WO2017161694A1 - 发光器件及其制造方法和显示装置 - Google Patents

发光器件及其制造方法和显示装置 Download PDF

Info

Publication number
WO2017161694A1
WO2017161694A1 PCT/CN2016/084704 CN2016084704W WO2017161694A1 WO 2017161694 A1 WO2017161694 A1 WO 2017161694A1 CN 2016084704 W CN2016084704 W CN 2016084704W WO 2017161694 A1 WO2017161694 A1 WO 2017161694A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
emitting device
electron blocking
blocking layer
Prior art date
Application number
PCT/CN2016/084704
Other languages
English (en)
French (fr)
Inventor
尤娟娟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/529,527 priority Critical patent/US10319931B2/en
Publication of WO2017161694A1 publication Critical patent/WO2017161694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a light emitting device, a method of manufacturing the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • WOLED white organic light emitting diode
  • the light emitting device in the OLED display device may include a multilayer structure such as an Emitting Material Layer (EML), an electron blocking layer, and a Hole Transport Layer (HTL).
  • EML Emitting Material Layer
  • HTL Hole Transport Layer
  • High-energy excitons, especially blue light-emitting devices, are easily collected in the light-emitting layer.
  • a blue luminescent material is usually doped in the luminescent layer.
  • EBL Electron Blocking Layer
  • the invention provides a light emitting device, a manufacturing method thereof and a display device for improving the life of the light emitting device.
  • the present invention provides a light emitting device comprising: a first electrode, a second electrode, and an electroluminescent layer, the electroluminescent layer being located between the first electrode and the second electrode,
  • the electroluminescent layer includes a light emitting layer and an electron blocking layer;
  • the material of the luminescent layer comprises a first host material, the first host material is doped with a first guest material, wherein the first guest material and the second guest material are luminescent materials material;
  • the material of the electron blocking layer includes a second host material, and the second host material is doped with a second guest material.
  • the wavelength of the first guest material is less than the wavelength of the second guest material.
  • the energy band width of the first guest material is greater than the energy band width of the second guest material.
  • the triplet energy level of the second host material is greater than the triplet energy level of the first guest material, and the triplet energy level of the second host material is greater than the triplet energy level of the first host material.
  • the electroluminescent layer further includes a hole transport layer, the hole transport layer being located between the first electrode and the electron blocking layer;
  • the highest occupied orbital energy of the hole transporting layer is greater than the highest occupied orbital energy of the electron blocking layer, and the highest occupied orbital energy of the electron blocking layer is greater than the highest occupied orbital energy of the light emitting layer.
  • a difference between a highest occupied orbital energy of the electron blocking layer and a highest occupied orbital energy of the hole transporting layer is less than 0.4 eV, and a highest occupied orbital energy of the light emitting layer and a highest of the electronic blocking layer The difference in occupied orbital energy is less than 0.4 eV.
  • the second guest material has a doping concentration of 1% to 5%.
  • the second guest material has a doping concentration of 3%.
  • the thickness of the electron blocking layer is in the range of 5 nm to 20 nm.
  • the thickness of the electron blocking layer is in the range of 10 nm to 15 nm.
  • the light emitting device is a blue light emitting device.
  • the present invention provides a display device comprising: the above light emitting device.
  • the present invention provides a method of fabricating a light emitting device, comprising:
  • the electroluminescent layer comprising a light emitting layer and an electron blocking layer, the material of the light emitting layer comprising a first host material, the first host material being doped with a first a guest material, the material of the electron blocking layer comprises a second host material, and the second host material is doped with a second guest material;
  • a second electrode is formed over the electroluminescent layer.
  • the forming the electroluminescent layer above the first electrode comprises:
  • a first host material is evaporated over the electron blocking layer at a third set evaporation rate and the first guest material is evaporated at a fourth set evaporation rate to form the light-emitting layer.
  • the second host material of the electron blocking layer is doped with a second guest material, and the second guest material can make the excitons in the electron blocking layer
  • the illuminating form is released, the cleavage reaction of the material of the exciton and the hole transport layer is avoided, the stability of the illuminating device is improved, and the life of the illuminating device is improved.
  • FIG. 1 is a schematic structural diagram of a light emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing a comparison of brightness percentages of a light emitting device according to Embodiment 1 of the present invention and a related art light emitting device;
  • FIG. 3 is a flowchart of a method for manufacturing a light emitting device according to Embodiment 3 of the present invention.
  • FIG. 1 is a schematic structural diagram of a light emitting device according to Embodiment 1 of the present invention.
  • the light emitting device includes: a first electrode 1, a second electrode 2, and an electroluminescent layer 3, and an electroluminescent layer 3.
  • the electroluminescent layer 3 Located between the first electrode 1 and the second electrode 2, the electroluminescent layer 3 includes a light-emitting layer 31 and an electron blocking layer 32.
  • the material of the luminescent layer 31 comprises a first host material, the first host material is doped with a first guest material BD1; the material of the electron blocking layer 32 comprises a second host material, and the second host material is doped with a second guest material BD2 .
  • the electron blocking layer 32 is located above the first electrode 1
  • the light emitting layer 31 is located above the electron blocking layer 32
  • the second electrode 2 is located above the light emitting layer 31.
  • the electroluminescent layer 3 further includes a hole transport layer 33 and a Hole Inject Layer (HIL) 34.
  • the hole transport layer 33 and the hole injection layer 34 are both located Between an electrode 2 and an electron blocking layer 32. Specifically, the hole injection layer 34 is located above the first electrode 1, and the hole transport layer 33 is located above the hole injection layer 34.
  • HIL Hole Inject Layer
  • the electroluminescent layer 3 further includes an electron injection layer (Electron Inject Layer) (EIL) 35 and an electron transport layer (Electron Transport Layer, ETL for short) 36.
  • EIL Electron Inject Layer
  • ETL Electro Transport Layer
  • the electroluminescent layer 3 further includes a Hole Blocking Layer (HBL) 37.
  • the hole blocking layer 37 is located above the light emitting layer 31 and under the electron transport layer 36.
  • the wavelength of the first guest material BD1 is smaller than the wavelength of the second guest material BD2.
  • the first guest material BD1 has a wavelength of 454 nm
  • the second guest material BD2 has a wavelength of 457 nm.
  • the first guest material BD1 may be referred to as a dark blue material
  • the second guest material BD1 may be referred to as a light blue material.
  • the energy band width Eg (BD1) of the first guest material BD1 is greater than the energy band width Eg (BD2) of the second guest material, that is, Eg(BD1)>Eg(BD2).
  • the triplet energy level E T (EBL) of the second host material is greater than the triplet energy level E T (BD2) of the first guest material, and the triplet energy level E T (EBL) of the second host material is greater than the first The triplet energy level E T (BD1) of the host material, namely: E T (EBL) > E T (BD2), E T (EBL) > E T (BD1).
  • the highest occupied orbital energy HOMO (HTL) of the hole transport layer 33 is greater than the highest occupied orbital energy HOMO (EBL) of the electron blocking layer 32, and the highest occupied orbital energy HOMO (EBL) of the electron blocking layer 32 is larger than that of the light emitting layer 31.
  • the highest occupied orbital energy HOMO (EML) namely: HOMO (HTL) > HOMO (EBL) > HOMO (EML).
  • the difference between the highest occupied orbital energy HOMO (EBL) of the electron blocking layer 32 and the highest occupied orbital energy HOMO (HTL) of the hole transport layer 33 is less than 0.4 eV, that is, HOMO(EBL)-HOMO(HTL) ⁇ 0.4 eV; the difference between the highest occupied orbital energy HOMO (EML) of the light-emitting layer 31 and the highest occupied orbital energy HOMO (EBL) of the electron blocking layer 32 is less than 0.4 eV, that is, HOMO(EML)-HOMO(EBL) ⁇ 0.4eV .
  • the doping concentration of the second guest material BD2 is 1% to 5%.
  • the doping concentration of the second guest material BD2 is 3%.
  • the doping concentration of the first guest material BD1 is 3% to 10%.
  • the doping concentration of the first guest material BD1 is 5%.
  • the thickness of the electron blocking layer 32 includes 5 nm to 20 nm.
  • the thickness of the electron blocking layer 32 is in the range of 10 nm to 15 nm.
  • the electron blocking layer 32 has a thickness of 10 nm.
  • the first electrode may be an anode and the second electrode may be a cathode.
  • the material of the first electrode is a transparent conductive material such as ITO; the material of the second electrode is a metal such as Al.
  • the light emitting device is a blue light emitting device.
  • the first guest material and the second guest material are both blue luminescent materials. Since the wavelength of the first bulk material is less than the wavelength of the second guest material, the luminescent color of the first guest material is darker than the luminescent color of the second guest material, so the first guest material can be referred to as a "dark blue luminescent material”. And the second guest material is referred to as "light blue luminescent material.”
  • the light emitting device may also be a light emitting device of other colors, and the first guest material and the second guest material are luminescent materials of corresponding colors.
  • FIG. 2 is a schematic diagram showing a comparison of brightness percentages of a light-emitting device according to Embodiment 1 of the present invention and a light-emitting device of the prior art.
  • the luminance percentage of the light-emitting device of Embodiment 1 increases with time (Time). Luminance) did not show significant attenuation, while the percentage of brightness of prior art light-emitting devices was significantly attenuated. Therefore, the lifetime of the light-emitting device of the first embodiment is longer than that of the prior art light-emitting device.
  • the second host material of the electron blocking layer is doped with the second guest material, and the second guest material can release the excitons in the electron blocking layer in the form of light emission, thereby The stability of the light emitting device is improved and the life of the light emitting device is improved.
  • the excitons in the electron blocking layer can be released in the form of light emission, thereby improving the luminous efficiency of the light emitting device.
  • Embodiment 2 of the present invention provides a display device, which includes: a light emitting device.
  • the light emitting device can adopt the light emitting device provided in the first embodiment.
  • the second host material of the electron blocking layer is doped with the second guest material, and the second guest material can release the excitons in the electron blocking layer in the form of light emission, thereby avoiding The pyrolysis reaction of the material of the exciton and the hole transport layer is improved.
  • the stability of the light emitting device thereby increasing the life of the light emitting device.
  • FIG. 3 is a flowchart of a method for manufacturing a light emitting device according to Embodiment 3 of the present invention. As shown in FIG. 3, the method includes:
  • Step 101 forming an electroluminescent layer above the first electrode, the electroluminescent layer comprising a light emitting layer and an electron blocking layer, the material of the light emitting layer comprising a first host material, doped in the first host material There is a first guest material, the material of the electron blocking layer comprising a second host material, and the second host material is doped with a second guest material.
  • the material of the first electrode may be a transparent conductive material such as ITO.
  • the electroluminescent layer further includes a hole transport layer, a hole injection layer, an electron injection layer, an electron transport layer, and a hole blocking layer.
  • Step 101 specifically includes:
  • Step 1011 the hole injection layer is deposited on the first electrode at a fifth set vapor deposition rate.
  • the fifth set evaporation rate is 1 A/s.
  • the thickness of the hole injection layer may be 10 nm.
  • Step 1012 The hole transport layer is deposited on the hole injection layer at a sixth set vapor deposition rate.
  • the sixth set evaporation rate is 1 A/s.
  • the thickness of the hole transport layer may be 120 nm.
  • Step 1013 depositing a second host material over the hole injection layer at a first set evaporation rate and vapor depositing the second host material at a second set evaporation rate to form an electron blocking layer.
  • the first set evaporation rate is 1 A/s and the second set evaporation rate is 0.03 A/s.
  • the thickness of the electron blocking layer was 10 nm.
  • Step 1014 depositing a first host material over the electron blocking layer at a third set evaporation rate and vapor depositing the first host material at a fourth set evaporation rate to form a light-emitting layer.
  • the third set evaporation rate is 1 A/s
  • the fourth set evaporation rate is 0.05 A/s.
  • the thickness of the light-emitting layer was 25 nm.
  • Step 1015 depositing a hole blocking layer on the luminescent layer at a seventh set evaporation rate.
  • the seventh set evaporation rate is 1 A/s.
  • the thickness of the hole blocking layer was 15 nm.
  • Step 1016 evaporating the electron transport layer at an eighth set vapor deposition rate over the hole blocking layer.
  • the eighth set evaporation rate is 1 A/s.
  • the electron transport layer has a thickness of 10 nm.
  • Step 1017 evaporating the electron injection layer at a ninth set evaporation rate over the electron transport layer.
  • the ninth set evaporation rate is 0.1 A/s.
  • the thickness of the electron injecting layer was 1 nm.
  • the material of the electron injecting layer may be LiF.
  • Step 102 forming a second electrode above the electroluminescent layer.
  • the second electrode is evaporated over the electron injection layer at a tenth set evaporation rate.
  • the tenth set evaporation rate is from 3 A/s to 5 A/s.
  • the thickness of the second electrode was 150 nm.
  • the material of the second electrode is a metal such as Al.
  • the manufacturing method of the illuminating device provided in this embodiment can be used to manufacture the illuminating device provided in the first embodiment.
  • the illuminating device refer to the first embodiment, and details are not described herein again.
  • the second host material of the electron blocking layer is doped with a second guest material, and the second guest material can release excitons in the electron blocking layer in the form of light emission.
  • the cleavage reaction of the material of the exciton and the hole transport layer is avoided, the stability of the light-emitting device is improved, and the life of the light-emitting device is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件及其制造方法和显示装置。该发光器件包括:第一电极(1)、第二电极(2)和电致发光层(3),所述电致发光层(3)位于所述第一电极(1)和所述第二电极(2)之间,所述电致发光层(3)包括发光层(31)和电子阻挡层(32);所述发光层(31)的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料;所述电子阻挡层(32)的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料。该第二客体材料可以使电子阻挡层(32)中的激子以发光形式释放掉,避免了激子与空穴传输层(33)的材料发生裂解反应,提高了发光器件的稳定性,从而提高了发光器件的寿命。

Description

发光器件及其制造方法和显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种发光器件及其制造方法和显示装置。
背景技术
在现有的有机发光二极管(Organic Light-Emitting Diode,简称:OLED)显示装置中,无论是并排(side-by-side)结构还是白光有机发光二极管(WOLED)加彩膜(color filter)结构,蓝色发光器件的寿命仍然是决定整机寿命的一个决定性因素。
OLED显示装置中的发光器件可包括发光层(Emitting Material Layer,简称EML)、电子阻挡层和空穴传输层(Hole Transport Layer,简称HTL)等多层结构。发光层内容易聚集高能量的激子,尤其是蓝色发光器件。为了使激子能够及时以发光形式释放,通常在发光层中掺杂蓝色发光材料。
但是,仍然会有部分来不及发光的激子被转移到电子阻挡层(Electron Blocking Layer,简称EBL)中,若电子阻挡层中的激子不能及时以发光形式释放掉,则会进入空穴传输层并使空穴传输层的材料发生裂解反应,影响了发光器件的稳定性,从而降低了发光器件的寿命。
发明内容
本发明提供一种发光器件及其制造方法和显示装置,用于提高发光器件的寿命。
为实现上述目的,本发明提供了一种发光器件,包括:第一电极、第二电极和电致发光层,所述电致发光层位于所述第一电极和所述第二电极之间,所述电致发光层包括发光层和电子阻挡层;
所述发光层的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料,其中所述第一客体材料与所述第二客体材料均为发光材 料;
所述电子阻挡层的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料。
可选地,所述第一客体材料的波长小于所述第二客体材料的波长。
可选地,所述第一客体材料的能带宽度大于所述第二客体材料的能带宽度。
可选地,所述第二主体材料的三重态能级大于所述第一客体材料的三重态能级,所述第二主体材料的三重态能级大于第一主体材料的三重态能级。
可选地,所述电致发光层还包括空穴传输层,所述空穴传输层位于所述第一电极和所述电子阻挡层之间;
所述空穴传输层的最高占有轨道能量大于所述电子阻挡层的最高占有轨道能量,所述电子阻挡层的最高占有轨道能量大于所述发光层的最高占有轨道能量。
可选地,所述电子阻挡层的最高占有轨道能量与所述空穴传输层的最高占有轨道能量的差值小于0.4eV,所述发光层的最高占有轨道能量与所述电子阻挡层的最高占有轨道能量的差值小于0.4eV。
可选地,所述第二客体材料的掺杂浓度为1%至5%。
可选地,所述第二客体材料的掺杂浓度为3%。
可选地,所述电子阻挡层的厚度处在5nm至20nm的范围内。
可选地,所述电子阻挡层的厚度处在10nm至15nm的范围内。
可选地,所述发光器件为蓝色发光器件。
为实现上述目的,本发明提供了一种显示装置,包括:上述发光器件。
为实现上述目的,本发明提供了一种发光器件的制造方法,包括:
在第一电极的上方形成电致发光层,所述电致发光层包括发光层和电子阻挡层,所述发光层的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料,所述电子阻挡层的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料;
在所述电致发光层的上方形成第二电极。
可选地,所述在第一电极的上方形成电致发光层包括:
在所述第一电极的上方以第一设定蒸镀速率蒸镀第二主体材料并以第二设定蒸镀速率蒸镀第二客体材料,以形成所述电子阻挡层;
在所述电子阻挡层之上以第三设定蒸镀速率蒸镀第一主体材料并以第四设定蒸镀速率蒸镀第一客体材料,以形成所述发光层。
本发明具有以下有益效果:
本发明提供的发光器件及其制造方法和显示装置的技术方案中,电子阻挡层的第二主体材料中掺杂有第二客体材料,该第二客体材料可以使电子阻挡层中的激子以发光形式释放掉,避免了激子与空穴传输层的材料发生裂解反应,提高了发光器件的稳定性,从而提高了发光器件的寿命。
附图说明
图1为本发明实施例一提供的一种发光器件的结构示意图;
图2为本发明实施例一的发光器件和现有技术的发光器件的亮度百分比的对比示意图;
图3为本发明实施例三提供的一种发光器件的制造方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的发光器件及其制造方法和显示装置的进行详细描述。
图1为本发明实施例一提供的一种发光器件的结构示意图,如图1所示,该发光器件包括:第一电极1、第二电极2和电致发光层3,电致发光层3位于第一电极1和第二电极2之间,电致发光层3包括发光层31和电子阻挡层32。发光层31的材料包括第一主体材料,第一主体材料中掺杂有第一客体材料BD1;电子阻挡层32的材料包括第二主体材料,第二主体材料中掺杂有第二客体材料BD2。
本实施例中,电子阻挡层32位于第一电极1的上方,发光层31位于电子阻挡层32之上,第二电极2位于发光层31的上方。
进一步地,电致发光层3还包括空穴传输层33和空穴注入层(Hole Inject Layer,简称HIL)34。空穴传输层33和空穴注入层34均位于第 一电极2和电子阻挡层32之间。具体地,空穴注入层34位于第一电极1之上,空穴传输层33位于空穴注入层34之上。
进一步地,电致发光层3还包括电子注入层(Electron Inject Layer,简称EIL)35和电子传输层(Electron Transport Layer,简称ETL)36。电子传输层36位于发光层31的上方,电子注入层35位于电子传输层36之上。
进一步地,电致发光层3还包括空穴阻挡层(Hole Blocking Layer,简称HBL)37。空穴阻挡层37位于发光层31之上且位于电子传输层36之下。
本实施例中,第一客体材料BD1的波长小于第二客体材料BD2的波长。例如:第一客体材料BD1的波长为454nm,第二客体材料BD2的波长为457nm,第一客体材料BD1可以称为深蓝材料,第二客体材料BD1可以称为浅蓝材料。
优选地,第一客体材料BD1的能带宽度Eg(BD1)大于第二客体材料的能带宽度Eg(BD2),即:Eg(BD1)>Eg(BD2)。
优选地,第二主体材料的三重态能级ET(EBL)大于第一客体材料的三重态能级ET(BD2),第二主体材料的三重态能级ET(EBL)大于第一主体材料的三重态能级ET(BD1),即:ET(EBL)>ET(BD2),ET(EBL)>ET(BD1)。
优选地,空穴传输层33的最高占有轨道能量HOMO(HTL)大于电子阻挡层32的最高占有轨道能量HOMO(EBL),电子阻挡层32的最高占有轨道能量HOMO(EBL)大于发光层31的最高占有轨道能量HOMO(EML),即:HOMO(HTL)>HOMO(EBL)>HOMO(EML)。
优选地,电子阻挡层32的最高占有轨道能量HOMO(EBL)与空穴传输层33的最高占有轨道能量HOMO(HTL)的差值小于0.4eV,即:HOMO(EBL)-HOMO(HTL)≤0.4eV;发光层31的最高占有轨道能量HOMO(EML)与电子阻挡层32的最高占有轨道能量HOMO(EBL)的差值小于0.4eV,即:HOMO(EML)-HOMO(EBL)≤0.4eV。
本实施例中,第二客体材料BD2的掺杂浓度为1%至5%。优选地,第二客体材料BD2的掺杂浓度为3%。
本实施例中,第一客体材料BD1的掺杂浓度为3%至10%。优选地,第一客体材料BD1的掺杂浓度为5%。
本实施例中,电子阻挡层32的厚度包括5nm至20nm。优选地,电子阻挡层32的厚度处在10nm至15nm的范围内。优选地,电子阻挡层32的厚度为10nm。
本实施例中,第一电极可以为阳极,第二电极可以为阴极。第一电极的材料为透明导电材料,例如:ITO;第二电极的材料为金属,例如:Al。
本实施例中,发光器件为蓝色发光器件。则第一客体材料与第二客体材料均为蓝色发光材料。由于第一体材料的波长小于第二客体材料的波长,因此第一客体材料的发光颜色比第二客体材料的发光颜色深,所以相对地可将第一客体材料称为“深蓝色发光材料”,并将第二客体材料称为“浅蓝色发光材料”。在不同的应用场合中,所述发光器件也可以为其他颜色的发光器件,并且所述第一客体材料与第二客体材料为相应颜色的发光材料。
图2为本发明实施例一的发光器件和现有技术的发光器件的亮度百分比的对比示意图,如图2所示,随着时间(Time)的增加,实施例一的发光器件的亮度百分比(Luminance)未发生明显衰减,而现有技术的发光器件的亮度百分比发生明显衰减。因此,实施例一的发光器件的寿命比现有技术的发光器件的寿命要长。
本实施例提供的发光器件的技术方案中,电子阻挡层的第二主体材料中掺杂有第二客体材料,该第二客体材料可以使电子阻挡层中的激子以发光形式释放掉,从而提高了发光器件的稳定性以及提高了发光器件的寿命。本实施例中,电子阻挡层中的激子能够以发光形式释放掉,从而提高了发光器件的发光效率。
本发明实施例二提供了一种显示装置,该显示装置包括:发光器件。该发光器件可采用上述实施例一提供的发光器件。
本实施例提供的显示装置的技术方案中,电子阻挡层的第二主体材料中掺杂有第二客体材料,该第二客体材料可以使电子阻挡层中的激子以发光形式释放掉,避免了激子与空穴传输层的材料发生裂解反应,提高了 发光器件的稳定性,从而提高了发光器件的寿命。
图3为本发明实施例三提供的一种发光器件的制造方法的流程图,如图3所示,该方法包括:
步骤101、在第一电极的上方形成电致发光层,所述电致发光层包括发光层和电子阻挡层,所述发光层的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料,所述电子阻挡层的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料。
本实施例中,第一电极的材料可以为透明导电材料,例如:ITO。
进一步地,电致发光层还包括空穴传输层、空穴注入层、电子注入层、电子传输层和空穴阻挡层。
步骤101具体可包括:
步骤1011、在第一电极之上以第五设定蒸镀速率蒸镀空穴注入层。
优选地,第五设定蒸镀速率为1A/s。空穴注入层的厚度可以为10nm。
步骤1012、在空穴注入层之上以第六设定蒸镀速率蒸镀空穴传输层。
优选地,第六设定蒸镀速率为1A/s。空穴传输层的厚度可以为120nm。
步骤1013、在空穴注入层之上以第一设定蒸镀速率蒸镀第二主体材料并以第二设定蒸镀速率蒸镀第二客体材料,以形成电子阻挡层。
优选地,第一设定蒸镀速率为1A/s,第二设定蒸镀速率为0.03A/s。电子阻挡层的厚度为10nm。
步骤1014、在电子阻挡层之上以第三设定蒸镀速率蒸镀第一主体材料并以第四设定蒸镀速率蒸镀第一客体材料,以形成发光层。
优选地,第三设定蒸镀速率为1A/s,第四设定蒸镀速率为0.05A/s。发光层的厚度为25nm。
步骤1015、在发光层之上以第七设定蒸镀速率蒸镀空穴阻挡层。
优选地,第七设定蒸镀速率为1A/s。空穴阻挡层的厚度为15nm。
步骤1016、在空穴阻挡层之上以第八设定蒸镀速率蒸镀电子传输层。
优选地,第八设定蒸镀速率为1A/s。电子传输层的厚度为10nm。
步骤1017、在电子传输层之上以第九设定蒸镀速率蒸镀电子注入层。
优选地,第九设定蒸镀速率为0.1A/s。电子注入层的厚度为1nm。电子注入层的材料可以为LiF。
步骤102、在电致发光层的上方形成第二电极。
具体地,在电子注入层之上以第十设定蒸镀速率蒸镀第二电极。优选地,第十设定蒸镀速率为3A/s至5A/s。第二电极的厚度为150nm。第二电极的材料为金属,例如:Al。
本实施例提供的发光器件的制造方法可用于制造上述实施例一提供的发光器件,对发光器件的描述可参见上述实施例一,此处不再赘述。
本实施例提供的发光器件的制造方法的技术方案中,电子阻挡层的第二主体材料中掺杂有第二客体材料,该第二客体材料可以使电子阻挡层中的激子以发光形式释放掉,避免了激子与空穴传输层的材料发生裂解反应,提高了发光器件的稳定性,从而提高了发光器件的寿命。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种发光器件,其特征在于,包括:第一电极、第二电极和电致发光层,所述电致发光层位于所述第一电极和所述第二电极之间,所述电致发光层包括发光层和电子阻挡层;
    所述发光层的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料;
    所述电子阻挡层的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料,
    其中所述第一客体材料与所述第二客体材料均为发光材料。
  2. 根据权利要求1所述的发光器件,其特征在于,所述第一客体材料的波长小于所述第二客体材料的波长。
  3. 根据权利要求1所述的发光器件,其特征在于,所述第一客体材料的能带宽度大于所述第二客体材料的能带宽度。
  4. 根据权利要求1所述的发光器件,其特征在于,所述第二主体材料的三重态能级大于所述第一客体材料的三重态能级,所述第二主体材料的三重态能级大于第一主体材料的三重态能级。
  5. 根据权利要求1所述的发光器件,其特征在于,所述电致发光层还包括空穴传输层,所述空穴传输层位于所述第一电极和所述电子阻挡层之间;
    所述空穴传输层的最高占有轨道能量大于所述电子阻挡层的最高占有轨道能量,所述电子阻挡层的最高占有轨道能量大于所述发光层的最高占有轨道能量。
  6. 根据权利要求5所述的发光器件,其特征在于,所述电子阻挡层的最高占有轨道能量与所述空穴传输层的最高占有轨道能量的差值小于 0.4eV,所述发光层的最高占有轨道能量与所述电子阻挡层的最高占有轨道能量的差值小于0.4eV。
  7. 根据权利要求1所述的发光器件,其特征在于,所述第二客体材料的掺杂浓度为1%至5%。
  8. 根据权利要求7所述的发光器件,其特征在于,所述第二客体材料的掺杂浓度为3%。
  9. 根据权利要求1所述的发光器件,其特征在于,所述电子阻挡层的厚度处在5nm至20nm的范围内。
  10. 根据权利要求9所述的发光器件,其特征在于,所述电子阻挡层的厚度处在10nm至15nm的范围内。
  11. 根据权利要求1至10任一所述的发光器件,其特征在于,所述发光器件为蓝色发光器件。
  12. 一种显示装置,其特征在于,包括:权利要求1至11任一所述的发光器件。
  13. 一种发光器件的制造方法,其特征在于,包括:
    在第一电极的上方形成电致发光层,所述电致发光层包括发光层和电子阻挡层,所述发光层的材料包括第一主体材料,所述第一主体材料中掺杂有第一客体材料,所述电子阻挡层的材料包括第二主体材料,所述第二主体材料中掺杂有第二客体材料;
    在所述电致发光层的上方形成第二电极。
  14. 根据权利要求13所述的发光器件的制造方法,其特征在于,所述在第一电极的上方形成电致发光层包括:
    在所述第一电极的上方以第一设定蒸镀速率蒸镀第二主体材料并以第二设定蒸镀速率蒸镀第二客体材料,以形成所述电子阻挡层;
    在所述电子阻挡层之上以第三设定蒸镀速率蒸镀第一主体材料并以第四设定蒸镀速率蒸镀第一客体材料,以形成所述发光层。
PCT/CN2016/084704 2016-03-23 2016-06-03 发光器件及其制造方法和显示装置 WO2017161694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/529,527 US10319931B2 (en) 2016-03-23 2016-06-03 Light emitting device, method for manufacturing light emitting device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610170235.4 2016-03-23
CN201610170235.4A CN105576146B (zh) 2016-03-23 2016-03-23 发光器件及其制造方法和显示装置

Publications (1)

Publication Number Publication Date
WO2017161694A1 true WO2017161694A1 (zh) 2017-09-28

Family

ID=55886054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084704 WO2017161694A1 (zh) 2016-03-23 2016-06-03 发光器件及其制造方法和显示装置

Country Status (3)

Country Link
US (1) US10319931B2 (zh)
CN (1) CN105576146B (zh)
WO (1) WO2017161694A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576146B (zh) 2016-03-23 2017-09-26 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
CN106450017B (zh) * 2016-10-21 2018-04-20 京东方科技集团股份有限公司 一种oled器件及oled显示装置
CN106531769B (zh) * 2016-12-16 2019-06-25 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法
CN108206241B (zh) * 2016-12-19 2020-02-04 上海和辉光电有限公司 发光器件及制备方法,及有机电致发光显示器
CN110416418B (zh) * 2018-04-28 2020-07-21 江苏三月科技股份有限公司 有机电致发光器件及包括其的显示器
CN110416422B (zh) * 2018-04-28 2021-06-15 江苏三月科技股份有限公司 有机电致发光器件及包括其的显示器
CN108987593B (zh) * 2018-06-29 2020-05-08 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN109360897B (zh) * 2018-09-17 2021-01-15 云谷(固安)科技有限公司 一种显示面板及显示装置
CN112242492B (zh) * 2019-07-18 2023-12-01 固安鼎材科技有限公司 有机电致发光器件及装置和制备方法
CN111697146B (zh) * 2020-06-11 2022-04-19 云谷(固安)科技有限公司 发光器件及显示面板
CN111799386B (zh) * 2020-07-22 2023-07-14 京东方科技集团股份有限公司 一种发光器件、显示装置
CN111900257B (zh) * 2020-08-12 2024-07-23 京东方科技集团股份有限公司 一种发光器件及其制作方法、显示装置
CN112952013B (zh) * 2021-02-26 2024-07-23 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置
CN114039006B (zh) * 2021-11-09 2024-02-09 云谷(固安)科技有限公司 一种发光器件以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100219395A1 (en) * 2009-02-27 2010-09-02 Hideki Hirayama Optical Semiconductor Device and Method of Manufacturing the Same
CN102245543A (zh) * 2009-10-30 2011-11-16 三菱化学株式会社 低分子化合物、聚合物、电子器件材料、电子器件用组合物、有机场致发光元件、有机太阳能电池元件、显示装置及照明装置
CN103730590A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105140360A (zh) * 2015-09-01 2015-12-09 天津三安光电有限公司 一种氮化物发光二极管及其制备方法
CN105576146A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058578C2 (de) * 2000-11-20 2002-11-28 Univ Dresden Tech Lichtemittierendes Bauelement mit organischen Schichten
WO2003022008A1 (en) * 2001-08-29 2003-03-13 The Trustees Of Princeton University Organic light emitting devices having carrier transporting layers comprising metal complexes
KR100957781B1 (ko) * 2007-08-24 2010-05-13 한국전자통신연구원 하이브리드 백색 유기 전계 발광 소자 및 그 제조 방법
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
KR101584990B1 (ko) * 2008-12-01 2016-01-13 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이의 제조 방법
TW201023413A (en) 2008-12-05 2010-06-16 Univ Tsinghua Organic light-emitting diode (OLED) device
WO2011021471A1 (ja) 2009-08-18 2011-02-24 トヨタ車体株式会社 車椅子用シートベルト装置
WO2012039213A1 (ja) * 2010-09-24 2012-03-29 株式会社日立製作所 有機発光装置及びこれを用いた光源装置
TW201232864A (en) * 2010-11-22 2012-08-01 Idemitsu Kosan Co Organic electroluminescence device
JP6599309B2 (ja) * 2013-03-20 2019-10-30 ユー・ディー・シー アイルランド リミテッド 白色有機発光素子
CN103227294B (zh) * 2013-04-28 2015-08-19 陕西科技大学 一种红绿磷光oled器件及其制造方法
CN103887444B (zh) 2013-12-31 2017-02-01 昆山工研院新型平板显示技术中心有限公司 一种可提高寿命的oled蓝光器件
US9331299B2 (en) * 2014-04-11 2016-05-03 Universal Display Corporation Efficient white organic light emitting diodes with high color quality
CN104270847B (zh) * 2014-10-30 2016-09-28 中国科学院长春应用化学研究所 一种白色有机电致发光器件及其制备方法
CN104576953B (zh) * 2014-12-31 2017-01-25 北京维信诺科技有限公司 一种有机电致发光装置
US10074815B2 (en) * 2015-03-31 2018-09-11 The Regents Of The University Of Michigan Organic electroluminescent devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100219395A1 (en) * 2009-02-27 2010-09-02 Hideki Hirayama Optical Semiconductor Device and Method of Manufacturing the Same
CN102245543A (zh) * 2009-10-30 2011-11-16 三菱化学株式会社 低分子化合物、聚合物、电子器件材料、电子器件用组合物、有机场致发光元件、有机太阳能电池元件、显示装置及照明装置
CN103730590A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105140360A (zh) * 2015-09-01 2015-12-09 天津三安光电有限公司 一种氮化物发光二极管及其制备方法
CN105576146A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置

Also Published As

Publication number Publication date
US20180190925A1 (en) 2018-07-05
CN105576146B (zh) 2017-09-26
US10319931B2 (en) 2019-06-11
CN105576146A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2017161694A1 (zh) 发光器件及其制造方法和显示装置
US8119258B2 (en) White organic light emitting device (OLED)
US20160035993A1 (en) Organic electroluminescent device and display device
US20120280222A1 (en) Fabrication method for organic electronic device and organic electronic device fabricated by the same method
WO2018040686A1 (zh) 一种有机电致发光器件及显示装置
WO2018018999A1 (zh) 有机发光器件及其制备方法、显示装置
US10256417B2 (en) Organic electroluminescent and preparation method thereof
WO2016155147A1 (zh) 蓝光有机电致发光器件及制备方法、显示面板和显示装置
KR101973207B1 (ko) 금속 산화물이 함유된 양극 및 상기 양극을 포함하는 유기발광소자
US8502205B2 (en) Organic light emitting diode device and method of manufacturing the same
US8860012B2 (en) Textile-type organic light-emitting device and method of manufacturing the same
KR101747729B1 (ko) 유기 발광 소자의 제조 방법 및 유기 발광 소자를 이용한 표시 장치의 제조 방법
KR102317267B1 (ko) 유기 발광 표시 소자
US20160028038A1 (en) Tandem organic light emitting diode and preparation method thereof
TW201251166A (en) Organic light-emitting diode device with efficiency roll-up property
JP2004152700A (ja) 有機発光素子およびその製造方法
TWI569492B (zh) 有機發光元件
KR20150018716A (ko) 유기 발광 소자 및 그 제조방법
KR102080044B1 (ko) 유기 발광 소자 및 그 제조방법
TWI565360B (zh) 改良之有機發光二極體元件
KR100981015B1 (ko) 유기 전계 발광 소자의 제조 방법
KR100665700B1 (ko) 유기전계발광소자의 제조방법
TWI406441B (zh) 白光有機發光二極體構造
US20240292702A1 (en) Display device and method of manufacturing display device
TWI472057B (zh) 有機發光二極體製造方法及其構造

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895046

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895046

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16895046

Country of ref document: EP

Kind code of ref document: A1