WO2015180425A1 - Oled器件及其制备方法、显示装置 - Google Patents

Oled器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015180425A1
WO2015180425A1 PCT/CN2014/091280 CN2014091280W WO2015180425A1 WO 2015180425 A1 WO2015180425 A1 WO 2015180425A1 CN 2014091280 W CN2014091280 W CN 2014091280W WO 2015180425 A1 WO2015180425 A1 WO 2015180425A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transport layer
electron
hole
cathode
Prior art date
Application number
PCT/CN2014/091280
Other languages
English (en)
French (fr)
Inventor
吴长晏
廖金龙
闫光
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/650,983 priority Critical patent/US9741972B2/en
Publication of WO2015180425A1 publication Critical patent/WO2015180425A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet

Definitions

  • Embodiments of the present invention relate to an OLED device, a method of fabricating the same, and a display device.
  • the mainstream preparation method for mass production of organic electroluminescence is vacuum thermal evaporation, that is, the organic materials are vaporized by heating and sublimation under high vacuum conditions. And uniformly formed on the substrate, thereby preparing an anode, a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (layer) Electron transport layer (ETL), electron injection layer (EIL) and cathode film layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML emission layer
  • ETL electron transport layer
  • EIL electron injection layer
  • cathode film layer This requires relatively expensive fixed costs such as vacuum processes and vapor deposition masks, and the material usage rate during preparation is extremely low.
  • Embodiments of the present invention provide an OLED device including a substrate, which is sequentially disposed on the substrate There are multiple functional layers.
  • One of the plurality of functional layers is a transition functional layer comprising a first sub-layer of the same material and a second sub-layer above the first sub-layer.
  • the first sub-layer is prepared by a first process
  • the second sub-layer is prepared by a second process different from the first process.
  • the first process is a solution process
  • the second process is selected from any one of vacuum thermal evaporation, organic vapor deposition, laser induced thermal imaging, and radiation induced sublimation transfer.
  • the functional layers between the substrate and the first sub-layer are all prepared by a first process
  • the functional layers above the second sub-layer are all prepared by a second process.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, the electron injection layer, and the cathode.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole transport layer, the light-emitting layer, the electron transport layer, and the cathode.
  • the plurality of functional layers disposed sequentially on the substrate include an anode, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the cathode.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and cathode.
  • the transition functional layer is the anode, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the Any one of an electron injecting layer and the cathode.
  • the solution process is selected from the group consisting of a spin coating method, a knife coating method, an electrospray coating method, a slit coating method, a strip coating method, a dip coating method, a drum coating method, and an inkjet method. Any one of a printing method, a nozzle printing method, and a convex printing method.
  • Embodiments of the present invention provide a display device including the OLED device as described above.
  • Embodiments of the present invention provide a method of fabricating an OLED device, including:
  • the transition functional layer includes a first sub-layer of the same material and is formed in the first a second sub-layer above the sub-layer;
  • the preparation process of the transition functional layer comprises: preparing the first sub-layer by a first process, and preparing the second sub-layer by a second process different from the first process.
  • the first process is a solution process
  • the second process is selected from any one of vacuum thermal evaporation, organic vapor deposition, laser induced thermal imaging, and radiation induced sublimation transfer.
  • the functional layers between the substrate and the first sub-layer are all prepared by a first process
  • the functional layers above the second sub-layer are all prepared by a second process.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, the electron injection layer, and the cathode.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole transport layer, the light-emitting layer, the electron transport layer, and the cathode.
  • the plurality of functional layers disposed sequentially on the substrate include an anode, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode.
  • the transition functional layer is any one of the anode, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the cathode.
  • the plurality of functional layers sequentially disposed over the substrate include an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and cathode.
  • the transition functional layer is the anode, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the Any one of an electron injecting layer and the cathode.
  • the solution process is selected from the group consisting of a spin coating method, a knife coating method, an electrospray coating method, a slit coating method, a strip coating method, a dip coating method, a drum coating method, and an inkjet method. Any one of a printing method, a nozzle printing method, and a convex printing method.
  • FIG. 1 is a schematic structural diagram of an OLED device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an OLED device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another OLED device according to an embodiment of the present invention.
  • Example 4 is a schematic structural diagram of an OLED device provided by Example 1 according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an OLED device according to Example 2 of the embodiment of the present invention.
  • an embodiment of the present invention provides an OLED device including a substrate 10 .
  • a plurality of functional layers 20 are sequentially disposed on the substrate 10 , wherein one of the plurality of functional layers 20 is a transition function.
  • the layer 21, and the transition function layer 21 includes a first sub-layer 211 of the same material and a second sub-layer 212 located above the first sub-layer 211; the first sub-layer 211 is prepared by a first process, and the second sub-layer 212 is Different from the second process of the first process.
  • the first sub-layer 211 is prepared by using the first process
  • the second sub-layer 212 is prepared by using the second process, in order to prepare the transition functional layer, because the first sub-layer 211 and the second
  • the sub-layer 212 is made of a homogenous material, so that when the preparation process is converted from the first process to the second process, the conversion of the preparation process occurs in the film layer of the same material, which can effectively reduce the process conversion.
  • the impact of defects That is to say, the process conversion of the embodiment of the present invention is completed in a homogenous material, and the process conversion completed between the heterogeneous interfaces with respect to the prior art not only reduces or avoids the between the layers prepared by different processes.
  • the defects can also minimize the adverse effects caused by the process conversion, and form a relatively good homogenous interface in the transition function layer 21, effectively improving the luminous efficiency of the OLED device, and greatly increasing the OLED display panel. Service life or performance.
  • the defects generated during the process transition in the homogenous interface are much smaller than those generated during the process transition in the heterogeneous interface; and the influence of defects on the OLED display panel in the homogenous interface is much smaller than that in the heterogeneous interface. The effect of the OLED display panel will be described in detail later.
  • a thin film transistor (TFT) and other structures arranged in an array may be formed on the substrate 10 to ensure The normal operation of the OLED device is not limited in this embodiment of the present invention.
  • the first process is a solution process.
  • the second process is selected from any one of a vacuum thermal evaporation process, an organic vapor deposition (OVPD), a laser induced thermal imaging (LITI), and a radiation induced sublimation transfer (RIST), for example, a second process. It is a vacuum thermal evaporation method.
  • a plurality of functional layers 20 are sequentially disposed on the substrate 10; wherein the functional layers 23 between the substrate 10 and the first sub-layer 211 may be prepared by using a first process, and the second sub-layer
  • the functional layers 25 above 212 can all be prepared using a second process.
  • transition function layer 21 when the transition function layer 21 is the first functional layer disposed on the substrate 10, there is no other functional layer 23 between the substrate 10 and the first sub-layer 211; When the functional layer 21 is the last functional layer disposed on the substrate 10, there are no other functional layers 25 above the second sub-layer 212. For both cases, a detailed example will be used later.
  • the plurality of functional layers 20 sequentially disposed on the substrate 10 may be: an anode 201, a hole injection layer HIL 202, a hole transport layer HTL 203, a light-emitting layer EML 204, an electron transport layer ETL 205, and an electron.
  • the layer EIL 206 and the cathode 207 are implanted, and the transition functional layer may be any one of the seven functional layers.
  • the transitional functional layer can be an anode 201 comprising a first anode of the same material (ie, a first sub-layer) and a second anode (ie, a second sub-layer) above the first anode.
  • the first anode is prepared by a solution process (since the transition functional layer is the first functional layer anode 201 disposed on the substrate 10, therefore, there is no other functional layer between the substrate 10 and the first anode); the second anode, and the The hole injection layer HIL202, the hole transport layer HTL203, the light-emitting layer EML204, the electron transport layer ETL205, the electron injection layer EIL206, and the cathode 207 over the two anodes are all prepared by vacuum thermal evaporation.
  • the transition functional layer may be a hole injection layer HIL202 including a first hole injection layer of the same material and a second hole injection layer located above the first hole injection layer.
  • the first hole injection layer, and the anode 201 between the substrate 10 and the first hole injection layer are all prepared by a solution process; the second hole injection layer, and the hole transport layer on the second hole injection layer
  • the HTL 203, the light-emitting layer EML 204, the electron transport layer ETL 205, the electron injection layer EIL 206, and the cathode 207 are all prepared by vacuum thermal evaporation.
  • the transition function layer may be a hole transport layer HTL 203, an illuminating layer EML 204, an electron transport layer ETL 205, or an electron injection layer EIL 206, which is not illustrated in detail in the embodiment of the present invention.
  • the transitional functional layer can be a cathode 207 that includes a first cathode of the same material and a second cathode that is above the first cathode.
  • the first cathode, and the anode 201, the hole injection layer HIL202, the hole transport layer HTL203, the light-emitting layer EML204, the electron transport layer ETL205, and the electron injection layer EIL206 between the substrate 10 and the first cathode are all prepared by a solution process;
  • the cathode is prepared by vacuum thermal evaporation (since the transition functional layer is the last functional layer cathode 207 disposed above the substrate 10, so there are no other functional layers above the second cathode).
  • the material of the anode 201 may be selected from ITO, IZO, AZO, FTO, ZnO, ZITO or GITO or a metal material, etc.
  • the material of the HIL 202 may be selected from CuPc or PEDOT:PSS
  • the material of the HTL203 may be selected from TPD, TAPC, TDATA. Or NPB, etc.
  • the material of EML204 may be selected from AlQ 3 , BalQ or DPVBi, etc.
  • the material of ETL 205 may be selected from TAZ, PBD, OXD-7, AlQ 3 , ZnQ, GaQ, BebQ, BalQ, DPVBi, ZnSPB or BBOT, etc.
  • the material of the EIL 206 may be selected from Li, Na, K, LiF, AlQ 3 , or a mixture of AlQ 3 and LiQ, and the material of the cathode 207 may be selected from the group consisting of ITO, IZO, Cs, Li, Na, K, Al, Ag, Ca. , Li, In or Mg, etc.; wherein Q represents an 8-hydroxyquinoline group.
  • FIG. 2 is only an example, and the embodiment of the present invention does not specifically limit the configuration of the plurality of functional layers 20 on the substrate 10, and can be set according to actual conditions.
  • the plurality of functional layers 20 sequentially disposed on the substrate 10 may also be: an anode 201, a hole transport layer HTL 203, an illuminating layer EML 204, an electron transport layer ETL 205, and a cathode 207, and transition
  • the functional layer can be any of these five functional layers.
  • the plurality of functional layers disposed sequentially on the substrate may also be: an anode, a hole transport layer HTL, an electron blocking layer EBL, a light emitting layer EML, a hole blocking layer HBL, an electron transport layer ETL, and a cathode; or Above the substrate
  • the plurality of functional layers sequentially disposed may also be: anode, hole injection layer HIL, hole transport layer HTL, electron blocking layer EBL, light emitting layer EML, hole blocking layer HBL, electron transport layer ETL, electron injection layer EIL And the cathode.
  • the embodiment of the present invention does not limit the configuration of a plurality of functional layers above the substrate.
  • the solution process described in the embodiments of the present invention refers to a general method for preparing various film layers in an OLED device by using various solutions.
  • the solution process may include spin coating, blade coating, and electrospraying.
  • ESC Electrospray Coating
  • Slot Coating Stripe Coating
  • Dip Coating Dip Coating
  • Roll Coating Ink Jet Printing Nozzle Printing
  • Relief Printing A person skilled in the art can select a specific preparation method according to actual conditions, and the specific operation process of each method of the present invention will not be described in detail.
  • Embodiments of the present invention also provide a display device including any of the above OLED devices.
  • the embodiment of the present invention further provides a method for fabricating an OLED device, which can prepare any of the above OLED devices provided by the embodiments of the present invention, including:
  • the transition functional layer includes a first sub-layer of the same material and is formed in the a second sub-layer above the first sub-layer;
  • the preparation process of the transition functional layer comprises: preparing a first sub-layer by a first process, and preparing the second sub-layer by a second process different from the first process.
  • a first sub-layer is prepared by using a first process, and then a second sub-layer is prepared by using a second process, in which a first sub-layer and a second sub-layer are prepared.
  • the layer adopts a homogenous material, so that when the preparation process is converted from the first process to the second process, the conversion of the preparation process occurs in the film layer of the same material, which can effectively reduce the defects caused by the process conversion. influences. That is, the process conversion of the embodiment of the present invention is homogeneous.
  • the process conversion done in the material compared to the prior art between the heterogeneous interfaces not only reduces or avoids the defects between the layers prepared by different processes, but also reduces the adverse effects caused by the process conversion.
  • the lowest, and a relatively good homogenous interface in the transition function layer effectively improve the luminous efficiency of the OLED device, greatly increasing the service life or performance of the OLED display panel.
  • Example 1 provides an OLED device including a substrate 30 on which an anode 401, a hole injection layer HIL402, and a first hole transport layer HTL403-1 are sequentially formed on the substrate 30 by a doctor blade method. Then, a second hole transport layer HTL403-2, a light-emitting layer EML404, an electron transport layer ETL405, an electron injection layer EIL406, and a cathode 407 are sequentially formed over the first hole transport layer HTL403-1 by vacuum thermal evaporation. The material of the first hole transport layer HTL403-1 and the second hole transport layer HTL403-2 are the same.
  • the material of the first layer of the first hole transport layer HTL403-1 prepared by the doctor blade method and the first layer of the film layer prepared by vacuum thermal evaporation is second.
  • the material of the hole transport layer HTL403-2 is the same, so that when the preparation process is converted from the doctor blade method to the vacuum heat evaporation method, since the conversion is completed between the homogenous materials, a small amount is generated at the homogenous interface. Defects such as impurities or pores.
  • both the first hole transport layer HTL403-1 and the second hole transport layer HTL403-2 belong to the hole transport layer HTL403, when the OLED device operates, only physical phenomena of hole transport occur in the film layer. That is, holes from the hole injection layer HIL402 are transported to the light-emitting layer EML404 via the hole transport layer HTL403, and only a small amount of impurities or pores are present, which affects hole transport only.
  • the anode, the hole injection layer HIL, the hole transport layer HTL are prepared by a solution process such as a doctor blade method, and then the light-emitting layer EML, the electron transport layer ETL, and the electron injection are prepared by vacuum thermal evaporation.
  • Layer EIL, and cathode so that the process conversion between the solution process and the vacuum thermal evaporation method will be completed on the HTL/EML interface, and the HTL and EML materials are different. Therefore, different processes are used to prepare another on the HTL.
  • a film layer EML due to different material materials, will produce more defects such as impurities and pores.
  • the defects existing on the homogenous interface only affect the hole transport, and the defects existing on the hetero interface not only affect the hole transport, but also the accumulation of holes, electron accumulation, exciton generation, photoelectron interaction.
  • the OLEDs provided by the embodiments of the present invention not only reduce the number of defects, but also effectively reduce the influence of defects on the OLED display panel.
  • an anode a hole injection layer HIL is prepared by a solution process such as a doctor blade method, and then a hole transport layer HTL, a light-emitting layer EML, and an electron transport layer ETL electron are prepared by vacuum thermal evaporation.
  • the layer EIL and the cathode are injected, so that the process conversion between the solution process and the vacuum thermal evaporation method will be completed on the HIL/HTL interface, and the HIL and HTL materials are different. Therefore, different processes are used to prepare on the HIL.
  • Another film layer HTL will introduce a large number of defects such as impurities and pores.
  • the OLED device provided in the first example 1 adopts a simple and highly feasible manner, effectively reducing the adverse effect of the process conversion on the OLED device, thereby effectively improving the OLED device. Service life.
  • Example 2 provides an OLED device including a substrate 50.
  • an anode 601, a hole injection layer HIL602, a hole transport layer HTL603, and a light-emitting layer EML604 are sequentially formed on the substrate 50 by spin coating.
  • a first electron transport layer ETL605-1, and then a second electron transport layer ETL605-2, an electron injection layer EIL606, and a cathode 607 are sequentially formed over the first electron transport layer ETL605-1 by using a vacuum thermal evaporation method, wherein
  • the first electron transport layer ETL605-1 is the same material as the second electron transport layer ETL605-2.
  • the material of the first layer of the first electron transport layer ETL605-1 prepared by the spin coating method of the solution process and the second layer of the first layer of the film prepared by the vacuum thermal evaporation method is the same, so that when the preparation process is converted from the doctor blade method to the vacuum heat evaporation method, since the homogenous material is completed, the homogenous interface hardly generates or produces a quantity. Less defects such as impurities or pores.
  • the OLED device operates only the physical phenomenon of electron transport occurs in the film layer, that is, from the electron.
  • the electrons injected into the layer EIL 606 are transmitted to the light-emitting layer EML 604 via the electron transport layer ETL 603, and even if there are a small number of defects such as impurities or pores, only the electron transport is affected.
  • an anode, a hole injection layer HIL, a hole transport layer HTL, a light-emitting layer EML, and an electron transport layer ETL are prepared by a solution process such as a spin coating method, and then electrons are prepared by vacuum thermal evaporation.
  • the layer EIL and the cathode are injected, so that the process conversion between the solution process and the vacuum thermal evaporation method will be completed on the ETL/EIL interface, and the ETL and EIL materials are different. Therefore, different processes are used to prepare on the ETL.
  • Another membrane layer, EIL will introduce a large number of defects such as impurities and pores.
  • an anode, a hole injection layer HIL, a hole transport layer HTL, and a light-emitting layer EML are prepared by a solution process such as a spin coating method, and then an electron transport layer ETL and electrons are prepared by vacuum thermal evaporation.
  • the layer EIL and the cathode are injected, so that the process conversion between the solution process and the vacuum thermal evaporation method will be completed on the EML/ETL interface, and the EML and ETL materials are different. Therefore, different processes are used to prepare on the EML.
  • Another membrane layer ETL will introduce a large number of defects such as impurities and pores.
  • the OLED device provided in the second embodiment effectively reduces the adverse effects of the process conversion on the OLED device in a simple and highly feasible manner, thereby effectively improving the OLED device. Service life.
  • the present Example 3 provides an OLED device including a substrate in which a hole injection layer HIL, a hole transport layer HTL, and a first light-emitting layer EML are sequentially formed on the substrate by an electrospray method, and then an organic vapor deposition method is used.
  • a second light-emitting layer EML, an electron transport layer ETL, an electron injection layer EIL, and a cathode are formed in this order on the first light-emitting layer EML, wherein the first light-emitting layer EML and the second light-emitting layer EML are made of the same material.
  • the present invention 4 provides an OLED device including a substrate in which a hole injection layer HIL, a hole transport layer HTL, a light-emitting layer EML, and a first electron transport layer ETL are sequentially formed on the substrate by a slit coating method. Then, a second electron transport layer ETL, an electron injection layer EIL, and a cathode are sequentially formed on the first electron transport layer ETL by using a laser-induced thermal imaging method, wherein materials of the first electron transport layer ETL and the second electron transport layer ETL are used. the same.
  • the present example 5 provides an OLED device including a substrate in which a hole transport layer HTL and a first light-emitting layer EML are sequentially formed on a substrate by a strip coating method, and then a radiation-induced sublimation transfer method is used in the first light-emitting layer.
  • a second luminescent layer EML, an electron transport layer ETL, and a cathode are formed in this order on the layer EML, wherein the first luminescent layer EML and the second luminescent layer EML are made of the same material.
  • the present invention 6 provides an OLED device including a substrate, which first forms a hole transport layer HTL, an electron blocking layer EBL, a light emitting layer EML, a hole blocking layer HBL, and a bump layer on the substrate.
  • the electron transport layer ETL, and the first cathode are then formed on the first cathode using an organic vapor deposition to form a second cathode, wherein the first cathode and the second cathode are made of the same material.
  • the present example 7 provides an OLED device including a substrate in which a first hole injecting layer HIL is formed over a substrate by a nozzle printing method, and then a second layer is sequentially formed over the first hole injecting layer HIL using laser induced thermal imaging.
  • a hole injection layer HIL, a hole transport layer HTL, an electron blocking layer EBL, a light emitting layer EML, a hole blocking layer HBL, an electron transport layer ETL, an electron injection layer EIL, and a cathode wherein the first hole injection layer HIL and The material of the second hole injection layer HIL is the same.

Abstract

一种OLED器件及其制备方法、显示装置。所述OLED器件包括基板,所述基板之上依次设置有多个功能层。所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和位于所述第一子层之上的第二子层。所述第一子层采用第一制程制备,所述第二子层采用不同于所述第一制程的第二制程制备。

Description

OLED器件及其制备方法、显示装置 技术领域
本发明的实施例涉及一种OLED器件及其制备方法、显示装置。
背景技术
目前,有机电致发光(例如有机发光二极管,Organic Light-Emitting Diode,OLED)器件量产的主流制备方式为真空热蒸镀方式,即将有机材料在高度真空条件下、以加热升华的方式气化并均匀形成在基板上,从而逐层制备阳极、空穴注入层(hole injection layer,HIL)、空穴传输层(hole transport layer,HTL)、发光层(emission layer,EML)、电子传输层(electron transport layer,ETL)、电子注入层(electron injection layer,EIL)及阴极膜层。这样就需要真空制程及蒸镀遮罩等较为昂贵的固定成本,且制备过程中材料使用率极低。对此,提出了使用溶液制程(Solution Process)来制备OLED器件,即使用溶液方式在基板上涂覆,从而逐层制备各个膜层,以降低制造成本。但是,使用溶液制程依然存在着许多问题,比如:溶液制程中由于使用了溶剂,当已形成多层膜层之后、再在其上涂覆其他膜层溶剂时,很有可能将已经干燥成型的膜层溶解,从而导致本来该分层的材料混合,形成废品。
因此,提出了使用溶液制程+真空热蒸镀的方式制备OLED器件,即先使用溶液制程制备几层膜层(比如制备阳极、HIL及HTL),然后再使用真空热蒸镀方式继续制作剩余的膜层(比如EML、ETL、EIL及阴极),这样一定程度上减少了制造成本,并在一定程度上提升了产品效能与良率。
但是,溶液制程制备的膜层(比如HTL)与真空热蒸镀方式制备的膜层(比如EML)之间,由于制程工艺的转换,在异质界面上产生的缺陷较多(比如杂质、气孔等),严重影响了OLED器件的发光效率,大幅度降低了OLED显示面板的使用寿命。
发明内容
本发明的实施例提供一种OLED器件,包括基板,所述基板之上依次设 置有多个功能层。所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和位于所述第一子层之上的第二子层。所述第一子层采用第一制程制备,所述第二子层采用不同于所述第一制程的第二制程制备。
例如,所述第一制程为溶液制程;所述第二制程选自真空热蒸镀、有机气相沉积、激光感应热成像、辐射诱发升华转印中的任意一种。
例如,所述基板与所述第一子层之间的功能层均采用第一制程制备,所述第二子层之上的功能层均采用第二制程制备。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极。所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、发光层、电子传输层以及阴极。所述过渡功能层为所述阳极、所述空穴传输层、所述发光层、所述电子传输层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层以及阴极。所述过渡功能层为所述阳极、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层以及阴极。所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
例如,所述溶液制程选自旋涂法、刮涂法、电喷涂布法、狭缝式涂布法、条状涂布法、浸沾式涂布法、滚筒式涂布法、喷墨印刷法、喷嘴印刷法、凸板印刷法中的任何一种。
本发明实施例提供一种显示装置,包括如上所述的OLED器件。
本发明的实施例提供一种OLED器件的制备方法,包括:
提供一基板;
在所述基板上依次形成多个功能层,其中,所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和形成在所述第一子层之上的第二子层;
其中,所述过渡功能层的制备过程包括:采用第一制程制备所述第一子层,及采用不同于第一制程的第二制程制备所述第二子层。
例如,所述第一制程为溶液制程;所述第二制程选自真空热蒸镀、有机气相沉积、激光感应热成像、辐射诱发升华转印中的任意一种。
例如,所述基板与所述第一子层之间的功能层均采用第一制程制备,所述第二子层之上的功能层均采用第二制程制备。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极。所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、发光层、电子传输层以及阴极。所述过渡功能层为所述阳极、所述空穴传输层、所述发光层、所述电子传输层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层以及阴极。所述过渡功能层为所述阳极、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层以及所述阴极中的任一种。
例如,在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层以及阴极。所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
例如,所述溶液制程选自旋涂法、刮涂法、电喷涂布法、狭缝式涂布法、条状涂布法、浸沾式涂布法、滚筒式涂布法、喷墨印刷法、喷嘴印刷法、凸板印刷法中的任何一种。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种OLED器件的结构示意图;
图2为本发明实施例提供的一种OLED器件的结构示意图;
图3为本发明实施例提供的另一种OLED器件的结构示意图;
图4为本发明实施例的示例1提供的OLED器件的结构示意图;
图5为本发明实施例的示例2提供的OLED器件的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所述,本发明的实施例提供了一种OLED器件,包括基板10,基板10之上依次设置有多个功能层20,其中,多个功能层20中的一个功能层为过渡功能层21,且过渡功能层21包括材质相同的第一子层211和位于第一子层211之上的第二子层212;第一子层211采用第一制程制备,第二子层212采用不同于第一制程的第二制程制备。
本发明实施例提供的OLED器件中,在制备过渡功能层时先采用第一制程制备第一子层211,然后再采用第二制程制备第二子层212,由于第一子层211与第二子层212采用同质材料,这样,当制备工艺由第一制程转换成第二制程时,相当于在相同材质的膜层内发生制备工艺的转换,可以有效地减小由于工艺转换带来的缺陷的影响。也就是说,本发明实施例的工艺转换是在同质材料中完成的,相对于现有技术在异质界面之间完成的工艺转换,不仅减小或避免了不同制程制备的膜层之间的缺陷,还能将由工艺转换而导致的不良影响降到最低,并在过渡功能层21中形成较为良好的同质界面,有效地提高了OLED器件的发光效率,大幅度增加了OLED显示面板的使用寿命或效能。
需要说明的是,同质界面中工艺转换时产生的缺陷,远小于异质界面中工艺转换时产生的缺陷;并且,同质界面中缺陷对OLED显示面板的影响远小于异质界面中缺陷对OLED显示面板的影响,后面将对此进行详细描述。
还需要说明的是,本发明实施例提供的OLED器件中,在制作多个功能层20之前,基板10上可以先形成有阵列排布的薄膜晶体管(Thin Film Transistor,TFT)等结构,以保证OLED器件的正常工作,本发明实施例对此不作限定。
本发明实施例中,第一制程为溶液制程(Solution Process)。第二制程选自真空热蒸镀(Vacuum Thermal Evaporation Process)、有机气相沉积(OVPD)、激光感应热成像(LITI)、辐射诱发升华转印(RIST)中的任意一种,例如,第二制程为真空热蒸镀方式。
例如,本发明实施例中,在基板10之上依次设置有多个功能层20;其中,基板10与第一子层211之间的功能层23可以均采用第一制程制备,第二子层212之上的功能层25可以均采用第二制程制备。
需要说明的是,本发明实施例中,当过渡功能层21为基板10之上设置的第一个功能层时,则基板10与第一子层211之间不存在其他功能层23;当过渡功能层21为基板10之上设置的最后一个功能层时,则第二子层212之上不存在其他功能层25。对于这两种情况,之后将使用具体示例进行详细说明。
例如,如图2所示,在基板10之上依次设置的多个功能层20可以依次为:阳极201、空穴注入层HIL202、空穴传输层HTL203、发光层EML204、电子传输层ETL205、电子注入层EIL206以及阴极207,并且,过渡功能层可以为这七个功能层中的任一个。
例如,过渡功能层可以为阳极201,该阳极201包括材质相同的第一阳极(即第一子层)和位于第一阳极之上的第二阳极(即第二子层)。第一阳极采用溶液制程制备(由于过渡功能层为基板10之上设置的第一个功能层阳极201,因此,基板10与第一阳极之间不存在其他功能层);第二阳极、以及第二阳极之上的空穴注入层HIL202、空穴传输层HTL203、发光层EML204、电子传输层ETL205、电子注入层EIL206和阴极207均采用真空热蒸镀方式制备。
例如,过渡功能层可以为空穴注入层HIL202,该空穴注入层HIL202包括材质相同的第一空穴注入层和位于第一空穴注入层之上的第二空穴注入层。第一空穴注入层、以及基板10与第一空穴注入层之间的阳极201均采用溶液制程制备;第二空穴注入层、以及位于第二空穴注入层之上的空穴传输层HTL203、发光层EML204、电子传输层ETL205、电子注入层EIL206和阴极207均采用真空热蒸镀方式制备。
例如,类似地,过渡功能层可以为空穴传输层HTL203、发光层EML204、电子传输层ETL205或者电子注入层EIL206,本发明实施例对此不再详细举例。
例如,过渡功能层可以为阴极207,该阴极207包括材质相同的第一阴极和位于第一阴极之上的第二阴极。第一阴极、以及基板10与第一阴极之间的阳极201、空穴注入层HIL202、空穴传输层HTL203、发光层EML204、电子传输层ETL205、电子注入层EIL206均采用溶液制程制备;第二阴极采用真空热蒸镀方式制备(由于过渡功能层为基板10之上设置的最后一个功能层阴极207,因此,第二阴极之上不存在其他功能层)。
例如,阳极201的材料可以选自ITO、IZO、AZO、FTO、ZnO、ZITO或GITO或金属材料等,HIL202的材料可以选自CuPc或PEDOT:PSS,HTL203的材料可以选自TPD、TAPC、TDATA或NPB等,EML204的材料可以选自AlQ3、BalQ或DPVBi等,ETL205的材料可以选自TAZ、PBD、OXD-7、AlQ3、ZnQ、GaQ、BebQ、BalQ、DPVBi、ZnSPB或BBOT等,EIL206的材料可以选自Li、Na、K、LiF、AlQ3、或AlQ3与LiQ的混合物等,阴极207的材料可以选自ITO、IZO、Cs、Li、Na、K、Al、Ag、Ca、Li、In或Mg等;其中,Q代表的是8-羟基喹啉基团。
可以理解的是,图2仅为举例说明,本发明实施例并不具体限定基板10之上多个功能层20的构造,可根据实际情况进行设置。例如,如图3所示,在基板10之上依次设置的多个功能层20也可以依次为:阳极201、空穴传输层HTL203、发光层EML204、电子传输层ETL205以及阴极207,并且,过渡功能层可以为这五个功能层中的任一个。例如,在基板之上依次设置的多个功能层也可以依次为:阳极、空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、电子传输层ETL以及阴极;或者,在基板之上 依次设置的多个功能层也可以依次为:阳极、空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、电子传输层ETL、电子注入层EIL以及阴极。总之,本发明实施例对基板之上的多个功能层的构造不作限定。
需要说明的是,本发明实施例所述的溶液制程,是指采用各种溶液制备OLED器件中各个膜层的方法的总称,例如,溶液制程可以包括旋涂法、刮涂法、电喷涂布法(Electrospray Coating,ESC)、狭缝式涂布法(Slot Coating)、条状涂布法(Stripe Coating)、浸沾式涂布法(Dip Coating)、滚筒式涂布法(Roll Coating)、喷墨印刷法(Ink Jet Printing)、喷嘴印刷法(Nozzle Printing)、凸板印刷法(Relief Printing)。本领域技术人员可以根据实际情况选择具体的制备方法,本发明实施例对于其每种方法的具体操作过程不再详细描述。
还需要说明的是,对于本发明实施例中所述的真空热蒸镀方式、有机气相沉积、激光感应热成像、辐射诱发升华转印,本领域技术人员可以根据实际情况具体选择制备过程中的各个参数,本发明实施例对于其具体操作过程不再详细描述。
本发明实施例还提供了一种显示装置,包括上述任何一种OLED器件。
本发明实施例还提供了一种OLED器件的制备方法,能够制备出本发明实施例提供的上述任何一种OLED器件,包括:
S1、提供一基板;
S2、在所述基板上依次形成多个功能层,其中,所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和形成在所述第一子层之上的第二子层;
其中,所述过渡功能层的制备过程包括:采用第一制程制备第一子层,及采用不同于第一制程的第二制程制备所述第二子层。
本发明实施例提供的OLED器件的制备方法,在制备过渡功能层时先采用第一制程制备第一子层,然后再采用第二制程制备第二子层,由于第一子层与第二子层采用同质材料,这样,当制备工艺由第一制程转换成第二制程时,相当于在相同材质的膜层内发生制备工艺的转换,可以有效地减小由于工艺转换带来的缺陷的影响。也就是说,本发明实施例的工艺转换是在同质 材料中完成的,相对于现有技术在异质界面之间完成的工艺转换,不仅减小或避免了不同制程制备的膜层之间的缺陷,还能将由工艺转换而导致的不良影响降到最低,并在过渡功能层中形成较为良好的同质界面,有效地提高了OLED器件的发光效率,大幅度增加了OLED显示面板的使用寿命或效能。
为了更好地说明本发明实施例提供的OLED器件,以下通过具体示例进行描述。
示例1
如图4所示,示例1提供了一种OLED器件,包括基板30,先使用刮涂法在基板30之上依次形成阳极401、空穴注入层HIL402、以及第一空穴传输层HTL403-1,然后使用真空热蒸镀方式在第一空穴传输层HTL403-1之上依次形成第二空穴传输层HTL403-2、发光层EML404、电子传输层ETL405、电子注入层EIL406、以及阴极407,其中,第一空穴传输层HTL403-1与第二空穴传输层HTL403-2的材质相同。
也就是说,本示例1中,采用溶液制程的刮涂法制备的最后一层膜层第一空穴传输层HTL403-1的材质与采用真空热蒸镀方式制备的第一层膜层第二空穴传输层HTL403-2的材质相同,这样,当制备工艺由刮涂法转换成真空热蒸镀方式时,由于转换在同质材料之间完成,因而该同质界面上产生数量较少的杂质或气孔等缺陷。并且,由于第一空穴传输层HTL403-1和第二空穴传输层HTL403-2都属于空穴传输层HTL403,当OLED器件工作时,在该膜层内通常只发生空穴传输的物理现象,即来自空穴注入层HIL402的空穴经该空穴传输层HTL403传输至发光层EML404,即使存在数量较少的杂质或气孔等缺陷,也只影响了空穴传输。
但是,现有技术中,先采用刮涂法等溶液制程制备阳极、空穴注入层HIL、空穴传输层HTL,然后再使用真空热蒸镀方式制备发光层EML、电子传输层ETL、电子注入层EIL、以及阴极,这样,溶液制程与真空热蒸镀方式之间的工艺转换将会在HTL/EML界面上完成,HTL与EML材质不同,因此,采用不同的工艺方式、在HTL上制备另一种膜层EML,由于材料材质不同,将会产生较多的杂质和气孔等缺陷。当OLED器件工作时,空穴从HTL传输至EML时,杂质和气孔等缺陷将会影响OLED器件的特性,在该界面上发生的空穴传输、空穴累积、电子累积、激发子产生、光电子交互作用等多 种复杂的物理或电化学反应均降低了电子/空穴在EML中复合的效率,从而降低了OLED器件的发光效率,也大幅度降低了OLED器件的稳定性与使用寿命。
也就是说,同质界面上存在的缺陷仅影响了空穴传输,而异质界面上存在的缺陷不仅影响了空穴传输,还产生了空穴累积、电子累积、激发子产生、光电子交互作用等多种复杂的物理或电化学反应,因此,本发明实施例提供的OLED中,不仅减少了缺陷的数量,还有效地降低了缺陷对OLED显示面板的影响。
另外,现有技术中还会先采用刮涂法等溶液制程制备阳极、空穴注入层HIL,然后再使用真空热蒸镀方式制备空穴传输层HTL、发光层EML、以及电子传输层ETL电子注入层EIL、以及阴极,这样,溶液制程与真空热蒸镀方式之间的工艺转换将会在HIL/HTL界面上完成,HIL与HTL材质不同,因此,采用不同的工艺方式、在HIL上制备另一种膜层HTL,将会引入大量的杂质和气孔等缺陷。当OLED器件工作时,空穴从HIL注入至HTL时,杂质和气孔等缺陷将会影响空穴注入、空穴传输的效率,并在该HIL/HTL界面上发生空穴累积。这样,在该界面上发生的空穴注入、空穴传输、空穴累积等多种复杂的物理或电化学反应均影响了能量转移过程,减少了传输至EML的空穴数量,因而降低了电子/空穴在EML中复合的效率,从而降低了OLED器件的发光效率,会导致操作电压上升,OLED器件稳定性随操作时间的变化受到大幅度影响,从而大幅度降低了OLED器件的使用寿命。
从上述分析可知,相对于现有技术,本示例1提供的OLED器件,采用简单且可行性极高的方式,有效地降低了工艺转换对OLED器件的不良影响,从而有效地提高了OLED器件的使用寿命。
示例2
如图5所示,示例2提供了一种OLED器件,包括基板50,先使用旋涂法在基板50之上依次形成阳极601、空穴注入层HIL602、空穴传输层HTL603、发光层EML604、以及第一电子传输层ETL605-1,然后使用真空热蒸镀方式在第一电子传输层ETL605-1之上依次形成第二电子传输层ETL605-2、电子注入层EIL606、以及阴极607,其中,第一电子传输层ETL605-1与第二电子传输层ETL605-2的材质相同。
也就是说,本示例2中,采用溶液制程的旋涂法制备的最后一层膜层第一电子传输层ETL605-1的材质与采用真空热蒸镀方式制备的第一层膜层第二电子传输层ETL605-2的材质相同,这样,当制备工艺由刮涂法转换成真空热蒸镀方式时,由于在同质材料之间完成,因而该同质界面上几乎不会产生或产生数量较少的杂质或气孔等缺陷。并且,由于第一电子传输层ETL605-1和第二电子传输层ETL605-2都属于电子传输层ETL605,当OLED器件工作时,在该膜层内通常只发生电子传输的物理现象,即来自电子注入层EIL606的电子经该电子传输层ETL603传输至发光层EML604,即使存在数量较少的杂质或气孔等缺陷,也只影响了电子传输。
但是,现有技术中,先采用旋涂法等溶液制程制备阳极、空穴注入层HIL、空穴传输层HTL、发光层EML、以及电子传输层ETL,然后再使用真空热蒸镀方式制备电子注入层EIL、以及阴极,这样,溶液制程与真空热蒸镀方式之间的工艺转换将会在ETL/EIL界面上完成,ETL与EIL材质不同,因此,采用不同的工艺方式、在ETL上制备另一种膜层EIL,将会引入大量的杂质和气孔等缺陷。当OLED器件工作时,电子从EIL注入至ETL时,杂质和气孔等缺陷将会影响电子注入、电子传输的效率,并在该ETL/EIL界面上发生电子累积;并且,由于EIL的材质通常为金属或金属化合物,而ETL的材质通常为有机高分子或小分子材料,该ETL/EIL界面上本身就存在有机高分子与活性金属的电化学反应,而杂质和气孔等缺陷使电子注入更加困难。这样,在该界面上发生的电子注入、电子传输、电子累积等多种复杂的物理或电化学反应均影响了能量转移过程,减少了传输至EML的电子数量,因而降低了电子/空穴在EML中复合的效率,从而降低了OLED器件的发光效率,会导致操作电压上升,OLED器件稳定性随操作时间的变化受到大幅度影响,从而大幅度降低了OLED器件的使用寿命。
另外,现有技术中还会先采用旋涂法等溶液制程制备阳极、空穴注入层HIL、空穴传输层HTL、发光层EML,然后再使用真空热蒸镀方式制备电子传输层ETL、电子注入层EIL、以及阴极,这样,溶液制程与真空热蒸镀方式之间的工艺转换将会在EML/ETL界面上完成,EML与ETL材质不同,因此,采用不同的工艺方式、在EML上制备另一种膜层ETL,将会引入大量的杂质和气孔等缺陷。当OLED器件工作时,电子从ETL传输至EML时, 杂质和气孔等缺陷将会影响电子传输的效率,并在该EML/ETL界面上发生电子累积;EML中的空穴传输至该界面时,杂质和气孔等缺陷将会导致这些空穴累积在该EML/ETL界面上;累积的电子和空穴可能会复合,在该EML/ETL界面发生激发子产生、光电子交互作用等。这样,在该界面上发生的电子传输、电子累积、空穴累积、激发子产生、光电子交互作用等多种复杂的物理或电化学反应均降低了电子/空穴在EML中复合的效率,从而降低了OLED器件的发光效率,大幅度降低了OLED器件的使用寿命。
从上述分析可知,相对于现有技术,本示例2提供的OLED器件,采用简单且可行性极高的方式,有效地降低了工艺转换对OLED器件的不良影响,从而有效地提高了OLED器件的使用寿命。
示例3
本示例3提供一种OLED器件,包括基板,先使用电喷涂布法在基板之上依次形成空穴注入层HIL、空穴传输层HTL、以及第一发光层EML,然后使用有机气相沉积方式在第一发光层EML之上依次形成第二发光层EML、电子传输层ETL、电子注入层EIL、以及阴极,其中,第一发光层EML与第二发光层EML的材质相同。
示例4
本示例4提供一种OLED器件,包括基板,先使用狭缝式涂布法在基板之上依次形成空穴注入层HIL、空穴传输层HTL、发光层EML、以及第一电子传输层ETL,然后使用激光感应热成像方式在第一电子传输层ETL之上依次形成第二电子传输层ETL、电子注入层EIL、以及阴极,其中,第一电子传输层ETL与第二电子传输层ETL的材质相同。
示例5
本示例5提供一种OLED器件,包括基板,先使用条状涂布法在基板之上依次形成空穴传输层HTL、以及第一发光层EML,然后使用辐射诱发升华转印方式在第一发光层EML之上依次形成第二发光层EML、电子传输层ETL、以及阴极,其中,第一发光层EML与第二发光层EML的材质相同。
示例6
本示例6提供一种OLED器件,包括基板,先使用凸板印刷法在基板之上形成空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、 电子传输层ETL、以及第一阴极,然后使用有机气相沉积在第一阴极之上形成第二阴极,其中,第一阴极与第二阴极的材质相同。
示例7
本示例7提供一种OLED器件,包括基板,先使用喷嘴印刷法在基板之上形成第一空穴注入层HIL,然后使用激光感应热成像在第一空穴注入层HIL之上依次形成第二空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、电子传输层ETL、电子注入层EIL、以及阴极,其中,第一空穴注入层HIL与第二空穴注入层HIL的材质相同。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年5月30日递交的第201410240426.4号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种OLED器件,包括基板,所述基板之上依次设置有多个功能层,其中
    所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和位于所述第一子层之上的第二子层;
    所述第一子层采用第一制程制备,所述第二子层采用不同于所述第一制程的第二制程制备。
  2. 根据权利要求1所述的OLED器件,其中所述第一制程为溶液制程;所述第二制程选自真空热蒸镀、有机气相沉积、激光感应热成像、辐射诱发升华转印中的任意一种。
  3. 根据权利要求1或2所述的OLED器件,其中所述基板与所述第一子层之间的功能层均采用第一制程制备,所述第二子层之上的功能层均采用第二制程制备。
  4. 根据权利要求1至3任一项所述的OLED器件,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极,
    所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
  5. 根据权利要求1至3任一项所述的OLED器件,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、发光层、电子传输层以及阴极,
    所述过渡功能层为所述阳极、所述空穴传输层、所述发光层、所述电子传输层以及所述阴极中的任一种。
  6. 根据权利要求1至3任一项所述的OLED器件,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层以及阴极,
    所述过渡功能层为所述阳极、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层以及所述阴极中的任一种。
  7. 根据权利要求1至3任一项所述的OLED器件,其中在所述基板之 上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层以及阴极,
    所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
  8. 根据权利要求2所述的OLED器件,其中所述溶液制程选自旋涂法、刮涂法、电喷涂布法、狭缝式涂布法、条状涂布法、浸沾式涂布法、滚筒式涂布法、喷墨印刷法、喷嘴印刷法、凸板印刷法中的任何一种。
  9. 一种显示装置,包括权利要求1至8任一项所述的OLED器件。
  10. 一种OLED器件的制备方法,包括:
    提供一基板;
    在所述基板上依次形成多个功能层,其中,所述多个功能层中的一个功能层为过渡功能层,所述过渡功能层包括材质相同的第一子层和形成在所述第一子层之上的第二子层;
    其中,所述过渡功能层的制备过程包括:采用第一制程制备所述第一子层,及采用不同于第一制程的第二制程制备所述第二子层。
  11. 根据权利要求10所述的OLED器件的制备方法,其中所述第一制程为溶液制程;所述第二制程选自真空热蒸镀、有机气相沉积、激光感应热成像、辐射诱发升华转印中的任意一种。
  12. 根据权利要求10或11所述的OLED器件的制备方法,其中所述基板与所述第一子层之间的功能层均采用第一制程制备,所述第二子层之上的功能层均采用第二制程制备。
  13. 根据权利要求10至12任一项所述的OLED器件的制备方法,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极,
    所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
  14. 根据权利要求10至12任一项所述的OLED器件的制备方法,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、发光层、电子传输层以及阴极,
    所述过渡功能层为所述阳极、所述空穴传输层、所述发光层、所述电子传输层以及所述阴极中的任一种。
  15. 根据权利要求10至12任一项所述的OLED器件的制备方法,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层以及阴极,
    所述过渡功能层为所述阳极、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层以及所述阴极中的任一种。
  16. 根据权利要求10至12任一项所述的OLED器件的制备方法,其中在所述基板之上依次设置的所述多个功能层包括阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层以及阴极,
    所述过渡功能层为所述阳极、所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述空穴阻挡层、所述电子传输层、所述电子注入层以及所述阴极中的任一种。
  17. 根据权利要求11所述的OLED器件的制备方法,其中所述溶液制程选自旋涂法、刮涂法、电喷涂布法、狭缝式涂布法、条状涂布法、浸沾式涂布法、滚筒式涂布法、喷墨印刷法、喷嘴印刷法、凸板印刷法中的任何一种。
PCT/CN2014/091280 2014-05-30 2014-11-17 Oled器件及其制备方法、显示装置 WO2015180425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/650,983 US9741972B2 (en) 2014-05-30 2014-11-17 OLED device and preparation method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410240426.4A CN104022229A (zh) 2014-05-30 2014-05-30 Oled器件及其制备方法、显示装置
CN201410240426.4 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015180425A1 true WO2015180425A1 (zh) 2015-12-03

Family

ID=51438882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091280 WO2015180425A1 (zh) 2014-05-30 2014-11-17 Oled器件及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US9741972B2 (zh)
CN (1) CN104022229A (zh)
WO (1) WO2015180425A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022229A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置
CN104701458B (zh) * 2015-03-24 2019-01-04 京东方科技集团股份有限公司 一种有机发光器件及其制作方法、显示装置
CN105140358B (zh) * 2015-09-21 2018-07-17 福州大学 一种基于全刮涂技术制备量子点发光二极管的方法
CN106531775A (zh) 2016-12-30 2017-03-22 京东方科技集团股份有限公司 有机发光二极管显示基板及其显示装置与制备方法
TW201943114A (zh) * 2018-03-31 2019-11-01 謙華科技股份有限公司 使用熱轉印膜連續製備有機發光二極體之方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691850A (zh) * 2004-04-21 2005-11-02 精工爱普生株式会社 有机el装置和有机el装置的制造方法以及电子机器
CN102881843A (zh) * 2012-09-17 2013-01-16 京东方科技集团股份有限公司 一种制备有机发光二极管的方法、发光二极管和发光器件
CN103311459A (zh) * 2012-03-08 2013-09-18 精工爱普生株式会社 有机el装置的制造方法、有机el装置、电子设备
CN103794730A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 发光装置及包括其的有机发光显示装置
CN104022229A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076874A (ja) * 1999-09-07 2001-03-23 Tdk Corp 有機el表示装置
US20040096570A1 (en) * 2002-11-15 2004-05-20 Michael Weaver Structure and method of fabricating organic devices
US7948163B2 (en) 2003-11-14 2011-05-24 General Electric Company Small molecule/polymer organic light emitting device capable of white light emission
JP2007287652A (ja) * 2006-03-23 2007-11-01 Fujifilm Corp 発光素子
JP2009037813A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd 有機el装置の製造方法
KR100994116B1 (ko) * 2008-08-20 2010-11-15 삼성모바일디스플레이주식회사 유기 발광 소자
CN101719543B (zh) * 2009-09-30 2012-05-09 清华大学 硅纳米线阵列膜电极的制备方法
JP2011119233A (ja) * 2009-11-04 2011-06-16 Canon Inc 有機el素子とそれを用いた表示装置
US9853220B2 (en) * 2011-09-12 2017-12-26 Nitto Denko Corporation Efficient organic light-emitting diodes and fabrication of the same
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691850A (zh) * 2004-04-21 2005-11-02 精工爱普生株式会社 有机el装置和有机el装置的制造方法以及电子机器
CN103311459A (zh) * 2012-03-08 2013-09-18 精工爱普生株式会社 有机el装置的制造方法、有机el装置、电子设备
CN102881843A (zh) * 2012-09-17 2013-01-16 京东方科技集团股份有限公司 一种制备有机发光二极管的方法、发光二极管和发光器件
CN103794730A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 发光装置及包括其的有机发光显示装置
CN104022229A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置

Also Published As

Publication number Publication date
US9741972B2 (en) 2017-08-22
CN104022229A (zh) 2014-09-03
US20160248048A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
EP3690969B1 (en) Manufacturing method of an all-solution oled device
WO2015180425A1 (zh) Oled器件及其制备方法、显示装置
JP2008535266A5 (zh)
WO2017161694A1 (zh) 发光器件及其制造方法和显示装置
WO2016000337A1 (zh) 有机发光二极管基板及其制作方法、显示装置
JP2017509132A (ja) 積層有機発光ダイオードの製造方法、積層oledデバイス、及びそれを製造するための装置
US20110031476A1 (en) Organic electroluminescence element
JP2006302865A (ja) 有機電子素子の製造方法
US20060175963A1 (en) Organic light emitting device and method of manufacturing the same
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
US8703529B2 (en) Fabricating method of light emitting device and forming method of organic layer
KR101361481B1 (ko) Oled 패널을 제조하기 위한 최적화 증착 시스템
US20160028038A1 (en) Tandem organic light emitting diode and preparation method thereof
CN111048672B (zh) 一种基于钙钛矿电致发光的白光led及其制备方法
KR102081723B1 (ko) 유기 발광 소자 및 그 제조방법
KR101067344B1 (ko) 인버티드 투명 유기 발광다이오드 및 인버티드 투명 유기 발광다이오드 제조방법
CN107665949A (zh) 有机电致发光器件及其制备方法
KR102288225B1 (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR102258673B1 (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR101277909B1 (ko) 유기발광소자 및 유기발광소자의 전극 제조방법
KR102186853B1 (ko) 유무기 하이브리드 페로브스카이트 발광 소자 및 그 제조방법
KR102080044B1 (ko) 유기 발광 소자 및 그 제조방법
KR101066160B1 (ko) 인버티드 유기 발광 다이오드 및 인버티드 유기 발광 다이오드 제조방법
CN113745441B (zh) 显示面板及其制备方法
KR20080060013A (ko) 전계 발광 소자의 증착 프로세스

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14650983

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) - 1205A (10.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14893057

Country of ref document: EP

Kind code of ref document: A1