを超え150nm以下である。

 前記シリカ微粒子は、平均粒径が80~150nmであり、好ましくは100nmを超え150nm以下の略球状の一次粒子である。シリカは有機ポリマ材料より硬度が高く、屈折率が比較的低いため、バインダとシリカ微粒子からなる多孔質層の見かけの屈折率をさらに低減することができる。さらに、シリカからなる略球形で粒径がよく揃った一次粒子は、商業的スケールで低コストで生産されており、量・質・コスト的な入手性に優れるからである。ここで、シリカ微粒子の「平均粒径」とは、レーザー回折式粒度分布測定法により測定した粒度分布において、体積累積が50%に相当する粒径(D50)を意味する。 
 前記バインダに含まれるアルミニウム化合物は、前記低反射コーティングを形成するためのコーティング液に添加されたハロゲン化アルミニウムに由来することが好ましく、好ましいハロゲン化アルミニウムは塩化アルミニウムである。
 前記低反射コーティングにおけるアルミニウム化合物の含有率は、アルミニウム化合物をAl23に換算して、2~7質量%であり、5~7質量%であることが好ましい。
 低反射コーティングに上記の含有率でアルミニウム化合物が含有されることによって、低反射コーティングの塩水噴霧に対する耐久性が増加する。含有率が2質量%より少ない場合、前記塩水噴霧耐久性が劣化し、一方、7質量%を超える場合、低反射コーティングの透過率ゲインが低下する。
 さらに、コーティング液に添加するハロゲン化アルミニウムが塩化アルミニウムである場合には、前記した塩水噴霧耐久性を増加させる効果は、塗布後の熱処理がより緩やかな条件で発現する。具体的には、コーティング液の塗布後の加熱工程(乾燥・硬化工程)において、コーティング液を塗布した基板の表面が経験する最高温度が350℃以下、かつ該基板表面温度が200℃以上の温度にある時間が5分以下である、好ましくは基板の表面が経験する最高温度が250℃以下、かつ該基板表面温度が100℃以上の温度にある時間が2分以下である低温条件においても、該塩水噴霧試験を施す前の平均透過率の差の絶対値が0.15%以下である塩水噴霧耐久性に優れたコーティングを得ることができる。
 前記低反射コーティングにおける前記シリカ微粒子の含有率は、55~70質量%であり、60~70質量%であることが好ましい。前記バインダにおけるシリカの含有率は、25~40質量%であり、30~40質量%であることが好ましい。
 前記低反射コーティングにおける前記シリカ微粒子と、バインダにおけるシリカの含有比(シリカ微粒子:バインダにおけるシリカ)は、質量比で表わして70:30~30:70の範囲であり、好ましくは70:30~60:40の範囲である。前記シリカ微粒子の含有比が大きくなるほど本発明の低反射コーティングの反射率ゲインを大きくすることができる。前記シリカ微粒子間や該微粒子と透明基板との間の空隙が大きくなるからである。しかし、シリカ微粒子の含有比が限度を超えて大きい場合、本発明の低反射コーティングの耐久性が劣化する。前記バインダにおいてシリカは前記シリカ微粒子間や該微粒子と透明基板との間を接着する働きがあるが、前記シリカ微粒子の含有比が大きすぎると、その効果が乏しくなるからである。他方、前記シリカ微粒子の含有比が限度を超えて小さくなると、前述の空隙が小さくなりすぎるため、本発明の低反射コーティングの反射率ゲインが低下してしまう。
 バインダにおけるシリカの供給源としては、シリコンアルコキシドに代表される加水分解性シリコン化合物を用いることができる。シリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランを例示できる。これら加水分解性シリコン化合物は、いわゆるゾルゲル法により加水分解及び縮重合してバインダとすればよい。
 加水分解性シリコン化合物の加水分解は、適宜実施することができるが、前記のシリカ微粒子が存在する溶液中で実施することが好ましい。その微粒子の表面に存在するシラノール基と、シリコンアルコキシドなど加水分解性シリコン化合物が加水分解して生成したシラノール基との縮重合反応が促進され、シリカ微粒子の結合力向上に寄与するバインダの割合が高まるためである。具体的には、シリカ微粒子を含む溶液を撹拌しながら、加水分解触媒及びシリコンアルコキシドを順次添加することにより、コーティング液を調製することが好ましい。
 なお、前記加水分解触媒には酸・塩基いずれを用いることもできるが、酸、特に塩酸、硝酸、硫酸およびリン酸等の無機酸を用いることが好ましく、塩酸を用いることがさらに好ましい。塩基性より酸性の方が、シリカ微粒子の分散性がよく、またコーティング液の安定性にも優れるからである。さらに、塩酸由来の塩素イオンは、コーティング液中での塩素イオンの濃度を高めるため、前述したコーティング液に添加した塩化アルミニウムがもたらす効果をより促進するからである。
 これにより、本発明の低反射コーティングにおいては、透過率ゲインを2.5%以上、好ましくは2.6%以上、さらには2.7%以上、とすることができるとともに、前述の優れた塩水噴霧耐久性を示す。
 本発明の低反射コーティングは、コーティング液を塗布・乾燥・硬化させて形成することができる。これらコーティング液を供給する方法には、公知の任意の方法、例えばスピンコーティング、ロールコーティング、バーコーティング、ディップコーティング、スプレーコーティングなど、を用いることができるが、スプレーコーティングは量産性の点で優れ、ロールコーティングやバーコーティングが量産性に加えて塗膜外観の均質性の点でより適している。
 本発明の低反射コーティングを好適に施すことができる基板は、コーティングを施していないガラス板であってよい。例えば、ガラス板と、該ガラス板の主表面の少なくとも片方に形成されている本発明の低反射コーティングとを有する低反射コーティング付き基板の提供が可能である。このガラス板は、その主表面の算術平均粗さRaがたとえば1nm以下、好ましくは0.5nm以下の平滑性を有するフロート板ガラスであってもよい。ここで算術平均粗さRaは、JIS B0601-1994に規定された値である。
 一方で、ガラス板は、その表面に凹凸を有する型板ガラスであってもよく、その凹凸の平均間隔Smは0.3mm以上、さらに0.4mm以上、特に0.45mm以上であることが好ましく、2.5mm以下、さらに2.1mm以下、特に2.0mm以下、とりわけ1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味する。さらには型板ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。ここで平均間隔Smと最大高さRyは、JIS(日本工業規格) B0601-1994に規定された値である。
 なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってよいが、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Fe23に換算して、0.06質量%以下、特に0.02質量%以下が好適である。
 本発明の低反射コーティングをガラス板の主表面に施すことによる反射率の減少、すなわち本発明の低反射コーティングによる反射率改善の効果は、該主表面の波長域380~850nmにおける平均反射率が高いほど、より高く得られる。例えば、波長域380~850nmにおける平均反射率が5.1%以上である主表面を有するガラス板を用い、該主表面に本発明の低反射コーティングを施すことにより、2.5%以上の透過率ゲインを実現しやすくなる。さらに、該主表面の平均反射率が5.2%以上、好ましくは5.3%以上を満たすことにより、2.7%以上の透過率ゲインを実現しやすくなる。
 上記のような高い平均反射率を有する主表面を有するガラス板は、例えば、該主表面における酸化錫の濃度を制御することによって実現できる。例えば、該主表面の最表面における酸化錫の濃度が3.5~24質量%、好ましくは3.5~21質量%、より好ましくは5~18質量%、特に好ましくは6~18質量の範囲内であるガラス板によれば、上記のような高い平均反射率を実現し得る。

 ガラス板がフロート法によって製造されるフロート板ガラスである場合、フロート法による製造時にフロートバス(熔融錫)に接していたガラス板の表面には、フロートバスから錫が拡散している。そこで、ガラス板の表面に侵入する錫の量を、フロートバスにおける製造条件によって制御することにより、所望の反射率を有する主表面を有するガラス板を製造することができる。例えば、溶融錫の成分の調整は、溶融錫の微量を酸化する程度の酸化性ガスを、溶融錫浴中に混入させることと、鉄成分を溶融錫中に含ませることで行うことができる。また、溶融錫浴中は、窒素ガスと水素ガスとが供給されて還元性雰囲気が保たれているが、溶融錫浴のガス圧力を調整することによって、大気中の酸素を混入させて、溶融錫浴中に微量の酸化性ガスを供給することができる。また、水素ガスの濃度を微量調節することにより、溶融錫浴中に供給する酸化性ガスの供給量を調節することもできる。 
 このように、フロート板ガラスをガラス板として用いる場合は、ガラス板の主表面のうち、フロート法による製造時にフロートバスに接していた主面上に本発明の低反射コーティングを施すことが好ましい。これにより、本発明の低反射コーティングによる反射率改善の高い効果が得られ、その結果、より高い透過率ゲインを実現できる。なお、ここでは、反射率が高い主表面を有するガラス板の一例として、該主表面における酸化錫濃度が制御されたガラス板について説明したが、これに限定されず、他の公知の方法によってガラス板表面の反射率が高められたガラス板を用いてもよい。
 本発明の低反射コーティングを好適に施すことができる基板は、透明導電膜付きガラス基板であってよい。この透明導電膜付きガラス基板は、たとえば上述の何れかのガラス板の一方の主表面に、透明導電膜を有するものであって、ガラス板の主表面に、1層以上の下地層、例えばフッ素ドープ酸化錫を主成分とする透明導電層が順に積層されているものである。
 以下、実施例により、本発明をさらに詳細に説明する。まず、各実施例、各比較例において、基板上に形成した低反射コーティングの各特性の評価方法を説明する。
(透過特性)
 分光光度計(UV-3100PC、株式会社島津製作所製)を用い、低反射コーティングの形成前後における基板(本実施例ではガラス板)の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~850nmにおける透過率を平均化して算出した。低反射コーティングを施した基板の平均透過率の、該低反射コーティングを施す前の基板の平均透過率に対する増分を透過率ゲインとした。
(SEM観察)
 コーティングを電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。また、コーティングの30°斜め上方からの断面におけるFE-SEM写真から、測定点5点でのコーティングの厚みの平均値を、コーティングの厚みとした。
(耐アルカリ性評価)
 得られた低反射コーティング付き基板の耐アルカリ性を、以下の方法により評価した。低反射コーティング付き基板を、温度60℃、水酸化カルシウム飽和水溶液に3時間浸漬した。浸漬前後の透過率を前述の分光光度計により測定し、それらの差の絶対値によって耐アルカリ性を評価した。
(耐塩水性評価)
 得られた低反射コーティングの耐塩水性を評価するため、塩水噴霧試験(ソルトスプレイテスト)を実施した。基板上に施した低反射コーティングについて前述の平均透過率を測定し、その後JIS C8917:2005付属書4に準拠する条件で塩水噴霧を行なった後に平均透過率を測定し、塩水噴霧前後の平均透過率の差の絶対値を耐塩水性とした。具体的には、塩水噴霧は、温度35℃、濃度5質量%のNaCl水溶液をミスト状にして96時間噴霧した。
(プレッシャクッカテスト)
 得られた低反射コーティングの耐湿性を評価するため、促進試験としてプレッシャクッカテストを実施した。基板上に施した低反射コーティングを、温度130℃、2気圧、湿度100%に設定した試験槽内に1時間保持し、印加した圧力を解除したのち槽内から取り出して室温まで放冷する工程からなる試験サイクルを、2サイクル施すことにより本発明でのプレッシャクッカテストとした。この試験を施す前と施した後での平均透過率をそれぞれ測定し、平均透過率の差の絶対値を、プレッシャクッカテストによる耐湿性の評価とした。
(実施例1)
<コーティング液の調製>
 シリカ微粒子分散液(クォートロンPL-7、平均粒径125nmの略球状の一次粒子、固形分濃度23重量%、扶桑化学工業株式会社製)28.3質量部、1-メトキシ-2-プロパノール(溶媒)58.6質量部、1N塩酸(加水分解触媒)1質量部を撹拌混合し、さらに撹拌しながらテトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製) 12.1重量部を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Aを得た。
 原液Aにおいて、シリカ微粒子をSiO2に換算した質量と、バインダに含まれる酸化ケイ素成分をSiO2に換算した質量の比は、65:35であり、SiO2に換算した固形分濃度は10wt%である。
 前述の原液A70.0g、プロピレングリコール(溶媒)2.0g、1-メトキシ-2-プロパノール(溶媒)26.3g、塩化アルミニウム水溶液(AlCl3として濃度47.6wt%。塩化アルミニウム6水和物、試薬グレード、シグマアルドリッチ社製を脱イオン水に溶解)1.7gを撹拌混合し、コーティング液A1を得た。コーティング液A1において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiO2に換算した固形分濃度は7.0wt%であり、SiO2に換算したケイ素の酸化物を100質量部としたときのAl23に換算したアルミニウム化合物は5質量部であった。
<低反射コーティングの形成>
 実施例1では、透明導電膜付きガラス板の片側の主表面に低反射コーティングを形成して、低反射コーティング付き基板を得た。このガラス板は、通常のソーダライムシリケート組成からなり、オンラインCVD法を用い、片方の主表面に透明導電層を含む透明導電膜が形成されており、厚み3.2mmの日本板硝子株式会社製である。このガラス板を200×300mmに切断し、アルカリ溶液(アルカリ性洗浄液 LBC-1、レイボルド株式会社製)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させて低反射コーティングを形成するためのガラス板とした。低反射コーティングを施す前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率80.0%であった。
 実施例1においては、ロールコーターを用い、前述のガラス板の透明導電膜が施されていない側の主表面にコーティング液A1を塗布した。なお、このとき塗布液の膜厚が1~5μmになるようにした。次いでこのガラス板に塗布したコーティング液を、熱風で乾燥・硬化させた。この熱風乾燥は、ベルト搬送式の熱風乾燥装置を用い、熱風の設定温度を300℃、熱風吐出ノズルとガラス板との間の距離を5mm、搬送速度を0.5m/分に設定し、2回往復してノズルの下を4回通過させることで行なった。このとき、コーティング液が塗布されたガラス板が熱風に触れている時間は140秒であり、ガラス板のコーティング液が塗布されたガラス面における最高到達温度は199℃だった。乾燥・硬化後のガラス板は室温まで放冷し、ガラス板に低反射コーティングを施した。
 こうして得た低反射コーティングについて、前述の各特性を評価した。その結果を表1に示す。また、低反射コーティング付き基板の断面をFE-SEMを用いて観察した結果を図1に示す。
(実施例2)
<コーティング液の調製>
 コーティング液において、シリカ微粒子をSiO2に換算した質量と、バインダに含まれる酸化ケイ素成分をSiO2に換算した質量の比(以下、「微粒子:バインダ比」という)は65:35であり、ケイ素の酸化物(上記シリカ微粒子をSiO2に換算した質量と、バインダに含まれる酸化ケイ素成分をSiO2に換算した質量)を100質量部としたときのアルミニウム化合物(以下、「アルミニウム化合物の含有率」という)が3質量部となるように、前述の塩化アルミニウム水溶液と前述の溶媒とを変更したこと以外は前述のコーティング液A1と同じとして、コーティング液A2を調製した。コーティング液A2において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 実施例2では、前述のコーティング液A2を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(実施例3)
<コーティング液の調製>
 コーティング液において、微粒子:バインダ比が65:35であり、アルミニウム化合物の含有率が7質量部となるように、前述の塩化アルミニウム水溶液と前述の溶媒とを変更したこと以外は前述のコーティング液A1と同じとして、コーティング液A3を調製した。コーティング液A3において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 実施例3では、前述のコーティング液A3を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(実施例4)
<コーティング液の調製>
 原液Aと同様の手順で微粒子:バインダ比が70:30となるように作製した原液を用いたこと、さらに、アルミニウム化合物の含有率が5.5質量部となるように、前述の塩化アルミニウム水溶液を変更したこと以外は、前述のコーティング液A1と同じ方法でコーティング液A4を調製した。コーティング液A4において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 実施例4では、前述のコーティング液A4を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(実施例5)
<コーティング液の調製>
 原液Aと同様の手順で微粒子:バインダ比が60:40となるように作製した原液を用いたこと、さらに、アルミニウム化合物の含有率が5質量部となるように、前述の塩化アルミニウム水溶液を変更したこと以外は、前述のコーティング液A1と同じ方法でコーティング液A5を調製した。コーティング液A5において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 実施例5では、前述のコーティング液A5を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(実施例6)
<乾燥・硬化後のエージング処理>
 実施例1の低反射コーティングに対し、エージング処理を行なった。このエージング処理は、70℃に設定した電気炉中に、低反射コーティングを7日間保持し、その後室温まで放冷することで行なった。このエージング処理は、本発明の低反射コーティングが施されたガラス板を備えた光電変換装置が、設置され太陽光により発電している際に、低反射コーティングが経験する温度履歴に相当する。
 エージング処理後の低反射コーティングに対し、前述の各特性を評価した。その結果を表1に示す。
(比較例1)
<コーティング液の調製>
 コーティング液において、微粒子:バインダ比は、65:35であり、アルミニウム化合物の含有率が0となるように、前述の塩化アルミニウム水溶液を変更したこと以外は前述のコーティング液A1と同じとして、コーティング液B1を調製した。コーティング液B1において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 比較例1では、前述のコーティング液B1を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例2)
<コーティング液の調製>
 コーティング液において、微粒子:バインダ比は、65:35であり、アルミニウム化合物の含有率が1質量部となるように、前述の塩化アルミニウム水溶液を変更したこと以外は前述のコーティング液A1と同じとして、コーティング液B2を調製した。コーティング液B2において、ケイ素の酸化物の固形分濃度は7.0wt%であった。
<低反射コーティングの形成>
 比較例2では、前述のコーティング液B2を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例3)
<コーティング液の調製>
 コーティング液において、微粒子:バインダ比は、65:35であり、アルミニウム化合物の含有率が10質量部となるように、前述の塩化アルミニウム水溶液を変更したこと以外は前述のコーティング液A1と同じとして、コーティング液B3を調製した。コーティング液B3において、ケイ素の酸化物の固形分濃度は7.0wt%である。
<低反射コーティングの形成>
 比較例3では、前述のコーティング液B3を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例4)
<コーティング液の調製>
 実施例1と同じテトラエトキシシラン20.6質量部、硝酸アルミニウム水溶液(Al(NO33として濃度10wt%。硝酸アルミニウム9水和物、試薬グレード、シグマアルドリッチ社製)2.15質量部、エタノール78.0質量部を混合し、40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Dを得た。原液Dにおいて、テトラアルコキシシランをSiO2に換算した固形分は5.9wt%であり、硝酸アルミニウムをAl23に換算した固形分は0.1wt%であった。
 前述の原液D10.6g、実施例1と同じシリカ微粒子分散液27.6g、2-プロパノール61.7gを撹拌混合し、コーティング液D4を得た。
 コーティング液D4において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiO2に換算した固形分濃度は7.0wt%であり、微粒子:バインダ比は、91:9であり、アルミニウム化合物の含有率は0.15質量部であった。
 このコーティング液D4は、特許文献1の実施例1と比較し、水系溶媒で調製され、ロールコーターでの塗布に適した固形分濃度を有する点で異なるが、シリカ微粒子:テトラアルコキシシラン由来のSiO2:硝酸アルミニウムを換算したAl23の質量比が同じであった。
<低反射コーティングの形成>
 比較例4では、前述のコーティング液D4を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例5)
<コーティング液の調製>
 実施例1と同じシリカ微粒子分散液30.3質量部、エチルセロソルブ(溶媒)58.1質量部、1N塩酸(加水分解触媒)1質量部、を撹拌混合し、さらに撹拌しながら実施例1と同じテトラエトキシシラン10.4重量部を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Eを得た。
 原液Eにおいて、微粒子:バインダ比は、70:30であり、SiO2に換算した固形分濃度は10wt%であった。
 前述の原液E7.0g、プロピレングリコール(溶媒)83.8g、オキシ塩化ジルコニウム8水和物(試薬特級、関東化学株式会社製)9.2gを撹拌混合し、コーティング液E5を得た。
 コーティング液E5において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiO2に換算した固形分濃度は7.0wt%であり、SiO2に換算したケイ素の酸化物を100質量部としたときのZrO2に換算したジルコニウム化合物は5質量部であった。
 このコーティング液E5は、特許文献1の実施例13と比較し、ロールコーターでの塗布に適した固形分濃度を有し、界面活性剤を含まない点で異なるが、シリカ微粒子:テトラアルコキシシラン由来のSiO2:ジルコニウム化合物を換算したZrO2の質量比が同じであった。
<低反射コーティングの形成>
 比較例5では、前述のコーティング液E5を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例6)
<コーティング液の調製>
 前述の原液E7.0g、プロピレングリコール(溶媒)63.0g、チタンテトラアセチルアセトネート(固形分濃度65wt%の2-プロパノール溶液、オルガチックスTC-401、株式会社マツモト交商製)30.0gを撹拌混合し、コーティング液E6を得た。
 コーティング液E6において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiO2に換算した固形分濃度は7.0wt%であり、SiO2に換算したケイ素の酸化物を100質量部としたときのTiO2に換算したチタン化合物は5質量部であった。
 このコーティング液E6は、特許文献2の実施例15と比較し、ロールコーターでの塗布に適した固形分濃度を有し、界面活性剤を含まない点で異なるが、シリカ微粒子:テトラアルコキシシラン由来のSiO2:チタン化合物を換算したTiO2の質量比が同じであった。
<低反射コーティングの形成>
 比較例6では、前述のコーティング液E6を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
(比較例7)
<乾燥・硬化後のエージング処理>
 比較例1の低反射コーティングに対し、実施例6と同じエージング処理を行なった。エージング処理後の低反射コーティングに対し、前述の各特性を評価した。その結果を表1に示す。
 実施例1~5が示すとおり、熱風乾燥による硬化のみによる低反射コーティングは、2.5%以上、実施例4においては2.99%の極めて高い透過率ゲインと、0.15%以下、実施例5においては塩水噴霧試験前後で平均透過率の変化が0.05%の極めて高い塩水噴霧耐久性とを得ることができた。また、耐アルカリ性試験前後で平均透過率の変化が0.6%以下の高い耐アルカリ性と、プレッシャクッカテスト前後での平均透過率の変化が0.2%以下の高い耐湿性とを示した。
 さらに、実施例6が示すとおり、熱風乾燥による硬化の後、エージングを施した低反射コーティングは、塩水噴霧試験前後で平均透過率が変化しないという極めて優れた塩水噴霧耐久性を示した。また、耐アルカリ性および耐湿性についても、エージングにより改善が見られた。
 このことは、光電変換装置に施された本発明の低反射率コーティングは、光電変換装置が設置され太陽光が照射される状態に置かれたのち比較的短期間の間に、コーティングが形成されたときよりも塩水噴霧耐久性・耐アルカリ性および耐湿性の改善が促進されることを意味している。
 一方、低反射コーティングにおけるアルミニウム化合物の含有率が2質量%未満である比較例1および2は、塩水噴霧試験前後で透過率の変化が0.15%を超えるため、塩水噴霧耐久性に劣る。また耐湿性もプレッシャクッカテスト前後での平均透過率の変化が0.6%以上であり、耐湿性に劣る。
 また、比較例3は、アルミニウム化合物の含有率が7質量%を超えるので、透過率ゲインが2.4%と低く、低反射特性が損なわれている。また、塩水噴霧耐久性・耐アルカリ性・耐湿性にも劣る。
 比較例4は、低反射コーティングにおけるアルミニウム化合物がコーティング液に含有させた硝酸アルミニウムに由来し、また低反射コーティングにおけるアルミニウム化合物の含有率が2質量%未満であるので、塩水噴霧耐久性に劣り、また、耐アルカリ性や耐湿性が劣悪である。
 比較例5および6は、低反射コーティングにはアルミニウム化合物に代わって各々酸化ジルコニウムおよび酸化チタンが含有されているので、塩水噴霧耐久性に劣り、耐湿性にも劣る。酸化ジルコニウムや酸化チタンはこれらの耐久性を向上させる成分として知られているが、低温での乾燥・硬化においてはこのような効果が得られない。
 さらに、比較例5および6は、透過率ゲインが各々2.4%,2.3%と低く、低反射特性が損なわれている。
 比較例7はエージングをしない比較例1と比較して塩水噴霧耐久性が改善されるが、依然として0.15%以上であり、充分な塩水噴霧耐久性が得られておらず、耐湿性も不満足である。
Figure JPOXMLDOC01-appb-T000001
[参考例]
 低反射コーティングが形成されていないガラス板の表面の反射率の違いによって、低反射コーティングが形成されることによる透過率ゲインの変化を確認するために、参考例として、異なる表面反射率を有する複数種のガラス板に、同じコーティング液を用いて低反射コーティングが形成された低反射コーティング付き基板を準備した。
 まず、片方の主表面側における酸化錫濃度が異なることにより該主表面の反射率が異なる複数のガラス板を準備した。
 参考例1で用いたガラス板は、日本板硝子株式会社が製造した透明導電膜付きガラス板であり、通常のソーダライムシリケート組成からなり、オンラインCVD法を用い、片方の主表面に透明導電層を含む透明導電膜が形成されており、厚みは3.2mmであった。参考例1における低反射コーティングは、透明導電膜付きガラス板としての透過率を改善しており、低反射コーティングを施す前のこの透明導電膜付きガラス板の透過特性を前述の通り評価したところ、平均透過率83.64%だった。
 参考例2~5で用いたガラス板もまた、日本板硝子株式会社が製造した透明導電膜付きガラス板であり、透明導電膜は参考例1のものと同等であるが、フロートバスにおける酸化錫濃度、フロートバス雰囲気の調節により、透明導電膜が形成されていない主表面側における酸化錫濃度が異なるように製造されたものであった。なお、ガラス組成は通常のソーダライムシリケート組成からなり、ガラス板の厚みは3.2mmであった。これらのガラス板の平均透過率は、約80%だった。
 参考例6および8で用いたガラス板は、日本板硝子株式会社によるフロート板ガラスであり、厚み3.2mmであって、通常のソーダライムシリケート組成からなるが、どちらの主表面にも透明導電膜が形成されていないものであった。フロートバスに接していたガラス板の主表面を低反射コーティングを施す主表面としたものを参考例6とし、フロートバスに接していなかったガラス板の主表面を低反射コーティングを施す主表面としたものを参考例8とした。表2に示すとおり、フロートバスに接していなかったガラス板の主表面(参考例8)においては、酸化スズは検出されなかった。これらのガラス板の平均透過率は、約90%だった。
 参考例7および9で用いたガラス板も、日本板硝子株式会社による厚み3.2mmの、ソーダライムシリケート組成の、どちらの主表面にも透明導電膜が形成されていないフロート板ガラスであった。フロートバスに接していたガラス板の主表面を低反射コーティングを施す主表面としたものを参考例7とし、フロートバスに接していなかったガラス板の主表面を低反射コーティングを施す主表面としたものを参考例9とした。表2に示すとおり、フロートバスに接していなかったガラス板の主表面(参考例9)においては、酸化スズは検出されなかった。これらのガラス板の平均透過率は、参考例6および8のガラス板よりも高く、約90.8%だった。
 参考例1~9のガラス板は、実施例1と同様に、切断・洗浄・乾燥させて低反射コーティングを形成するためのガラス板とした。
 低反射コーティングを施す前の参考例1~9のガラス板の透過特性を、前述のとおり評価した。また、ガラス板の低反射コーティングが施される主表面について、波長域380~850nmにおける平均反射率と、最表面での酸化錫濃度も測定した。
 平均反射率は、分光光度計(UV-3100PC、株式会社島津製作所製)を用い、入射角8°での反射率曲線(反射スペクトル)を測定し、380~850nmにおける反射率を平均して算出した。なお、反射スペクトルの測定に際し、あらかじめ入射側と反対側の主表面が反射率測定に影響を及ぼさないように処置した。具体的には、透明導電膜付きガラス板の透明導電膜がない側に低反射コーティングを施す場合は、その透明導電膜をサンドブラストを用いて除去した後、黒色塗料を塗布した。また、透明導電膜が形成されていないガラス板の場合は、入射側と反対側の主表面に黒色塗料を塗布した。
 最表面の酸化錫濃度は、電子線プローブマイクロアナライザ(EPMA)とそれに装着した波長分散型X線検出器(WDX)を用いて測定した。具体的には、EPMA(JXA8600、日本電子株式会社製)によるWDX分析(加速電圧:15kV、試料電流:2.5×10-7A、スキャンスピード:6μm/分、分光結晶:PET)で行った。
 各ガラス板の片方の主表面(平均反射率および酸化錫濃度を測定した主表面)に、実施例1と同じコーティング液A1を用いて、実施例1と同じ手順で低反射コーティングを施した。得られた参考例1~9の低反射コーティング付き基板について、低反射コーティング表面における平均反射率をガラス板の平均反射率と同様の方法で測定すると共に、前述の透過特性を評価した。
 表2に、低反射コーティング付き基板の平均透過率(コーティング後の透過率)、および該低反射コーティングを施す前のガラス板の平均透過率に対する増分としての透過率ゲイン、並びに低反射コーティングを施す前のガラス板の平均反射率、および低反射コーティングを施す前のガラス板の平均反射率に対する低反射コーティング付き基板の平均反射率の減少(反射率ロス)を示す。
Figure JPOXMLDOC01-appb-T000002
 低反射コーティングを施す前のガラス板の一方の主表面の平均反射率(コーティング前の反射率)と、そのガラス板の主表面に低反射コーティングを施した後の低反射コーティングの面の平均反射率の減少(反射率ロス)および透過率ゲインとの関係は、図2に示すとおりである。
 この結果から、低反射コーティングが施される前のガラス板の平均反射率が高いほど、反射率ロスが大きくなり、その結果、高い透過率ゲインが得られることが確認された。
 また、参考例1~9の結果から、参考例1~5の透明導電膜つきガラス板を用いた低反射コーティング付き基板の場合は、透過率ゲインは反射率ロスの80%弱程度、参考例6~9のフロート板ガラスを用いた低反射コーティング付き基板の場合は、透過率ゲインは反射率ロスの90%程度であると判断できる。
 したがって、平均反射率の減少が約3.15%以上であれば、2.5%以上の透過率ゲインを実現しやすくなると考えられる。図2によれば、3.15%以上の反射率の減少は、平均反射率5.1%以上のガラス板の表面によって実現できる。すなわち、反射率5.1%以上を有するガラス板に対して本発明の低反射コーティングを施すことにより、2.5%以上の透過率ゲインを実現しやすくなると考えられる。
 本発明によれば、硬化温度が低温であるにも拘わらず、高い透過率ゲインを示し、かつ塩水噴霧耐久性に優れた低反射コーティングを提供できる。
 

Claims (15)

  1.  基板の主表面の少なくとも片方に施され得る低反射コーティングにおいて、
     前記低反射コーティングは、中実な球状で平均粒径が80~150nmであるシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜であって、
     前記バインダは、アルミニウム化合物をさらに含み、
     前記低反射コーティングにおける成分の含有率が、質量%表示で、
      前記シリカ微粒子              55~70%
      前記バインダにおけるシリカ         25~40%
      前記アルミニウム化合物をAl23に換算して 2~7%
    であり、
     前記低反射コーティングの膜厚が80~800nmであり、
     前記低反射コーティングを基板に施すことにより得られる透過率ゲインが2.5%以上である、
    低反射コーティング。
     ここで、透過率ゲインは、波長域380~850nmにおける平均透過率に関し、前記低反射コーティングを施す前の前記基板の平均透過率に対する、前記低反射コーティングを施した前記基板の平均透過率の増分、である。
  2.  前記シリカ微粒子の平均粒径が100nmを超え、150nm以下である、
    請求項1に記載の低反射コーティング。
  3.  前記バインダにおけるシリカが、前記低反射コーティングを形成するためのコーティング液に添加された、加水分解性シリコン化合物または加水分解性シリコン化合物の加水分解物に由来し、
     該加水分解性シリコン化合物が、下記式(I)に示す化合物を含む、
    請求項1に記載の低反射コーティング。
     SiX4  (I)
     ここで、Xは、アルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。
  4.  前記加水分解性シリコン化合物が、テトラアルコキシシランである、
    請求項3に記載の低反射コーティング。
  5.  前記アルミニウム化合物が、前記低反射コーティングを形成するためのコーティング液に添加された、ハロゲン化アルミニウムに由来する、
    請求項1に記載の低反射コーティング。
  6.  前記ハロゲン化アルミニウムが、塩化アルミニウムである、
    請求項5に記載の低反射コーティング。
  7.  前記低反射コーティングを施した基板において、波長域380~850nmにおける平均透過率に関し、
     JIS C8917:2005付属書4に規定する塩水噴霧試験を施した後の平均透過率に対する、該塩水噴霧試験を施す前の平均透過率の差の絶対値が0.15%以下である、
    請求項1に記載の低反射コーティング。
  8.  前記低反射コーティングを形成するためのコーティング液を、前記基板に塗布した後の加熱工程において、
     前記基板の表面が経験する最高温度が350℃以下であり、
     前記基板の表面が200℃以上の温度にある時間が5分以下である、
    請求項1に記載の低反射コーティング。
  9.  前記低反射コーティングを形成するためのコーティング液を、前記基板に塗布した後の加熱工程において、
     前記基板の表面が経験する最高温度が250℃以下であり、
     前記基板の表面が100℃以上の温度にある時間が2分以下である、
    請求項1に記載の低反射コーティング。
  10.  ガラス板と、
     前記ガラス板の主表面の少なくとも片方に形成されている、請求項1に記載の低反射コーティングと、
    を有する低反射コーティング付き基板。
  11.  前記ガラス板において、前記低反射コーティングが形成されている前記主表面は、該低反射コーティングが形成されていない状態で、5.1%以上の平均反射率(波長域380~850nmにおける平均反射率)を有する、
    請求項10に記載の低反射コーティング付き基板。
  12.  前記ガラス板において、前記低反射コーティングが形成されている前記主表面の最表面における酸化錫の濃度が、3.5~24質量%である、
    請求項11に記載の低反射コーティング付き基板。
  13.  前記ガラス板は、フロート法によって製造されたフロート板ガラスであり、
     前記低反射コーティングは、前記ガラス板の主表面のうち、フロート法による製造時にフロートバスに接していた主表面上に形成されている、
    請求項11に記載の低反射コーティング付き基板。
  14.  前記低反射コーティングが前記ガラス板の片方の主表面に形成されており、
     前記ガラス板の前記低反射コーティングが形成されている前記主表面とは反対側の主表面に、透明導電膜が形成されている、
    請求項10に記載の低反射コーティング付き基板。
  15.  ガラス板を備えた光電変換装置であって、
     前記ガラス板の光が入射する主表面に、請求項1に記載の低反射コーティングが形成されている、光電変換装置。
PCT/JP2015/003300 2014-06-30 2015-06-30 低反射コーティング、低反射コーティング付き基板および光電変換装置 WO2016002215A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016531115A JP6560210B2 (ja) 2014-06-30 2015-06-30 低反射コーティング、低反射コーティング付き基板および光電変換装置
US15/322,670 US10416353B2 (en) 2014-06-30 2015-06-30 Low-reflection coating, low-reflection coated substrate, and photoelectric conversion device
EP15815778.4A EP3162773B1 (en) 2014-06-30 2015-06-30 Substrate provided with low-reflection coating, method for its production and photoelectric conversion device containing it.
CN201580035666.3A CN106660863B (zh) 2014-06-30 2015-06-30 低反射涂层、带低反射涂层的基板及光电转换装置
ES15815778T ES2812613T3 (es) 2014-06-30 2015-06-30 Sustrato provisto de un recubrimiento de baja reflexión, método para su producción y dispositivo de conversión fotoeléctrica que lo contiene
SA516380631A SA516380631B1 (ar) 2014-06-30 2016-12-29 طلاء قليل الانعكاس، ومادة مطلية قليلة الانعكاس، وجهاز تحويل كهروضوئي

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134177 2014-06-30
JP2014134177 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002215A1 true WO2016002215A1 (ja) 2016-01-07

Family

ID=55018788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003300 WO2016002215A1 (ja) 2014-06-30 2015-06-30 低反射コーティング、低反射コーティング付き基板および光電変換装置

Country Status (8)

Country Link
US (1) US10416353B2 (ja)
EP (1) EP3162773B1 (ja)
JP (1) JP6560210B2 (ja)
CN (1) CN106660863B (ja)
ES (1) ES2812613T3 (ja)
MY (1) MY181241A (ja)
SA (1) SA516380631B1 (ja)
WO (1) WO2016002215A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170498A1 (ja) * 2016-03-29 2019-02-07 日立化成株式会社 エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
CN109791221A (zh) * 2016-07-28 2019-05-21 日本板硝子株式会社 带低反射涂层的玻璃板、制造带低反射涂层的基材的方法及用于形成带低反射涂层的涂敷液

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768560A (zh) * 2021-01-07 2021-05-07 成都中建材光电材料有限公司 一种对双玻光伏组件图案刻蚀的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117526A (ja) * 2005-11-30 2006-05-11 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルおよび被膜付基材
WO2012008427A1 (ja) * 2010-07-12 2012-01-19 セントラル硝子株式会社 低反射膜およびその形成方法およびそれを用いた低反射部材、並びに、低反射膜形成用塗布液およびその調製方法およびそれを用いた低反射部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010666B1 (en) * 1998-06-12 2009-11-04 Mitsubishi Paper Mills Limited Silica-alumina composite sol, processes for producing the same, and recording medium
EP1167313B1 (en) * 1999-12-13 2015-09-23 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
WO2001047033A1 (fr) * 1999-12-20 2001-06-28 Nippon Sheet Glass Co., Ltd. Transducteur photoelectrique et substrat pour transducteur photoelectrique
JP2005330172A (ja) * 2004-05-21 2005-12-02 Nippon Sheet Glass Co Ltd ガラス板およびその製造方法、低反射性透明ガラス板、低反射性透明導電基板およびその製造方法、ならびに、低反射性透明導電基板を用いた光電変換素子
CN101925551A (zh) * 2007-12-05 2010-12-22 肖特公开股份有限公司 具有溶胶-凝胶层的基材和生产复合材料的方法
WO2010121054A1 (en) * 2009-04-15 2010-10-21 3M Innovative Properties Company Retroreflective sheeting including a low index coating
EP2611749B1 (fr) * 2010-09-01 2018-03-14 AGC Glass Europe Substrat verrier revêtu d'une couche anti-réfléchissante
JP2014015543A (ja) 2012-07-09 2014-01-30 Nissan Chem Ind Ltd 低屈折率コーティング組成物
JP6039962B2 (ja) 2012-08-01 2016-12-07 日本板硝子株式会社 光電変換装置用カバーガラス
CN104955782B (zh) * 2013-01-31 2017-09-15 日本板硝子株式会社 带低反射涂层的玻璃板及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117526A (ja) * 2005-11-30 2006-05-11 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルおよび被膜付基材
WO2012008427A1 (ja) * 2010-07-12 2012-01-19 セントラル硝子株式会社 低反射膜およびその形成方法およびそれを用いた低反射部材、並びに、低反射膜形成用塗布液およびその調製方法およびそれを用いた低反射部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170498A1 (ja) * 2016-03-29 2019-02-07 日立化成株式会社 エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
CN109791221A (zh) * 2016-07-28 2019-05-21 日本板硝子株式会社 带低反射涂层的玻璃板、制造带低反射涂层的基材的方法及用于形成带低反射涂层的涂敷液
US11442200B2 (en) 2016-07-28 2022-09-13 Nippon Sheet Glass Company, Limited Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate

Also Published As

Publication number Publication date
MY181241A (en) 2020-12-21
JP6560210B2 (ja) 2019-08-14
US20170139080A1 (en) 2017-05-18
JPWO2016002215A1 (ja) 2017-04-27
EP3162773A4 (en) 2017-11-29
CN106660863A (zh) 2017-05-10
ES2812613T3 (es) 2021-03-17
EP3162773B1 (en) 2020-08-12
CN106660863B (zh) 2019-08-13
US10416353B2 (en) 2019-09-17
EP3162773A1 (en) 2017-05-03
SA516380631B1 (ar) 2020-12-31

Similar Documents

Publication Publication Date Title
EP3492953B1 (en) Glass plate with low reflection coating, method for producing base with low reflection coating, and coating liquid for forming low reflection coating of base with low reflection coating
JP6989650B2 (ja) 低反射コーティング付ガラス基板、低反射コーティング付ガラス基板を製造する方法、及び光電変換装置
KR101939871B1 (ko) 광전 변환 장치용 커버 유리
US10329430B2 (en) Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
EP3225600B1 (en) Glass plate with low-reflection coating
JP6560210B2 (ja) 低反射コーティング、低反射コーティング付き基板および光電変換装置
JP5989808B2 (ja) 低反射コーティング付きガラス板の製造方法とそれに用いるコーティング液
WO2016002223A1 (ja) 低反射コーティング付きガラス板
JP7083342B2 (ja) 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法
JP6487933B2 (ja) 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法
JP7153638B2 (ja) 低反射コーティング付きガラス物品
WO2018198937A1 (ja) 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322670

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815778

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815778

Country of ref document: EP