WO2016000337A1 - 有机发光二极管基板及其制作方法、显示装置 - Google Patents

有机发光二极管基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2016000337A1
WO2016000337A1 PCT/CN2014/087923 CN2014087923W WO2016000337A1 WO 2016000337 A1 WO2016000337 A1 WO 2016000337A1 CN 2014087923 W CN2014087923 W CN 2014087923W WO 2016000337 A1 WO2016000337 A1 WO 2016000337A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
hole transport
transport layer
pixel
layer
Prior art date
Application number
PCT/CN2014/087923
Other languages
English (en)
French (fr)
Inventor
马群
元裕太
闵天圭
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2016000337A1 publication Critical patent/WO2016000337A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an organic light emitting diode substrate, a method for fabricating the same, and a display device.
  • the prior art improves the resolution of the display by improving and innovating the manufacturing process.
  • the existing OLED (Organic Light-Emitting Diode) substrate manufacturing process is usually performed on a glass substrate by using an FMM (Fine Metal Mask) evaporation process.
  • Making a HTL (Hole Transport Layer) 11 corresponding to different sub-pixel positions (wherein the letter RHTL indicates the hole transport layer 11 at the position where the red sub-pixel is located, and the letter GHTL indicates the position of the green sub-pixel at the position
  • the hole transport layer 11, the letter BHTL represents the hole transport layer 11 at the position where the blue sub-pixel is located, in FIG. 1, the numeral 12 is used to identify the hole injection layer, and the numeral 13 is used to identify the glass substrate), thereby making the OLED display
  • the product has a higher resolution.
  • the vapor deposition process of the fine metal mask has problems such as low material utilization rate and low production efficiency, and the cost of the fine metal mask is high, and frequent cleaning is required, which wastes a lot of financial and material resources.
  • the present disclosure provides an organic light emitting diode substrate, a manufacturing method thereof, and a display device, which can be improved
  • the fabrication efficiency of the organic light emitting diode substrate reduces the manufacturing cost of the organic light emitting diode.
  • An embodiment of the present disclosure provides an organic light emitting diode substrate including a plurality of pixel units, each of which includes N sub-pixels, wherein N is a positive integer greater than or equal to 1, and each sub-pixel is empty at a position
  • the hole transport layer has different thicknesses
  • the hole transport layers at the positions of the first to N sub-pixels respectively include a 1-to-N-layer sub-hole transport layer, and the sub-hole transport layer included at the position of the Mth sub-pixel covers the thickness of the hole transport layer at the position where the M-th sub-pixel is located a sub-pixel having a higher thickness of the hole transport layer at a position where the Mth sub-pixel is located in a position region in the hole transport layer to form a common sub-hole transport layer, wherein the M is greater than or equal to 1, less than a positive integer of N;
  • the other sub-hole transport layers are formed by a common mask evaporation process.
  • the material of the N-layer sub-hole transport layer is the same.
  • the N sub-pixels are a first sub-pixel, a second sub-pixel, and a third sub-pixel, wherein a hole transport layer at a position where the first sub-pixel is located has the lowest thickness, and the second sub-pixel and the third sub-pixel The thickness of the hole transport layer at the position increases in turn;
  • the hole transport layer at the position where the first sub-pixel is located includes a first sub-hole transport layer covering the first sub-pixel, the second sub-pixel, and the third sub-pixel at the hole transport layer Where in the location area, the thickness of the first sub-hole transport layer is equal to the thickness of the hole transport layer at the location of the first sub-pixel;
  • the hole transport layer at the position where the second sub-pixel is located includes a first sub-hole transport layer and a second sub-hole transport layer located above the first sub-hole transport layer, the second sub-hole transport The layer covers a second sub-pixel and a location area of the third sub-pixel in the hole transport layer, the thickness of the second sub-hole transport layer being equal to the thickness and the thickness of the hole transport layer at the position of the second sub-pixel a difference between thicknesses of the first sub-hole transport layer;
  • the hole transport layer at the position where the third sub-pixel is located includes a first sub-hole transport layer, a second sub-hole transport layer, and a third sub-hole transport layer located above the second sub-hole transport layer,
  • the third sub-hole transport layer covers a location area of the third sub-pixel in the hole transport layer, and the thickness of the third sub-hole transport layer is equal to the thickness of the hole transport layer at the position of the third sub-pixel.
  • the first sub-hole transport layer and the second sub-hole transport layer are fabricated by a common mask evaporation process, and the third sub-hole transport layer is fabricated by a fine metal mask evaporation process.
  • the OLED substrate further includes:
  • An electron transport layer located above the light emitting layer.
  • the OLED substrate further includes:
  • the embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode substrate, which is used to fabricate the organic light emitting diode substrate provided by the embodiment of the present disclosure, and the method includes:
  • a sub-hole transport layer other than the sub-hole transport layer located at the highest layer is sequentially formed by a common mask evaporation process, wherein the Mth sub-pixel position is included
  • the sub-hole transport layer covers a region where the thickness of the hole transport layer at a position higher than a thickness of the hole transport layer at a position of the Mth sub-pixel is in a hole transport layer to form a common a sub-hole transport layer, wherein M is a positive integer greater than or equal to 1, less than the N;
  • a sub-hole transport layer located at the highest layer is formed by a fine metal mask evaporation process.
  • the N sub-pixels are a first sub-pixel, a second sub-pixel, and a third sub-pixel, and the common mask evaporation process is sequentially performed to prepare other than the sub-hole transport layer located at the highest layer.
  • the sub-hole transport layer includes:
  • a thickness of the first sub-hole transport layer is equal to a thickness of a hole transport layer at a position where the first sub-pixel is located, and a thickness of the hole transport layer at a position where the second sub-pixel is located is higher than the first The thickness of the hole transport layer at the position where the sub-pixel is located, and the hole transport layer at the position where the third sub-pixel is located a thickness higher than a thickness of the hole transport layer at a position where the second sub-pixel is located;
  • Second sub-hole transport layer over the first sub-hole transport layer by a common mask evaporation process, the second sub-hole transport layer covering the second sub-pixel and the third sub-pixel being empty a location region in the hole transport layer, the thickness of the second sub-hole transport layer being equal to the thickness of the hole transport layer at the location of the second sub-pixel and the thickness of the first sub-hole transport layer Difference.
  • the sub-hole transport layer on the highest layer is formed by using a fine metal mask evaporation process on the existing sub-hole transport layer:
  • a third sub-hole transport layer by a fine metal mask evaporation process, the third sub-hole transport layer covering a location area of the third sub-pixel in the hole transport layer, the third sub-hole transport The thickness of the layer is equal to the difference between the thickness of the hole transport layer at the position where the third sub-pixel is located and the thickness of the first and second sub-hole transport layers.
  • the materials of the first sub-hole transport layer, the second sub-hole transport layer, and the third sub-hole transport layer are the same.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the organic light emitting diode substrate provided by the embodiment of the present disclosure.
  • the organic light emitting diode substrate includes a plurality of pixel units, each of the pixel units includes N sub-pixels, and the N is a positive integer greater than or equal to 1, the hole transport layer at each sub-pixel position has a different thickness, wherein the hole transport layer at the position of the first to N sub-pixels respectively includes a 1-to-N sub-hole transport layer a sub-pixel transport layer covered at a position where the M-th sub-pixel is located covers a hole transport layer having a thickness higher than a thickness of the hole transport layer at a position of the M-th sub-pixel at a hole transport layer a location area in which to form a common sub-hole transport layer, said M being a positive integer greater than or equal to 1, less than said N; in said N-layer sub-hole transport layer, except for the sub-hole located at the highest layer
  • the transfer layer is fabricated by a fine metal mask
  • FIG. 1 is a schematic structural view of an organic light emitting diode in the prior art
  • FIG. 2 is a schematic structural view 1 of an organic light emitting diode according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a method for fabricating an organic light emitting diode according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view 2 of an organic light emitting diode according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram 3 of an organic light emitting diode according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram 4 of an organic light emitting diode according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an organic light emitting diode (OLED) substrate, which may specifically include a plurality of pixel units, and each of the pixel units may include N sub-pixels, for example, 3 or 4, that is, the N is A positive integer greater than or equal to 1.
  • OLED organic light emitting diode
  • the hole transport layer (HTL: Hole Transport Layer) at the position of each sub-pixel has different thicknesses, so that the position of different sub-pixels can be made by using the microcavity effect.
  • the OLED substrate presents different colors.
  • the hole transport layer according to the embodiment of the present disclosure is composed of an N-layer sub-hole transport layer 21, wherein the hole transport layer at the position of the first to N sub-pixels may specifically include 1 To the N-layer sub-hole transport layer 21, the sub-holes included at the position of the Mth sub-pixel
  • the transmission layer 21 covers the position of the hole transport layer at the position where the thickness of the hole transport layer is higher than the thickness of the hole transport layer at the position of the Mth sub-pixel in the hole transport layer to form a common sub-hole.
  • the M is a positive integer greater than or equal to 1, less than N.
  • the sub-hole transport layer 21 located at the highest layer is fabricated by a fine metal mask (FMM) evaporation process.
  • the layer 21 is formed by a common mask (CM: Common Mask) evaporation process.
  • the pattern can be reduced compared to the fine metal mask (FMM) evaporation process.
  • the waste of layer material saves a lot of materials and improves the utilization of the material of the hole transport layer.
  • the implementation process of the common mask evaporation process is less time-consuming than the fine metal mask evaporation process. Therefore, the technical solution provided by the embodiments of the present disclosure can also shorten the fabrication time of the organic light-emitting diode substrate. Improve the production efficiency of organic light-emitting diodes.
  • an embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode. As shown in FIG. 3, the method may specifically include:
  • a common mask evaporation process is used to sequentially fabricate other sub-hole transport layers 21 other than the sub-hole transport layer located at the highest layer, wherein the Mth sub-pixel position
  • the included sub-hole transport layer 21 covers a region where the hole transport layer at a position where the thickness of the hole transport layer is higher than a thickness of the hole transport layer at a position where the Mth sub-pixel is located in the hole transport layer, Forming a common sub-hole transport layer 21;
  • a sub-hole transport layer 21 located at the highest layer is formed by a fine metal mask evaporation process.
  • the OLED substrate provided by the embodiment of the present disclosure and a method for fabricating the same are described in detail by taking three sub-pixels in a pixel unit (for respectively representing three primary colors of red, green, and blue).
  • the sub-pixel region for presenting blue may be the first sub-pixel
  • the sub-pixel region for presenting green may be the second sub-pixel
  • the sub-pixel region for presenting the red may be the third sub-pixel.
  • the thickness of the hole transport layer at the position where the diode substrate is located is different, wherein, as shown in FIG. 4, the hole transport layer at the position of the blue sub-pixel (the region indicated by the letter BHTL) has the lowest thickness, and the position of the green sub-pixel is located.
  • the thickness of the hole transport layer at the position (the region indicated by the letter GHTL) is higher than the thickness of the hole transport layer at the position where the blue sub-pixel is located, and the hole transport layer at the position where the red sub-pixel is located (the region indicated by the letter RHTL)
  • the thickness is higher than the thickness of the hole transport layer at the position where the green sub-pixel is located.
  • a common mask evaporation process may be used for the first time to form a sub-hole transport layer at a position where the blue sub-pixel (ie, the first sub-pixel) is located ( The first sub-hole transport layer) 211.
  • the thickness of the first sub-hole transport layer 211 may be equal to the thickness of the hole transport layer at the position where the blue sub-pixel is located, and since the thicknesses of the two are the same, the position of the blue sub-pixel (ie, the first sub-pixel) is
  • the hole transport layer includes only one layer of the hole transport layer 21.
  • the sub-hole transport layer 21 at the position where the sub-pixel having the lowest hole transport layer thickness is located may be first formed by a common mask evaporation process.
  • the first sub-hole transport layer 211 covers not only the blue sub-pixel in the position region where the hole transport layer is located, but also covers the green and red sub-pixels (the hole transport layer at the corresponding position is thicker than the blue sub-pixel)
  • the thickness of the hole transport layer at the position) is in the position region in the hole transport layer as the common sub-hole transport layer 21 of three sub-pixels of blue, green and red.
  • the sub-pixel ie, the second sub-pixel
  • the sub-pixel is placed at a position where the green sub-pixel (ie, the second sub-pixel) is located.
  • a hole transport layer ie, a second sub-hole transport layer 212.
  • the thickness of the second sub-hole transport layer 212 may specifically be The difference between the target thickness of the green sub-pixel and the thickness of the first sub-hole transport layer 211 (ie, the thickness of the hole transport layer at the position where the blue sub-pixel is located).
  • the second sub-hole transport layer 212 covers not only the green sub-pixels but also the holes.
  • the location in the layer also covers the location of the red sub-pixel in the hole transport layer to form a common sub-hole transport layer 21 of two sub-pixels of green and red.
  • the hole transport layer at the position where the green sub-pixel (ie, the second sub-pixel) is located may specifically include two sub-hole transport layers 21 (the first sub-hole transport layer 211 and the first Two sub-hole transport layers 212).
  • the sub-hole transport layer 21 at the position where the blue and green sub-pixels are completed After the fabrication of the sub-hole transport layer 21 at the position where the blue and green sub-pixels are completed, the sub-hole transport layer 21 at the position where the red sub-pixel (ie, the third sub-pixel) is located can be fabricated.
  • the sub-hole transport at the position of the red sub-pixel located at the highest layer can be performed by using a fine metal mask evaporation process.
  • the layer is the third sub-hole transport layer 213.
  • the thickness of the third sub-hole transport layer 213 may be a hole at a position where the red sub-pixel is located. The difference between the target thickness of the transport layer and the thickness of the first sub-hole transport layer 211 and the second sub-hole transport layer 212.
  • the third sub-hole transport layer 213 only covers the position of the red sub-pixel in the hole transport layer.
  • the materials of the first sub-hole transport layer 211, the second sub-hole transport layer 212, and the third sub-hole transport layer 213 may be the same, for example, an organic material such as an aromatic amine fluorescent compound.
  • the organic light emitting diode provided by the embodiment and the manufacturing method thereof can complete the fabrication of the organic light emitting diode substrate by two common mask evaporation processes and one fine metal mask evaporation process. Therefore, compared with FIG. 1, a three-step fine metal mask evaporation process is employed (due to the hole transport layer 11 at the position where the three sub-pixels of red, green, and blue are located in the prior art as shown in FIG. That is, BHTL, GHTL, and RHTL exist independently, so they need to be fabricated by three fine metal mask evaporation processes, which not only saves a lot of materials, but also significantly improves the utilization rate of the hole transport layer.
  • this embodiment reduces the use of the two fine metal mask evaporation processes, thereby significantly increasing the production efficiency of the organic light emitting diode, reducing the fabrication cost of the organic light emitting diode and the cost of cleaning the fine metal mask.
  • a hole transport layer at a position where a sub-pixel is located When the material of the hole transport layer is different from the material of the hole transport layer in the region where the other sub-pixels are located, the hole transport layer at the position of the sub-pixel having the same material may be formed by a common mask evaporation process and a fine metal mask evaporation process. A hole transport layer at a position where sub-pixels having different materials are formed by a fine metal mask evaporation process.
  • the sub-hole transport layer 214 at the position where the green sub-pixel is located may be formed by a common mask evaporation process, and the sub-hole transport layer 214 also covers the position of the red sub-pixel in the hole transport layer.
  • the embodiment can also save manufacturing materials, improve the utilization ratio of the manufacturing materials, improve the production efficiency of the organic light emitting diode, reduce the manufacturing cost of the organic light emitting diode, and clean the fine metal mask. The purpose of the cost.
  • the organic light emitting diode substrate provided by the embodiment of the present disclosure in addition to the above-mentioned hole transport layer, as shown in FIG. 6, may specifically include:
  • HIL Hole Inject Layer
  • a light emitting layer 24 (EML: Emitting Layer) located above the hole transport layer 21;
  • An electron transport layer 25 (ETL: Electro Transport Layer) located above the light-emitting layer 24.
  • the hole injection layer 23, the hole transport layer 21, the light-emitting layer 24, and the electron transport layer 25 may specifically constitute an organic light-emitting layer in the organic light-emitting diode substrate.
  • the OLED substrate provided by the embodiment of the present disclosure may further include:
  • a cathode layer 27 located above the electron transport layer 25;
  • a flat layer 28 is located above the cathode layer 27.
  • the organic light emitting diode shown in FIG. 6 may specifically be an active matrix organic light emitting diode (AMOLED) in which a thin and transparent ITO anode layer 26 and a metal cathode layer 27 are sandwich-likely wrapped with an organic light-emitting layer (including a hole injection layer 23, a hole transport layer 21, a light-emitting layer 24, and an electron transport layer 25)
  • AMOLED active matrix organic light emitting diode
  • the organic light emitting diode according to the embodiment of the present disclosure may also be other types of organic light emitting diodes, such as a passive matrix organic light emitting diode (PM-OLED).
  • PM-OLED passive matrix organic light emitting diode
  • the layer other than the hole transport layer 21 may be prepared by a mature and effective manufacturing method, such as evaporation, etc., and the embodiment of the present disclosure is not limited thereto.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the organic light emitting diode substrate provided by the embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure may specifically be any electronic product having a display function.
  • the organic light emitting diode substrate provided by the present disclosure, the manufacturing method thereof, and the display device, the organic light emitting diode substrate includes a plurality of pixel units, each of the pixel units includes N sub-pixels, and the N is a positive integer greater than or equal to 1, each The hole transport layer at the position where the sub-pixels are located has different thicknesses, wherein the hole transport layers at the positions of the first to N sub-pixels respectively include a 1-to-N-layer sub-hole transport layer, and the position of the Mth sub-pixel is located
  • the included sub-hole transport layer covers a region where the hole transport layer at a position where the thickness of the hole transport layer is higher than a thickness of the hole transport layer at a position where the Mth sub-pixel is located in the hole transport layer to form a region Sharing a sub-hole transport layer, wherein M is a positive integer greater than or equal to 1, less than the N; wherein the N-layer sub-hole transport layer is vaporized by a fine metal mask except for

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管基板及其制作方法、显示装置,通过使子像素所在位置处的空穴传输层(21)由N层子空穴传输层(211、212、213)构成,其中,第1至N个子像素所在位置处的空穴传输层(21)分别包括1至N层子空穴传输层(211、212、213),第M个子像素所在位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层(211、212),M为大于等于1、小于N的正整数;N层子空穴传输层(211、212、213)中,除位于最高层的子空穴传输层(213)采用精细金属掩膜蒸镀工艺制作以外,其他子空穴传输层(211、212)采用共用掩膜蒸镀工艺制作。从而可提高有机发光二极管基板的制作效率,降低有机发光二极管的制作成本。

Description

有机发光二极管基板及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2014年6月30日在中国提交的中国专利申请号No.201410307522.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,具体涉及一种有机发光二极管基板及其制作方法、显示装置。
背景技术
近年来,终端消费类电子显示产品越来越注重视觉体验,对显示屏分辨率的要求逐年提高,这在中小尺寸显示领域尤为突出。
为了使显示屏在分辨率上达到高密度的效果,现有技术中通过对制作工艺的改良和创新,以实现显示屏分辨率的提高。
现有的OLED(Organic Light-Emitting Diode,有机发光二极管)基板制作过程,如图1所示,通常是在玻璃基板上,采用FMM(Fine Metal Mask,精细金属掩膜)的蒸镀工艺,分别制作对应于不同子像素位置处的HTL(Hole Transport Layer,空穴传输层)11(其中,字母RHTL表示红色子像素所在位置处的空穴传输层11,字母GHTL表示绿色子像素所在位置处的空穴传输层11,字母BHTL表示蓝色子像素所在位置处的空穴传输层11,图1中,数字12用于标识空穴注入层,数字13用于标识玻璃基板),从而使OLED显示产品具有较高的分辨率。
但是,精细金属掩膜的蒸镀工艺存在材料利用率低、生产效率低等问题,而且,精细金属掩膜的成本较高,且需要频繁的清洗,浪费了大量的财力和物力。
发明内容
本公开提供一种有机发光二极管基板及其制作方法、显示装置,可提高 有机发光二极管基板的制作效率,降低有机发光二极管的制作成本。
本公开提供方案如下:
本公开实施例提供了一种有机发光二极管基板,包括多个像素单元,每个所述像素单元中包括N个子像素,所述N为大于等于1的正整数,每个子像素所在位置处的空穴传输层具有不同的厚度;
第1至N个子像素所在位置处的空穴传输层分别包括1至N层子空穴传输层,第M个子像素所在位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;
所述N层子空穴传输层中,除位于最高层的子空穴传输层采用精细金属掩膜蒸镀工艺制作以外,其他子空穴传输层采用共用掩膜蒸镀工艺制作。
可选的,所述N层子空穴传输层的材质相同。
可选的,所述N个子像素为第一子像素、第二子像素和第三子像素,其中第一子像素所在位置处的空穴传输层厚度最低,第二子像素和第三子像素所在位置处的空穴传输层厚度依次增大;
第一子像素所在位置处的空穴传输层包括第一子空穴传输层,所述第一子空穴传输层覆盖第一子像素、第二子像素和第三子像素在空穴传输层中的所在位置区域,所述第一子空穴传输层的厚度等于第一子像素所在位置处的空穴传输层的厚度;
第二子像素所在位置处的空穴传输层包括第一子空穴传输层以及位于所述第一子空穴传输层之上的第二子空穴传输层,所述第二子空穴传输层覆盖第二子像素以及第三子像素在空穴传输层中的所在位置区域,所述第二子空穴传输层的厚度等于第二子像素所在位置处的空穴传输层的厚度与所述第一子空穴传输层的厚度之间的差值;
第三子像素所在位置处的空穴传输层包括第一子空穴传输层、第二子空穴传输层以及位于所述第二子空穴传输层之上的第三子空穴传输层,所述第三子空穴传输层覆盖第三子像素在空穴传输层中的所在位置区域,所述第三子空穴传输层的厚度等于第三子像素所在位置处空穴传输层的厚度与第一、 第二子空穴传输层叠加厚度之间的差值;
所述第一子空穴传输层和第二子空穴传输层采用共用掩膜蒸镀工艺制作,所述第三子空穴传输层采用精细金属掩膜蒸镀工艺制作。
可选的,所述有机发光二极管基板还包括:
位于玻璃基板与空穴传输层之间的空穴注入层;
位于空穴传输层之上的发光层;
位于发光层之上的电子传输层。
可选的,所述有机发光二极管基板还包括:
位于玻璃基板与空穴注入层之间的阳极层;
位于电子传输层之上的阴极层;
位于阴极层之上的平坦层。
本公开实施例还提供了一种有机发光二极管基板制作方法,用于制作上述本公开实施例提供的有机发光二极管基板,所述方法包括:
在有机发光二极管基板已有图层之上,采用共用掩膜蒸镀工艺,依次制作除位于最高层的子空穴传输层以外的其他子空穴传输层,其中,第M个子像素位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;
在已有的子空穴传输层之上,采用精细金属掩膜蒸镀工艺制作位于最高层的子空穴传输层。
可选的,所述N个子像素为第一子像素、第二子像素和第三子像素,所述采用共用掩膜蒸镀工艺,依次制作除位于最高层的子空穴传输层以外的其他子空穴传输层包括:
采用共用掩膜蒸镀工艺制作第一子空穴传输层,所述第一子空穴传输层覆盖第一子像素、第二子像素和第三子像素在空穴传输层中的所在位置区域,所述第一子空穴传输层的厚度等于第一子像素所在位置处的空穴传输层的厚度,所述第二子像素所在位置处的空穴传输层的厚度高于所述第一子像素所在位置处的空穴传输层的厚度,所述第三子像素所在位置处的空穴传输层的 厚度高于所述第二子像素所在位置处的空穴传输层的厚度;
采用共用掩膜蒸镀工艺制作位于所述第一子空穴传输层之上的第二子空穴传输层,所述第二子空穴传输层覆盖第二子像素以及第三子像素在空穴传输层中的所在位置区域,所述第二子空穴传输层的厚度等于第二子像素所在位置处的空穴传输层的厚度与所述第一子空穴传输层的厚度之间的差值。
可选的,所述在已有的子空穴传输层之上,采用精细金属掩膜蒸镀工艺制作位于最高层的子空穴传输层包括:
采用精细金属掩膜蒸镀工艺制作第三子空穴传输层,所述第三子空穴传输层覆盖第三子像素在空穴传输层中的所在位置区域,所述第三子空穴传输层的厚度等于第三子像素所在位置处空穴传输层的厚度与第一、第二子空穴传输层叠加厚度之间的差值。
可选的,所述第一子空穴传输层、第二子空穴传输层以及第三子空穴传输层的材质相同。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的有机发光二极管基板。
从以上所述可以看出,本公开提供的有机发光二极管基板及其制作方法、显示装置,有机发光二极管基板包括多个像素单元,每个所述像素单元中包括N个子像素,所述N为大于等于1的正整数,每个子像素所在位置处的空穴传输层具有不同的厚度,其中,第1至N个子像素所在位置处的空穴传输层分别包括1至N层子空穴传输层,第M个子像素所在位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;所述N层子空穴传输层中,除位于最高层的子空穴传输层采用精细金属掩膜蒸镀工艺制作以外,其他子空穴传输层采用共用掩膜蒸镀工艺制作。从而可提高有机发光二极管基板的制作效率,降低有机发光二极管的制作成本。
附图说明
图1为现有技术中有机发光二极管结构示意图;
图2为本公开实施例提供的有机发光二极管结构示意图一;
图3为本公开实施例提供的有机发光二极管制作方法流程示意图;
图4为本公开实施例提供的有机发光二极管结构示意图二;
图5为本公开实施例提供的有机发光二极管结构示意图三;
图6为本公开实施例提供的有机发光二极管结构示意图四。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本公开实施例提供了一种有机发光二极管(OLED)基板,该基板中具体可以包括多个像素单元,并且每个像素单元中可以包括N个子像素,例如3个或4个,即该N为大于等于1的正整数。
本公开实施例所提供的有机发光二极管基板中,每个子像素所在位置处的空穴传输层(HTL:Hole Transport Layer)具有不同的厚度,从而利用微腔效应,可使不同子像素所在位置处的有机发光二极管基板呈现不同的颜色。
如附图2所示,本公开实施例所涉及的空穴传输层由N层子空穴传输层21构成,其中,第1至N个子像素所在位置处的空穴传输层具体可以分别包括1至N层子空穴传输层21,第M个子像素所在位置处所包括的子空穴传 输层21覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层21,所述M为大于等于1、小于N的正整数。
而且,本公开实施例中所涉及的N层子空穴传输层21中,除位于最高层的子空穴传输层21采用精细金属掩膜(FMM)蒸镀工艺制作以外,其他子空穴传输层21采用共用掩膜(CM:Common Mask)蒸镀工艺制作。
由于共用掩膜蒸镀工艺只是在相应图层生成一层图层,而不需要生成相应的图层图案(Pattern),因此,相较于精细金属掩膜(FMM)蒸镀工艺,可以减少图层材料的浪费,从而节省了大量材料,提高了空穴传输层材料的利用率。
另一方面,共用掩膜蒸镀工艺的实现过程相较于精细金属掩膜蒸镀工艺耗时要少,因此,本公开实施例所提供的技术方案还可以缩短有机发光二极管基板的制作时长,提高有机发光二极管的生产效率。
为了制作本公开实施例所提供的有机发光二极管基板,本公开实施例还提供了一种有机发光二极管制作方法,如图3所示,该方法具体可以包括:
在有机发光二极管基板已有图层之上,采用共用掩膜蒸镀工艺,依次制作除位于最高层的子空穴传输层以外的其他子空穴传输层21,其中,第M个子像素位置处所包括的子空穴传输层21覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层21;
在已有的子空穴传输层之上,采用精细金属掩膜蒸镀工艺制作位于最高层的子空穴传输层21。
下面,以像素单元中包括三个子像素(分别用于呈现红、绿、蓝三基色)为例,对本公开实施例提供的有机发光二极管基板及其制作方法进行详细的说明。
该实施例中,用于呈现蓝色的子像素区域可为第一子像素,用于呈现绿色的子像素区域可为第二子像素,用于呈现红色的子像素区域可为第三子像素。
由于红、绿、蓝色的波长各不相同,因此,上述三个子像素在有机发光 二极管基板所在位置处的空穴传输层的厚度不同,其中,如图4所示,蓝色子像素所在位置处(字母BHTL所示区域)的空穴传输层的厚度最低,绿色子像素所在位置处(字母GHTL所示区域)的空穴传输层的厚度高于蓝色子像素所在位置处的空穴传输层的厚度,红色子像素所在位置处(字母RHTL所示区域)的空穴传输层的厚度高于绿色子像素所在位置处的空穴传输层的厚度。
那么在具体实现时,在有机发光二极管基板已有图层之上,首次可采用共用掩膜蒸镀工艺,制作蓝色子像素(即第一子像素)所在位置处的子空穴传输层(第一子空穴传输层)211。
该第一子空穴传输层211的厚度可等于蓝色子像素所在位置处的空穴传输层的厚度,由于两者厚度相同,因此,蓝色子像素(即第一子像素)所在位置处的空穴传输层仅包括一层子空穴传输层21。
即本公开实施例中,首先可采用共用掩膜蒸镀工艺制作空穴传输层厚度最低的子像素所在位置处的子空穴传输层21。
而且,该第一子空穴传输层211不仅覆盖蓝色子像素在空穴传输层所在位置区域,同时还覆盖绿色和红色子像素(对应位置处的空穴传输层厚度高于蓝色子像素所在位置处的空穴传输层厚度)在空穴传输层中的所在位置区域,以作为蓝色、绿色和红色三个子像素的共用子空穴传输层21。
那么可见,本公开实施例中,通过一次蒸镀工艺,不仅制作形成了蓝色子像素所在位置处的空穴传输层,同时还制作形成了绿色和红色子像素所在位置处的部分空穴传输层。
然后,可再次通过采用共用掩膜蒸镀工艺,在有机发光二极管基板已有图层即第一子空穴传输层211之上,制作绿色子像素(即第二子像素)所在位置处的子空穴传输层(即第二子空穴传输层)212。
由于绿色子像素所在位置处已经存在部分第一子空穴传输层211,即绿色子像素所在位置的空穴传输层已经存在部分厚度,因此,第二子空穴传输层212的厚度具体可为绿色子像素的目标厚度与第一子空穴传输层211的厚度(即蓝色子像素所在位置处的空穴传输层的厚度)之间的差值。
如图4所示,该第二子空穴传输层212不仅覆盖绿色子像素在空穴传输 层中的所在位置处,同时还覆盖了红色子像素在空穴传输层中的所在位置区域,以形成绿色与红色两个子像素的共用子空穴传输层21。
从图4中可以看出,绿色子像素(即第二子像素)所在位置处的空穴传输层具体可以包括两层子空穴传输层21(分别为第一子空穴传输层211和第二子空穴传输层212)。
在完成蓝色和绿色子像素所在位置处的子空穴传输层21的制作后,可以制作红色子像素(即第三子像素)所在位置处的子空穴传输层21。
鉴于红色子像素所在位置处的空穴传输层的厚度最高,因此,本公开实施例中,可采用精细金属掩膜蒸镀工艺,制作位于最高层的红色子像素所在位置处的子空穴传输层即第三子空穴传输层213。
由于红色子像素所在位置处已经存在部分第一子空穴传输层211和第二子空穴传输层212,因此,第三子空穴传输层213的厚度可为红色子像素所在位置处空穴传输层的目标厚度与第一子空穴传输层211和第二子空穴传输层212叠加厚度之间的差值。
又由于红色子像素所在位置处的空穴传输层的厚度最高,因此,第三子空穴传输层213仅覆盖红色子像素在空穴传输层中的所在位置区域即可。
该实施例中,第一子空穴传输层211、第二子空穴传输层212以及第三子空穴传输层213的材质可相同,例如为芳香胺萤光化合物等有机材料。
通过以上说明可以看出,该实施例所提供的有机发光二极管及其制作方法,通过两次共用掩膜蒸镀工艺和一次精细金属掩膜蒸镀工艺,即可完成有机发光二极管基板的制作,因此,相较于如图1所示,采用三次精细金属掩膜蒸镀工艺(由于如图1所示现有技术中,红、绿、蓝三个子像素所在位置处的空穴传输层11,即BHTL、GHTL、RHTL,各自独立存在,因此需采用三次精细金属掩膜蒸镀工艺分别制作完成),不仅节省了大量的制作材料,还显著提高了空穴传输层制作材料的利用率。
同时,该实施例减少了两次精细金属掩膜蒸镀工艺的使用,因此可显著提高有机发光二极管的生产效率,降低了有机发光二极管的制作成本以及清洗精细金属掩膜的成本。
在本公开的另一具体实施例中,当一个子像素所在位置处的空穴传输层 的材质与其他子像素所在位置区域的空穴传输层的材质不同时,可采用共用掩膜蒸镀工艺和精细金属掩膜蒸镀工艺制作材质相同的子像素所在位置的空穴传输层,单独采用精细金属掩膜蒸镀工艺制作材质不同的子像素所在位置处的空穴传输层。
同样以红、绿、蓝三个子像素为例,如附图5所示,当蓝色子像素所在位置处的空穴传输层的材质,与红、绿两个子像素所在位置处的空穴传输层材质不同时,可先采用共用掩膜蒸镀工艺制作绿色子像素所在位置处的子空穴传输层214,该子空穴传输层214同时还覆盖红色子像素在空穴传输层中所在位置区域,然后采用精细金属掩膜蒸镀工艺在子空穴传输层214上制作红色子像素所在位置处的子空穴传输层215,再采用精细金属掩膜蒸镀工艺制备材质不同的蓝色子像素所在位置处的空穴传输层即子空穴传输层216(两者厚度相同)。
该实施例相较于图1所示的现有技术,同样可以实现节省制作材料,提高制作材料利用率,以及提高有机发光二极管的生产效率,降低有机发光二极管的制作成本以及清洗精细金属掩膜的成本的目的。
本公开实施例所提供的有机发光二极管基板,除了上述所列举的空穴传输层之外,如图6所示,具体还可以包括:
位于玻璃基板22与空穴传输层21之间的空穴注入层23(HIL:Hole Inject Layer);
位于空穴传输层21之上的发光层24(EML:Emitting Layer);
位于发光层24之上的电子传输层25(ETL:Electron Transport Layer)。
上述空穴注入层23、空穴传输层21、发光层24以及电子传输层25具体可组成有机发光二极管基板中的有机发光层。
在另一具体实施例中,如图6所示,本公开实施例所提供的有机发光二极管基板具体还可以包括:
位于玻璃基板22与空穴注入层23之间的阳极层26;
位于电子传输层25之上的阴极层27;
位于阴极层27之上的平坦层28。
图6所示的有机发光二极管具体可为有源矩阵有机发光二极管 (AMOLED),其中薄而透明的ITO阳极层26与金属阴极层27如同三明治般地将有机发光层(包括空穴注入层23、空穴传输层21、发光层24以及电子传输层25)包夹其中,当电压注入阳极的空穴(Hole)与阴极来的电子(Electron)在有机发光层结合时,激发有机材料而发光。
本公开实施例所涉及的有机发光二极管,还可以是其他类型的有机发光二极管,例如无源矩阵有机发光二极管(PM-OLED)等。
本公开实施例中,除空穴传输层21之外的图层,可采用成熟有效的制作方法制备,例如蒸镀等,对此本公开实施例并不限制。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的有机发光二极管基板。
本公开实施例所提供的显示装置,具体可为任一种具有显示功能的电子产品。
本公开提供的有机发光二极管基板及其制作方法、显示装置,有机发光二极管基板包括多个像素单元,每个所述像素单元中包括N个子像素,所述N为大于等于1的正整数,每个子像素所在位置处的空穴传输层具有不同的厚度,其中,第1至N个子像素所在位置处的空穴传输层分别包括1至N层子空穴传输层,第M个子像素所在位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;所述N层子空穴传输层中,除位于最高层的子空穴传输层采用精细金属掩膜蒸镀工艺制作以外,其他子空穴传输层采用共用掩膜蒸镀工艺制作。从而可提高有机发光二极管基板的制作效率,降低有机发光二极管的制作成本。
以上所述仅是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (10)

  1. 一种有机发光二极管基板,包括多个像素单元,每个所述像素单元中包括N个子像素,所述N为大于等于1的正整数,每个子像素所在位置处的空穴传输层具有不同的厚度,
    第1至N个子像素所在位置处的空穴传输层分别包括1至N层子空穴传输层,第M个子像素位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;
    所述N层子空穴传输层中,除位于最高层的子空穴传输层采用精细金属掩膜蒸镀工艺制作以外,其他子空穴传输层采用共用掩膜蒸镀工艺制作。
  2. 如权利要求1所述的有机发光二极管基板,其中,所述N层子空穴传输层的材质相同。
  3. 如权利要求1所述的有机发光二极管基板,其中,所述N个子像素为第一子像素、第二子像素和第三子像素,其中第一子像素所在位置处的空穴传输层厚度最低,第二子像素和第三子像素所在位置处的空穴传输层厚度依次增高;
    第一子像素所在位置处的空穴传输层包括第一子空穴传输层,所述第一子空穴传输层覆盖第一子像素、第二子像素和第三子像素在空穴传输层中的所在位置区域,所述第一子空穴传输层的厚度等于第一子像素所在位置处的空穴传输层的厚度;
    第二子像素所在位置处的空穴传输层包括第一子空穴传输层以及位于所述第一子空穴传输层之上的第二子空穴传输层,所述第二子空穴传输层覆盖第二子像素以及第三子像素在空穴传输层中的所在位置区域,所述第二子空穴传输层的厚度等于第二子像素所在位置处的空穴传输层的厚度与所述第一子空穴传输层的厚度之间的差值;
    第三子像素所在位置处的空穴传输层包括第一子空穴传输层、第二子空穴传输层以及位于所述第二子空穴传输层之上的第三子空穴传输层,所述第 三子空穴传输层覆盖第三子像素在空穴传输层中的所在位置区域,所述第三子空穴传输层的厚度等于第三子像素所在位置处空穴传输层的厚度与第一、第二子空穴传输层叠加厚度之间的差值;
    所述第一子空穴传输层和第二子空穴传输层采用共用掩膜蒸镀工艺制作,所述第三子空穴传输层采用精细金属掩膜蒸镀工艺制作。
  4. 如权利要求1-3任一项所述的有机发光二极管基板,其中,还包括:
    位于玻璃基板与空穴传输层之间的空穴注入层;
    位于空穴传输层之上的发光层;
    位于发光层之上的电子传输层。
  5. 如权利要求4所述的有机发光二极管基板,其中,还包括:
    位于玻璃基板与空穴注入层之间的阳极层;
    位于电子传输层之上的阴极层;
    位于阴极层之上的平坦层。
  6. 一种有机发光二极管基板制作方法,用于制作权利要求1至5任一项所述的有机发光二极管基板,所述方法包括:
    在有机发光二极管基板已有图层之上,采用共用掩膜蒸镀工艺,依次制作除位于最高层的子空穴传输层以外的其他子空穴传输层,其中,第M个子像素位置处所包括的子空穴传输层覆盖所在位置处的空穴传输层厚度比所述第M个子像素所在位置处的空穴传输层厚度高的子像素在空穴传输层中的所在位置区域,以形成共用子空穴传输层,所述M为大于等于1、小于所述N的正整数;
    在已有的子空穴传输层之上,采用精细金属掩膜蒸镀工艺制作位于最高层的子空穴传输层。
  7. 如权利要求6所述的方法,其中,所述N个子像素为第一子像素、第二子像素和第三子像素,所述采用共用掩膜蒸镀工艺,依次制作除位于最高层的子空穴传输层以外的其他子空穴传输层包括:
    采用共用掩膜蒸镀工艺制作第一子空穴传输层,所述第一子空穴传输层覆盖第一子像素、第二子像素和第三子像素在空穴传输层中的所在位置区域,所述第一子空穴传输层的厚度等于第一子像素所在位置处的空穴传输层的厚 度,所述第二子像素所在位置处的空穴传输层的厚度高于所述第一子像素所在位置处的空穴传输层的厚度,所述第三子像素所在位置处的空穴传输层的厚度高于所述第二子像素所在位置处的空穴传输层的厚度;
    采用共用掩膜蒸镀工艺制作位于所述第一子空穴传输层之上的第二子空穴传输层,所述第二子空穴传输层覆盖第二子像素以及第三子像素在空穴传输层中的所在位置区域,所述第二子空穴传输层的厚度等于第二子像素所在位置处的空穴传输层的厚度与所述第一子空穴传输层的厚度之间的差值。
  8. 如权利要求7所述的方法,其中,所述在已有的子空穴传输层之上,采用精细金属掩膜蒸镀工艺制作位于最高层的子空穴传输层包括:
    采用精细金属掩膜蒸镀工艺制作第三子空穴传输层,所述第三子空穴传输层覆盖第三子像素在空穴传输层中的所在位置区域,所述第三子空穴传输层的厚度等于第三子像素所在位置处空穴传输层的厚度与第一、第二子空穴传输层叠加厚度之间的差值。
  9. 如权利要求8所述的方法,其中,所述第一子空穴传输层、第二子空穴传输层以及第三子空穴传输层的材质相同。
  10. 一种显示装置,包括如权利要求1-5任一项所述的有机发光二极管基板。
PCT/CN2014/087923 2014-06-30 2014-09-30 有机发光二极管基板及其制作方法、显示装置 WO2016000337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410307522.6A CN104091895B (zh) 2014-06-30 2014-06-30 有机发光二极管基板及其制作方法、显示装置
CN201410307522.6 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000337A1 true WO2016000337A1 (zh) 2016-01-07

Family

ID=51639593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087923 WO2016000337A1 (zh) 2014-06-30 2014-09-30 有机发光二极管基板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN104091895B (zh)
WO (1) WO2016000337A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015089B2 (ja) * 2016-09-30 2022-02-02 京東方科技集團股▲ふん▼有限公司 有機発光ダイオード及びそれを備えた表示パネルと表示装置、並びに該有機発光ダイオードの製造方法
CN107978618B (zh) * 2016-10-24 2020-10-30 上海和辉光电股份有限公司 一种显示面板、显示装置及显示面板制作方法
CN110335953B (zh) * 2019-06-28 2020-10-16 武汉华星光电半导体显示技术有限公司 一种有机电致发光器件及显示面板
US10937983B2 (en) 2019-06-28 2021-03-02 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic electroluminescent device and display panel
CN111129359A (zh) * 2019-12-09 2020-05-08 武汉华星光电半导体显示技术有限公司 一种掩膜板组、oled面板及其制备方法
CN112242430B (zh) * 2020-10-20 2023-04-18 安徽熙泰智能科技有限公司 一种全彩硅基oled结构以及制备方法
US20240164187A1 (en) * 2021-03-11 2024-05-16 Beijing Boe Technology Development Co., Ltd. Green quantum dot light emitting device, method for manufacturing the same, and display apparatus
CN113193150B (zh) * 2021-04-28 2023-06-16 合肥京东方卓印科技有限公司 顶发光显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725921A (zh) * 2004-07-22 2006-01-25 三星Sdi株式会社 有机电致发光显示器及其制造方法
US20140065750A1 (en) * 2012-08-31 2014-03-06 Universal Display Corporation Patterning method for oleds
CN103794622A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 有机发光显示装置及其制造方法
CN103839968A (zh) * 2012-11-27 2014-06-04 乐金显示有限公司 有机发光显示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136185B2 (ja) * 1999-05-12 2008-08-20 パイオニア株式会社 有機エレクトロルミネッセンス多色ディスプレイ及びその製造方法
JP4164251B2 (ja) * 2001-10-31 2008-10-15 東北パイオニア株式会社 有機elカラーディスプレイ及びその製造方法
KR100611756B1 (ko) * 2004-06-18 2006-08-10 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
KR100823511B1 (ko) * 2006-11-10 2008-04-21 삼성에스디아이 주식회사 유기 발광 표시 장치 및 그 제조방법
TW201324761A (zh) * 2011-12-08 2013-06-16 Au Optronics Corp 電激發光顯示面板之畫素結構
CN103647026B (zh) * 2013-11-27 2016-10-19 四川虹视显示技术有限公司 全彩化顶发射oled器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725921A (zh) * 2004-07-22 2006-01-25 三星Sdi株式会社 有机电致发光显示器及其制造方法
US20140065750A1 (en) * 2012-08-31 2014-03-06 Universal Display Corporation Patterning method for oleds
CN103794622A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 有机发光显示装置及其制造方法
CN103839968A (zh) * 2012-11-27 2014-06-04 乐金显示有限公司 有机发光显示器

Also Published As

Publication number Publication date
CN104091895B (zh) 2016-10-05
CN104091895A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2016000337A1 (zh) 有机发光二极管基板及其制作方法、显示装置
US9818970B2 (en) Organic light emitting diode display panel, manufacturing method thereof and mask plate
JP6779791B2 (ja) アレイ基板、それを備える表示装置、及び該アレイ基板の製造方法
KR101976829B1 (ko) 대면적 유기발광 다이오드 표시장치 및 그 제조 방법
WO2018157421A1 (zh) Oled显示面板及其制备方法、显示装置
WO2019095452A1 (zh) Oled显示器及其制作方法
US9472600B2 (en) AMOLED display devices and methods for producing the sub-pixel structure thereof
CN105070739B (zh) 显示背板及其制作方法、显示装置
US9412976B2 (en) Organic light emitting diode device and method for manufacturing the same, display device and electronic product
US9728749B2 (en) OLED array substrate, manufacturing method thereof, display panel and display device
EP3255673B1 (en) Display substrate and manufacturing method thereof, and display device
JP2009540504A5 (zh)
JP2006041471A (ja) 有機電界発光素子及びその製造方法
US10305049B2 (en) OLED substrate and manufacture method thereof
US20150236076A1 (en) Organic light emitting display panel and method of manufacturing the same
US20150014667A1 (en) Oled device and manufacturing method thereof, display apparatus
WO2018152881A1 (zh) Oled显示面板及其制备方法、显示装置
WO2016155182A1 (zh) 一种电致发光显示器件及显示装置
WO2016127560A1 (zh) 一种有机发光二极管阵列基板及其制作方法、显示装置
US20140353633A1 (en) Organic light emitting diode display and manufacturing method thereof
JP2015153748A (ja) フルカラー有機発光ダイオードの構造
CN104637981B (zh) 有机电致发光显示面板
TW201220940A (en) Light emitting device and manufacturing method thereof
WO2020258395A1 (zh) 一种有机电致发光器件及显示面板
WO2015180425A1 (zh) Oled器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (10.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896829

Country of ref document: EP

Kind code of ref document: A1