WO2016001997A1 - 橋梁施工方法及び橋梁構造 - Google Patents

橋梁施工方法及び橋梁構造 Download PDF

Info

Publication number
WO2016001997A1
WO2016001997A1 PCT/JP2014/067463 JP2014067463W WO2016001997A1 WO 2016001997 A1 WO2016001997 A1 WO 2016001997A1 JP 2014067463 W JP2014067463 W JP 2014067463W WO 2016001997 A1 WO2016001997 A1 WO 2016001997A1
Authority
WO
WIPO (PCT)
Prior art keywords
superstructure
head fixing
pile head
fixing member
pile
Prior art date
Application number
PCT/JP2014/067463
Other languages
English (en)
French (fr)
Inventor
広茂 高野
Original Assignee
株式会社高知丸高
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高知丸高 filed Critical 株式会社高知丸高
Priority to CN201480001416.3A priority Critical patent/CN106536825B/zh
Priority to PCT/JP2014/067463 priority patent/WO2016001997A1/ja
Publication of WO2016001997A1 publication Critical patent/WO2016001997A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Definitions

  • the present invention relates to a bridge construction method and structure.
  • the position of the pipe head fixing pipe 4 attached to the main girder 1 is brought close to the completed state, and the tubular pile 5 is driven through the pile head fixing pipe 4.
  • the cross beam 3 to which the pile head fixing pipe 4 is attached and the main beam 1 are connected by a double pipe structure that can rotate in the circumferential direction.
  • the conventional bridge construction method described above has the following points to be improved.
  • a gap is generated between the upper surface P 4 of the pile head fixing pipe 4 and the lining plate 6.
  • the canopy (not shown) arrange
  • this method may not be used depending on the topography of the site where the bridge is built. For example, when a bridge is bridged between mountains across a river, when one mountain and the other mountain cannot be connected in a straight line, or between one mountain and the other mountain Cannot be used when there is a difference.
  • the problem to be solved by the present invention is to provide a bridge construction method and a bridge structure that are easy to construct and can construct a high-strength bridge and that can be constructed on-site in various terrain.
  • the bridge construction method includes a bridge using a main girder and a cross girder, and a superstructure in which a tubular pile head fixing member provided at an intersection of the main girder and the cross girder is integrally joined. It is a construction method and is connected to the existing bridge part in a cantilevered state by joining one end part of the main girder of the superstructure to the main girder of the superstructure of the existing bridge part.
  • the pile member is inserted into the pile head fixing member of the connected superstructure, the lower end of the pile member is driven at a predetermined pile fixing position, and the upper end of the pile member is fixed to the pile head of the superstructure It is fixed to the member, and the floor slab is arranged along the upper part of the superstructure, and the superstructure is directly or indirectly with the floor slab in which the upper surface of the pile head fixing member is disposed on the superstructure.
  • the upper surface of the pile head fixing member is in direct contact with the central axis of the pile member inserted through the pile head fixing member. Become, characterized in that.
  • the bridge structure according to the present invention is a bridge structure having a superstructure in which a main girder and a cross girder, and a tubular pile head fixing member provided at an intersection of the main girder and the cross girder are integrally joined.
  • a plurality of superstructures are connected by joining one end portions of the main girder, a pile member is inserted into the pile head fixing member of the connected superstructure, and a lower end of the pile member is a predetermined It is placed at a pile fixing position, the upper end of the pile member is fixed to the pile head fixing member of the superstructure, a floor slab is arranged along the top of the superstructure, and the superstructure is connected to the pile head
  • the upper surface of the fixing member is directly or indirectly in contact with the floor slab disposed on the superstructure, and the upper surface of the pile head fixing member is on the central axis of the pile member inserted through the pile head fixing member. It is characterized by having a right angle to it.
  • the superstructure is such that the main girder joined to one side and the other side across the center of the pile head fixing member is on the same straight line in the horizontal plane. It is not arranged.
  • the superstructure is characterized in that a main girder joined to the pile head fixing member is inclined with respect to a horizontal direction.
  • the superstructure is such that the main girder joined to one side and the other side across the center of the pile head fixing member is on the same straight line in the vertical plane. It is characterized by not being arranged.
  • the superstructure includes the main beam in which the cross beam connecting the pile head fixing members adjacent in the width direction is joined to the pile head fixing member. It has the branch extension part extended in parallel with a girder, The 2nd main girder which is not joined to the said pile head fixing member is joined with respect to the said branch extension part, It is characterized by the above-mentioned.
  • the upper end of the pile member is fixed to the pile head fixing member of the superstructure, and then the sub-main girder is joined to the main girder and the cross beam A sub-slab is joined to the top, and a floor slab is arranged along the upper part of the superstructure through the sub-main girder and the sub-cross girder.
  • the upper surface of the pile head fixing member can be closed directly or indirectly by the floor slab. Therefore, the load of the floor slab can be made to oppose the pushing force of the pile member inserted through the pile head fixing member. Therefore, a high-strength bridge can be constructed. Moreover, since the upper surface of the tubular pile head fixing member is perpendicular to the central axis of the pile member, the pile member can be easily inserted into the pile head fixing member. Therefore, a bridge can be easily constructed.
  • the superstructure includes a main girder joined to one side and the other side across the center of the pile head fixing member in a horizontal plane. Since it is not arranged on a line, a bridge having a curved structure in a horizontal plane can be easily constructed. Therefore, for example, when a bridge is bridged between mountains across a river, even when one mountain and the other mountain cannot be connected in a straight line, the bridge can be bent and bridged. It becomes possible.
  • the construction method and the bridge structure of the bridge according to the present invention since the main girder joined to the pile head fixing member is inclined with respect to the horizontal direction, the superstructure is in the horizontal direction.
  • the bridge since the main girder joined to the pile head fixing member is inclined with respect to the horizontal direction, the superstructure is in the horizontal direction.
  • the superstructure includes a main girder joined to one side and the other side across the center of the pile head fixing member in the vertical plane. Since they are not arranged in a straight line, a bridge having a structure inclined with respect to the horizontal direction can be easily constructed.
  • the cross beam connecting the pile head fixing members adjacent in the width direction is joined to the pile head fixing member. Since it has a branch extension part extending in parallel with the main girder, and the second main girder not joined to the pile head fixing member is joined to the branch extension part, the width is When constructing a wide bridge, the number of main girders can be increased without increasing the number of piles. Therefore, a wide bridge can be easily constructed with high strength.
  • the sub main girder is joined on the main girder and the sub cross girder is joined on the horizontal girder. Becomes higher. This makes it possible to construct bridges at places where the distance between pile members must be increased.
  • the superstructure 101 used in the bridge construction method according to the present invention will be described with reference to FIG.
  • the superstructure 101 is usually assembled in advance prior to the construction of the bridge.
  • a transporting means such as a truck in a factory
  • the form of the superstructure 101 shown in FIG. It is preferable to assemble up to.
  • FIG. 1A is a top view of the superstructure 101
  • FIG. 1B is a front view of the superstructure 101
  • FIG. 1C is a right side view of the superstructure 101.
  • the superstructure 101 includes a plurality of main girders 111 and cross girders 113, and a tubular pile head fixing member 115 provided at the intersection of the main girders 111 and the cross girders 113. It is joined and configured.
  • the main girder 111 and the horizontal girder 113 are arranged in a ladder shape.
  • the main beam 111 and the horizontal beam 113 are made of H-shaped steel.
  • the main girder 111 is composed of a relatively short main girder 111a and a relatively long main girder 111b. As shown in FIG. 1C, one end of each of the main beam 111a and the main beam 111b is welded and fixed to a side surface portion 115a (described later) of the pile head fixing member 115. Moreover, as shown to FIG. 1 (a), (c), the other end which is not being fixed to the pile head fixing member 115 of the main girder 111a and the main girder 111b uses a predetermined fixing plate, a volt
  • the horizontal beam 113 is composed of a horizontal beam 113a and a horizontal beam 113b having a predetermined length. As shown in FIG. 1B, one end of each of the cross beam 113a and the cross beam 113b is welded and fixed to the side surface portion 115a of the pile head fixing member 115. Moreover, as shown to FIG. 1 (a), (b), the other end which is not being fixed to the pile head fixing member 115 of the cross beam 113a and the cross beam 113b uses a predetermined fixing plate, a volt
  • the pile head fixing member 115 has a center C5 disposed on the center axis J1 of the main girder 111. Further, the pile head fixing member 115 has the center C5 disposed on the center axis J3 of the cross beam 113. That is, the pile head fixing member 115 has the center C5 of the center axis J1 of the main beam 111 and the cross beam 113. It arrange
  • the pile head fixing member 115 is arranged such that the upper surface P5 is perpendicular to the central axis J5 of the steel pipe pile penetrating the pile head fixing member 115. Furthermore, as shown in FIG.1 (c), the main girder 111 arrange
  • main girder 111a, the main girder 111b, and the cross beam 113a or the cross beam 113b are joined to each pile head fixing member 115.
  • pile head fixing member 115 located at the upper end of the superstructure 101 in FIG. 1A only the main girder 111a and the horizontal beam 113a or the horizontal beam 113b are joined to the pile head fixing member 115. Yes.
  • FIGS. 1A to 1C the description of rib portions 115c (described later) disposed on each pile head fixing member 115 is omitted.
  • FIG. 2A is a top view of the pile head fixing member 115
  • FIG. 2B is an XX cross-sectional view of the pile head fixing member 115 shown in FIG. 2A.
  • the pile head fixing member 115 has a cylindrical portion 115a, a flange portion 115b, and a rib portion 115c.
  • a flange portion 115b is disposed at one end of the cylindrical portion 115a.
  • a plurality of holes 115d are formed in the flange portion 115b.
  • the holes 115d are formed to fix the pile head canopy (described later) to the pile head fixing member 115 using bolts and nuts.
  • the inner diameters of the cylindrical portion 115a and the flange portion 115b are substantially equal to the outer diameter of the steel pipe pile serving as a pier.
  • Ribs 115c are arranged radially from the center C5 of the pile head fixing member 115. As shown in FIG. 2B, the rib portion 115c is joined to the side surface of the cylindrical portion 115a and the flange portion 115b. Thereby, the strength of the pile head fixing member 115 is increased.
  • the guide piles G1 to G4 are installed in a rectangular shape at predetermined positions using a vibratory hammer VH by a crane vehicle CT arranged on the abutment BA that has been installed.
  • inner side of the guide pile G1 and the guide pile G3 are represented by the parenthesis writing.
  • the receiving material R1 is installed so as to bridge the guiding pile G1 and the guiding pile G2 installed in parallel with the tip of the abutment BA.
  • the receiving material R2 is installed for the guiding pile G3 and the guiding pile G4.
  • the superstructure 101 is arrange
  • the table machine TM is arranged on one pile head fixing member 115 of the superstructure 101 using the crane vehicle CT.
  • the down-the-hole hammer DH is inserted into the table machine TM and the pile head fixing member 115 from above using the crane vehicle CT.
  • the ground is excavated by the table machine TM and the down-the-hole hammer DH, and the fixing hole for fixing a steel pipe pile to a ground is formed.
  • the down-the-hole hammer DH is pulled upward as shown in FIG. Further, the table machine TM is removed. As before, as shown in FIG. 5 (b), after placing the table machine TM on the other pile head fixing member 115 of the superstructure 101, placing the down-the-hole hammer DH, excavating the ground, Drill one fixed hole. Then, as shown in FIG. 5 (c), while the bucket BK charged with mortar is moved using the crane vehicle CT, the mortar for rooting is driven into the fixed hole using the tremy pipe TT.
  • the steel pipe pile SP serving as the pier is inserted through the pile head fixing member 115 from above using the crane vehicle CT and inserted into the fixing hole.
  • the monken HB is operated with the crane vehicle CT and the steel pipe pile SP is piled.
  • the pile head canopy TC is fixed to the upper surface of the pile head fixing member 115.
  • the pile head fixing member 115 and the pile head canopy TC are fixed to holes 115d (see FIG. 2) formed in the flange portion 115b of the pile head fixing member 115 and holes formed in the pile head canopy TC. Insert the bolt and fix it with a nut.
  • the conductive material is removed as shown in FIG. And as shown in FIG.8 (b), the crawler scaffold is laid on the installed superstructure 101, and construction of the boarding part in bridge construction is completed. After that, bridge construction will be performed at the time of construction of the standard part.
  • FIG. 9 shows a side view of the superstructure 101 in a state where the floor slab FS and the adjusting concrete AC are applied.
  • some pile head fixing members 115 and some steel pipe piles SP are displayed by the cross section.
  • the floor FS is placed on the canopy TC. Is constructed. Therefore, the upper surface P5 of the pile head fixing member 115 is in contact with the lower surface PF of the floor slab FS indirectly through the canopy TC. Thereby, the load F1 from the floor slab FS can be made to oppose the pushing force F2 by the steel pipe pile SP. Therefore, it is possible to construct a bridge having high strength.
  • the superstructure 101 in Example 1 described above was used at the time of construction of the boarding portion.
  • the superstructure 201 in the present embodiment is used when performing construction on the superstructure 101 that has already been constructed (hereinafter referred to as standard construction).
  • the superstructure 101 in Example 1 can also be used at the time of standard construction.
  • the superstructure 101 may be used instead of the superstructure 201 in the following construction method.
  • FIG. 10A is a top view of the upper work 201
  • FIG. 10B is a front view of the upper work 201
  • FIG. 10C is a right side view of the upper work 201.
  • 10 (a) to 10 (c) the same reference numerals are given to the same components as those in FIGS. 1 (a) to 1 (c).
  • the main girder 111 and the horizontal girder 113 are arranged in a ladder shape, the main girder 111 and the horizontal girder 113 are arranged in a U-shape.
  • the crane vehicle CT is arrange
  • the upper work 201 is placed at a predetermined position by the crane truck CT, and the main beam 111b of the upper work 201 and the main beam 111a of the upper work SS are connected.
  • the upper work 201 is cantilevered with respect to the upper work SS.
  • a wire rod for example, a piano wire
  • the state of the main girder 111b of the upper work 201, the angle, the distortion, and the like may be brought closer to the state at the time of completion ( Patent Document 1).
  • the superstructure 101 can be used instead of the superstructure 201.
  • the table machine TM is arranged on one pile head fixing member 115 of the superstructure 101 using the crane vehicle CT.
  • the down-the-hole hammer DH is inserted through the table machine TM and the pile head fixing member 115 from above using the crane vehicle CT.
  • the down-the-hole hammer DH is inserted perpendicularly to the upper surface P5 (see FIG. 10) of the pile head fixing member 115.
  • the ground is excavated by the table machine TM and the down-the-hole hammer DH to form a fixing hole for fixing the steel pipe pile to the ground.
  • the down-the-hole hammer DH is pulled upward as shown in FIG. Further, the table machine TM is removed.
  • the mortar for rooting is driven in a fixed hole using the treme tube TT.
  • a steel pipe pile SP (3) serving as a pier is inserted through the pile head fixing member 115 from above and inserted into the fixing hole using the crane vehicle CT.
  • the steel pipe pile SP (3) is inserted perpendicularly to the upper surface P5 (see FIG. 10) of the pile head fixing member 115.
  • the monken HB is operated with the crane truck CT, and the steel pipe pile SP (3) is piled.
  • the steel pipe pile SP1 (3) protruding upward from the upper surface of the superstructure 201 is cut and removed.
  • FIG. 14B a crawler scaffold is laid on the installed superstructure 201.
  • steel pipe pile SP (4) is constructed similarly to construction of steel pipe pile SP (3), and the crawler scaffold is laid.
  • region for laying the floor slab by the crane vehicle CT is ensured.
  • a floor slab is laid in the removed area. Thereby, the construction of the standard part in the bridge construction is completed.
  • a floor slab was laid horizontally.
  • a floor slab is laid with a predetermined inclination with respect to the horizontal direction.
  • FIG. 15A is a top view of the upper work 301
  • FIG. 15B is a front view of the upper work 301
  • FIG. 15C is a right side view of the upper work 301.
  • the same components as those in FIGS. 1A to 1C are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the superstructure 301 has a main girder 311, a cross girder 113 and a pile head fixing member 115.
  • the main beam 311 and the horizontal beam 113 are arranged in a ladder shape.
  • the main beam 311 and the horizontal beam 113 are made of H-shaped steel.
  • the horizontal beam 113 includes horizontal beams 113a and 113b.
  • the main girder 311 is composed of relatively short main girders 311a and 311c and a relatively long main girder 311b. As shown in FIG. 15C, one end of each of the main girder 311a and the main girder 311c is welded and fixed to the side surface portion 115a (see FIG. 2) of the pile head fixing member 115. 15A and 15C, both ends of the main girder 311b are connected to one end of the main girder 311a and the main girder 311c that are not fixed to the pile head fixing member 115, a predetermined fixing plate, and They are abutted and joined together using bolts and nuts.
  • the cross beam 113 is configured by joining two cross beams 113a and 113b as in the case of the first embodiment.
  • the cross beam may be configured by one member (H-shaped steel). Good. The same applies to the other embodiments.
  • the pile head fixing member 115 has a center C ⁇ b> 5 disposed on the center axis J ⁇ b> 1 of the main girder 311. Further, the pile head fixing member 115 has the center C5 disposed on the center axis J3 of the cross beam 113, that is, the pile head fixing member 115 has the center C5 of the center axis J1 of the main beam 311 and the cross beam 113. It arrange
  • the main girders 311a and 311c arranged with the pile head fixing member 115 interposed therebetween are arranged on a straight line in the vertical direction with respect to the horizontal direction.
  • the main beam 311b connected between the main beam 311a and the main beam 311c is disposed obliquely with respect to the horizontal direction in the vertical plane. That is, as shown in FIG. 15C, the superstructure 301 has a staircase shape in which flat portions around the pile head fixing member 115 and oblique portions along the main beam 311b are alternately arranged. .
  • FIG. 16 shows a side view of the superstructure 301 in a state where the floor FS and the adjustment concrete AS have been constructed.
  • some pile head fixing members 115 and some steel pipe piles SP are displayed by the cross section.
  • the steel pipe pile SP is inserted into the pile head fixing member 115 perpendicularly to the upper surface P5 of the pile head fixing member 115.
  • the floor slab FS is constructed on the canopy TC. Therefore, the upper surface P5 of the pile head fixing member 115 is in contact with the lower surface PF of the floor slab FS indirectly through the canopy TC. Thereby, the load F1 from the floor slab FS can be made to oppose the pushing force F2 by the steel pipe pile SP. Therefore, it is possible to construct a bridge having high strength.
  • the adjustment concrete AC1 is applied.
  • the main girder of the superstructure was arranged so as to extend linearly in the horizontal plane.
  • the bridge construction in the present embodiment is arranged such that the main girder of the superstructure extends in a non-linear manner in the horizontal plane and / or the vertical plane.
  • an embodiment in which the main girder of the superstructure extends non-linearly in both the horizontal plane and the vertical plane is shown.
  • FIG. 18A is a top view of the upper work 401
  • FIG. 18B is a right side view of the upper work 401.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the superstructure 401 has a main girder 411, a cross girder 116, and a pile head fixing member 115.
  • the main beam 511 and the horizontal beam 117 are arranged in a bent lattice shape.
  • the main beam 411 and the horizontal beam 116 are made of H-shaped steel.
  • the number of main girders and horizontal girders is not limited. The same applies to other embodiments.
  • the main girder 411 is composed of relatively short main girders 411a and 411c and a relatively long main girder 411b. As shown in FIG. 18 (b), one end of each of the main beam 411a and the main beam 411c is welded and fixed to the side surface portion 115a (see FIG. 2) of the pile head fixing member 115. 18 (a) and 18 (b), both ends of the main beam 411b are connected to one end of the main beam 411a and the main beam 411c that are not fixed to the pile head fixing member 115, a predetermined fixing plate, and They are abutted and joined together using bolts and nuts.
  • the horizontal beam 116 is configured by a horizontal beam 116a and a horizontal beam 116b having a predetermined length. As shown in FIG. 18A, one end of each of the cross beam 116a and the cross beam 116b is welded and fixed to the side surface portion of the pile head fixing member 115. Moreover, as shown to Fig.18 (a), (b), the other end which is not fixed to the pile head fixing member 115 of the cross beam 116a and the cross beam 116b uses a predetermined fixing plate, a volt
  • the relatively short main girders 311a and 311c extend in a direction perpendicular to the central axis J5 of the pile head fixing member 115 (that is, in the horizontal direction) as shown in FIG.
  • the relatively short main girders 411a and 411c are not perpendicular to the center axis of the pile head fixing member 115 as shown in FIG. It is arranged to extend in a direction inclined with respect to the horizontal direction.
  • the main girder 411a joined to one side across the center of the pile head fixing member 115 and the main girder 411c joined to the other side are arranged on the same straight line in the vertical plane. Absent.
  • the line A and the line B in FIG. 18B are not on the same straight line, and the angle ⁇ formed by the line A and the line B is less than 180 degrees.
  • the main beam 411a and the main beam 411c are inclined with respect to the horizontal direction. Therefore, the main beam 411b that connects the main beam 411a and the main beam 411b is also inclined with respect to the horizontal direction.
  • at least one of the main girders 411a and 411c joined to the pile head fixing member 115 only needs to be inclined with respect to the horizontal direction, but both are inclined in order to ensure a height difference at a short distance. It is preferable.
  • shaft of the pile head fixing member 115 is shown in FIG.
  • the main girder 411a arranged on one side and the main girder 411c arranged on the other side across the central axis of the pile head fixing member 115 are: As shown in FIG. 18A, they are not arranged on the same straight line in the horizontal plane. That is, the line C and the line D in FIG. 18A are not on the same straight line, and the angle ⁇ formed by the line C and the line D is less than 180 degrees.
  • FIG. 18 shows what has both configurations.
  • the main girder 411a arranged on one side across the center of the pile head fixing member 115 and the main girder 411c arranged on the other side are not arranged on the same straight line in the horizontal plane (FIG. 18 (a )reference).
  • At least one of the main girder 411a arranged on one side and the main girder 411c arranged on the other side across the center of the pile head fixing member 115 is inclined with respect to the horizontal direction (see FIG. 18 (b)).
  • the main girders 411a and 411c joined to the one side and the other side across the center of the pile head fixing member 115 are not arranged on the same straight line in the horizontal plane.
  • a bridge having a curved structure in a horizontal plane can be easily constructed. Therefore, for example, as shown in FIG. 19, when a bridge is bridged between mountains (M1, M2) sandwiching a river (R), between one mountain (M1) and the other mountain (M2) Even when it is not possible to connect the bridges in a straight line, the bridge can be bent and bridged.
  • a circle drawn in FIG. 19 represents a pile placed on the ground.
  • FIG. 19 shows the case where the superstructure 501 of Example 5 described later is used, the same construction is possible in the superstructure of Example 4.
  • the superstructure 401 has the main girders 311a and 311c that are joined to one side and the other side across the center of the pile head fixing member 115 and are arranged to be inclined with respect to the horizontal direction.
  • a bridge having an inclined structure Therefore, for example, when a bridge is bridged between the mountains (M1, M2) sandwiching the river (R), when there is a height difference between one mountain (M1) and the other mountain (M2), etc. It is also possible to bridge the bridge while inclining.
  • the dashed-dotted line (L) in FIG. 19 shows a horizontal line.
  • FIG. 21A is a top view of the upper work 501
  • FIG. 21B is a front view of the upper work 501.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the superstructure 501 has a main girder 511, a horizontal girder 117, and a pile head fixing member 115.
  • the main beam 511 and the horizontal beam 117 are arranged in a bent lattice shape. Further, the main beam 511 and the horizontal beam 117 are formed of H-shaped steel.
  • the main girder 511 includes relatively short main girders 511a and 511c and relatively long main girders 511b. As shown in FIG. 21 (b), one end of each of the main beam 511a and the main beam 511c is welded and fixed to the side surface 115a (see FIG. 2) of the pile head fixing member 115. As shown in FIGS. 21 (a) and 21 (b), both ends of the main beam 511b are connected to one end of the main beam 511a and the main beam 511c that are not fixed to the pile head fixing member 115, a predetermined fixing plate, and They are abutted and joined together using bolts and nuts.
  • Example 5 as in Example 4, the main girder 511a arranged on one side and the main girder 511c arranged on the other side across the central axis of the pile head fixing member 115 are shown in FIG. As shown, they are not arranged on the same straight line in the horizontal plane.
  • the feature of the superstructure 501 of the fifth embodiment is that a second main girder 512 described later is provided, and the arrangement of the main girder 511a and the main girder 511c is not limited to the arrangement shown in the figure. Therefore, in the fifth embodiment, the main beam 511a and the main beam 511c may be arranged on the same straight line in the horizontal plane. Further, the main girder 511a and the main girder 511c may be arranged in the horizontal direction or may be arranged inclined with respect to the horizontal direction.
  • the superstructure 501 includes a branch extending portion 117d in which a cross beam 117 connecting the pile head fixing members 115 and 115 adjacent in the width direction extends in parallel with the main beams 511a to 511c joined to the pile head fixing member 115.
  • the term “parallel” is used in a concept including not only the case of being completely parallel but also the case of being substantially parallel.
  • the horizontal beam 117 includes horizontal beams 117a, 117b, and 117c. As shown in FIG. 21 (b), one end of each of the cross beam 117a and the cross beam 117c is welded and fixed to the side surface portion 115a (see FIG. 2) of the pile head fixing member 115. Further, as shown in FIGS.
  • both ends of the cross beam 117b are connected to one end of the cross beam 117a and the cross beam 117c that are not fixed to the pile head fixing member 115, by welding, or in a predetermined manner. They are abutted and joined to each other using a fixing plate, bolts and nuts.
  • the cross beam 117b has a branch extending portion 117d extending in parallel with the main beam 511, and is formed in a substantially cross shape in a top view.
  • a second main girder 512 that is not joined to the pile head fixing member 115 is joined to the branch extending portion 117d.
  • the second main beam 512 extends in parallel with the main beams 511a, 511b, and 511c.
  • the superstructure 501 includes a main girder 511 in which the cross beam 117 that connects between the pile head fixing members 115 and 115 adjacent in the width direction is joined to the pile head fixing member 115. Since the second main girder 512 not having joined to the pile head fixing member 115 is joined to the branch extending part 117d, it has the branch extension part 117d extended in parallel, and thus has a wide bridge. In the construction, the number of main girders can be increased without increasing the number of piles. Therefore, a wide bridge can be easily constructed with high strength.
  • the sub main beam is joined on the main beam, and the sub horizontal beam is joined on the horizontal beam.
  • the bridge construction method in the case of a present Example is demonstrated using FIG. From the start to the middle of this construction method, the construction method is the same as that shown in FIGS.
  • the main girder 111 and the horizontal girder are H-shaped steels, and the flanges at both ends in the width direction are directed in the vertical direction, and the web between the flanges is leaded.
  • the conductive material is removed as shown in FIG. 22 (a).
  • the process content in FIG. 22A is the same as the process content in FIG.
  • FIG. 22B is a plan view of the superstructure 601 after the sub main beam 611 and the sub horizontal beam 613 are joined.
  • the sub main girder 611 passes over the pile head fixing member 115 and is joined to the main girder.
  • the end of the secondary cross beam 613 is joined to the side surface of the secondary main beam 611.
  • the sub cross beam 613 may pass on the pile head fixing member 115, and the end of the sub main beam 611 may be joined to the side surface of the sub cross beam 613. Further, on the pile head fixing member 115, the end of the sub main beam 611 and the end of the sub horizontal beam 613 may be joined.
  • the sub main girder 611 and the sub cross girder 613 are H-shaped steels like the main girder 111 and the cross girder, and the flanges at both ends in the width direction are directed in the vertical direction, and the web between the flanges is leaded. That is, the main girder 111 and the sub main girder 611 are in contact with each flange, and the horizontal beam and the sub horizontal girder 613 are also in contact with each flange.
  • each of the sub-main girder 611 and the sub-cross beam may be one H-shaped steel, but a plurality of H-shaped steels may be connected in the length direction.
  • connection method is not particularly limited, but for example, a method similar to the connection of the main beam and the horizontal beam may be used. And it is preferable that the connection place of the sub main girder 611 and the sub cross beam does not overlap with the connection place of the main girder and the cross beam in the vertical direction. It is possible to prevent a decrease in strength due to overlapping of the connection locations in the vertical direction.
  • FIG. 24 shows a cross section of the joined sub main girder 611 and main girder 111.
  • FIG. 24 (a) shows a state where they are joined by welding
  • FIG. 24 (b) shows a state where holes are provided in the respective flanges and joined to bolts and nuts
  • FIG. 24 (c) shows a Bullman (trade name) BU.
  • Each of the flanges is sandwiched and joined by the clamping metal fittings as described above.
  • FIG. 24 (c) when the Bullman BU is used, the joining work is easy, and the reuse of the sub-main girder 611, the sub-lateral girder and the like is also easy.
  • FIG. 22 (c) a crawler scaffold is laid on the installed sub-main girder 611 and the sub-lateral girder, and the construction of the boarding portion in the bridge construction is completed.
  • the standard part is constructed.
  • the sub main girder is joined on the main girder and the sub cross girder is joined on the horizontal girder in the same manner as the construction of the boarding part.
  • the floor FS and the adjusting concrete AC are installed on the sub-main girder and the sub-lateral girder of the boarding part and the standard part.
  • FIG. 25 shows a side view of the superstructure 601 in a state where the floor slab FS and the adjustment concrete AC are applied.
  • the top surface of the pile head canopy TC is flush with the top surface of the main girder 111 and the cross beam so that the sub main beam 611 and the sub cross beam are in contact with the main girder 111 and the sub cross beam without any gap.
  • the upper surface of the pile head fixing member 115 is lower than the upper surfaces of the main girder 111 and the cross beam.
  • the sub-main girder is joined on the main girder and the sub-cross girder is joined on the horizontal girder, so that the strength of the upper work is increased.
  • This makes it possible to construct bridges at places where the distance between pile members must be increased.
  • a sub-main girder or a sub-lateral girder is provided on a pile head fixing member, even if a steel pipe pile pushes up, there is little possibility that a floor slab will be damaged.
  • the sub-main girder and sub-lateral girder of this embodiment can also be applied to the above-described third to fifth embodiments.
  • FIG. 26 the cross section of the superstructure 301 at the time of applying to Example 3 is shown.
  • the sub main beam 631 and the sub horizontal beam are joined in accordance with the shape of the superstructure 301. Thereby, the strength of the bridge can be increased.
  • the superstructure 101 has a ladder shape, but may have a rectangular shape.
  • the superstructure 301 in the third embodiment.
  • the upper work 201 has a U-shape, but a plurality of U-shaped upper works 201 may be connected.
  • the main beam 111a and the main beam 111b may be connected in a straight line.
  • the main girder 111 arranged between the pile head fixing members 115 is formed by connecting the two main girders 111a and the main girder 111b as in the superstructure 101 (FIG. 1), the number of main beams forming the main beam arranged between the pile head fixing members 115 is not limited.
  • pile head fixing members 115 are coupled to both ends of the main beam.
  • the number of the horizontal beam forming the horizontal beam arranged between the pile head fixing members 115 is not limited.
  • the cross beams 113 are connected to the pile head fixing members 115. May be rectangular, ladder, or U-shaped.
  • Main girder 114 Main key 411a ⁇ Main key 411b ⁇ Main key 411c ⁇ ... Cross beam 116a ... Cross beam 116b ... Cross beam 501, ... Superstructure 511 ... Main girder 511a ... Main girder 511b ... Main girder 511c ... Main girder 117 ... Horizontal girder 117a ... Horizontal girder 117b ...
  • Horizontal girder 117c ... ⁇ Horizontal girder 117d ⁇ ⁇ ⁇ ⁇ Branch extension part 512 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Second main girder 601 ⁇ ⁇ ⁇ ⁇ ⁇ Superstructure 611 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Sub main girder 613 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Vice Horizontal beam 631 ⁇ Deputy main beam

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

(課題)施工が容易で、高い強度の橋梁を構築することができるとともに、様々な地形の現場において施工することができる橋梁の施工方法及び橋梁構造を提供することを目的とする。 (解決手段)主桁及び横桁と、前記主桁と前記横桁の交点に設けられた管状の杭頭固定部材とが一体的に接合された上部工を使用する橋梁施工方法であって、既設橋梁部の上部工の主桁に対して、前記上部工の主桁の一端部を接合することにより既設橋梁部に前記上部工を片持ち状に張り出した状態で連結し、前記連結された上部工の前記杭頭固定部材に杭部材を挿通し、前記杭部材の下端を所定の杭固定位置に打設し、前記杭部材の上端を前記上部工の杭頭固定部材に固定し、前記上部工の上部に沿って床版を配置することを特徴とする橋梁の施工方法及び橋梁構造である。

Description

橋梁施工方法及び橋梁構造
 本発明は、橋梁の施工方法及び構造に関するものである。
 従来の橋梁施工方法として、例えば特許文献1に記載された方法が知られている。この施工方法について図27を用いて説明する。
 この施工方法は、杭頭固定用管4が予め設置された桟橋未完成部分の主桁1を桟橋完成部分から片持ち状に張り出し、当該桟橋未完成部分の主桁1に沿って当該主桁1の張り出し先端部と桟橋完成部分との間にかけ渡された線材2を、当該主桁1と平行になるように張力調整することによって当該主桁1の方向や角度、あるいは歪み状態を完成状態に近づくように調整保持する。これにより、当該主桁1に取り付けられている杭頭固定用管4の位置を完成状態に近づけて、その杭頭固定用管4を介して管状杭5を杭打ちする。また、杭頭固定用管4が取り付けられている横桁3と主桁1とを周方向に回転可能な二重管構造で接続する。
 しかしながら、前述の従来の橋梁の施工方法には、以下に示すような改善すべき点がある。従来の橋梁の施工方法では、図27(b)に示すように、杭頭固定用管4の上面P4と覆工板6との間に間隔が生じている。このため、杭頭固定用管4上に配置される天蓋(図示せず)によってのみ、管状杭5からの突き上げと上部工自身の荷重とを保持しなければならない。このため、橋梁の強度をさらに高めることが難しいという改善すべき点がある。
 また、この方法は、橋梁が架け渡される現場の地形によっては使用できない場合がある。例えば、川を挟んだ山の間に橋梁を掛け渡す場合において、一方の山と他方の山との間を直線状に結ぶことができないときや、一方の山と他方の山との間に高低差があるときには使用することができない。
特開2000-096582号公報
 本発明の解決課題は、施工が容易で、高い強度の橋梁を構築することができるとともに、様々な地形の現場において施工することができる橋梁の施工方法及び橋梁構造を提供することにある。
 本発明に係る橋梁の施工方法は、主桁及び横桁と、前記主桁と前記横桁の交点に設けられた管状の杭頭固定部材とが一体的に接合された上部工を使用する橋梁施工方法であって、既設橋梁部の上部工の主桁に対して、前記上部工の主桁の一端部を接合することにより既設橋梁部に前記上部工を片持ち状に張り出した状態で連結し、前記連結された上部工の前記杭頭固定部材に杭部材を挿通し、前記杭部材の下端を所定の杭固定位置に打設し、前記杭部材の上端を前記上部工の杭頭固定部材に固定し、前記上部工の上部に沿って床版を配置し、前記上部工が、前記杭頭固定部材の上面が前記上部工の上に配置される床版と直接的又は間接的に接し、且つ前記杭頭固定部材の上面が前記杭頭固定部材に挿通された前記杭部材の中心軸に対して直角となる、ことを特徴とする。
 本発明に係る橋梁構造は、主桁及び横桁と、前記主桁と前記横桁の交点に設けられた管状の杭頭固定部材とが一体的に接合された上部工を有する橋梁構造であって、複数の上部工が主桁の一端部同士を接合することにより連結されており、前記連結された上部工の前記杭頭固定部材に杭部材が挿通され、前記杭部材の下端が所定の杭固定位置に打設され、前記杭部材の上端が前記上部工の杭頭固定部材に固定され、前記上部工の上部に沿って床版が配置されており、前記上部工が、前記杭頭固定部材の上面が前記上部工の上に配置される床版と直接的又は間接的に接し、且つ前記杭頭固定部材の上面が前記杭頭固定部材に挿通された前記杭部材の中心軸に対して直角となっている、ことを特徴とする。
 また、本発明に係る橋梁の施工方法及び橋梁構造は、前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、水平面内において同一直線上に配置されていないことを特徴とする。
 また、本発明に係る橋梁の施工方法及び橋梁構造は、前記上部工は、前記杭頭固定部材に接合された主桁が、水平方向に対して傾斜していることを特徴とする。
 また、本発明に係る橋梁の施工方法及び橋梁構造は、前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、垂直面内において同一直線上に配置されていないことを特徴とする。
 また、本発明に係る橋梁の施工方法及び橋梁構造は、前記上部工は、幅方向に隣り合う前記杭頭固定部材間を連結する前記横桁が、前記杭頭固定部材に接合された前記主桁と平行に延びる分岐延出部を有しており、前記分岐延出部に対して、前記杭頭固定部材に接合されていない第二主桁が接合されていることを特徴とする。
 また、本発明に係る橋梁の施工方法及び橋梁構造は、前記杭部材の上端を前記上部工の杭頭固定部材に固定した後に、前記主桁の上に副主桁を接合すると共に前記横桁の上に副横桁を接合し、前記副主桁及び前記副横桁を介して前記上部工の上部に沿って床版を配置することを特徴とする。
 本発明に係る橋梁の施工方法及び橋梁構造によれば、杭頭固定部材の上面を直接的又は間接的に床版によって閉じることができる。よって、床版の荷重を杭頭固定部材に挿通した杭部材の突き上げの力に対抗させることができる。よって、強度の高い橋梁を施工することができる。また、管状の杭頭固定部材の上面が杭部材の中心軸に対して直角であるので、杭部材を容易に杭頭固定部材に挿通することができる。よって、容易に橋梁を施工することができる。
 また、本発明に係る橋梁の施工方法及び橋梁構造によれば、前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、水平面内において同一直線上に配置されていないことから、水平面内において曲った構造をもつ橋梁を容易に施工することができる。そのため、例えば、川を挟んだ山の間に橋梁を掛け渡す場合において、一方の山と他方の山との間を直線状に結ぶことができないとき等においても、橋梁を曲げて掛け渡すことが可能となる。
 また、本発明に係る橋梁の施工方法及び橋梁構造によれば、前記上部工は、前記杭頭固定部材に接合された主桁が、水平方向に対して傾斜していることから、水平方向に対して傾斜した構造をもつ橋梁を容易に施工することができる。そのため、例えば、川を挟んだ山の間に橋梁を掛け渡す場合において、一方の山と他方の山との間に高低差があるとき等においても、橋梁を傾斜させて掛け渡すことが可能となる。
 また、本発明に係る橋梁の施工方法及び橋梁構造によれば、前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、垂直面内において同一直線上に配置されていないことから、水平方向に対して傾斜した構造をもつ橋梁を容易に施工することができる。
 また、本発明に係る橋梁の施工方法及び橋梁構造によれば、前記上部工は、幅方向に隣り合う前記杭頭固定部材間を連結する前記横桁が、前記杭頭固定部材に接合された前記主桁と平行に延びる分岐延出部を有しており、前記分岐延出部に対して、前記杭頭固定部材に接合されていない第二主桁が接合されていることから、幅が広い橋梁を施工する場合において、杭の本数を増やすことなく主桁の本数を増やすことができる。そのため、幅が広い橋梁を、高強度で且つ容易に構築することが可能となる。
 また、本発明に係る橋梁の施工方法及び橋梁構造によれば、前記主桁の上に副主桁を接合すると共に前記横桁の上に副横桁を接合しているので、上部工の強度が高くなる。このことにより、杭部材間の距離を長くしなければならないような箇所にも橋梁を施工することができる。
本発明に係る橋梁の施工方法で用いる上部工の三面図である。 上部工の杭頭固定部材の構成を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 上部工101上に床版FSを施工したときの一部断面図である。 本発明に係る橋梁の施工方法で用いる上部工の三面図である。 標準部施工時における、上部工を用いた橋梁の施工方法を示す図である。 標準部施工時における、上部工を用いた橋梁の施工方法を示す図である。 標準部施工時における、上部工を用いた橋梁の施工方法を示す図である。 標準部施工時における、上部工を用いた橋梁の施工方法を示す図である。 本発明に係る橋梁の施工方法で用いる上部工の三面図である。 上部工上に床版FSを施工したときの一部断面図である。 上部工の他の実施例を示す図である。 本発明に係る橋梁施工方法で使用する上部工の構成を示す図である。 上部工を用いて施工された橋梁を示す概略平面図である。 上部工を用いて施工された橋梁を示す概略側面図である。 本発明に係る橋梁施工方法で使用する上部工の構成を示す図である。 乗り込み部施工時における、上部工を用いた橋梁の施工方法を示す図である。 副主桁及び副横桁を接合した上部工の平面図である。 主桁と副主桁の接合状態を示す断面図である。 副主桁を接続した上部工上に床版FSを施工したときの上部工の側面図である。 副主桁を接続した上部工上に床版FSを施工したときの上部工の側面図である。 従来の橋梁の施工方法を示す図である。
 以下、本発明の実施例について、図面を参照しながら詳細に説明していく。
[第1 上部工の構成]
 本発明に係る橋梁施工方法で使用する上部工101について図1を用いて説明する。上部工101は、通常、橋梁の施工に先立って、予め組み立てておくものである。なお、組立に際しては、工場等でトラック等の運搬手段で運搬できる大きさの部品を組み立て、さらに、実際の施工現場まで運搬手段で運搬した後、施工現場において図1に示す上部工101の形態まで組み立てることが好ましい。
 ここで、図1(a)は上部工101の上面図であり、図1(b)は上部工101の正面図であり、図1(c)は上部工101の右側面図である。図1(a)に示すように、上部工101は、複数の主桁111及び横桁113と、主桁111と横桁113の交点に設けられた管状の杭頭固定部材115とが一体的に接合されて構成されている。
 主桁111及び横桁113は、梯子状に配置されている。なお、主桁111及び横桁113は、H型鋼により形成されている。
 主桁111は、相対的に短い主桁111a及び相対的に長い主桁111bにより構成されている。図1(c)に示すように、主桁111a及び主桁111bは、それぞれ一端が杭頭固定部材115の側面部115a(後述)に溶接され、固定されている。また、図1(a)、(c)に示すように、主桁111a及び主桁111bの杭頭固定部材115に固定されていない他の一端は、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、水平面内及び垂直面内において直線上に接合されている。
 横桁113は、所定長さの横桁113a及び横桁113bにより構成されている。図1(b)に示すように、横桁113a及び横桁113bは、それぞれ一端が杭頭固定部材115の側面部115aに溶接され、固定されている。また、図1(a)、(b)に示すように、横桁113a及び横桁113bの杭頭固定部材115に固定されていない他の一端は、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、水平面内及び垂直面内において直線上に接合されている。
 図1(a)に示すように、杭頭固定部材115は、中心C5が主桁111の中心軸J1上に配置されている。また、杭頭固定部材115は、中心C5が横桁113の中心軸J3上に配置されている、つまり、杭頭固定部材115は、中心C5が主桁111の中心軸J1と横桁113の中心軸J3との交点上に存在するように配置されている。これにより、上部工101の形状を容易に整えることができる。また、図1(b)に示すように、杭頭固定部材115は、上面P5が杭頭固定部材115を貫通する鋼管杭の中心軸J5に対して直角となるように配置される。さらに、図1(c)に示すように、杭頭固定部材115を挟んで配置される主桁111は、垂直面内において直線上に配置される。
 なお、各杭頭固定部材115には、主桁111a、主桁111b、及び横桁113a又は横桁113bが接合されている。ただし、図1(a)における上部工101の上端に位置する杭頭固定部材115については、杭頭固定部材115には、主桁111a、及び、横桁113a又は横桁113bのみが接合されている。なお、図1(a)~(c)においては、各杭頭固定部材115に配置されるリブ部115c(後述)については記載を省略している。
 杭頭固定部材115の構成について図2を用いて説明する。なお、図2(a)は杭頭固定部材115の上面図を、図2(b)は図2(a)に示す杭頭固定部材115のX-X断面図を、それぞれ示している。図2(a)に示すように、杭頭固定部材115は、円筒部115a、フランジ部115b、及びリブ部115cを有している。円筒部115aの一端に、フランジ部115bが配置されている。フランジ部115bには、複数の孔115dが形成されている。孔115dは、ボルト、ナットを用いて、杭頭天蓋(後述)を杭頭固定部材115に固定するために形成されている。円筒部115a及びフランジ部115bの内径は、橋脚となる鋼管杭の外径にほぼ等しい。
 リブ部115cは、杭頭固定部材115の中心C5から放射状に配置される。図2(b)に示すように、リブ部115cは、円筒部115aの側面及びフランジ部115bに接合される。これにより、杭頭固定部材115の強度を増強する。
[第2 橋梁施工方法]
 上部工101を用いた橋梁施工方法について図3~図7を用いて説明する。なお、橋梁施工方法については、橋台に対して上部工101を乗り込み部として施工する時(以下、乗り込み部施工時)と、施工済の上部工101に対して新たに上部工101を施工する時(以下、標準部施工時)とに分けて説明する。標準部施工時においては、後述する通り、既設橋梁部の上部工の主桁に対して、新たな上部工の主桁の一端部を接合することにより既設橋梁部に新たな上部工を片持ち状に張り出した状態で連結する。
1.乗り込み部施工時
 図3(a)に示すように、施工済の橋台BA上に配置したクレーン車CTによってバイブロハンマVHを用いて、所定位置に導杭G1~導杭G4を矩形状に設置する。なお、図3(a)においては、導杭G1、導杭G3の奥側に存在する導杭G2、導杭G4については括弧書きで表している。
 次に、図3(b)に示すように、クレーン車CTを用いて、橋台BAの先端に対して平行に設置した導杭G1及び導杭G2を橋渡すように受材R1を設置する。導杭G3及び導杭G4についても同様に、受材R2を設置する。図3(c)に示すように、クレーン車CTを用いて受材R1、受材R2上に上部工101を配置する。
 図4(a)に示すように、クレーン車CTを用いて、テーブルマシンTMを、上部工101の一の杭頭固定部材115上に配置する。次に、図4(b)に示すように、クレーン車CTを用いて、ダウンザホールハンマDHを上部からテーブルマシンTM及び杭頭固定部材115に挿通させる。そして、図4(c)に示すように、テーブルマシンTM及びダウンザホールハンマDHによって地盤を掘削し、鋼管杭を地盤に固定するための固定孔を形成する。
 固定孔を形成し終えると、図5(a)に示すように、ダウンザホールハンマDHを上側に引き抜く。さらに、テーブルマシンTMを取り外す。これまでと同様に、図5(b)に示すように、上部工101の他の杭頭固定部材115上にテーブルマシンTMを配置し、ダウンザホールハンマDHを配置した後、地盤を掘削し、もう一つの固定孔を掘削する。そして、図5(c)に示すように、モルタルを投入したバケットBKをクレーン車CTを用いて移動させながら、トレミー管TTを用いて、根固め用のモルタルを固定孔に打設する。
 図6(a)に示すように、モルタルの打設後、クレーン車CTを用いて、橋脚となる鋼管杭SPを上から杭頭固定部材115に挿通させ、固定孔に挿入する。その後、図6(b)に示すように、鋼管杭SPを固定孔に挿入した後、クレーン車CTによってモンケンHBを操作し、鋼管杭SPの杭打ちを行う。
 図7(a)に示すように、上部工101の上面から上側に突出した鋼管杭SP1を切断し、除去する。その後、図7(b)に示すように、鋼管杭SPの杭頭にモルタルを打設する。
 図7(c)に示すように、杭頭にモルタルを打設した後、杭頭固定部材115の上面に杭頭天蓋TCを固定する。杭頭固定部材115と杭頭天蓋TCとの固定は、杭頭固定部材115のフランジ部115bに形成されている孔115d(図2参照)及び杭頭天蓋TCに形成されている孔に所定のボルトを挿通させ、ナットで固定する。
 杭頭天蓋TCを固定した後、図8(a)に示すように、導材を撤去する。そして、図8(b)に示すように、設置した上部工101の上にクローラ用足場を敷設し、橋梁施工における乗り込み部の施工を完了する。その後、標準部施工時での橋梁施工を行う。
 このような乗り込み部施工時における上部工101の施工の後、実施例2に示す標準部施工時における上部工201の施工を経て、上部工101上に床版FS及び調整用コンクリートASが施工される。床版FS及び調整用コンクリートACが施工された状態の上部工101の側面図を図9に示す。なお、図9においては、一部の杭頭固定部材115及び一部の鋼管杭SPを断面にて表示している。
 鋼管杭SPが杭頭固定部材115の上面P5に対して垂直に杭頭固定部材115に挿通され、天蓋TCによって杭頭固定部材115の上面P5が閉じられた後、天蓋TC上に床版FSが施工される。したがって、杭頭固定部材115の上面P5は、天蓋TCを介して、間接的に床版FSの下面PFに接している。これにより、床版FSからの荷重F1を、鋼管杭SPによる突き上げの力F2に対抗させることができる。よって、高い強度を有する橋梁の施工が可能となる。
 前述の実施例1における上部工101は、乗り込み部施工時に使用するものであった。一方、本実施例における上部工201は、施工済の上部工101に対して施工する時(以下、標準部施工時)に使用するものである。尚、実施例1における上部工101を標準施工時に用いることもできる。この場合、下記の施工方法において、上部工201に代えて上部工101を使用すればよい。
[第1 上部工の構成]
 本発明に係る橋梁施工方法で使用する上部工201について図10を用いて説明する。ここで、図10(a)は上部工201の上面図であり、図10(b)は上部工201の正面図であり、図10(c)は上部工201の右側面図である。なお、図10(a)~図10(c)においては、図1(a)~図1(c)と同様の構成については、同じ符号を付している。
 上部工201では、主桁111及び横桁113が梯子状に配置されている上部工101とは異なり、主桁111及び横桁113がコの字状に配置されている。
[第2 標準部施工時]
 図11(a)に示すように、鋼管杭SP(1)及び鋼管杭SP(2)を施工済の上部工SS上にクレーン車CTを配置する。クレーン車CTによって、上部工201を所定の位置に配置し、上部工201の主桁111bと上部工SSの主桁111aとを接続する。これにより、上部工201は上部工SSに対して片持ち状態となる。なお、上部工201を所定の位置に片持ち状態とするにあたっては、接続する上部工201の主桁111bと上部工SSの主桁111aと間に線材(例えば、ピアノ線)をかけ渡し、上部工SSの主桁111aと平行になるように線材の張力を調整することによって、上部工201の主桁111bの方向、角度、歪み等の状態が完成時の状態に近づくようにしてもよい(特許文献1参照)。尚、上述した通り、上部工201に代えて上部工101を使用することもできる。
 次に、図11(b)に示すように、クレーン車CTを用いて、テーブルマシンTMを、上部工101の一の杭頭固定部材115上に配置する。そして、図11(c)に示すように、クレーン車CTを用いて、ダウンザホールハンマDHを上部から、テーブルマシンTM及び杭頭固定部材115に挿通させる。この際、ダウンザホールハンマDHを杭頭固定部材115の上面P5(図10参照)に対して垂直に挿入する。
 図12(a)に示すように、テーブルマシンTM及びダウンザホールハンマDHによって地盤を掘削し、鋼管杭を地盤に固定するための固定孔を形成する。固定孔を形成し終えると、図12(b)に示すように、ダウンザホールハンマDHを上側に引き抜く。さらに、テーブルマシンTMを取り外す。そして、図12(c)に示すように、モルタルを投入したバケットBKをクレーン車CTを用いて移動させながら、トレミー管TTを用いて、根固め用のモルタルを固定孔に打設する。
 図13(a)に示すように、モルタルの打設後、クレーン車CTを用いて、橋脚となる鋼管杭SP(3)を上から杭頭固定部材115に挿通させ、固定孔に挿入する。この際、鋼管杭SP(3)を杭頭固定部材115の上面P5(図10参照)に対して垂直に挿入する。その後、図13(b)に示すように、鋼管杭SP(3)を固定孔に挿入した後、クレーン車CTによってモンケンHBを操作し、鋼管杭SP(3)の杭打ちを行う。
 図13(c)に示すように、上部工201の上面から上側に突出した鋼管杭SP1(3)を切断し、除去する。
 その後、図14(a)に示すように、鋼管杭SPの杭頭にモルタルを打設する。杭頭にモルタルを打設した後、杭頭固定部材115の上面に杭頭天蓋TCを固定する。杭頭固定部材115と杭頭天蓋TCとの固定は、杭頭固定部材115のフランジ部115f(図2参照)に形成されている孔115g及び杭頭天蓋TCに形成されている孔に所定のボルトを挿通させ、ナットで固定する。
 そして、図14(b)に示すように、設置した上部工201の上にクローラ用足場を敷設する。その後、図14(c)に示すように、鋼管杭SP(3)の施工と同様にして、鋼管杭SP(4)を施工し、クローラ用足場を敷設する。これにより、クレーン車CTによる床版の敷設のための領域を確保する。そして、既に敷設したクローラ用足場を除去した後、除去した領域に床版を敷設する。これにより、橋梁施工における標準部の施工を完了する。
 前述の実施例1及び実施例2における橋梁の施工方法では、水平に床版を敷設した。本実施例における橋梁の施工は、水平方向に対して所定の斜度でもって床版を敷設するものである。
[第1 上部工の構成]
 本発明に係る橋梁施工方法で使用する上部工301について図15を用いて説明する。上部工301は、水平方向に対して斜度を有する橋梁を施工する際に使用するものである。ここで、図15(a)は上部工301の上面図であり、図15(b)は上部工301の正面図であり、図15(c)は上部工301の右側面図である。なお、図15(a)~図15(c)においては、図1(a)~図1(c)と同様の構成については、同じ符号を付し、詳細な記述については省略する。
 上部工301は、主桁311、横桁113及び杭頭固定部材115を有している。主桁311及び横桁113は、梯子状に配置されている。また、主桁311及び横桁113は、H型鋼により形成されている。横桁113は、横桁113a,113bから構成されている。
 主桁311は、相対的に短い主桁311a、311c及び相対的に長い主桁311bにより構成されている。図15(c)に示すように、主桁311a及び主桁311cは、それぞれ一端が杭頭固定部材115の側面部115a(図2参照)に溶接され、固定されている。また、図15(a)、(c)に示すように、主桁311bの両端は、主桁311a及び主桁311cの杭頭固定部材115に固定されていない一端と、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、接合されている。
 横桁113は、実施例1と同様に、2本の横桁113a及び横桁113bを接合することにより構成されているが、横桁を1本の部材(H形鋼)から構成してもよい。これは、他の実施例についても同様である。
 図15(a)に示すように、杭頭固定部材115は、中心C5が主桁311の中心軸J1上に配置されている。また、杭頭固定部材115は、中心C5が横桁113の中心軸J3上に配置されている、つまり、杭頭固定部材115は、中心C5が主桁311の中心軸J1と横桁113の中心軸J3との交点上に存在するように配置されている。また、図15(b)に示すように、杭頭固定部材115は、上面P5が杭頭固定部材115を貫通する鋼管杭の中心軸J5に対して直角となるように配置される。さらに、図15(c)に示すように、杭頭固定部材115を挟んで配置される主桁311a、311cは、垂直面内において水平方向に対して直線上に配置される。一方、主桁311a及び主桁311cの間に接続される主桁311bは、垂直面内において水平方向に対して斜めに配置される。つまり、図15(c)に示すように、上部工301は、杭頭固定部材115周辺の平坦な部分と主桁311bに沿う斜めの部分とが交互に配置される階段形状を有している。
[第2 上部工301を用いた施工]
 上部工301を用いた乗り込み部施工時における橋梁の施工については、実施例1と同様である。また、標準部施工時における施工においては、実施例2と同様に、コの字状(図10参照)で、主桁311の主桁311bが斜めに配置される上部工を用いて施工する。標準部施工時における橋梁の施工については、実施例2と同様である。尚、実施例3における上部工301を標準施工時に用いることもできる。この場合、実施例2の施工方法において、上部工201に代えて上部工301を使用すればよい。
 ここで、床版FS及び調整用コンクリートASが施工された状態の上部工301の側面図を図16に示す。なお、図16においては、一部の杭頭固定部材115及び一部の鋼管杭SPを断面にて表示している。
 実施例1における上部工101を用いた施工と同様に、上部工301を用いた施工においても、鋼管杭SPが杭頭固定部材115の上面P5に対して垂直に杭頭固定部材115に挿通され、天蓋TCによって杭頭固定部材115の上面P5が閉じられた後、天蓋TC上に床版FSが施工される。したがって、杭頭固定部材115の上面P5は、天蓋TCを介して、間接的に床版FSの下面PFに接している。これにより、床版FSからの荷重F1を、鋼管杭SPによる突き上げの力F2に対抗させることができる。よって、高い強度を有する橋梁の施工が可能となる。なお、上部工301を用いて所定の傾斜面を形成するために、調整用コンクリートAC1を施工する。
 前述の実施例1乃至実施例3における橋梁の施工方法では、上部工の主桁が水平面内において直線状に延びるように配置した。本実施例における橋梁の施工は、上部工の主桁が水平面内及び/又は垂直面内において非直線状に延びるように配置するものである。尚、図示例では、上部工の主桁が水平面内及び垂直面内の両方において非直線状に延びている実施形態を示している。
[第1 上部工の構成]
 本発明に係る橋梁施工方法で使用する上部工401について図18を用いて説明する。上部工401は、垂直面内において水平方向に対して斜度を有し且つ水平面内において屈曲する橋梁を施工する際に使用するものである。ここで、図18(a)は上部工401の上面図であり、図18(b)は上部工401の右側面図である。なお、図18において、図1と同様の構成については、同じ符号を付し、詳細な記述については省略する。
 上部工401は、主桁411、横桁116及び杭頭固定部材115を有している。主桁511及び横桁117は、屈曲した格子状に配置されている。また、主桁411及び横桁116は、H型鋼により形成されている。主桁及び横桁の本数は限定されない。これは他の実施例においても同様である。
 主桁411は、相対的に短い主桁411a、411c及び相対的に長い主桁411bにより構成されている。図18(b)に示すように、主桁411a及び主桁411cは、それぞれ一端が杭頭固定部材115の側面部115a(図2参照)に溶接され、固定されている。また、図18(a)、(b)に示すように、主桁411bの両端は、主桁411a及び主桁411cの杭頭固定部材115に固定されていない一端と、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、接合されている。
 横桁116は、所定長さの横桁116a及び横桁116bにより構成されている。図18(a)に示すように、横桁116a及び横桁116bは、それぞれ一端が杭頭固定部材115の側面部に溶接され、固定されている。また、図18(a)、(b)に示すように、横桁116a及び横桁116bの杭頭固定部材115に固定されていない他の一端は、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、水平面内及び垂直面内において直線上に接合されている。
 前述した実施例3では、相対的に短い主桁311a、311cは、図15(c)に示すように、杭頭固定部材115の中心軸J5に対して直角方向(即ち水平方向)に延びるように配置されていたが、この実施例4では、相対的に短い主桁411a、411cは、図18(b)に示すように、杭頭固定部材115の中心軸に対して非直角方向(即ち水平方向に対して傾斜した方向)に延びるように配置されている。
 これにより、上部工401は、杭頭固定部材115の中心を挟んだ一方側に接合された主桁411aと他方側に接合された主桁411cが、垂直面内において同一直線上に配置されていない。即ち、図18(b)における線Aと線Bは同一直線上になく、線Aと線Bのなす角αは180度未満となる。
 図18(b)に示すように、主桁411aと主桁411cは水平方向に対して傾斜している。そのため、主桁411aと主桁411bとを繋ぐ主桁411bも水平方向に対して傾斜している。
 尚、杭頭固定部材115に接合された主桁411a、411cは、少なくともいずれか一方が水平方向に対して傾斜していればよいが、短い距離において高低差を確保するためには両方が傾斜していることが好ましい。
 前述した実施例3では、杭頭固定部材115の中心軸を挟んで一方側に配置された主桁311aと他方側に配置された主桁311cは、図15(a)に示すように、水平面内において同一直線上に配置されていたが、この実施例4では、杭頭固定部材115の中心軸を挟んで一方側に配置された主桁411aと他方側に配置された主桁411cは、図18(a)に示すように、水平面内において同一直線上に配置されていない。即ち、図18(a)における線Cと線Dは同一直線上になく、線Cと線Dのなす角βは180度未満となる。
 尚、実施例4における上部工401は、下記構成(i)(ii)の少なくともいずれか一方を備えていればよい。図18では両方の構成を備えるものを示している。
(i)杭頭固定部材115の中心を挟んで一方側に配置された主桁411aと他方側に配置された主桁411cが、水平面内において同一直線上に配置されていない(図18(a)参照)。
(ii)杭頭固定部材115の中心を挟んで一方側に配置された主桁411aと他方側に配置された主桁411cの少なくともいずれか一方が、水平方向に対して傾斜している(図18(b)参照)。
[第2 上部工401を用いた施工]
 上部工401を用いた乗り込み部施工時における橋梁の施工については、実施例1と同様である。また、標準部施工時における橋梁の施工については、実施例2と同様であり、実施例4における上部工401を標準施工時に用いることができる。この場合、実施例2の施工方法において、上部工201に代えて上部工401を使用すればよい。
 上部工401を用いた施工によれば、杭頭固定部材115の中心を挟んだ一方側と他方側に接合された主桁411a、411cが、水平面内において同一直線上に配置されていないことから、水平面内において曲った構造をもつ橋梁を容易に施工することができる。そのため、例えば、図19に示すように、川(R)を挟んだ山(M1,M2)の間に橋梁を掛け渡す場合において、一方の山(M1)と他方の山(M2)との間を直線状に結ぶことができないとき等においても、橋梁を曲げて掛け渡すことが可能となる。図19に描かれた円は、地面に打設された杭を表している。尚、図19は後述する実施例5の上部工501を用いた場合を示しているが、実施例4の上部工でも同様の施工が可能である。
 また、上部工401は、杭頭固定部材115の中心を挟んだ一方側と他方側に接合された主桁311a、311cが、水平方向に対して傾斜して配置されているから、水平方向に対して傾斜した構造をもつ橋梁を容易に施工することができる。そのため、例えば、川(R)を挟んだ山(M1,M2)の間に橋梁を掛け渡す場合において、一方の山(M1)と他方の山(M2)との間に高低差があるとき等においても、橋梁を傾斜させて掛け渡すことが可能となる。尚、図19における一点鎖線(L)は水平線を示す。
[第1 上部工の構成]
 本発明に係る橋梁施工方法で使用する上部工501について図21を用いて説明する。上部工501は、水平面内において屈曲する橋梁を施工する際に使用するものである。ここで、図21(a)は上部工501の上面図であり、図21(b)は上部工501の正面図である。なお、図21において、図1と同様の構成については、同じ符号を付し、詳細な記述については省略する。
 上部工501は、主桁511、横桁117及び杭頭固定部材115を有している。主桁511及び横桁117は、屈曲した格子状に配置されている。また、主桁511及び横桁117は、H型鋼により形成されている。
 主桁511は、相対的に短い主桁511a、511c及び相対的に長い主桁511bにより構成されている。図21(b)に示すように、主桁511a及び主桁511cは、それぞれ一端が杭頭固定部材115の側面部115a(図2参照)に溶接され、固定されている。また、図21(a)、(b)に示すように、主桁511bの両端は、主桁511a及び主桁511cの杭頭固定部材115に固定されていない一端と、所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、接合されている。
 実施例5では、実施例4と同様に、杭頭固定部材115の中心軸を挟んで一方側に配置された主桁511aと他方側に配置された主桁511cは、図21(a)に示すように、水平面内において同一直線上に配置されていない。
 但し、実施例5の上部工501の特徴は、後述する第二主桁512を備えている点にあり、主桁511aと主桁511cの配置は図示の配置に限定されない。従って、実施例5において、主桁511aと主桁511cを水平面内において同一直線上に配置してもよい。また、主桁511aと主桁511cは、水平方向に配置してもよいし、水平方向に対して傾斜して配置してもよい。
 上部工501は、幅方向に隣り合う杭頭固定部材間115,115を連結する横桁117が、杭頭固定部材115に接合された主桁511a~511cと平行に延びる分岐延出部117dを有している。尚、「平行」との文言は、完全に平行な場合だけでなく概ね平行な場合も含む概念で用いている。
 横桁117は、横桁117a,117b,117cにより構成されている。図21(b)に示すように、横桁117a及び横桁117cは、それぞれ一端が杭頭固定部材115の側面部115a(図2参照)に溶接され、固定されている。また、図21(a)、(b)に示すように、横桁117bの両端は、横桁117a及び横桁117cの杭頭固定部材115に固定されていない一端と、溶接により、或いは所定の固定板、及びボルト、ナットを用いて互いに突き合わされ、接合されている。
 横桁117bは、主桁511と平行に延びる分岐延出部117dを有しており、上面視において略十字状に形成されている。分岐延出部117dに対して、杭頭固定部材115に接合されていない第二主桁512が接合されている。第二主桁512は、主桁511a、511b、511cと平行に延びている。
[第2 上部工501を用いた施工]
 上部工501を用いた乗り込み部施工時における橋梁の施工については、実施例1と同様である。また、標準部施工時における橋梁の施工については、実施例2と同様であり、実施例5における上部工501を標準施工時に用いることができる。この場合、実施例2の施工方法において、上部工201に代えて上部工501を使用すればよい。
 上部工501を用いた施工によれば、上部工501が、幅方向に隣り合う杭頭固定部材115,115間を連結する横桁117が、杭頭固定部材115に接合された主桁511と平行に延びる分岐延出部117dを有しており、分岐延出部117dに対して、杭頭固定部材115に接合されていない第二主桁512が接合されていることから、幅が広い橋梁を施工する場合において、杭の本数を増やすことなく主桁の本数を増やすことができる。そのため、幅が広い橋梁を、高強度で且つ容易に構築することが可能となる。
 実施例6においては、主桁の上に副主桁を接合し、横桁の上に副横桁を接合する。このことにより、上部工の強度を高くする。図22を用いて、本実施例の場合の橋梁施工方法を説明する。
 本施工方法の開始から途中までは、実施例1の図1~図7までと同じ施工方法であるので説明を省略する。本実施例において、主桁111及び横桁はH型鋼であって、それぞれ、幅方向両端のフランジを上下方向に向け、フランジ間のウェブを鉛垂にしている。
 図7(c)のように杭頭天蓋TCを固定したあと、図22(a)に示すように導材を撤去する。なお、図22(a)の工程内容は図8(a)の工程内容と同じである。
 続いて、図22(b)に示すように、主桁111の上に副主桁611を接合すると共に横桁の上に副横桁を接合する。なお、横桁及び副横桁は、主桁111及び副主桁611の向こう側に位置しているので、図22では見えない。図23に、副主桁611、副横桁613を接合した後の上部工601の平面図を示す。副主桁611は杭頭固定部材115の上を通って主桁の上に接合されている。副横桁613の端は副主桁611の側面に接合している。なお、副横桁613が杭頭固定部材115の上を通り、副主桁611の端が副横桁613の側面に接合してもよい。また、杭頭固定部材115の上で、副主桁611の端部と副横桁613の端部を接合するようにしてもよい。
 副主桁611及び副横桁613は、主桁111及び横桁と同様にH型鋼であって、それぞれ、幅方向両端のフランジを上下方向に向け、フランジ間のウェブを鉛垂にしている。つまり、主桁111と副主桁611とはそれぞれのフランジで接しており、横桁と副横桁613もそれぞれのフランジで接している。なお、副主桁611及び副横桁は、それぞれ1本のH型鋼でもよいが、複数のH型鋼を長さ方向に接続して用いてもよい。接続方法は特に限定されないが、例えば主桁及び横桁の接続と同様の方法を用いればよい。そして、副主桁611及び副横桁の接続箇所は、主桁及び横桁の接続箇所と上下方向で重ならないことが好ましい。接続箇所が上下方向で重なることによる強度低下を防ぐことができる。
 主桁111と副主桁611との接合、及び横桁と副横桁との接合方法は、特に限定されない。図24に、接合された副主桁611と主桁111の断面を示す。図24(a)は溶接によって接合した状態であり、図24(b)はそれぞれのフランジに孔を設けてボルトとナットに接合した状態であり、図24(c)はブルマン(商標名)BUのような挟締金具によってそれぞれのフランジを挟持して接合した状態である。図24(c)のように、ブルマンBUを用いると、接合作業が容易であり、また、副主桁611、副横桁等の再利用も容易である。
 続いて、図22(c)に示すように、設置した副主桁611及び副横桁の上にクローラ用足場を敷設し、橋梁施工における乗り込み部の施工を完了する。その後、標準部の施工を行うが、このときも乗り込み部の施工と同様に、主桁の上に副主桁を接合し、横桁の上に副横桁を接合する。その後、乗り込み部及び標準部の副主桁、副横桁の上に床版FS及び調整用コンクリートACを施工する。床版FS及び調整用コンクリートACが施工された状態の上部工601の側面図を図25に示す。なお、横桁及び副横桁は、主桁及び副主桁の向こう側に位置しているので、図25では見えない。
 副主桁611及び副横桁が、主桁111及び副横桁に隙間なく接するように、杭頭天蓋TCの上面は主桁111及び横桁の上面と同一高さになっており、そのために、杭頭固定部材115の上面は、主桁111及び横桁の上面よりも低い構造になっている。
 このように、主桁の上に副主桁を接合すると共に横桁の上に副横桁を接合するので、上部工の強度が高くなる。このことにより、杭部材間の距離を長くしなければならないような箇所にも橋梁を施工することができる。
 また、副主桁又は副横桁が杭頭固定部材の上に設けられるので、鋼管杭が突き上げても床版が損傷するおそれが少ない。
 本実施例の副主桁及び副横桁は、上述した実施例3~5にも適用することができる。図26に、実施例3に適用した場合の上部工301の断面を示す。上部工301の形状に合わせて副主桁631及び副横桁を接合する。これにより橋梁の強度を高くすることができる。
[その他の実施形態]
 (1)上部工の形状:前述の実施例1においては、上部工101は梯子状としたが、矩形状であっても良い。実施例3における上部工301についても同様である。また、前述の実施例2においては、上部工201は、コの字状としたが、複数のコの字状の上部工201を連結したものであってもよい。連結の際には主桁111aと主桁111bとを直線状に連結すればよい。
 また、前述の実施例1においては、上部工101のように2つの主桁111a、主桁111bを結合して杭頭固定部材115間に配置される主桁111を形成していたが(図1参照)、杭頭固定部材115間に配置される主桁を形成する主桁の数については限定されない。例えば、図17(a)、(b)に示す上部工102のように、3つの主桁112a、主桁112b及び主桁112cを結合して主桁112を形成する。さらに、複数の主桁を結合することなく、1つの主桁によって杭頭固定部材115間に配置される主桁を形成するようにしてもよい。この場合、主桁の両端には杭頭固定部材115が結合される。
 横桁についても主桁と同様に、杭頭固定部材115間に配置される横桁を形成する横桁の数については、限定されない。例えば、図17(a)、(b)に示す上部工102のように、1つの横桁114によって杭頭固定部材115間に配置される横桁を形成するようにしてもよい。
 (2)横桁の結合:前述の実施例1~実施例3においては、横桁113は、杭頭固定部材115に結合するものとしたが、各上部工における主桁に結合し、上部工を矩形状、梯子状、コの字状とするようにしてもよい。
 本発明は、例えば、川を挟んだ山の間に橋梁を掛け渡す場合において、一方の山と他方の山との間を直線状に結ぶことができないときや、一方の山と他方の山との間に高低差があるときに好適に使用される。
 101・・・・・上部工
 111・・・・・主桁
  111a・・・主桁
  111b・・・主桁
 113・・・・・横桁
  113a・・・横桁
  113b・・・横桁
115・・・・・杭頭固定部材
  P5・・・・・上面
  FS・・・・・床版
 201・・・・・上部工
 301・・・・・上部工
 311・・・・・主桁
  311a・・・主桁
  311b・・・主桁
  311c・・・主桁
 102・・・・・上部工
 112・・・・・主桁
  112a・・・主桁
  112b・・・主桁
  112c・・・主桁
 114・・・・・横桁
401・・・・・・上部工
411・・・・・・主桁
 411a・・・・主桁
 411b・・・・主桁
 411c・・・・主桁
116・・・・・・横桁
 116a・・・・横桁
 116b・・・・横桁
501・・・・・・上部工
511・・・・・・主桁
 511a・・・・主桁
 511b・・・・主桁
 511c・・・・主桁
117・・・・・・横桁
 117a・・・・横桁
 117b・・・・横桁
 117c・・・・横桁
 117d・・・・分岐延出部
512・・・・・・第二主桁
601・・・・・・上部工
611・・・・・・副主桁
613・・・・・・副横桁
631・・・・・・副主桁

Claims (12)

  1.  主桁及び横桁と、前記主桁と前記横桁の交点に設けられた管状の杭頭固定部材とが一体的に接合された上部工を使用する橋梁施工方法であって、
     既設橋梁部の上部工の主桁に対して、前記上部工の主桁の一端部を接合することにより既設橋梁部に前記上部工を片持ち状に張り出した状態で連結し、
     前記連結された上部工の前記杭頭固定部材に杭部材を挿通し、
     前記杭部材の下端を所定の杭固定位置に打設し、
     前記杭部材の上端を前記上部工の杭頭固定部材に固定し、
     前記上部工の上部に沿って床版を配置し、
     前記上部工が、前記杭頭固定部材の上面が前記上部工の上に配置される床版と直接的又は間接的に接し、且つ前記杭頭固定部材の上面が前記杭頭固定部材に挿通された前記杭部材の中心軸に対して直角となる、
    ことを特徴とする橋梁の施工方法。
  2.  前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、水平面内において同一直線上に配置されていないことを特徴とする請求項1記載の橋梁の施工方法。
  3.  前記上部工は、前記杭頭固定部材に接合された主桁が、水平方向に対して傾斜していることを特徴とする請求項1又は2記載の橋梁の施工方法。
  4.  前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、垂直面内において同一直線上に配置されていないことを特徴とする請求項3記載の橋梁の施工方法。
  5.  前記上部工は、幅方向に隣り合う前記杭頭固定部材間を連結する前記横桁が、前記杭頭固定部材に接合された前記主桁と平行に延びる分岐延出部を有しており、
     前記分岐延出部に対して、前記杭頭固定部材に接合されていない第二主桁が接合されていることを特徴とする請求項1乃至4いずれかに記載の橋梁の施工方法。
  6.  前記杭部材の上端を前記上部工の杭頭固定部材に固定した後に、前記主桁の上に副主桁を接合すると共に前記横桁の上に副横桁を接合し、
     前記副主桁及び前記副横桁を介して前記上部工の上部に沿って床版を配置することを特徴とする請求項1乃至5いずれかに記載の橋梁の施工方法。
  7.  主桁及び横桁と、前記主桁と前記横桁の交点に設けられた管状の杭頭固定部材とが一体的に接合された上部工を有する橋梁構造であって、
     複数の上部工が主桁の一端部同士を接合することにより連結されており、
     前記連結された上部工の前記杭頭固定部材に杭部材が挿通され、
     前記杭部材の下端が所定の杭固定位置に打設され、
     前記杭部材の上端が前記上部工の杭頭固定部材に固定され、
     前記上部工の上部に沿って床版が配置されており、
     前記上部工が、前記杭頭固定部材の上面が前記上部工の上に配置される床版と直接的又は間接的に接し、且つ前記杭頭固定部材の上面が前記杭頭固定部材に挿通された前記杭部材の中心軸に対して直角となっている、
    ことを特徴とする橋梁構造。
  8.  前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、水平面内において同一直線上に配置されていないことを特徴とする請求項7記載の橋梁構造。
  9.  前記上部工は、前記杭頭固定部材に接合された主桁が、水平方向に対して傾斜していることを特徴とする請求項7又は8記載の橋梁の施工構造。
  10.  前記上部工は、前記杭頭固定部材の中心を挟んだ一方側と他方側に接合された主桁が、垂直面内において同一直線上に配置されていないことを特徴とする請求項9記載の橋梁構造。
  11.  前記上部工は、幅方向に隣り合う前記杭頭固定部材間を連結する前記横桁が、前記杭頭固定部材に接合された前記主桁と平行に延びる分岐延出部を有しており、
     前記分岐延出部に対して、前記杭頭固定部材に接合されていない第二主桁が接合されていることを特徴とする請求項7乃至10いずれかに記載の橋梁構造。
  12.  前記主桁の上に副主桁が接合される共に前記横桁の上に副横桁が接合されており、
     前記副主桁及び前記副横桁を介して前記上部工の上部に沿って床版が配置されていることを特徴とする請求項7乃至11いずれかに記載の橋梁構造。
PCT/JP2014/067463 2014-06-30 2014-06-30 橋梁施工方法及び橋梁構造 WO2016001997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480001416.3A CN106536825B (zh) 2014-06-30 2014-06-30 桥梁施工方法及桥梁结构
PCT/JP2014/067463 WO2016001997A1 (ja) 2014-06-30 2014-06-30 橋梁施工方法及び橋梁構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067463 WO2016001997A1 (ja) 2014-06-30 2014-06-30 橋梁施工方法及び橋梁構造

Publications (1)

Publication Number Publication Date
WO2016001997A1 true WO2016001997A1 (ja) 2016-01-07

Family

ID=55018598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067463 WO2016001997A1 (ja) 2014-06-30 2014-06-30 橋梁施工方法及び橋梁構造

Country Status (2)

Country Link
CN (1) CN106536825B (ja)
WO (1) WO2016001997A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371113B2 (ja) 2019-11-07 2023-10-30 Jfeシビル株式会社 道路構造、型枠治具、及び道路構造の施工方法
JP7516197B2 (ja) 2020-02-27 2024-07-16 日本製鉄株式会社 岸壁構造および岸壁構造の構築方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109024236A (zh) * 2018-08-24 2018-12-18 中国建筑局(集团)有限公司 一种钢栈桥及其施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096582A (ja) * 1998-09-17 2000-04-04 Kouchi Marutaka:Kk 杭式桟橋施工方法及び杭式桟橋構造
JP2000257006A (ja) * 1999-03-04 2000-09-19 Nippon Steel Corp 人工地盤構造およびその構築方法
JP2006249725A (ja) * 2005-03-09 2006-09-21 Kouchi Marutaka:Kk 橋脚と主桁のジョイント部材及びこのジョイント部材を用いた橋構造
JP2006299724A (ja) * 2005-04-25 2006-11-02 Yokoyama Kiso Koji:Kk 桟橋施工における掘削方法及び排土処理装置
JP2012207516A (ja) * 2011-09-20 2012-10-25 Kouchi Marutaka:Kk 橋梁用上部工の製造方法、橋梁及び橋梁用上部工

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211673B2 (ja) * 1996-08-02 2001-09-25 株式会社横山基礎工事 簡易仮橋仮桟橋架設工法
JP3150634B2 (ja) * 1996-11-22 2001-03-26 佐伯建設工業株式会社 プレキャスト桟橋構造およびそれを用いた埠頭構築工法
JP2004044236A (ja) * 2002-07-11 2004-02-12 Pc Bridge Co Ltd 外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋、及び外ケーブル方式を用いた木橋の張り出し架設工法並びに同架設工法による木橋の橋桁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096582A (ja) * 1998-09-17 2000-04-04 Kouchi Marutaka:Kk 杭式桟橋施工方法及び杭式桟橋構造
JP2000257006A (ja) * 1999-03-04 2000-09-19 Nippon Steel Corp 人工地盤構造およびその構築方法
JP2006249725A (ja) * 2005-03-09 2006-09-21 Kouchi Marutaka:Kk 橋脚と主桁のジョイント部材及びこのジョイント部材を用いた橋構造
JP2006299724A (ja) * 2005-04-25 2006-11-02 Yokoyama Kiso Koji:Kk 桟橋施工における掘削方法及び排土処理装置
JP2012207516A (ja) * 2011-09-20 2012-10-25 Kouchi Marutaka:Kk 橋梁用上部工の製造方法、橋梁及び橋梁用上部工

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371113B2 (ja) 2019-11-07 2023-10-30 Jfeシビル株式会社 道路構造、型枠治具、及び道路構造の施工方法
JP7490128B2 (ja) 2019-11-07 2024-05-24 Jfeシビル株式会社 道路構造
JP7516197B2 (ja) 2020-02-27 2024-07-16 日本製鉄株式会社 岸壁構造および岸壁構造の構築方法

Also Published As

Publication number Publication date
CN106536825A (zh) 2017-03-22
CN106536825B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP5693140B2 (ja) 道路等の人工地盤及びその構築方法
KR101868677B1 (ko) 메인 철골보와 보조 철골보를 연결하기 위한 연결 유닛 및, 이를 이용한 연결방법
JP2007023714A (ja) 形鋼を用いた合成床版、合成床版橋又は合成桁橋、及び、その施工方法
JP2009161974A (ja) 鉄筋コンクリート梁の構築方法
JP5661011B2 (ja) 橋梁用上部工の製造方法、橋梁及び橋梁用上部工
JP2006265976A (ja) 波形鋼板ウェブuコンポ橋およびその構築方法
WO2016001997A1 (ja) 橋梁施工方法及び橋梁構造
JP6320500B1 (ja) 橋梁の主桁、該主桁を備えた橋梁及び該橋梁の施工方法
JP2000017613A (ja) 波形鋼板ウエブ桁の接続方法
JP6655746B2 (ja) 橋梁の構造および床版取替え方法
US5966764A (en) Roll beam girder system for bridges
JP5767782B2 (ja) 橋梁の主桁連結構造
JP4649283B2 (ja) 形鋼を用いた柱状構造体、橋脚又は基礎杭及び、その製作方法
JP6893799B2 (ja) 切梁火打接続構造および切梁火打接続ピース
JP7238654B2 (ja) 鋼矢板の縦継構造
CN110029729B (zh) 一种预制钢筋混凝土主梁与次梁的拼接节点及施工方法
JP6174984B2 (ja) 鉄骨梁
JP7219529B2 (ja) 鋼材の組合せ構造体,山留支保工構造,及び構築方法
JP2006183286A (ja) 波形鋼板ウエブuコンポ橋における波形鋼板ウエブの接合構造
JP7229667B2 (ja) 基礎構造の構築方法
JP4661709B2 (ja) 版状構造体、これを用いたトンネル用セグメント、床版及び鉄筋コンクリート橋脚
CN111021534A (zh) 一种钢结构梁柱连接节点的施工方法
JPH08144368A (ja) エンドプレート形式鉄骨構造体の接合構造およびその接合方法
JP2003193564A (ja) 柱・梁構造躯体、その構築工法および仕口金物
JP3845297B2 (ja) 柱と梁との接合部の構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14896675

Country of ref document: EP

Kind code of ref document: A1