WO2015198919A1 - シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ - Google Patents

シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ Download PDF

Info

Publication number
WO2015198919A1
WO2015198919A1 PCT/JP2015/067320 JP2015067320W WO2015198919A1 WO 2015198919 A1 WO2015198919 A1 WO 2015198919A1 JP 2015067320 W JP2015067320 W JP 2015067320W WO 2015198919 A1 WO2015198919 A1 WO 2015198919A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acrylate
silicone hydrogel
silicone
Prior art date
Application number
PCT/JP2015/067320
Other languages
English (en)
French (fr)
Inventor
加藤智博
藤澤和彦
中村正孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15812039.4A priority Critical patent/EP3162824B1/en
Priority to JP2015534715A priority patent/JP6613891B2/ja
Priority to US15/321,516 priority patent/US10087274B2/en
Publication of WO2015198919A1 publication Critical patent/WO2015198919A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present invention relates to a silicone hydrogel.
  • the silicone hydrogel contains ophthalmic lenses, endoscopes, catheters, infusion tubes, gas transport tubes, stents, sheaths, cuffs, tube connectors, access ports, drainage bags, blood circuits, wound dressings, and various drug carriers.
  • ophthalmic lenses such as contact lenses, intraocular lenses, and artificial corneas.
  • silicone hydrogel is known as a material for contact lenses used for continuous wear.
  • the silicone hydrogel is obtained by combining at least one silicone component and at least one hydrophilic component.
  • Patent Document 1 discloses hydrophilicity that may include silicone (meth) acrylamide, silicone (meth) acrylate, hydrophilic acrylamide such as ⁇ , ⁇ -dimethylacrylamide, hydrophilic methacrylate such as 2-hydroxyethyl methacrylate, and an internal wetting agent.
  • a silicone hydrogel obtained by polymerizing a polymerization stock solution containing components is disclosed.
  • Patent Document 2 discloses a silicone hydrolyzate obtained by polymerizing a polymerization stock solution containing two types of silicone methacrylate and N-vinylpyrrolidone and further a hydrophilic monomer such as 2-hydroxyethyl methacrylate and N, N-dimethylacrylamide. A gel is disclosed.
  • compositions are silicone monomers, hydrophilic monomers, crosslinking monomers and have different polymerizable groups such as acrylamide and methacrylate, so the polymerization rate of each monomer during copolymerization is not uniform, and the initial polymerization and polymerization There was a problem that the composition of the silicone hydrogel obtained in the later stage was different.
  • the silicone hydrogel obtained from such a composition sometimes causes a problem in mechanical properties and optical properties.
  • Example 13 of Patent Document 3 monofunctional branched type 3-tris (trimethylsiloxy) silylpropyl methacrylate, 3- [3-methylbis (trimethylsiloxy) silylpropoxy] propyl (meth) acrylate 2
  • a composition comprising two types of silicone methacrylate, 2-hydroxyethyl methacrylate, which is a hydrophilic methacrylate, and ethylene glycol dimethacrylate, which is a dimethacrylate-based crosslinking monomer, is disclosed.
  • the polymerizable groups of the various monomers used in this composition were unified with methacrylate, and the composition of the silicone hydrogel obtained in the initial stage and the late stage of the polymerization became uniform, and mechanical and optical characteristics were improved. .
  • Example 13 of Patent Document 3 has a problem in shape recoverability. This is because the monomer used to obtain the composition has the polymerizable group unified with methacrylate, but the interaction such as hydrogen bonding of the ester group contained in methacrylate is relatively small, and the polymer chain The reason is considered to be insufficient interaction.
  • an object of the present invention is to provide a silicone hydrogel having high uniformity in polymerization rate of each polymerization component used for copolymerization, excellent mechanical properties and optical properties, and good shape recoverability.
  • Another object of the present invention is to provide various medical devices having excellent balance of elastic modulus, wettability, and transparency, and ophthalmic lenses such as contact lenses, intraocular lenses, and artificial corneas.
  • the present invention has the following configuration. (1) having a repeating unit derived from a monofunctional linear silicone (meth) acrylate and a repeating unit derived from a hydrophilic (meth) acrylate, Silicone hydrogel in which the content of repeating units derived from (meth) acrylate exceeds 80% by mass.
  • the monofunctional linear silicone (meth) acrylate is a silicone hydrogel according to the above (1), which is represented by the following general formula (a).
  • R 1 represents hydrogen or a methyl group
  • R 2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms
  • R 3 to R 6 are each independently substituted.
  • R 7 represents an optionally substituted alkyl group having 1 to 20 carbon atoms or a substituted group.
  • n represents an integer of 1 to 200 which may have a distribution.
  • the hydrophilic (meth) acrylate has any one group selected from the group consisting of a hydroxyl group, an alkoxy group, a carboxy group, and a sulfonic acid group in the molecule.
  • the silicone hydrogel of the present invention has high uniformity of the polymerization rate of each polymerization component used for copolymerization, excellent mechanical properties and optical properties, and good shape recoverability.
  • the silicone hydrogel of the present invention has an excellent balance of elastic modulus, wettability, and transparency, and can be suitably used for various medical devices, particularly ophthalmic lenses such as contact lenses, intraocular lenses, and artificial corneas. it can.
  • the term (meth) or (methyl) indicates an optional methyl substitution.
  • the term “(meth) acrylate” refers to both methacrylate and acrylate. The same applies to terms such as “(meth) acrylic acid”, “(meth) acrylamide”, and “(meth) acryloyl”.
  • (meth) acrylate represents a (meth) acrylic ester
  • the term “monomer” refers to a compound having one or more radically polymerizable functional groups.
  • repeating unit represents one unit of a repeating structure derived from a monomer structure.
  • the silicone hydrogel of the present invention has a repeating unit derived from a monofunctional linear silicone (meth) acrylate used as a monomer component and a repeating unit derived from a hydrophilic (meth) acrylate used as a monomer component, and (meta )
  • a silicone hydrogel in which the content of repeating units derived from acrylate exceeds 80% by mass of the silicone hydrogel, that is, a polymerization stock solution in which the content of (meth) acrylate monomer components exceeds 80% by mass of all monomer components is polymerized.
  • the resulting silicone hydrogel is polymerized.
  • “mass of silicone hydrogel” represents the mass of only the polymer skeleton excluding the mass of volatile components such as moisture.
  • (meth) acrylate represents a collection of monomers having a (meth) acrylate group
  • “content of repeating unit derived from (meth) acrylate” means a (meth) acrylate group. It represents the total content of repeating units derived from monomers having. The same applies to the cases of “silicone (meth) acrylate”, “hydrophilic (meth) acrylate”, etc., and when two or more of these monomers are used, the content of the repeating unit derived from the monomer satisfying the definition Represents total content.
  • a repeating unit derived from a monofunctional linear silicone (meth) acrylate “a repeating unit derived from a hydrophilic (meth) acrylate”, “derived from a (meth) acrylate”
  • a repeating unit will be described as “a repeating unit derived from a monomer”.
  • the “monomer-derived repeating unit” refers to a structure in a polymer corresponding to the structure of the monomer, which is generated when a radical polymerizable monomer is polymerized and a radical polymerizable functional group is changed by a polymerization reaction. Unit.
  • the “monomer-derived repeating unit” refers to the following formula (y) generated when a radical polymerizable monomer represented by the following formula (x) is polymerized to change the radical polymerizable functional group by a polymerization reaction. Is a structural unit represented by
  • Rw, Rx, Ry, and Rz may independently be groups in which the monomer represented by the above formula (x) can be a radical polymerizable monomer.
  • the “monomer-derived repeating unit” is not necessarily formed by a method in which a monomer is directly copolymerized with another monomer to obtain a silicone hydrogel.
  • a monomer is directly copolymerized with another monomer to obtain a silicone hydrogel.
  • an intermediate polymer obtained by radical polymerization of a monomer A macromonomer may be produced by introducing a (meth) acryloyloxy group, and the macromonomer may be copolymerized with another monomer to obtain a silicone hydrogel.
  • monofunctional linear silicone (meth) acrylate when using a method in which a monomer is directly copolymerized with another monomer to obtain a silicone hydrogel, repeating units derived from monofunctional linear silicone (meth) acrylate Is a structural unit obtained by polymerizing a monofunctional linear silicone (meth) acrylate together with other monomers as a silicone hydrogel.
  • a polymerization stock solution containing a monofunctional linear silicone methacrylate is polymerized.
  • the structural unit in the polymer in which the radical polymerizable functional group is changed by the polymerization reaction.
  • a repeating unit derived from a monofunctional linear silicone (meth) acrylate is first a single unit. It is formed in an intermediate polymer obtained by radical polymerization of a functional linear silicone (meth) acrylate. Silicone having a structural unit derived from monofunctional linear silicone (meth) acrylate by polymerizing a macromonomer produced by introducing a (meth) acryloyloxy group into this intermediate polymer as a silicone hydrogel together with other monomers A hydrogel can be obtained.
  • the silicone monomer refers to a monomer containing a polymerizable group and a siloxanyl group.
  • a siloxanyl group refers to a group having at least one Si—O—Si bond.
  • monofunctional means having only one radical polymerizable functional group (for example, (meth) acryloyloxy group) in the molecule.
  • silicone (meth) acrylate refers to a monomer containing a (meth) acryloyloxy group and a siloxanyl group.
  • the straight-chain silicone in the monofunctional straight-chain silicone (meth) acrylate refers to the silicon siloxanyl bond (-Si-O--repeating) when the silicon atom bonded to the organic group having a (meth) acryloyloxy group is the starting point.
  • a line along the bond formed is drawn, it indicates a structure in which the line is formed as a single line without branching.
  • the monofunctional linear silicone (meth) acrylate and the linear silicone (meth) acrylate refer to a structure represented by the following general formula (p).
  • R p represents an alkyl group having a (meth) acryloyloxy group.
  • R a to R g represent a group not containing a silicon atom, and x represents an integer of 2 or more.
  • the silicone hydrogel of the present invention has a repeating unit derived from a monofunctional linear silicone (meth) acrylate.
  • the branched silicone in the monofunctional branched silicone (meth) acrylate is a line drawn along a siloxanyl bond starting from a silicon atom bonded to an organic group having a (meth) acryloyloxy group.
  • Examples of the monofunctional linear silicone (meth) acrylate used in the silicone hydrogel of the present invention include monomers represented by the following general formula (a).
  • R 1 represents hydrogen or a methyl group.
  • R 2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms.
  • R 3 to R 6 each independently represents an optionally substituted alkyl group having 1 to 20 carbon atoms or an optionally substituted aryl group having 6 to 20 carbon atoms.
  • R 7 represents an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted aryl group having 6 to 20 carbon atoms.
  • n represents an integer of 1 to 200 which may have a distribution.
  • R 1 represents hydrogen or a methyl group. Among these, a methyl group is more preferable because stickiness of the surface of the resulting silicone hydrogel is easily suppressed.
  • R 2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms.
  • examples thereof include alkylene groups such as methylene group, ethylene group, propylene group, butylene group, pentylene group, octylene group, decylene group, dodecylene group and octadecylene group, and arylene groups such as phenylene group and naphthylene group. These alkylene groups and arylene groups may be linear or branched.
  • the carbon number of the divalent organic group is too large, compatibility with the hydrophilic monomer is difficult to obtain, and when it is too small, the elongation of the resulting silicone hydrogel tends to be lowered and easily broken.
  • Suitable substituents when the divalent organic group is substituted include substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, esters, ethers, amides, and combinations thereof. .
  • substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, esters, ethers, amides, and combinations thereof.
  • a hydroxyl group, an ester, an ether and an amide are preferable from the viewpoint that the decomposition of the silicone moiety hardly occurs
  • a hydroxyl group and an ether are more preferable from the viewpoint of enhancing the transparency of the resulting silicone hydrogel.
  • R 2 include ethylene group, propylene group, butylene group, and the following formulas (a1) to (a4) —CH 2 CH (OH) CH 2 — (a1) —CH 2 CH (OH) CH 2 OCH 2 CH 2 CH 2 — (a2) —CH 2 CH 2 OCH 2 CH 2 CH 2 — (a3) —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 — (a4)
  • the divalent organic group represented by these is mentioned.
  • a propylene group and a divalent organic group represented by formulas (a1) to (a4) are preferable, and a propylene group and a divalent organic group represented by formula (a2) are most preferable.
  • R 3 to R 6 each independently represents an optionally substituted alkyl group having 1 to 20 carbon atoms or an optionally substituted aryl group having 6 to 20 carbon atoms. Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl. Group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, eicosyl group, phenyl group, naphthyl group and the like.
  • alkyl groups and aryl groups may be linear or branched. If the number of carbon atoms is too large, the oxygen permeability of the silicone hydrogel obtained by relatively reducing the silicone content is lowered, so that the number of carbon atoms is more preferably 1 to 12, more preferably 1 to 6 carbon atoms, Numbers 1 to 4 are most preferable.
  • R 7 represents an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted aryl group having 6 to 20 carbon atoms. If the number of carbon atoms in R 7 is too small, the polysiloxane chain tends to hydrolyze, and if it is too large, the oxygen permeability of the silicone hydrogel tends to decrease. Accordingly, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and 1 to 4 carbons Most preferred are alkyl groups having atoms.
  • alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
  • These alkyl groups and aryl groups may be linear or branched.
  • N represents an integer of 1 to 200 which may have a distribution. If n is too large, the hydrophobic silicone moiety will be too large and the compatibility with the hydrophilic monomer will be reduced. If n is too small, sufficient oxygen permeability and shape recovery will not be obtained. 1 to 100 is more preferable, 2 to 50 is more preferable, and 3 to 20 is most preferable. That is, preferable lower limit values are 1, 2, and 3. Moreover, a preferable upper limit is 100, 50, and 20. Any of the above lower limit value and upper limit value may be combined. However, when n has a distribution, n is determined based on the number average molecular weight of the monofunctional linear silicone (meth) acrylate.
  • the monofunctional linear silicone (meth) acrylate used in the silicone hydrogel of the present invention may be used alone or in combination of a plurality of different types of n.
  • the monofunctional linear silicone (meth) acrylate used in the silicone hydrogel of the present invention may be a combination of a plurality of types of monofunctional linear silicone (meth) acrylates having different chemical structures other than n.
  • the silicone hydrogel of the present invention has a repeating unit derived from a monofunctional silicone (meth) acrylate different from the monofunctional linear silicone (meth) acrylate, apart from the repeating unit derived from the monofunctional linear silicone (meth) acrylate. Furthermore, you may have.
  • examples of the different monofunctional silicone (meth) acrylate include monofunctional branched silicone (meth) acrylate.
  • monofunctional branched silicone (meth) acrylates a monofunctional branched silicone (meth) acrylate represented by the following general formula (b) is preferable.
  • R 14 represents hydrogen or a methyl group.
  • R 15 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms.
  • R 16 ⁇ R 19 represents an alkyl group or a 6-20 aryl group having a carbon atom having independently 1 to 20 carbon atoms.
  • k represents an integer of 0-2.
  • R 14 represents hydrogen or a methyl group. From the viewpoint of enhancing the uniformity of polymerization of the resulting silicone hydrogel, the same polymerizable group as that of the monofunctional linear silicone (meth) acrylate is preferable.
  • R 15 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms.
  • examples thereof include alkylene groups such as methylene group, ethylene group, propylene group, butylene group, pentylene group, octylene group, decylene group, dodecylene group and octadecylene group, and arylene groups such as phenylene group and naphthylene group. These alkylene groups and arylene groups may be linear or branched. If the divalent organic group has too many carbon atoms, it becomes difficult to obtain compatibility with the hydrophilic monomer, and if it is too small, the elongation of the resulting silicone hydrogel tends to be lowered and easily broken. A carbon number of 1 to 12 is more preferred, and a carbon number of 2 to 8 is most preferred.
  • Suitable substituents when the divalent organic group is substituted include substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, esters, ethers, amides, and combinations thereof. .
  • substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, esters, ethers, amides, and combinations thereof.
  • a hydroxyl group, an ester, an ether and an amide are preferable from the viewpoint that the decomposition of the silicone moiety hardly occurs
  • a hydroxyl group and an ether are more preferable from the viewpoint of enhancing the transparency of the resulting silicone hydrogel.
  • R 15 include ethylene group, propylene group, butylene group, and the following formulas (b1) to (b4) —CH 2 CH (OH) CH 2 — (b1) —CH 2 CH (OH) CH 2 OCH 2 CH 2 CH 2 — (b2) —CH 2 CH 2 OCH 2 CH 2 CH 2 — (b3) —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 — (b4)
  • the divalent organic group represented by these is mentioned.
  • a propylene group and a divalent organic group represented by formulas (b1) to (b4) are preferable, and a propylene group and a divalent organic group represented by formula (b2) are most preferable.
  • R 16 to R 19 each independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. If the number of carbon atoms of R 16 to R 19 is too large, the oxygen permeability of the silicone hydrogel is lowered. Therefore, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferable. Preferably, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group or an ethyl group is most preferable.
  • k represents an integer of 0-2. In order for the silicone hydrogel to have sufficient oxygen permeability, k is more preferably 0 or 1.
  • Suitable examples of monofunctional branched silicone (meth) acrylates include 3- [3-methylbis (trimethylsiloxy) silylpropoxy] propyl (meth) acrylate, 3- [3-tris (trimethylsiloxy) silylpropoxy] propyl (meth) Examples include acrylate, 3-methylbis (trimethylsiloxy) silylpropyl (meth) acrylate, and 3-tris (trimethylsiloxy) silylpropyl (meth) acrylate.
  • repeating unit derived from silicone-based (meth) acrylate contained in silicone hydrogel of the present invention that is, repeating unit derived from monofunctional linear silicone (meth) acrylate, and “monofunctional linear silicone (meth) acrylate” If the total number of repeating units derived from “monofunctional silicone (meth) acrylates different from” is too large, the compatibility with the hydrophilic monomer is reduced, making it difficult to obtain a transparent silicone hydrogel.
  • the silicone hydrogel having sufficient oxygen permeability is difficult to obtain, and is preferably 30 to 95% by weight, more preferably 40 to 80% by weight, and more preferably 50 to 70% by weight of the silicone hydrogel. Most preferred.
  • the lower limit is preferably 30% by mass, more preferably 40% by mass, and even more preferably 50% by mass.
  • the upper limit is preferably 95% by mass, more preferably 80% by mass, and even more preferably 70% by mass. A preferable lower limit value and a preferable upper limit value may be combined.
  • the mass of the silicone hydrogel was replaced with a sufficient amount of pure water for a sufficient amount of time so that the components of the borate buffer solution did not remain in the “wet” silicone hydrogel defined in the examples. It is the mass measured after “dry state” defined in the examples.
  • the proportion of the repeating unit derived from acrylate is too small, a silicone hydrogel having sufficient shape recoverability cannot be obtained, and if too large, the compatibility with the hydrophilic monomer is lowered and a transparent silicone hydrogel is obtained. From the viewpoint of difficulty, it is preferably 10 to 100% by mass, more preferably 20 to 80% by mass, and most preferably 30 to 60% by mass.
  • the silicone hydrogel of the present invention has a repeating unit derived from hydrophilic (meth) acrylate.
  • hydrophilic (meth) acrylate is a hydrophilic monomer.
  • the silicone monomer (silicone (meth) acrylate) is a monomer component different from the hydrophilic (meth) acrylate, and even if the silicone monomer that meets the above definition of the hydrophilic monomer, If the monomer has a siloxanyl group, it is handled as a monomer component different from hydrophilic (meth) acrylate.
  • hydrophilic (meth) acrylate used for the silicone hydrogel of the present invention
  • a hydrophilic (meth) having a group selected from the group consisting of a hydroxyl group, an alkoxy group, a carboxy group and a sulfonic acid group in the molecule An acrylate is mentioned.
  • the hydrophilic (meth) acrylate having a hydroxyl group in the molecule includes 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • Hydroxyalkyl (meth) acrylates such as 3-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate and glycerol (meth) acrylate, and hydrophilicity represented by the general formula (c) described later
  • R 13 is hydrogen.
  • hydrophilic (meth) acrylate having an alkoxy group in the molecule examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropyl ( Among those having a structure in which the hydroxyl group of hydroxyalkyl (meth) acrylate such as meth) acrylate and glycerol (meth) acrylate is substituted with an alkoxy group, and hydrophilic (meth) acrylate represented by the general formula (c) described later R 13 is other than hydrogen.
  • “having a structure in which a hydroxyl group is substituted with an alkoxy group” refers to a substance having the same structure as that obtained by substituting a hydroxyl group with an alkoxy group, and other synthesis not involving a hydroxyl group. It may be obtained by a route. The same applies to “having a structure in which a hydroxyl group is substituted with a methoxy group” described later.
  • hydrophilic (meth) acrylate having a carboxy group in the molecule examples include carboxyalkyl (meth) acrylates such as 2-carboxyethyl (meth) acrylate and 3-carboxypropyl (meth) acrylate.
  • hydrophilic (meth) acrylate having a sulfonic acid group in the molecule examples include sulfoalkyl (meth) acrylates such as 2-sulfoethyl (meth) acrylate and 3-sulfopropyl (meth) acrylate.
  • hydrophilic (meth) acrylate used in the silicone hydrogel of the present invention may be used alone or in combination of two or more hydrophilic (meth) acrylates.
  • hydrophilic (meth) acrylate represented by the following general formula (c) is represented as follows.
  • R 8 represents hydrogen or a methyl group.
  • R 9 to R 12 each independently represents hydrogen, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted aryl group having 6 to 20 carbon atoms.
  • R 13 represents hydrogen, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted aryl group having 6 to 20 carbon atoms.
  • m represents an integer of 2 to 100 which may have a distribution.
  • R 8 represents a hydrogen atom or a methyl group. From the viewpoint of enhancing the uniformity of polymerization of the resulting silicone hydrogel, the same polymerizable group as that of the monofunctional linear silicone (meth) acrylate is preferable.
  • R 9 to R 12 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted aryl group having 6 to 20 carbon atoms.
  • Preferred examples of the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
  • n-pentyl group isopentyl group, s-pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, phenyl group, naphthyl group and the like.
  • alkyl groups and aryl groups may be linear or branched. If the total number of carbon atoms of R 9 to R 12 in one repeating unit is too large, the hydrophilicity of the monomer of formula (c) is lowered. Therefore, the total number of carbon atoms of R 9 to R 12 is 0 to 10 Preferably, 0 to 5 is more preferable, 0 to 1 is more preferable, and 0 is most preferable.
  • R 13 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • Preferred examples of the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
  • n-pentyl group isopentyl group, s-pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, eicosyl group, phenyl group, naphthyl group and the like.
  • alkyl groups and aryl groups may be linear or branched. If the number of carbon atoms in R 13 is too large, the hydrophilicity of the monomer of formula (c) is lowered. Therefore, the number of carbon atoms in R 13 is preferably 0 to 10, more preferably 0 to 5, and still more preferably 0 to 2. 0 to 1 are most preferable.
  • M represents an integer from 2 to 100. If the value of m is too large, the compatibility with the silicone component will be reduced, and if it is too small, it will be difficult to function as a hydrophilic monomer, so 2-50 is more preferred, 2-10 is more preferred, and 3-5 is the most. preferable. From the viewpoint of transparency, m is preferably 2 to 8, and more preferably 2 to 6. The lower limit values are 2 and 3. The upper limit values are 100, 50, 10, 8, 6, and 5. Any combination of the lower limit value and the upper limit value may be used. In addition, when m has distribution, m shall be calculated
  • hydrophilic (meth) acrylate represented by the general formula (c)
  • diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol (meth) acrylate and polyethylene glycol mono (meth) acrylate Polyethylene glycol mono (meth) acrylates generically named, and those having a structure in which the hydroxyl group of polyethylene glycol mono (meth) acrylates is substituted with an alkoxy group, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) Polypropylene glycol mono (meta), a generic term for acrylate, tetrapropylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • the hydroxyl group of the acrylates and polypropylene glycol mono (meth) acrylates include those having a structure resulting from substitution of an alkoxy group.
  • hydrophilic (meth) acrylates when it is difficult to decompose the silicone component of the resulting silicone hydrogel, (meth) acrylate having a hydroxyl group in the molecule and (meth) acrylate having an alkoxy group in the molecule are preferred. It is. More preferably, it has a structure in which the hydroxyalkyl (meth) acrylate is a hydroxyl group-containing (meth) acrylate, and the hydroxyalkyl (meth) acrylate hydroxyl group is substituted with an alkoxy group among (meth) acrylates having an alkoxy group in the molecule. And a hydrophilic (meth) acrylate represented by formula (c) (R 13 may be hydrogen or other than hydrogen).
  • alkoxy groups having a structure in which the hydroxyl group of the hydroxyalkyl (meth) acrylate is substituted with an alkoxy group a methoxy group and an ethoxy group are more preferable because a transparent silicone hydrogel is easily obtained. Is a methoxy group.
  • hydroxyalkyl (meth) acrylates 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate are more preferable.
  • a structure having a structure in which the hydroxyl group of 2-hydroxyethyl (meth) acrylate is substituted with an alkoxy group more preferred is a structure having a structure in which the hydroxyl group of 2-hydroxyethyl (meth) acrylate is substituted with an alkoxy group (2 -Alkoxyethyl (meth) acrylate) and those having a structure in which the hydroxyl group of 2-hydroxypropyl (meth) acrylate is substituted with an alkoxy group (2-alkoxypropyl (meth) acrylate).
  • hydrophilic (meth) acrylates represented by the general formula (c) more preferably, the hydroxyl groups of polyethylene glycol mono (meth) acrylates and polyethylene glycol mono (meth) acrylates are substituted with alkoxy groups. And having a structure in which the hydroxyl groups of polypropylene glycol mono (meth) acrylates and polypropylene glycol mono (meth) acrylates are substituted with alkoxy groups.
  • hydrophilic (meth) acrylates hydrophilic (meth) acrylates having an alkoxy group in the molecule are preferable when the elastic modulus of the resulting silicone hydrogel is desired to be adjusted low. More preferably, among those having a structure in which the hydroxyl group of hydroxyalkyl (meth) acrylate is substituted with an alkoxy group and the hydrophilic (meth) acrylate represented by formula (c), R 13 is other than hydrogen.
  • alkoxy groups having a structure in which the hydroxyl group of the hydroxyalkyl (meth) acrylate is substituted with an alkoxy group preferred are a methoxy group and an ethoxy group, more preferably a transparent silicone hydrogel, more preferably It is a methoxy group.
  • hydroxyl group of hydroxyalkyl (meth) acrylate is substituted with an alkoxy group
  • hydroxyl group of 2-hydroxyethyl (meth) acrylate is substituted with an alkoxy group
  • 2-hydroxy It has a structure in which the hydroxyl group of propyl (meth) acrylate is substituted with an alkoxy group.
  • the general formula (c) represented by a hydrophilic (meth) R 13 of the acrylate of other than hydrogen more preferred to replace the hydroxyl group of polyethylene glycol mono (meth) acrylates to a methoxy group Those having a structure and those having a hydroxyl group of polypropylene glycol mono (meth) acrylates substituted with a methoxy group.
  • the hydrophilic (meth) acrylate having an alkoxy group in the molecule can reduce the elastic modulus of the resulting silicone hydrogel by reducing the hydrogen bond by having a structure in which the hydroxyl group is substituted with an alkoxy group such as a methoxy group. it is conceivable that.
  • hydrophilic (meth) acrylates it is preferable to lower the elastic modulus of the resulting silicone hydrogel, among hydrophilic (meth) acrylates having an alkoxy group in the molecule, the general formula Among the hydrophilic (meth) acrylates represented by (c), R 13 is other than hydrogen.
  • the hydrophilic (meth) acrylates represented by the general formula (c) those in which R 13 is other than hydrogen have a structure in which a hydroxyl group is substituted with an alkoxy group such as a methoxy group, thereby reducing hydrogen bonding.
  • the elastic modulus of the resulting silicone hydrogel can be further reduced because it has side chains having a sufficient chain length by repeating two or more ethylene glycol structures.
  • hydrophilic (meth) acrylates hydrophilic (meth) acrylate having a hydroxyl group in the molecule is preferable when it is desired to stabilize the shape of the resulting silicone hydrogel. More preferably, among the hydroxyalkyl (meth) acrylate and the hydrophilic (meth) acrylate represented by the general formula (c), R 13 is hydrogen.
  • hydroxyalkyl (meth) acrylates 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate are more preferable.
  • hydrophilic (meth) acrylates represented by the general formula (c) those having R 13 of hydrogen are more preferably polyethylene glycol mono (meth) acrylates and polypropylene glycol mono (meth) acrylates. It is. Since these hydrophilic (meth) acrylates all have a hydroxyl group, it is considered that shape stability can be improved by forming a hydrogen bond.
  • the content of the repeating unit derived from the hydrophilic (meth) acrylate contained in the silicone hydrogel of the present invention is too much, the oxygen permeability of the silicone hydrogel is lowered, and if it is too little, the water content is lowered and the silicone hydrogel is lowered. Is too hard, it is 5 to 70% by mass of the silicone hydrogel mass, more preferably 10 to 50% by mass, and most preferably 20 to 40% by mass.
  • the lower limit values are 5% by mass, 10% by mass and 20% by mass.
  • the upper limit is 70% by mass, 50% by mass and 40% by mass. Any combination of the lower limit value and the upper limit value may be used.
  • the silicone hydrogel of the present invention If the ratio of the repeating unit derived from the hydrophilic (meth) acrylate having a hydroxyl group in the repeating unit derived from the hydrophilic (meth) acrylate contained in the silicone hydrogel of the present invention is too high, the silicone hydrogel is probably affected by hydrogen bonding. Since there is a tendency to increase the elastic modulus of the gel, the repeating unit derived from the hydrophilic (meth) acrylate not containing a hydroxyl group in a certain proportion or more in the repeating unit derived from the hydrophilic (meth) acrylate Is preferred.
  • the content of the repeating unit derived from the hydrophilic (meth) acrylate having no hydroxyl group is preferably 20% by mass or more, more preferably 50% by mass or more, based on the total amount of the repeating unit derived from the hydrophilic (meth) acrylate. 70 mass% or more is most preferable.
  • the polymerization stock solution for obtaining the silicone hydrogel of the present invention may also contain reactive and non-reactive wetting agents.
  • Suitable hydrophilic agents include hydrophilic polymers having a molecular weight of 1000 or more.
  • a suitable addition amount of the wetting agent is 1 to 30% by mass of the mass of the silicone hydrogel.
  • hydrophilic polymers examples include poly-N-vinyl pyrrolidone, poly-N-vinyl-2-piperidone, poly-N-vinyl-2-caprolactam, poly-N- Vinyl-3-methyl-2-caprolactam, poly-N-vinyl-3-methyl-2-piperidone, poly-N-vinyl-4-methyl-2-piperidone, poly-N-vinyl-4-methyl-2- Caprolactam, poly-N-vinyl-3-ethyl-2-pyrrolidone, poly-N-vinyl-4,5-dimethyl-2-pyrrolidone, polyvinylimidazole, poly-N-vinylformamide, poly-N-vinyl (methyl) Acetamide, poly-N-methyl-N-vinyl (methyl) acetamide, poly-N-vinyl-N- (methyl) propionamide, poly- -Vinyl-N-methyl-2- (methyl) propionamide, poly- -Vinyl-N
  • a hydrophilic polymer selected from polyvinylpyrrolidone, poly-N, N-dimethylacrylamide, polyacrylic acid, polyvinyl alcohol, poly-N-methyl-N-vinyl (methyl) acetamide and copolymers and mixtures thereof is It can be particularly effective in increasing the wettability of the silicone hydrogel.
  • Polyvinylpyrrolidone and poly-N, N-dimethylacrylamide achieve a balance between the wettability of the silicone hydrogel and the compatibility with the polymerization stock solution in certain formulations.
  • the amount of the hydrophilic polymer used in the silicone hydrogel of the present invention is too small, the desired wettability may not be obtained. If the amount is too large, the hydrophilic polymer may be difficult to dissolve in the polymerization stock solution.
  • the amount is 1-30% by weight of the silicone hydrogel, in some embodiments 2-25% by weight, in other embodiments 3-20% by weight, and in other embodiments 6-9% by weight. %.
  • 1 mass%, 2 mass%, Preferably 3 mass% and 6 mass% are mentioned.
  • As an upper limit 30 mass%, 25 mass%, 20 mass%, and 9 mass% are mentioned. Any combination of the lower limit value and the upper limit value may be used.
  • the molecular weight of the hydrophilic polymer used in the silicone hydrogel of the present invention is too small, the desired wettability may not be imparted. If it is too large, the solubility in the polymerization stock solution may be poor, and the viscosity of the polymerization stock solution is high. Become.
  • the molecular weight is preferably 1000 to 10 million daltons in one embodiment, 100,000 to 1 million daltons in some embodiments, and 200,000 to 800,000 daltons in other embodiments.
  • the molecular weight may be at least 2000 daltons, at least 5,000 daltons, and in some embodiments It may be 5,000 to 180,000 daltons or 5,000 to 150,000 daltons.
  • Examples of the lower limit include 1000 daltons, 100,000 daltons, and 200,000 daltons.
  • Examples of the upper limit include 10 million daltons, 1 million daltons, and 800,000 daltons. Any and all of the preferred lower limit value and the preferred upper limit value may be combined.
  • the total amount of repeating units derived from (meth) acrylate contained in the silicone hydrogel of the present invention is too small, the polymerization rate of each monomer at the time of copolymerization is not uniform, the polymerization composition becomes non-uniform, Of the silicone hydrogel mass, it is necessary to exceed 80% by mass, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 99.5% by mass or more.
  • the total content of the repeating unit derived from (meth) acrylate represents the total content of the repeating unit derived from the monomer having a (meth) acrylate group as described above.
  • the total content of repeating units derived from (meth) acrylate is the content of repeating units derived from monofunctional linear silicone (meth) acrylate, the content of repeating units derived from hydrophilic (meth) acrylate,
  • the total content of all the structural units derived from the other (meth) acrylates is there.
  • the uniformity of the polymerization rate of each monomer at the time of copolymerizing can be confirmed by measuring the monomer consumption rate mentioned later.
  • the (meth) acrylate monomer is a methacrylate monomer because a silicone hydrogel having high chemical stability can be obtained. If the total amount of the repeating units derived from methacrylate contained in the silicone hydrogel of the present invention is too small, the polymerization rate of each monomer at the time of copolymerization is not uniform, and the polymerization composition becomes nonuniform. Of the mass, it is preferably more than 80 mass%, more preferably 90 mass% or more, still more preferably 95 mass% or more, and most preferably 99.5 mass% or more.
  • the (meth) acrylate monomer is an acrylate monomer because a silicone hydrogel having a low elastic modulus and soft and good wearing feeling can be obtained. If the total amount of acrylate-derived repeating units contained in the silicone hydrogel of the present invention is too small, the polymerization rate of each monomer at the time of copolymerization will not be uniform, and the polymerization composition will be non-uniform. Of the mass, it is preferably more than 80% by mass, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 99.5% by mass or more.
  • the silicone hydrogel of the present invention may also contain a repeating unit derived from a polyfunctional monomer (crosslinking monomer) having two or more polymerizable groups.
  • the silicone hydrogel of the present invention becomes solvent resistant.
  • Preferred examples of the polyfunctional monomer having two or more polymerizable groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-bis (3- (meth) acryloyloxypropyl) -1,1,3,3-tetramethyl-disiloxane, 1 , 3-Bis (3- (meth) acryloyloxypropyl) -1,1,3,3-tetrakis (trimethylsiloxy) disiloxane, X-22-
  • Polydimethylsiloxane having a acryloyloxy group difunctional or polyfunctional (meth) acrylates such as glyceryl tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and trimethylolpropane tri (meth) acrylate, and ⁇ , ⁇ '-methylene
  • difunctional or polyfunctional (meth) acrylates such as glyceryl tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and trimethylolpropane tri (meth) acrylate
  • ⁇ , ⁇ '-methylene examples thereof include bisacrylamide such as bisacrylamide, ⁇ , ⁇ ⁇ ⁇ ⁇ ′ -ethylene bisacrylamide, and ⁇ , ⁇ ′-propylene bisacrylamide.
  • a bifunctional or polyfunctional (meth) acrylate is preferable in terms of uniformizing the polymerization rate of the silicone hydrogel, and a bifunctional is more preferable in that a silicone hydrogel having a low elastic modulus is easily obtained.
  • 1,3-bis (3- (meth) acryloyloxypropyl) -1,1,3,3-tetra is more preferred in that it is a (meth) acrylate and enhances the shape recoverability of the resulting silicone hydrogel.
  • Methyl-disiloxane 1,3-bis (3- (meth) acryloyloxypropyl) -1,1,3,3-tetrakis (trimethylsiloxy) disiloxane, X-22-164A manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polydimethylsilane having (meth) acryloyloxy groups at both ends such as Jira Corporation Silaplane (registered trademark) FM7711 Hexane is silicone-based di (meth) acrylate and the like.
  • the silicone hydrogel becomes too hard, and if it is too small, it becomes difficult to maintain the shape of the silicone hydrogel.
  • 0.1 to 25% by mass is preferable, 0.5 to 20% by mass is more preferable, and 0.8 to 12% by mass is most preferable.
  • 0.1 mass%, 0.5 mass%, and 0.8 mass% are mentioned.
  • 25 mass%, 20 mass%, and 12 mass% are mentioned. Any and all of the preferred lower limit value and the preferred upper limit value may be combined.
  • a polymerization initiator may be added to accelerate the polymerization.
  • Suitable initiators include thermal polymerization initiators such as peroxides and azo compounds, photopolymerization initiators (which may be UV light, visible light or combinations), or mixtures thereof.
  • thermal polymerization initiators such as peroxides and azo compounds
  • photopolymerization initiators which may be UV light, visible light or combinations
  • thermal polymerization initiator having an optimum decomposition characteristic for a desired reaction temperature is selected and used.
  • an azo initiator or a peroxide initiator having a 10 hour half-life temperature of 40 ° C. to 120 ° C. is preferable.
  • the photopolymerization initiator include carbonyl compounds, peroxides, azo compounds, sulfur compounds, halogen compounds, and metal salts.
  • photoinitiator examples include aromatic ⁇ -hydroxyketone, alkoxyoxybenzoin, acetophenone, acylphosphine oxide, bisacylphosphine oxide, tertiary amine + diketone, and mixtures thereof.
  • photoinitiators include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, bis (2,6-dimethoxybenzoyl) -2,4 -4-trimethylpentylphosphine oxide (DMBAPO), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure® 819), 2,4,6-trimethylbenzyldiphenylphosphine oxide and 2,4 , 6-trimethylbenzoyldiphenylphosphine oxide, benzoin methyl ether, and a combination of camphorquinone and ethyl 4- (N, N-dimethylamino) benzoate.
  • DMBAPO 2,6-dimethoxybenzoyl) -2,4 -4-trimethylpentylphosphine oxide
  • Irgacure® 819 bis (2,4,6-trimethylbenzoyl) -phen
  • UV photoinitiators include Darocur (registered trademark) 1173 and Darocur (registered trademark) 2959 (manufactured by BASF). These polymerization initiators may be used alone or in combination, and the amount used is approximately 1% by mass relative to the total mass of all monomer components.
  • UV-absorbing compounds include UV-absorbing compounds, pharmaceutical compounds, nutritional supplement compounds, antibacterial compounds, copolymerizable and non-polymerizable dyes, including dyes and compounds that reversibly change color or reflect light.
  • a polymerization solvent can be used.
  • the solvent may be either an organic solvent or an inorganic solvent. Examples of those that can be used include water, methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, tert-amyl alcohol, 3,7-dimethyl-3-octanol, hexanol, heptanol, octanol, nonanol, decanol, 3-methyl-3-pentanol and other alcohol solvents; methylene chloride and other alkyl halides; octamethylcyclotetrasiloxane and other silanes; benzene, toluene, xylene and other types of aromatic hydrocarbon solvents Hexane, heptane, octane, decane, petroleum ether, kerosene, ligroin, paraffin and other
  • alcohol solvents and glycol ether solvents are preferable in that the solvent can be easily removed from the obtained silicone hydrogel by washing with water.
  • the silicone hydrogel of the present invention can be used by molding into a desired shape alone, but can also be molded after blending with other materials. Further, the surface of the molded product may be coated.
  • silicone hydrogel of the present invention examples include ophthalmic lenses, endoscopes, catheters, infusion tubes, gas transport tubes, stents, sheaths, cuffs, tube connectors, access ports, drainage bags, blood circuits, wound dressings Among them, a contact lens, an intraocular lens, an artificial cornea, a corneal inlay, and a corneal onlay are preferable, and a contact lens is most preferable.
  • the polymerization method and molding method may be the following standard methods. Examples include a method in which a silicone hydrogel is first formed into a round bar or plate and then finished into a desired shape by cutting or lathe processing, a mold polymerization method, a spin casting method, or the like.
  • the monomer composition is injected into a gap between two molds having a lens shape.
  • photopolymerization or thermal polymerization is performed to form a lens shape.
  • the mold is made of resin, glass, ceramics, metal, or the like.
  • a material that passes the photopolymerization wavelength is used, and usually resin or glass is used.
  • a silicone hydrogel a void is formed by two opposing molds, and the monomer composition is injected into the void.
  • the mold having the void filled with the monomer composition is irradiated with active light such as ultraviolet light, visible light, or a combination thereof, or heated in an oven or a liquid tank to polymerize the monomer.
  • thermopolymerization for example, light containing a high level of light from a light source such as a mercury lamp or a fluorescent lamp is generally irradiated for a short time (usually 1 hour or less).
  • a light source such as a mercury lamp or a fluorescent lamp
  • thermal polymerization the temperature is gradually raised from around room temperature, and the temperature is increased to 60 ° C. to 200 ° C. over several hours to several tens of hours to maintain the optical uniformity and quality of the polymer. And is preferred to improve reproducibility.
  • the silicone hydrogel of the present invention can be modified by various methods.
  • a modification treatment may be performed in order to improve the wettability of the lens.
  • Specific reforming methods include chemical vapor deposition treatment such as electromagnetic wave (including light) irradiation, plasma irradiation, vapor deposition and sputtering, heating, mold transfer coating, base treatment, acid treatment, and other suitable surface treatment agents. The process by these is mentioned, and these can also be used in combination.
  • chemical vapor deposition treatment such as electromagnetic wave (including light) irradiation, plasma irradiation, vapor deposition and sputtering, heating, mold transfer coating, base treatment, acid treatment, and other suitable surface treatment agents. The process by these is mentioned, and these can also be used in combination.
  • Examples of base treatment or acid treatment include a method in which a molded product is brought into contact with a basic or acidic solution, and a method in which a molded product is brought into contact with a basic or acidic gas. More specific methods include, for example, a method of immersing a molded product in a basic or acidic solution, a method of spraying a basic or acidic solution or basic or acidic gas on the molded product, and a basic or acidic solution on a molded product. Examples thereof include a method of applying with a spatula, a brush, a method of spin-coating a basic or acidic solution on a molded product, a dip coating method, and the like. The most simple method for obtaining a large modification effect is a method of immersing a molded article in a basic or acidic solution.
  • the temperature at which the silicone hydrogel is immersed in a basic or acidic solution is not particularly limited, but the temperature is usually in the range of ⁇ 50 ° C. to 300 ° C. Considering workability, a temperature range of ⁇ 10 ° C. to 150 ° C. is more preferable, and a range of ⁇ 5 ° C. to 60 ° C. is most preferable.
  • the optimum time for immersing the silicone hydrogel in a basic or acidic solution varies depending on the temperature, but is generally preferably within 100 hours, more preferably within 24 hours, and most preferably within 12 hours. If the contact time is too long, not only the workability and productivity are deteriorated, but also adverse effects such as a decrease in oxygen permeability and a decrease in mechanical properties may occur.
  • bases examples include alkali metal hydroxides, alkaline earth metal hydroxides, various carbonates, various borates, various phosphates, ammonia, various ammonium salts, various amines, and polyethyleneimine and polyvinylamine. High molecular weight bases can be used. Of these, alkali metal hydroxides are most preferred because of their low cost and large treatment effect.
  • various inorganic acids such as sulfuric acid, phosphoric acid, hydrochloric acid and nitric acid
  • various organic acids such as acetic acid, formic acid, benzoic acid and phenol
  • various high molecular weight acids such as polyacrylic acid and polystyrenesulfonic acid can be used.
  • high molecular weight acids are most preferred because of their large treatment effects and minimal adverse effects on other physical properties.
  • the solvent of the basic or acidic solution may be either an inorganic solvent or an organic solvent.
  • examples include water, methanol, ethanol, propanol, 2-propanol, butanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin and other alcohols, benzene, toluene, xylene and other aromatics Hydrocarbons, hexane, heptane, octane, decane, petroleum ether, kerosene, ligroin, paraffin and other aliphatic hydrocarbons, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketones, ethyl acetate, butyl acetate, methyl benzoate, Dioctyl phthalate and other esters, diethyl ether, tetrahydrofuran, dioxane, ethylene glyco
  • the basic or acidic solution to be used may contain components other than the basic or acidic substance and the solvent.
  • the silicone hydrogel can be removed from basic or acidic substances by washing after base treatment or acid treatment.
  • the cleaning solvent may be either an inorganic solvent or an organic solvent.
  • examples include water, methanol, ethanol, propanol, 2-propanol, butanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin and other alcohols, benzene, toluene, xylene and other aromatics Hydrocarbons, hexane, heptane, octane, decane, petroleum ether, kerosene, ligroin, paraffin and other aliphatic hydrocarbons, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketones, ethyl acetate, butyl acetate, methyl benzoate, Dioctyl phthalate and other esters, diethyl ether, tetrahydrofuran, dioxane, ethylene glycol dialkyl ether
  • the cleaning solvent may be a mixture of two or more.
  • the cleaning solvent may contain components other than the solvent, such as inorganic salts, surfactants and cleaning agents.
  • the above modification treatment may be performed on the entire silicone hydrogel, or may be performed on only a part of the silicone hydrogel, for example, on the surface only.
  • the modification treatment is performed only on the surface, only the wettability of the surface can be improved without greatly changing the physical properties of the entire silicone hydrogel.
  • the silicone hydrogel of the present invention If the water content of the silicone hydrogel of the present invention is too low, the silicone hydrogel becomes hard, and if it is too high, moisture evaporates from the surface of the silicone hydrogel, and the wearer may feel the lens dry when wearing the lens.
  • the water content is preferably 20 to 50% by mass, more preferably 25 to 45% by mass, and most preferably 30 to 40% by mass.
  • the lower limit values are 20% by mass, 25% by mass, and 30% by mass.
  • the upper limit is 50% by mass, 45% by mass, and 40% by mass. Any and all of the preferred lower limit value and the preferred upper limit value may be combined.
  • the elastic modulus of the silicone hydrogel of the present invention is preferably 200 psi or less, and in some embodiments 100 psi or less in order to obtain a comfortable wearing feeling when the application is an ophthalmic lens, particularly a soft contact lens. .
  • the elastic modulus and elongation of the polymer of the present invention are measured by cutting an array type sample having a width of 5 mm at the narrowest portion and then pulling it at a speed of 100 mm / min until it breaks with a tensile tester. The initial gauge distance (Lo) and the sample length at break (Lf) of the sample are measured. Tensile modulus is measured at the initial linear portion of the stress / strain curve.
  • Elongation rate [(Lf ⁇ Lo) / Lo] ⁇ 100.
  • the elongation of the silicone hydrogel of the present invention is preferably 90% or higher, in some embodiments 150% or higher, and in some embodiments 200% or higher. A higher value means that the silicone hydrogel is harder to break.
  • the forward contact angle of the silicone hydrogel of the present invention is preferably 70 ° or less, more preferably 60 ° or less, and further preferably 50 ° or less.
  • the liquid film retention time on the surface of the silicone hydrogel is long.
  • the liquid film retention time means that the silicone hydrogel soaked in borate buffer is pulled up from the liquid and the silicone is retained when the surface (diameter direction in the case of an ophthalmic lens) is vertical. This is the time during which the liquid film on the surface of the hydrogel is held without breaking.
  • the liquid film holding time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
  • the diameter is the diameter of a circle formed by the edge of the lens. Further, the liquid film retention time is measured on a sample in a wet state with a borate buffer.
  • the diameter of the silicone hydrogel of the present invention is preferably 6 mm or more and 25 mm or less, and particularly when used as a soft contact lens, the diameter is 10 mm or more and 17 mm or less.
  • a spherical crown shape is more preferable, and a spherical crown shape having a diameter of 13 mm to 15 mm is most preferable.
  • the lower limit is preferably 6 mm, more preferably 10 mm, and most preferably 13 mm.
  • the upper limit is preferably 25 mm, more preferably 17 mm, and most preferably 15 mm.
  • a preferable lower limit value and a preferable upper limit value may be combined.
  • the oxygen permeability coefficient is 40 ⁇ 10 ⁇ 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa) or more, and in some embodiments 50 ⁇ 10 ⁇ It is preferably 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa) or more.
  • the oxygen permeability coefficient of the polymer of the present invention is a value measured by a polarographic method.
  • the total light transmittance in the visible region is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the transparency of the silicone hydrogel of the present invention is preferably 5 or 4, and more preferably 5. The determination method is described in the examples.
  • the silicone hydrogel of the present invention includes an ophthalmic lens, an endoscope, a catheter, an infusion tube, a gas transport tube, a stent, a sheath, a cuff, a tube connector, an access port, a drainage bag, a blood circuit, a wound dressing material, and various types. It is suitable for medical device applications such as drug carriers, but is particularly suitable for contact lenses, ophthalmic lenses, and artificial corneas.
  • the total light transmittance was measured using an SM color computer (model SM-7-CH, manufactured by Suga Test Instruments Co., Ltd.). Measurement was performed by setting a wet contact lens sample in the optical path. The thickness was measured using an ABC Digimatic Indicator (ID-C112, manufactured by Mitutoyo Corporation), and a sample having a thickness of 0.14 to 0.15 mm was measured.
  • SM color computer model SM-7-CH, manufactured by Suga Test Instruments Co., Ltd.
  • a wet state means the state which immersed the sample for 24 hours or more in the boric-acid buffer solution of room temperature (25 degreeC).
  • the measurement of physical properties in a wet state is carried out as soon as possible after removing the sample from the borate buffer and wiping off the borate buffer on the surface with a clean cloth as quickly as possible.
  • a dry state means the state which dried the sample of the wet state by 40 degreeC and 16 hours or more with the vacuum dryer. The measurement of the physical property value in the dry state is performed as soon as possible after the sample is taken out from the drying device as soon as possible.
  • Dynamic contact angle A 5 mm wide strip sample was cut out from a wet contact lens sample, and the dynamic contact angle measurement with a borate buffer solution was performed using a dynamic contact angle meter WET-6000 manufactured by Reska. (Immersion speed 7 mm / min).
  • the contact lens sample was immersed in a borate buffer solution in a beaker for 24 hours or more at room temperature (25 ° C.).
  • the beaker containing the test piece and borate buffer was put on an ultrasonic cleaner (1 minute).
  • the surface of the test piece was pulled up from the borate buffer and held in the air so that the diameter direction was vertical, and the retention time of the liquid film on the surface was measured.
  • the retention time of the liquid film is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
  • the diameter is a diameter of a circle formed by the edge of the contact lens.
  • the borate buffer solution is a “salt solution” described in Example 1 of JP-T-2004-517163. Specifically, 8.48 g of sodium chloride, 9.26 g of boric acid, 1.0 g of sodium borate (sodium tetraborate decahydrate), and 0.10 g of ethylenediaminetetraacetic acid were dissolved in pure water to make 1000 mL. It is.
  • Example 1 Silicone monomer represented by the following formula (s1) (Silaplane (registered trademark) FM0711, average molecular weight 1000, manufactured by JNC Corporation, 1.3202 g, 33 parts by mass),
  • Silicone monomer represented by the following formula (s2) (0.8801 g, 22 parts by mass),
  • Methacrylic acid polyethylene glycol monomethyl ether represented by the following formula (h1) (Blemmer (registered trademark) PME200, q ⁇ 4, manufactured by NOF Corporation, 1.2614 g, 31.53 parts by mass),
  • UV absorber 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole (0.0880 g, 2.2 parts by mass), t-amyl alcohol (TAA, 1.802 g, 45 parts by mass)
  • TAA t-amyl alcohol
  • Irgacure® 819 0.0100 g, 0.25 parts by weight
  • a monomer blend is injected into a void of a mold made of a transparent resin having a lens shape (front curve side: ZEONOR (registered trademark), base curve side: polypropylene), and light irradiation (Philips TL03, 1.6 mW / cm 2 , 15 minutes) and cured to obtain a lens.
  • the obtained lens was peeled from the mold and immersed in a 70% (volume ratio) 2-propanol (IPA) aqueous solution at room temperature for 70 minutes to extract impurities such as residual monomer. After being immersed in water for 10 minutes, the sample was immersed in 1.2% by mass polyacrylic acid (PAA, molecular weight 250,000) for 30 minutes. After rinsing excess PAA with pure water, it was submerged in borate buffer in a 5 mL vial, and the vial was placed in an autoclave and boiled at 120 ° C. for 30 minutes.
  • PAA polyacrylic acid
  • the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained lens sample are as shown in Table 2, and a transparent lens having a good physical property balance was obtained.
  • Example 2 Except for changing the composition as shown in Table 1, polymerization was carried out in the same manner as in Example 1 to obtain a lens sample.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Examples 3 to 4 A lens sample was obtained by performing polymerization in the same manner as in Example 1 except that the silicone monomer of Example 1 was changed to formula (s3) and the composition was changed as shown in Table 1.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Example 5-8 The silicone monomer of Example 1 was changed as shown in Table 1, the crosslinking monomer was changed to a crosslinking monomer represented by the following formula (c2),
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except that the composition was changed as shown in Table 1 to obtain a lens sample.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Example 9-10 The silicone monomer of Example 1 was changed as shown in Table 1, the crosslinking monomer was changed to X-22-164A manufactured by Shin-Etsu Chemical Co., Ltd., and the composition was changed as shown in Table 1, and the same as in Example 1 Polymerization was performed by the method to obtain a lens sample.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Example 11 Polymerization was carried out in the same manner as in Example 1, except that the silicone monomer of Example 1 was changed as shown in Table 1, the crosslinking monomer was changed to tetraethylene glycol dimethacrylate (4G), and the composition was changed as shown in Table 1. A lens sample was obtained. Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Example 12 A lens sample was obtained by performing polymerization in the same manner as in Example 1 except that the crosslinking monomer was changed to the crosslinking monomer represented by formula (c2) and the composition was changed as shown in Table 1.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Example 13 Example 12 except that the hydrophilic monomer is changed to polyethylene glycol monomethyl methacrylate methacrylate (Blenmer PME100, q ⁇ 2, NOF Corporation, 1.2614 g, 31.53 parts by mass) represented by the formula (h1). Polymerization was performed in the same manner as above to obtain a lens sample. Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Blenmer PME100 polyethylene glycol monomethyl methacrylate methacrylate
  • Example 14 Example 12 except that the hydrophilic monomer is changed to polyethylene glycol monomethyl methacrylate methacrylate (Blenmer PME400, q ⁇ 9, manufactured by NOF Corporation, 1.2614 g, 31.53 parts by mass) represented by the formula (h1). Polymerization was performed in the same manner as above to obtain a lens sample. Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Blenmer PME400 polyethylene glycol monomethyl methacrylate methacrylate
  • Example 16 In the same manner as in Example 12, except that the hydrophilic monomer is changed to 2-ethoxyethyl methacrylate (Tokyo Chemical Industry Co., Ltd., 1.2614 g, 31.53 parts by mass) represented by the following formula (h2). Polymerization was performed to obtain a lens sample. Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • 2-ethoxyethyl methacrylate Tokyo Chemical Industry Co., Ltd., 1.2614 g, 31.53 parts by mass
  • Example 17 The same method as in Example 12 except that the hydrophilic monomer is changed to 2-hydroxypropyl methacrylate represented by the following formula (h3) (Wako Pure Chemical Industries, Ltd., 1.2614 g, 31.53 parts by mass). Polymerization was carried out to obtain a lens sample. Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Comparative Example 1 As shown in Table 1, polymerization was carried out in the same manner as in Example 11 except that the composition of Example 11 was changed to a composition not containing the monofunctional linear silicone methacrylate of formula (s1) to obtain a lens sample.
  • Table 2 shows the diameter, transparency, wettability, moisture content, elongation, elastic modulus, and stress zero time of the obtained sample.
  • Equipment Prominence GPC system pump manufactured by Shimadzu Corporation: LC-20AD Autosampler: SIL-20AHT Column oven: CTO-20A Detector: RID-10A Column: GMPWXL manufactured by Tosoh Corporation (inner diameter 7.8 mm ⁇ 30 cm,
  • the four-necked flask is immersed in a water bath heated to 60 ° C., and the time is defined as 0 minutes, 0 minutes, 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes, 120 minutes, 150 minutes, 180 minutes,
  • a sample of 100 ⁇ L was extracted from the reaction solution at each time point of 240 minutes, 300 minutes, 360 minutes, and 720 minutes, and a solution having the same composition as the mobile phase for GPC measurement in 1) above was added to obtain a GPC sample.
  • GPC measurement was performed like (1).
  • the consumption rates of both monomers were calculated.
  • T polymerization time
  • M monomer consumption rate
  • HPLC measurement may be performed under the following conditions to calculate the monomer consumption rate.
  • Equipment Prominence HPLC system pump manufactured by Shimadzu Corporation: LC-20AD Autosampler: SIL-20AHT Detector: SPD-20A (detection wavelength: 254 nm)
  • Solvent A Acetonitrile
  • Flow rate 1.3 mL / min
  • Injection volume 5 ⁇ L
  • the monomer consumption rate cannot be calculated under the above HPLC measurement conditions due to reasons such
  • Example 2 An experiment was performed in the same manner as in Example 18 except that the Blemmer PME200 of Example 18 was replaced with N, N-dimethylacrylamide (DMA), which is a hydrophilic acrylamide, and a monomer consumption rate curve was prepared (FIG. 2). . As a result, it was suggested that only the DMA had a different polymerization rate, and the composition of the obtained copolymer was different at the beginning of polymerization and at the end of polymerization.
  • DMA N, N-dimethylacrylamide
  • the silicone hydrogel of the present invention is suitable for medical device applications, and particularly suitable for applications such as contact lenses, intraocular lenses, and artificial corneas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Eyeglasses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 共重合に用いられる各重合成分の重合速度の均一性が高く機械的特性や光学特性に優れ、かつ、良好な形状回復性を有するシリコーンハイドロゲルを提供すること、並びに、弾性率、濡れ性及び透明性のバランスに優れた各種医療用具及び眼用レンズを提供することを達成するため、本発明は以下の構成を有する。 すなわち、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位と、親水性(メタ)アクリレート由来の繰り返し単位とを有し、 (メタ)アクリレート由来の繰り返し単位の含有量が80質量%を超える、シリコーンハイドロゲルである。

Description

シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ
 本発明は、シリコーンハイドロゲルに関する。該シリコーンハイドロゲルは、眼用レンズ、内視鏡、カテーテル、輸液チューブ、気体輸送チューブ、ステント、シース、カフ、チューブコネクター、アクセスポート、排液バッグ、血液回路、創傷被覆材及び各種の薬剤担体などの医療用具用途に好適であるが、中でもコンタクトレンズ、眼内レンズ及び人工角膜等の眼用レンズに好適である。
 近年、連続装用に用いられるコンタクトレンズの素材として、シリコーンハイドロゲルが知られている。シリコーンハイドロゲルは、少なくとも1種のシリコーン成分と少なくとも1種の親水性成分を組み合わせて得られるものである。例えば特許文献1にはシリコーン(メタ)アクリルアミド、シリコーン(メタ)アクリレートと、Ν,Ν-ジメチルアクリルアミド等の親水性アクリルアミド、2-ヒドロキシエチルメタクリレート等の親水性メタクリレート及び内部湿潤剤を含み得る親水性成分とを含有する重合原液を重合することにより得られるシリコーンハイドロゲルが開示されている。
 また、特許文献2には2種類のシリコーンメタクリレートとN-ビニルピロリドンに、さらに2-ヒドロキシエチルメタクリレート、N,N-ジメチルアクリルアミド等の親水性モノマーを含む重合原液を重合することにより得られるシリコーンハイドロゲルが開示されている。
 しかしながら、これらの組成物はシリコーンモノマー、親水性モノマー、架橋モノマーで、アクリルアミド、メタクリレート等のそれぞれ異なる重合性基を有するため、共重合する際の各モノマーの重合速度が揃わず、重合初期と重合後期で得られるシリコーンハイドロゲルの組成が異なるという問題があった。そのような組成から得られるシリコーンハイドロゲルは機械的特性や光学特性に問題を生じる場合があった。
 一方、特許文献3の実施例13には、単官能分岐型である、3-トリス(トリメチルシロキシ)シリルプロピルメタクリレート、3-[3-メチルビス(トリメチルシロキシ)シリルプロポキシ]プロピル(メタ)アクリレートの2種類のシリコーンメタクリレートと、親水性メタクリレートである2-ヒドロキシエチルメタクリレート、ジメタクリレート系架橋モノマーであるエチレングリコールジメタクリレートからなる組成が開示されている。この組成物に用いられる各種モノマーの重合性基はメタクリレートで統一されており、重合初期と重合後期で得られるシリコーンハイドロゲルの組成が均一となり、機械的特性や光学特性が向上するものであった。
特表2007-526364号公報 特表2010-510550号公報 特開2002-47365号公報
 しかしながら、上記特許文献3の実施例13の組成物は、形状回復性に問題があることを本発明者らは見出した。これは、当該組成物を得るために用いられるモノマーは、その重合性基がメタクリレートで統一されているが、メタクリレートに含まれるエステル基の水素結合等の相互作用が比較的小さく、ポリマー鎖間の相互作用が十分ではないことが理由と考えられる。
 そこで本発明は、共重合に用いられる各重合成分の重合速度の均一性が高く、機械的特性や光学特性に優れ、かつ良好な形状回復性を有するシリコーンハイドロゲルを提供することを目的としている。また、本発明は、弾性率、濡れ性及び透明性のバランスに優れた各種医療用具並びにコンタクトレンズ、眼内レンズ及び人工角膜等の眼用レンズを提供することを目的としている。
 上記の目的を達成するために、本発明者らは鋭意努力を重ねた。そして、単官能シリコーンの分子構造に着目し、分岐型でなく、直鎖型にすると、効率的に形状回復性が向上することを見出した。すなわち、本発明は下記の構成を有する。
(1)単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位と、親水性(メタ)アクリレート由来の繰り返し単位とを有し、
 (メタ)アクリレート由来の繰り返し単位の含有量が80質量%を超える、シリコーンハイドロゲル。
(2)前記単官能直鎖シリコーン(メタ)アクリレートは、下記一般式(a)で示される、上記(1)記載のシリコーンハイドロゲル。
Figure JPOXMLDOC01-appb-C000003
[式中、Rは水素又はメチル基を表し、Rは置換されていてもよい炭素数1~20の2価の有機基を表し、R~Rはそれぞれ独立に置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表し、Rは置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表し、nは分布を有していてもよい1~200の整数を表す。]
(3)前記単官能直鎖シリコーン(メタ)アクリレートとは異なる単官能シリコーン(メタ)アクリレート由来の繰り返し単位をさらに含む、上記(1)又は(2)に記載のシリコーンハイドロゲル。
(4)シリコーン(メタ)アクリレート由来の繰り返し単位の含有量が30~95質量%である、上記(1)~(3)のいずれか一項記載のシリコーンハイドロゲル。
(5)前記親水性(メタ)アクリレートは、分子内に水酸基、アルコキシ基、カルボキシ基及びスルホン酸基からなる群から選択される基を有する、上記(1)~(4)のいずれか一項記載のシリコーンハイドロゲル。
(6)前記親水性(メタ)アクリレート由来の繰り返し単位の含有量が5~70質量%である、上記(1)~(5)のいずれか一項記載のシリコーンハイドロゲル。
(7)水酸基を有さない親水性(メタ)アクリレート由来の繰り返し単位を含み、親水性(メタ)アクリレート由来の繰り返し単位中の水酸基を有さない親水性(メタ)アクリレート由来の繰り返し単位の割合が20質量%以上である、上記(1)~(6)のいずれか一項記載のシリコーンハイドロゲル。
(8)多官能(メタ)アクリレート由来の繰り返し単位を含む、上記(1)~(7)のいずれか一項記載のシリコーンハイドロゲル。
(9)前記多官能(メタ)アクリレート由来の繰り返し単位の含有量が0.05~10質量%である、上記(9)記載のシリコーンハイドロゲル。
 本発明のシリコーンハイドロゲルは、共重合に用いられる各重合成分の重合速度の均一性が高く、機械的特性や光学特性に優れ、かつ良好な形状回復性を有している。また、本発明のシリコーンハイドロゲルは、弾性率、濡れ性及び透明性のバランスに優れており、各種医療用具、特にコンタクトレンズ、眼内レンズ及び人工角膜等の眼用レンズに好適に用いることができる。
実施例18のモノマー消費率曲線 比較例2のモノマー消費率曲線
 本明細書で用いる(メタ)又は(メチル)という用語は、任意であるメチル置換を示す。したがって、例えば「(メタ)アクリレート」という用語はメタクリレートとアクリレートの両方を表す。「(メタ)アクリル酸」、「(メタ)アクリルアミド」、「(メタ)アクリロイル」等の用語も同様である。
 本明細書で用いる「(メタ)アクリレート」という用語は、(メタ)アクリル酸エステルを表す。
 本明細書で用いる「モノマー」という用語は、ラジカル重合性の官能基を1つ以上有する化合物を表す。
 本明細書で用いる「繰り返し単位」という用語は、モノマー構造に由来する繰り返し構造の一単位を表す。
 本発明のシリコーンハイドロゲルは、モノマー成分として用いられる単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位、及びモノマー成分として用いられる親水性(メタ)アクリレート由来の繰り返し単位を有し、かつ(メタ)アクリレート由来の繰り返し単位の含有量がシリコーンハイドロゲルの80質量%を超えるシリコーンハイドロゲル、すなわち(メタ)アクリレート系モノマー成分の含有量が全モノマー成分の80質量%を超える重合原液を重合して得られるシリコーンハイドロゲルである。なお、本明細書において、「シリコーンハイドロゲルの質量」とは水分等の揮発成分の質量を除いたポリマー骨格のみの質量を表す。また、本明細書において、「(メタ)アクリレート」という用語は(メタ)アクリレート基を有するモノマーの集合を表し、「(メタ)アクリレート由来の繰り返し単位の含有量」とは、(メタ)アクリレート基を有するモノマー由来の繰り返し単位の合計含有量を表す。「シリコーン(メタ)アクリレート」、「親水性(メタ)アクリレート」等の場合についても同様であり、それらのモノマーが2種類以上用いられる場合の含有量は、その定義を満たすモノマー由来の繰り返し単位の合計含有量を表す。
 ここで、本発明の「由来の繰り返し単位」について、「単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位」、「親水性(メタ)アクリレート由来の繰り返し単位」、「(メタ)アクリレート由来の繰り返し単位」などを便宜上、「モノマー由来の繰り返し単位」として説明する。本発明において、「モノマー由来の繰り返し単位」は、ラジカル重合性のモノマーを重合したときに、重合反応によりラジカル重合性の官能基が変化して生じる、該モノマーの構造に対応したポリマー中の構造単位である。
 すなわち、「モノマー由来の繰り返し単位」とは、下記式(x)で表されるラジカル重合性モノマーを重合したときに、重合反応によりラジカル重合性官能基が変化して生じる、下記式(y)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
上記式(x)および(y)において、Rw、Rx、Ry、Rzはそれぞれ独立に、上記式(x)で表されるモノマーがラジカル重合性を有するモノマーとなり得る基であればよい。
 「モノマー由来の繰り返し単位」は、必ずしもモノマーを直接、他のモノマーと共重合してシリコーンハイドロゲルを得る方法により形成する必要はなく、例えば、モノマーをラジカル重合して得られる中間体ポリマーに(メタ)アクリロイルオキシ基を導入してマクロモノマーを作製し、前記マクロモノマーを他のモノマーと共重合してシリコーンハイドロゲルを得る方法によって形成してもよい。
 単官能直鎖シリコーン(メタ)アクリレートを例にとると、モノマーを直接、他のモノマーと共重合してシリコーンハイドロゲルを得る方法を用いる場合、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位は、単官能直鎖シリコーン(メタ)アクリレートを他のモノマーと共にシリコーンハイドロゲルとして重合して得られる構造単位であり、実施例1に示すように単官能直鎖シリコーンメタクリレートなどを含む重合原液を重合したときに、重合反応によりラジカル重合性の官能基が変化したポリマー中の構造単位である。また、モノマーからマクロモノマーを作製し、前記マクロモノマーを他のモノマーと共重合してシリコーンハイドロゲルを得る方法を用いる場合、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位は、まず、単官能直鎖シリコーン(メタ)アクリレートをラジカル重合して得られる中間体ポリマー中に形成される。この中間体ポリマーに(メタ)アクリロイルオキシ基を導入して作製したマクロモノマーを、他のモノマーと共にシリコーンハイドロゲルとして重合することにより、単官能直鎖シリコーン(メタ)アクリレート由来の構造単位を有するシリコーンハイドロゲルを得ることができる。
 本発明において、シリコーンモノマーとは重合性基とシロキサニル基とを含むモノマーを指す。シロキサニル基とは少なくとも1つのSi-O-Si結合を有する基を指す。
 本発明において、単官能とは分子内にラジカル重合性の官能基〔例えば(メタ)アクリロイルオキシ基〕を1つだけ有することを表す。
 本発明において、シリコーン(メタ)アクリレートとは(メタ)アクリロイルオキシ基とシロキサニル基とを含むモノマーを指す。
 単官能直鎖シリコーン(メタ)アクリレートにおける直鎖シリコーンとは、(メタ)アクリロイルオキシ基を有する有機基と結合したケイ素原子を起点とした場合、シリコーンのシロキサニル結合(-Si-O-の繰り返しによって形成される結合)に沿った線を引いた場合、その線が分岐のない1本の線状に形成されている構造を指す。言い換えれば、単官能直鎖シリコーン(メタ)アクリレート、直鎖シリコーン(メタ)アクリレートとは下記一般式(p)で表される構造を指す。
Figure JPOXMLDOC01-appb-C000006
式(p)中、Rは(メタ)アクリロイルオキシ基を有するアルキル基を表す。R~Rはケイ素原子を含まない基を表し、xは2以上の整数を表す。
 本発明のシリコーンハイドロゲルは、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位を有する。
 本発明において、単官能分岐シリコーン(メタ)アクリレートにおける分岐シリコーンとは、(メタ)アクリロイルオキシ基を有する有機基と結合したケイ素原子を起点としてシロキサニル結合に沿った線を引いた場合、その線が二方向以上に延びる構造、かつ/又はその線が少なくとも一つの分岐を有し1本の線として表すことができない構造を指す。
 本発明のシリコーンハイドロゲルに用いられる単官能直鎖シリコーン(メタ)アクリレートの例として、下記一般式(a)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000007
[式中、Rは水素又はメチル基を表す。Rは置換されていてもよい炭素数1~20の2価の有機基を表す。R~Rはそれぞれ独立に置換されていてもよい炭素数1~20のアルキル基、又は置換されていてもよい炭素数6~20のアリール基を表す。Rは置換されていてもよい炭素数1~20のアルキル基、又は置換されていてもよい炭素数6~20のアリール基を表す。nは分布を有していてもよい1~200の整数を表す。]
 式(a)中、Rは水素又はメチル基を表す。これらのうち、得られるシリコーンハイドロゲルの表面のべたつきが抑制されやすい点から、メチル基がより好ましい。
 Rは置換されていてもよい炭素数1~20の2価の有機基を表す。その例として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、オクチレン基、デシレン基、ドデシレン基、オクタデシレン基などのアルキレン基、及びフェニレン基、ナフチレン基などのアリーレン基が挙げられる。これらのアルキレン基及びアリーレン基は直鎖状であっても分岐状であってもよい。前記2価の有機基の炭素数は、多すぎると親水性モノマーとの相溶性が得られにくくなり、少なすぎると得られるシリコーンハイドロゲルの伸度が低下して破れやすくなる傾向があることから、炭素数1~12がより好ましく、炭素数2~8が最も好ましい。
 前記2価の有機基が置換されている場合の好適な置換基の例として、水酸基、カルボキシル基、スルホン酸基、リン酸基、エステル、エーテル、アミド及びこれらの組合せ等の置換基が挙げられる。これらのうち、シリコーン部位の分解が起こりにくい点で好ましいのは水酸基、エステル、エーテル、アミドであり、得られるシリコーンハイドロゲルの透明性を高める点でさらに好ましいのは水酸基、エーテルである。
 Rのより好適な例として、エチレン基、プロピレン基、ブチレン基、下記式(a1)~(a4)
 -CHCH(OH)CH-            (a1)
 -CHCH(OH)CHOCHCHCH-   (a2)
 -CHCHOCHCHCH-         (a3)
 -CHCHOCHCHOCHCHCH-   (a4)
で表される2価の有機基が挙げられる。中でもプロピレン基、式(a1)~(a4)で表される2価の有機基が好ましく、プロピレン基、式(a2)で表される2価の有機基が最も好ましい。
 R~Rはそれぞれ独立に置換されていてもよい炭素数1~20のアルキル基、又は置換されていてもよい炭素数6~20のアリール基を表す。その例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、エイコシル基、フェニル基、ナフチル基などが挙げられる。これらのアルキル基及びアリール基は直鎖状であっても分岐状であってもよい。炭素数が多すぎると相対的にシリコーン含有量が減少して得られるシリコーンハイドロゲルの酸素透過性が低下することから、炭素数1~12がより好ましく、炭素数1~6がさらに好ましく、炭素数1~4が最も好ましい。
 Rは置換されていてもよい炭素数1~20のアルキル基、又は置換されていてもよい炭素数6~20のアリール基を表す。Rの炭素数は少なすぎるとポリシロキサン鎖が加水分解しやすくなり、多すぎるとシリコーンハイドロゲルの酸素透過性が低下する傾向にある。したがって、1~10個の炭素原子を有するアルキル基又は6~10個の炭素原子を有するアリール基がより好ましく、1~6個の炭素原子を有するアルキル基がさらに好ましく、1~4個の炭素原子を有するアルキル基が最も好ましい。炭素数1~20のアルキル基及び炭素数6~20のアリール基の好適な例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、エイコシル基、フェニル基、ナフチル基などが挙げられる。これらのアルキル基及びアリール基は直鎖状であっても分岐状であってもよい。
 nは分布を有していてもよい1~200の整数を表す。nが大きすぎると疎水性であるシリコーン部位が大きくなりすぎて親水性モノマーとの相溶性が低下し、nが小さすぎると十分な酸素透過性や形状回復性が得られないことから、nは1~100がより好ましく、2~50がさらに好ましく、3~20が最も好ましい。すなわち、好ましい下限値は1、2、及び3である。また、好ましい上限値は100、50、及び20である。上記下限値と上限値とはどれとどれを組み合わせてもよい。ただし、nが分布を有する場合は、単官能直鎖シリコーン(メタ)アクリレートの数平均分子量に基づいてnを求めるものとする。
 本発明のシリコーンハイドロゲルに用いられる単官能直鎖シリコーン(メタ)アクリレートは1種類でもnの異なる複数種類を組み合わせて用いても良い。
 本発明のシリコーンハイドロゲルに用いられる単官能直鎖シリコーン(メタ)アクリレートは、n以外の化学構造が互いに異なる複数種類の単官能直鎖シリコーン(メタ)アクリレートを組み合わせて用いてもよい。
 本発明のシリコーンハイドロゲルは、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位とは別に、当該単官能直鎖シリコーン(メタ)アクリレートとは異なる単官能シリコーン(メタ)アクリレート由来の繰り返し単位をさらに有しても良い。
 その場合の当該異なる単官能シリコーン(メタ)アクリレートの例として、単官能分岐シリコーン(メタ)アクリレートが挙げられる。単官能分岐シリコーン(メタ)アクリレートのうち、好適なのは下記一般式(b)で表される単官能分岐シリコーン(メタ)アクリレートである。
Figure JPOXMLDOC01-appb-C000008
[式中、R14は水素、又はメチル基を表す。R15は置換されていてもよい炭素数1~20の2価の有機基を表す。R16~R19はそれぞれ独立に1~20個の炭素原子を有するアルキル基又は6~20個の炭素原子を有するアリール基を表す。kは0~2の整数を表す。]
 式(b)中、R14は水素、又はメチル基を表す。得られるシリコーンハイドロゲルの重合の均一性を高める点から、単官能直鎖シリコーン(メタ)アクリレートと同一の重合性基であることが好ましい。
 式(b)中、R15は置換されていてもよい炭素数1~20の2価の有機基を表す。その例として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、オクチレン基、デシレン基、ドデシレン基、オクタデシレン基などのアルキレン基、及びフェニレン基、ナフチレン基などのアリーレン基が挙げられる。これらのアルキレン基及びアリーレン基は直鎖状であっても分岐状であってもよい。前記2価の有機基は炭素数が多すぎると親水性モノマーとの相溶性が得られにくくなり、少なすぎると得られるシリコーンハイドロゲルの伸度が低下して破れやすくなる傾向があることから、炭素数1~12がより好ましく、炭素数2~8が最も好ましい。
 前記2価の有機基が置換されている場合の好適な置換基の例として、水酸基、カルボキシル基、スルホン酸基、リン酸基、エステル、エーテル、アミド及びこれらの組合せ等の置換基が挙げられる。これらのうち、シリコーン部位の分解が起こりにくい点で好ましいのは水酸基、エステル、エーテル、アミドであり、得られるシリコーンハイドロゲルの透明性を高める点でさらに好ましいのは水酸基、エーテルである。
 R15のより好適な例として、エチレン基、プロピレン基、ブチレン基、下記式(b1)~(b4)
 -CHCH(OH)CH-            (b1)
 -CHCH(OH)CHOCHCHCH-   (b2)
 -CHCHOCHCHCH-         (b3)
 -CHCHOCHCHOCHCHCH-   (b4)
で表される2価の有機基が挙げられる。中でもプロピレン基、式(b1)~(b4)で表される2価の有機基が好ましく、プロピレン基、式(b2)で表される2価の有機基が最も好ましい。
 式(b)中、R16~R19はそれぞれ独立に1~20個の炭素原子を有するアルキル基又は6~20個の炭素原子を有するアリール基を表す。R16~R19の炭素数は多すぎるとシリコーンハイドロゲルの酸素透過性が低下することから、1~10個の炭素原子を有するアルキル基又は6~10個の炭素原子を有するアリール基がより好ましく、1~4個の炭素原子を有するアルキル基がさらに好ましく、メチル基又はエチル基が最も好ましい。
 式(b)中、kは0~2の整数を表す。シリコーンハイドロゲルが十分な酸素透過性を有するためにはkは0又は1がより好ましい。
 単官能分岐シリコーン(メタ)アクリレートの好適な例として、3-[3-メチルビス(トリメチルシロキシ)シリルプロポキシ]プロピル(メタ)アクリレート、3-[3-トリス(トリメチルシロキシ)シリルプロポキシ]プロピル(メタ)アクリレート、3-メチルビス(トリメチルシロキシ)シリルプロピル(メタ)アクリレート、3-トリス(トリメチルシロキシ)シリルプロピル(メタ)アクリレートが挙げられる。
 本発明のシリコーンハイドロゲルに含まれるシリコーン系(メタ)アクリレート由来の繰り返し単位の含有量、すなわち、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位、及び「単官能直鎖シリコーン(メタ)アクリレートとは異なる単官能シリコーン(メタ)アクリレート」由来の繰り返し単位の合計は、多すぎると親水性モノマーとの相溶性が低下して透明なシリコーンハイドロゲルが得られにくくなり、少なすぎるとシリコーン含有量が低下して十分な酸素透過性を有するシリコーンハイドロゲルが得られにくくなることから、シリコーンハイドロゲル質量の30~95質量%が好ましく、40~80質量%がより好ましく、50~70質量%が最も好ましい。下限値は30質量%が好ましく、40質量%がより好ましく、50質量%がさらに好ましい。上限値は95質量%が好ましく、80質量%がより好ましく、70質量%がさらに好ましい。好ましい下限値と好ましい上限値とはそれぞれ組み合わせてもよい。
 本発明において、シリコーンハイドロゲル質量は、実施例中に定義した「湿潤状態」のシリコーンハイドロゲルを、ホウ酸緩衝液の構成成分が残らないように十分な量の純水で十分な時間置換した後、実施例中に定義した「乾燥状態」にして測定される質量である。
 また、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位及び「単官能直鎖シリコーン(メタ)アクリレートとは異なる単官能シリコーン(メタ)アクリレート」由来の繰り返し単位中の単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位の割合は、少なすぎると十分な形状回復性を有するシリコーンハイドロゲルが得られず、多すぎると親水性モノマーとの相溶性が低下して透明なシリコーンハイドロゲルが得られにくくなることから、10~100質量%が好ましく、20~80質量%がより好ましく、30~60質量%が最も好ましい。
 本発明のシリコーンハイドロゲルは親水性(メタ)アクリレート由来の繰り返し単位を有する。なお、本発明において親水性(メタ)アクリレートは親水性モノマーであるが、親水性モノマーとは、25℃でモノマー/水=10/90(質量比)の比率で混合した際に均一に溶解するモノマーを表す。また、本発明においてシリコーンモノマー(シリコーン(メタ)アクリレート)、は、親水性(メタ)アクリレートとは異なるモノマー成分であり、仮にあるシリコーンモノマーが上記の親水性モノマーの定義を満たした場合でも、そのモノマーがシロキサニル基を有するモノマーであれば、親水性(メタ)アクリレートとは異なるモノマー成分として扱う。
 本発明のシリコーンハイドロゲルに用いられる親水性(メタ)アクリレートの好適な例として、分子内に水酸基、アルコキシ基、カルボキシ基及びスルホン酸基からなる群から選択される基を有する親水性(メタ)アクリレートが挙げられる。
 本発明のシリコーンハイドロゲルに用いられる親水性(メタ)アクリレートのうち、分子内に水酸基を有する親水性(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート及びグリセロール(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、並びに後述の一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素のものが挙げられる。
 分子内にアルコキシ基を有する親水性(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート及びグリセロール(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもの、並びに後述の一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素以外のものが挙げられる。なお、本発明において、「水酸基をアルコキシ基で置換した構造を有するもの」とは、水酸基をアルコキシ基で置換して得られるものと同じ構造を有するもののことを指し、水酸基を経由しない他の合成経路により得られたものであってもよい。後述の「水酸基をメトキシ基に置換した構造を有するもの」についても同様である。
 分子内にカルボキシ基を有する親水性(メタ)アクリレートのとしては、2-カルボキシエチル(メタ)アクリレート及び3-カルボキシプロピル(メタ)アクリレートなどのカルボキシアルキル(メタ)アクリレートが挙げられる。
 分子内にスルホン酸基を有する親水性(メタ)アクリレートとしては、2-スルホエチル(メタ)アクリレート及び3-スルホプロピル(メタ)アクリレートなどのスルホアルキル(メタ)アクリレートが挙げられる。
 本発明のシリコーンハイドロゲルに用いられる親水性(メタ)アクリレートは単独でも2種類以上の親水性(メタ)アクリレートを組み合わせて用いてもよい。
 前述の下記一般式(c)で表される親水性(メタ)アクリレートは以下のとおり表される。
Figure JPOXMLDOC01-appb-C000009
[式中、Rは水素又はメチル基を表す。R~R12はそれぞれ独立に水素、又は置換されていてもよい炭素数1~20のアルキル基、置換されていてもよい炭素数6~20のアリール基を表す。R13は水素、又は置換されていてもよい炭素数1~20のアルキル基、置換されていてもよい炭素数6~20のアリール基を表す。mは分布を有していてもよい2~100の整数を表す。]
 式(c)中、Rは水素原子又はメチル基を表す。得られるシリコーンハイドロゲルの重合の均一性を高める点から、単官能直鎖シリコーン(メタ)アクリレートと同一の重合性基であることが好ましい。
 R~R12はそれぞれ独立に水素原子、又は置換されていてもよい炭素数1~20のアルキル基、置換されていてもよい炭素数6~20のアリール基を表す。炭素数1~20のアルキル基及び炭素数6~20のアリール基の好適な例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、ナフチル基などが挙げられる。これらのアルキル基及びアリール基は直鎖状であっても分岐状であってもよい。一つの繰り返し単位中のR~R12の炭素数の合計が多すぎると式(c)のモノマーの親水性が低下することから、R~R12の炭素数の合計は0~10が好ましく、0~5がより好ましく、0~1がさらに好ましく、0が最も好ましい。
 R13は水素原子、又は炭素数1~20のアルキル基、炭素数6~20のアリール基を表す。炭素数1~20のアルキル基及び炭素数6~20のアリール基の好適な例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、エイコシル基、フェニル基、ナフチル基などが挙げられる。これらのアルキル基及びアリール基は直鎖状であっても分岐状であってもよい。R13の炭素数が多すぎると式(c)のモノマーの親水性が低下することから、R13の炭素数は、0~10が好ましく、0~5がより好ましく、0~2がさらに好ましく、0~1が最も好ましい。
 mは2~100の整数を表す。mの値が大きすぎるとシリコーン成分との相溶性が低下し、小さすぎると親水性モノマーとして機能しにくくなることから、2~50がより好ましく、2~10がさらに好ましく、3~5が最も好ましい。また、透明性の観点からは、mは2~8が好ましく、2~6がより好ましい。下限値は2及び3である。上限値は100、50、10、8、6及び5である。下限値と上限値とはどれとどれを組み合わせてもよい。なお、mが分布を有する際は、親水性モノマーの数平均分子量に基づいてmを求めるものとする。
 また、一般式(c)で表される親水性(メタ)アクリレートとして、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコール(メタ)アクリレート及びポリエチレングリコールモノ(メタ)アクリレートなどを総称したポリエチレングリコールモノ(メタ)アクリレート類並びにポリエチレングリコールモノ(メタ)アクリレート類の水酸基をアルコキシ基に置換した構造を有するもの、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート及びポリプロピレングリコールモノ(メタ)アクリレートなどを総称したポリプロピレングリコールモノ(メタ)アクリレート類並びにポリプロピレングリコールモノ(メタ)アクリレート類の水酸基をアルコキシ基に置換した構造を有するものが挙げられる。
 親水性(メタ)アクリレートのうち、得られるシリコーンハイドロゲルのシリコーン成分を分解しにくくしたい場合に好ましいのは、分子内に水酸基を有する(メタ)アクリレート及び分子内にアルコキシ基を有する(メタ)アクリレートである。より好ましくは、水酸基を有する(メタ)アクリレートの中でもヒドロキシアルキル(メタ)アクリレート、分子内にアルコキシ基を有する(メタ)アクリレートの中でもヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもの及び一般式(c)で表される親水性(メタ)アクリレート(R13は水素でも水素以外でもよい)である。また、前記ヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもののアルコキシ基のうち、透明なシリコーンハイドロゲルが得られやすい点で好ましいのはメトキシ基、エトキシ基であり、より好ましいのはメトキシ基である。
 前記ヒドロキシアルキル(メタ)アクリレートのうち、さらに好ましいのは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートである。また、前記ヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもののうち、さらに好ましいのは、2-ヒドロキシエチル(メタ)アクリレートの水酸基をアルコキシ基に置換した構造を有するもの(2-アルコキシエチル(メタ)アクリレート)、2-ヒドロキシプロピル(メタ)アクリレートの水酸基をアルコキシ基に置換した構造を有するもの(2-アルコキシプロピル(メタ)アクリレート)である。さらに、前記一般式(c)で表される親水性(メタ)アクリレートのうち、さらに好ましいのは、ポリエチレングリコールモノ(メタ)アクリレート類、ポリエチレングリコールモノ(メタ)アクリレート類の水酸基をアルコキシ基に置換した構造を有するもの、ポリプロピレングリコールモノ(メタ)アクリレート類及びポリプロピレングリコールモノ(メタ)アクリレート類の水酸基をアルコキシ基に置換した構造を有するものである。
 一方、親水性(メタ)アクリレートのうち、得られるシリコーンハイドロゲルの弾性率を低く調節したい場合に好ましいのは、分子内にアルコキシ基を有する親水性(メタ)アクリレートである。より好ましくは、ヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもの及び一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素以外のものである。前記ヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもののアルコキシ基のうち、透明なシリコーンハイドロゲルが得られやすい点で好ましいのはメトキシ基、エトキシ基であり、より好ましいのはメトキシ基である。
 前記ヒドロキシアルキル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもののうち、さらに好ましいのは、2-ヒドロキシエチル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するもの及び2-ヒドロキシプロピル(メタ)アクリレートの水酸基をアルコキシ基で置換した構造を有するものである。また、前記一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素以外のもののうち、さらに好ましいのは、ポリエチレングリコールモノ(メタ)アクリレート類の水酸基をメトキシ基に置換した構造を有するもの及びポリプロピレングリコールモノ(メタ)アクリレート類の水酸基をメトキシ基に置換した構造を有するものである。分子内にアルコキシ基を有する親水性(メタ)アクリレートは、水酸基をメトキシ基等のアルコキシ基に置換した構造を有することで水素結合が減少することにより、得られるシリコーンハイドロゲルの弾性率を低減できると考えられる。
 また一方、親水性(メタ)アクリレートのうち、得られるシリコーンハイドロゲルの弾性率をより低く調節したい場合に好ましいのは、前記分子内にアルコキシ基を有する親水性(メタ)アクリレートのうち、一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素以外のものである。一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素以外のものは、水酸基をメトキシ基等のアルコキシ基に置換した構造を有することにより水素結合が減少することに加えて、エチレングリコール構造の2以上の繰り返しによる十分な鎖長の柔軟性を有する側鎖を有することから、得られるシリコーンハイドロゲルの弾性率をより低減できると考えられる。
 さらには、親水性(メタ)アクリレートのうち、得られるシリコーンハイドロゲルの形状を安定させたい場合に好ましいのは、分子内に水酸基を有する親水性(メタ)アクリレートである。より好ましいのは、ヒドロキシアルキル(メタ)アクリレート及び一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素のものである。
 前記ヒドロキシアルキル(メタ)アクリレートのうち、さらに好ましいのは、2-ヒドロキシエチル(メタ)アクリレート及び2-ヒドロキシプロピル(メタ)アクリレートである。また、前記一般式(c)で表される親水性(メタ)アクリレートのうちR13が水素のもののうち、さらに好ましいのは、ポリエチレングリコールモノ(メタ)アクリレート類及びポリプロピレングリコールモノ(メタ)アクリレート類である。これらの親水性(メタ)アクリレートは、いずれも水酸基を有していることから、水素結合を形成することにより形状安定性を向上させることができると考えられる。
 本発明のシリコーンハイドロゲルに含まれる親水性(メタ)アクリレート由来の繰り返し単位の含有量は、多すぎるとシリコーンハイドロゲルの酸素透過性が低下し、少なすぎると含水率が低下してシリコーンハイドロゲルが固くなりすぎることから、シリコーンハイドロゲル質量の5~70質量%、より好ましくは10~50質量%、最も好ましくは20~40質量%である。下限値は5質量%、10質量%及び20質量%である。上限値は70質量%、50質量%及び40質量%である。下限値と上限値とはどれとどれを組み合わせてもよい。
 本発明のシリコーンハイドロゲルに含まれる親水性(メタ)アクリレート由来の繰り返し単位中の、水酸基を有する親水性(メタ)アクリレート由来の繰り返し単位の割合が高すぎると、おそらく水素結合の影響によりシリコーンハイドロゲルの弾性率が高くなる傾向が見られることから、親水性(メタ)アクリレート由来の繰り返し単位中に一定の割合以上の、水酸基を有さない親水性(メタ)アクリレート由来の繰り返し単位を含むことが好ましい。水酸基を有さない親水性(メタ)アクリレート由来の繰り返し単位の含有量は、親水性(メタ)アクリレート由来の繰り返し単位の合計量に対して20質量%以上が好ましく、50質量%以上がさらに好ましく、70質量%以上が最も好ましい。
 本発明のシリコーンハイドロゲルを得るための重合原液はまた、反応性及び非反応性湿潤剤を含有してもよい。
 好適な湿潤剤としては、分子量1000以上の親水性ポリマーが挙げられる。湿潤剤の好適な添加量は、シリコーンハイドロゲル質量の1~30質量%である。
 本発明のシリコーンハイドロゲルに用いてもよい親水性ポリマーの例としては、ポリ-N-ビニルピロリドン、ポリ-N-ビニル-2-ピペリドン、ポリ-N-ビニル-2-カプロラクタム、ポリ-N-ビニル-3-メチル-2-カプロラクタム、ポリ-N-ビニル-3-メチル-2-ピペリドン、ポリ-N-ビニル-4-メチル-2-ピペリドン、ポリ-N-ビニル-4-メチル-2-カプロラクタム、ポリ-N-ビニル-3-エチル-2-ピロリドン、ポリ-N-ビニル-4,5-ジメチル-2-ピロリドン、ポリビニルイミダゾール、ポリ-N-ビニルホルムアミド、ポリ-N-ビニル(メチル)アセトアミド、ポリ-N-メチル-N-ビニル(メチル)アセトアミド、ポリ-N-ビニル-N-(メチル)プロピオンアミド、ポリ-N-ビニル-N-メチル-2-(メチル)プロピオンアミド、ポリ-N-ビニル-2-(メチル)プロピオンアミド、ポリ-N-ビニル-Ν,Ν’-ジメチル尿素、ポリ-N,N-ジメチルアクリルアミド、ポリ-N,N-ジエチルアクリルアミド、ポリ-N-イソプロピルアクリルアミド、ポリビニルアルコール、ポリアクリレート、ポリエチレンオキシド、ポリ-2-エチルオキサゾリン、ヘパリン、ポリサッカリド、ポリ-アクリロイルモルホリンならびにこれらの混合物及びコポリマーが挙げられる。
 ポリビニルピロリドン、ポリ-N,N-ジメチルアクリルアミド、ポリアクリル酸、ポリビニルアルコール、ポリ-N-メチル-N-ビニル(メチル)アセトアミドならびにこれらのコポリマー及び混合物より選択される親水性ポリマーは、ある特定のシリコーンハイドロゲルの濡れ性を高めるのに特に効果的となり得る。ポリビニルピロリドン及びポリ-N,N-ジメチルアクリルアミドにより、ある特定の配合においてシリコーンハイドロゲルの濡れ性と重合原液との相溶性のバランスが実現される。
 本発明のシリコーンハイドロゲルに用いられる親水性ポリマーの量は、少なすぎると望ましい濡れ性が得られない場合があり、多すぎると親水性ポリマーが重合原液に溶解しにくくなる場合があることから、その量はシリコーンハイドロゲル質量の1~30質量%、いくつかの実施形態においては2~25質量%、他の実施形態においては3~20質量%、また他の実施形態においては6~9質量%である。下限値としては、1質量%、2質量%、好ましくは3質量%、及び6質量%が挙げられる。上限値としては、30質量%、25質量%、20質量%、9質量%が挙げられる。下限値と上限値とはどれとどれを組み合わせてもよい。
 本発明のシリコーンハイドロゲルに用いられる親水性ポリマーの分子量は、小さすぎると望ましい濡れ性が付与されない場合があり、大きすぎると重合原液への溶解性が劣る場合があり、重合原液の粘度が高くなる。分子量は、一実施形態においては、1000ダルトン~1000万ダルトン、いくつかの実施形態においては10万ダルトン~100万ダルトン、また他の実施形態においては20万ダルトン~80万ダルトンが好ましい。親水性ポリマーがシリコーンハイドロゲルマトリックスと共有結合できる反応性基を少なくとも1つ含む実施形態においては、分子量は少なくとも2000ダルトン、少なくとも5,000ダルトンであってもよく、またいくつかの実施形態においては5,000~18万ダルトン又は5,000~15万ダルトンであってもよい。下限値としては、1000ダルトン、10万ダルトン、及び20万ダルトンが挙げられる。上限値としては、1000万ダルトン、100万ダルトン、及び80万ダルトンが挙げられる。好ましい下限値と好ましい上限値とはどれとどれを組み合わせてもよい。
 本発明の親水性ポリマーの分子量は、ゲル浸透クロマトグラフィー(カラム:東ソー株式会社製TSKgel GMPWXL、移動相:水/メタノール=50/50(体積比)、0.1N硝酸リチウム添加、流速:0.5mL/分、検出器:示差屈折率検出器、分子量標準試料:ポリエチレングリコール)により測定された質量平均分子量(Mw)で表す。
 本発明のシリコーンハイドロゲル中に含まれる(メタ)アクリレート由来の繰り返し単位の合計量は、少なすぎると共重合する際の各モノマーの重合速度が揃わず、重合組成が不均一になることから、シリコーンハイドロゲル質量のうち、80質量%を超える必要があり、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99.5質量%以上が最も好ましい。なお、(メタ)アクリレート由来の繰り返し単位の合計含有量とは、上述のとおり、(メタ)アクリレート基を有するモノマー由来の繰り返し単位の合計含有量を表す。したがって、(メタ)アクリレート由来の繰り返し単位の合計含有量とは、単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位の含有量と、親水性(メタ)アクリレート由来の繰り返し単位の含有量と、例えば上述の単官能分岐シリコーン(メタ)アクリレートなどの他の(メタ)アクリレート由来の構造単位を含む場合には、当該他の(メタ)アクリレート由来の構造単位すべての含有量とを合計したものである。また、本発明において、共重合する際の各モノマーの重合速度の均一性は、後述のモノマー消費率を測定することにより確認することができる。
 (メタ)アクリレート系モノマーが、メタクリレート系モノマーであると、化学的安定性の高いシリコーンハイドロゲルが得られるために好ましい。本発明のシリコーンハイドロゲル中に含まれるメタクリレート由来の繰り返し単位の合計量は、少なすぎると共重合する際の各モノマーの重合速度が揃わず、重合組成が不均一になることから、シリコーンハイドロゲル質量のうち、80質量%を超えることが好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99.5質量%以上が最も好ましい。
 (メタ)アクリレート系モノマーが、アクリレート系モノマーであると、低弾性率で軟らかく装用感のよいシリコーンハイドロゲルが得られるために好ましい。本発明のシリコーンハイドロゲル中に含まれるアクリレート由来の繰り返し単位の合計量は、少なすぎると共重合する際の各モノマーの重合速度が揃わず、重合組成が不均一になることから、シリコーンハイドロゲル質量のうち、80質量%を超えることが好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99.5質量%以上が最も好ましい。
 本発明のシリコーンハイドロゲルはまた、重合性基を2つ以上有する多官能モノマー(架橋モノマー)由来の繰り返し単位を含んでもよい。この場合、本発明のシリコーンハイドロゲルは耐溶媒性になる。重合性基を2つ以上有する多官能モノマーの好ましい例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ビス(3-(メタ)アクリロイロキシプロピル)-1,1,3,3-テトラメチル-ジシロキサン、1,3-ビス(3-(メタ)アクリロイロキシプロピル)-1,1,3,3-テトラキス(トリメチルシロキシ)ジシロキサン、信越化学工業株式会社製X-22-164A、JNC株式会社製サイラプレーン(登録商標)FM7711などの両末端に(メタ)アクリロイロキシ基を有するポリジメチルシロキサン、グリセリルトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びトリメチロールプロパントリ(メタ)アクリレート等の二官能又は多官能(メタ)アクリレート、ならびにΝ,Ν’-メチレンビスアクリルアミド、Ν,Ν’-エチレンビスアクリルアミド、Ν,Ν’-プロピレンビスアクリルアミド等のビスアクリルアミドなどが挙げられる。
 これらのうち、シリコーンハイドロゲルの重合速度を均一にする点で好ましいのは二官能又は多官能(メタ)アクリレートであり、低弾性率のシリコーンハイドロゲルが得られやすい点でより好ましいのは二官能(メタ)アクリレートであり、得られるシリコーンハイドロゲルの形状回復性を高める点でさらに好ましいのは1,3-ビス(3-(メタ)アクリロイロキシプロピル)-1,1,3,3-テトラメチル-ジシロキサン、1,3-ビス(3-(メタ)アクリロイロキシプロピル)-1,1,3,3-テトラキス(トリメチルシロキシ)ジシロキサン、信越化学工業株式会社製X-22-164A、JNC株式会社製サイラプレーン(登録商標)FM7711のように両末端に(メタ)アクリロイロキシ基を有するポリジメチルシロキサンなどのシリコーン系ジ(メタ)アクリレートである。
 重合性基を2つ以上有する多官能モノマー由来の繰り返し単位の量は、多すぎるとシリコーンハイドロゲルが固くなりすぎ、少なすぎるとシリコーンハイドロゲルの形状を維持しにくくなることからシリコーンハイドロゲル質量の0.1~25質量%が好ましく、0.5~20質量%がより好ましく、0.8~12質量%が最も好ましい。下限値としては、0.1質量%、0.5質量%及び0.8質量%が挙げられる。上限値としては、25質量%、20質量%及び12質量%が挙げられる。好ましい下限値と好ましい上限値とはどれとどれを組み合わせてもよい。
 本発明のシリコーンハイドロゲルを重合により得る際は、重合を促進するために重合開始剤を加えてもよい。好適な開始剤としては、過酸化物やアゾ化合物等の熱重合開始剤、光重合開始剤(UV光、可視光又は組合せの場合がある)又はそれらの混合物が挙げられる。熱重合を行う場合は、所望の反応温度に対して最適な分解特性を有する熱重合開始剤を選択して使用する。一般的には10時間半減期温度が40℃~120℃のアゾ系開始剤又は過酸化物系開始剤が好ましい。光重合開始剤としてはカルボニル化合物、過酸化物、アゾ化合物、硫黄化合物、ハロゲン化合物、金属塩などが挙げられる。
 光開始剤のより具体的な例としては、芳香族α-ヒドロキシケトン、アルコキシオキシベンゾイン、アセトフェノン、アシルホスフィンオキシド、ビスアシルホスフィンオキシド、及び第三級アミン+ジケトン、これらの混合物などが挙げられる。光開始剤のさらに具体的な例としては、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4-4-トリメチルペンチルホスフィンオキシド(DMBAPO)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド(イルガキュア(登録商標)819)、2,4,6-トリメチルベンジルジフェニルホスフィンオキシド及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ベンゾインメチルエーテル、及びカンファーキノンとエチル4-(N,N-ジメチルアミノ)ベンゾエートとの組合せが挙げられる。
 市販の可視光開始剤システムとしては、イルガキュア(登録商標)819、イルガキュア(登録商標)1700、イルガキュア(登録商標)1800、イルガキュア(登録商標)1850(以上、BASF製)、及びルシリンTPO開始剤(BASF製)が挙げられる。市販のUV光開始剤としては、ダロキュア(登録商標)1173及びダロキュア(登録商標)2959(BASF製)が挙げられる。これらの重合開始剤は単独でも混合して用いてもよく、使用量は全モノマー成分の合計質量に対しておよそ1質量%である。
 本発明のコンタクトレンズの形成に使用される反応混合物中に存在してもよい他の成分としては、光の様々な波長、離型剤、反応性染色剤、顔料、これらの組合せ等にさらされると可逆的に変色するか又は光を反射する染料や化合物を含む、紫外線吸収化合物、医薬化合物、栄養補助化合物、抗菌性化合物、共重合性及び非重合性染料が挙げられる。
 本発明のシリコーンハイドロゲルを重合により得る際は、重合溶媒を使用できる。溶媒は、有機系、無機系溶媒のいずれであってもよい。使用できるものの例としては、水、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、tert-ブタノール、tert-アミルアルコール、3,7-ジメチル-3-オクタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、3-メチル-3-ペンタノール及びその他のアルコール系溶媒;塩化メチレン及びその他のハロゲン化アルキル;オクタメチルシクロテトラシロキサン及びその他のシラン;ベンゼン、トルエン、キシレン及び他のタイプの芳香族炭化水素系溶媒;ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、ケロシン、リグロイン、パラフィン及び他のタイプの脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン及びその他のケトン系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオクチル、二酢酸エチレングリコール及び他のエステル系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリエチレングリコール-ポリプロピレングリコールブロックコポリマー、ポリエチレングリコール-ポリプロピレングリコールランダムコポリマー及び他のタイプのグリコールエーテル系溶媒が挙げられる。これらの溶媒は単独あるいは混合して使用できる。
 これら溶媒のうち、アルコール系溶媒及びグリコールエーテル系溶媒は得られたシリコーンハイドロゲルから溶媒を水による洗浄で容易に除去できる点で好ましい。
 本発明のシリコーンハイドロゲルは、単独で所望の形状に成型して使用できるが、他の材料とブレンドしてから成型することもできる。また、成形品の表面にコーティングを施してもよい。
 本発明のシリコーンハイドロゲルの用途としては、眼用レンズ、内視鏡、カテーテル、輸液チューブ、気体輸送チューブ、ステント、シース、カフ、チューブコネクター、アクセスポート、排液バッグ、血液回路、創傷被覆材及び各種の薬剤担体が挙げられるが、中でもコンタクトレンズ、眼内レンズ、人工角膜、角膜インレー及び角膜オンレーが好適であり、コンタクトレンズが最も好適である。
 本発明のシリコーンハイドロゲルを成型して眼用レンズとして用いる場合、その重合方法及び成形方法は次のような標準的な方法でよい。例として、まずシリコーンハイドロゲルを丸棒や板状に成形してから切削加工や旋盤加工などによって所望の形状に仕上げる方法、モールド重合法、スピンキャスト法などが挙げられる。
 一例として、モールド重合法により本発明のシリコーンハイドロゲルから眼用レンズを作製する場合について次に説明する。
 モノマー組成物を、レンズ形状を有する2枚のモールドの間の空隙に注入する。次に、光重合又は熱重合を行ってレンズ形状に賦型する。モールドは樹脂、ガラス、セラミックス、金属等で製作されているが、光重合の場合は光重合波長を通す素材が用いられ、通常は樹脂又はガラスが使用される。シリコーンハイドロゲルを製造する場合には、2枚の対向するモールドにより空隙が形成されており、その空隙にモノマー組成物が注入される。続いて、空隙にモノマー組成物を充填したモールドは、紫外線、可視光線又はそれらの組合せ等の活性光線を照射されるか、オーブンや液槽に入れて加熱されて、モノマーを重合する。光重合の後に加熱重合したり、逆に加熱重合後に光重合するなど、両者を併用する方法もあり得る。光重合の場合は、例えば水銀ランプや蛍光灯等の光源からの高レベルの光を含む光を短時間(通常は1時間以下)照射するのが一般的である。熱重合を行う場合には、室温付近から徐々に昇温し、数時間ないし数十時間かけて60℃~200℃の高温まで高めていく条件が、ポリマーの光学的な均一性、品位を保持し、かつ再現性を高めるために好まれる。
 本発明のシリコーンハイドロゲルは、種々の方法で改質することができる。用途が眼用レンズであり、かつ内部に親水性ポリマーを含まない場合はレンズの湿潤性を向上させるために改質処理を行ってもよい。
 具体的な改質方法としては、電磁波(光を含む)照射、プラズマ照射、蒸着、スパッタリングなどのケミカルベーパーデポジション処理、加熱、モールドトランスファーコーティング、塩基処理、酸処理、及びその他好適な表面処理剤による処理が挙げられ、またこれらを組み合わせて使用することもできる。
 塩基処理又は酸処理の例としては、成型品を塩基性又は酸性溶液に接触させる方法、成型品を塩基性又は酸性ガスに接触させる方法が挙げられる。より具体的な方法としては、例えば塩基性又は酸性溶液に成型品を浸漬する方法、成型品に塩基性もしくは酸性溶液又は塩基性もしくは酸性ガスを噴霧する方法、成型品に塩基性又は酸性溶液をヘラ、刷毛等で塗布する方法、成型品に塩基性又は酸性溶液をスピンコートする方法、ディップコート法などを挙げることができる。最も簡便に大きな改質効果が得られる方法は、成型品を塩基性又は酸性溶液に浸漬する方法である。
 シリコーンハイドロゲルを塩基性又は酸性溶液に浸漬する際の温度は特に限定されないが、通常は、温度は-50℃~300℃の範囲内である。作業性を考えれば-10℃~150℃の温度範囲がより好ましく、-5℃~60℃の範囲が最も好ましい。
 シリコーンハイドロゲルを塩基性又は酸性溶液に浸漬する最適時間は温度によっても変化するが、一般には100時間以内が好ましく、24時間以内がより好ましく、12時間以内が最も好ましい。接触時間が長すぎると、作業性及び生産性が悪くなるばかりでなく、酸素透過性の低下や機械特性の低下などの悪影響が出る場合がある。
 塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、各種炭酸塩、各種ホウ酸塩、各種リン酸塩、アンモニア、各種アンモニウム塩、各種アミン類、ならびにポリエチレンイミン及びポリビニルアミン等の高分子量塩基などが使用可能である。これらのうち、低価格であること及び処理効果が大きいことからアルカリ金属水酸化物が最も好ましい。
 酸としては硫酸、リン酸、塩酸及び硝酸等の各種無機酸;酢酸、ギ酸、安息香酸及びフェノール等の各種有機酸;ならびにポリアクリル酸及びポリスチレンスルホン酸などの各種高分子量酸が使用可能である。これらのうち、処理効果が大きく他の物性への悪影響が最小限であることから高分子量酸が最も好ましい。
 塩基性又は酸性溶液の溶媒は、無機系、有機系溶媒のいずれであってもよい。例として、水、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン及びその他のアルコール類、ベンゼン、トルエン、キシレン及びその他の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、ケロシン、リグロイン、パラフィン及びその他の脂肪族炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン及びその他のケトン類、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオクチル及びその他のエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジアルキルエーテル、ジエチルグリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル及び他のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ヘキサメチルホスホリックトリアミド、ジメチルスルホキシド及びその他の非プロトン性極性溶媒、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、トリクロロエチレン、その他のハロゲン系溶媒、ならびにフロン系溶媒が挙げられる。これらのうち、経済性、取り扱いの簡便さ、及び化学的安定性などの点で水が最も好ましい。溶媒は2種類以上の混合物であってもよい。
 本発明においては、使用する塩基性又は酸性溶液は、塩基性又は酸性物質及び溶媒以外の成分を含んでいてもよい。
 シリコーンハイドロゲルは、塩基処理又は酸処理の後、洗浄により塩基性又は酸性物質を除くことができる。
 洗浄溶媒は、無機系、有機系溶媒のいずれであってもよい。例として、水、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン及びその他のアルコール類、ベンゼン、トルエン、キシレン及びその他の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、ケロシン、リグロイン、パラフィン及びその他の脂肪族炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン及びその他のケトン類、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオクチル及びその他のエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル及び他のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ヘキサメチルホスホリックトリアミド、ジメチルスルホキシド及びその他の非プロトン性極性溶媒、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、トリクロロエチレン、その他のハロゲン系溶媒、ならびにフロン系溶媒が挙げられる。
 洗浄溶媒は、2種類以上の混合物であってもよい。洗浄溶媒は、溶媒以外の成分、例えば無機塩類、界面活性剤及び洗浄剤を含有してもよい。
 以上のような改質処理は、シリコーンハイドロゲル全体に対して行ってもよく、例えば表面のみに行うなどシリコーンハイドロゲルの一部のみに行ってもよい。表面のみに改質処理を行った場合には、シリコーンハイドロゲル全体の物性を大きく変えることなく表面の濡れ性のみを向上させることができる。
 本発明のシリコーンハイドロゲルの含水率は、低すぎるとシリコーンハイドロゲルは固くなり、高すぎるとシリコーンハイドロゲル表面から水分が蒸発し装用者がレンズ装用時にレンズの乾燥感を感じることがあることから、含水率は20~50質量%が好ましく、25~45質量%がより好ましく、30~40質量%が最も好ましい。下限値は、20質量%、25質量%及び30質量%である。上限値は、50質量%、45質量%及び40質量%である。好ましい下限値と好ましい上限値とはどれとどれを組み合わせてもよい。
 本発明のシリコーンハイドロゲルの弾性率は、用途が眼用レンズ、特にソフトコンタクトレンズの場合、快適な装用感を得るためには200psi以下、いくつかの実施形態においては100psi以下であることが好ましい。本発明のポリマーの弾性率及び伸度は、最も狭い部分の幅が5mmのアレイ型サンプルを切り出した後に引張試験機で破断するまで速度100mm/分で引っ張って測定する。サンプルの初期標点距離(Lo)と破断時サンプル長(Lf)を測定する。引張弾性率は、応力/ひずみ曲線の初期の線形部分で測定する。伸び率=[(Lf-Lo)/Lo]×100である。本発明のシリコーンハイドロゲルの伸度は90%以上、いくつかの実施形態においては150%以上、またいくつかの実施形態においては200%以上であることが好ましい。値が高いほど、シリコーンハイドロゲルが破れにくいことを意味する。
 本発明のシリコーンハイドロゲルの前進接触角は、用途が眼用レンズの場合は、70°以下が好ましく、60°以下がより好ましく、50°以下であることがさらに好ましい。
 本発明のシリコーンハイドロゲルは、表面の濡れ性に優れることが生体への馴染みという観点から重要である。かかる観点から、シリコーンハイドロゲルの表面の液膜保持時間が長いことが好ましい。ここで、液膜保持時間とは、ホウ酸緩衝液に浸漬したシリコーンハイドロゲルを液から引き上げ、空中に表面(眼用レンズの場合は直径方向)が垂直になるように保持した際に、シリコーンハイドロゲル表面の液膜が切れずに保持される時間である。液膜保持時間は、5秒以上が好ましく、10秒以上がさらに好ましく、20秒以上が最も好ましい。ここで直径とは、レンズの縁部が構成する円の直径である。また、液膜保持時間はホウ酸緩衝液による湿潤状態の試料にて測定される。
 本発明のシリコーンハイドロゲルは眼用レンズへの利用に適することから、本発明のシリコーンハイドロゲルの直径は、6mm以上25mm以下が好ましく、特にソフトコンタクトレンズとして用いる場合には直径10mm以上17mm以下の球冠状がより好ましく、直径13mm以上15mm以下の球冠状が最も好ましい。下限値は6mmが好ましく、10mmがより好ましく、13mmが最も好ましい。上限値は25mmが好ましく、17mmがより好ましく、15mmが最も好ましい。好ましい下限値と好ましい上限値とはそれぞれ組み合わせてもよい。
 本発明のシリコーンハイドロゲルの酸素透過性に関しては、酸素透過係数が40×10-11(cm/秒)mLO/(mL・hPa)以上、またいくつかの実施形態においては50×10-11(cm/秒)mLO/(mL・hPa)以上であることが好ましい。本発明のポリマーの酸素透過係数はポーラログラフ法により測定された値である。
 本発明のシリコーンハイドロゲルの透明性に関しては、用途が眼用レンズの場合、可視域における全光線透過率は85%以上が好ましく、90%以上がより好ましく、95%以上が最も好ましい。
本発明のシリコーンハイドロゲルの透明性は、目視観察の場合、5又は4が好ましく、5がより好ましい。判定方法は実施例中に記載している。
 本発明のシリコーンハイドロゲルは、眼用レンズ、内視鏡、カテーテル、輸液チューブ、気体輸送チューブ、ステント、シース、カフ、チューブコネクター、アクセスポート、排液バッグ、血液回路、創傷被覆材及び各種の薬剤担体などの医療用具用途に好適であるが、中でもコンタクトレンズ、眼用レンズ及び人工角膜に好適である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 (測定方法)
 (1)全光線透過率
 全光線透過率は、SMカラーコンピュータ(型式SM-7-CH、スガ試験機株式会社製)を用いて測定した。湿潤状態のコンタクトレンズサンプルを光路内にセットして測定を行った。ABCデジマチックインジケータ(ID-C112、株式会社ミツトヨ製)を用いて厚みを測定し、厚みが0.14~0.15mmであるサンプルを測定した。
 (2)透明性
 ホウ酸緩衝液による湿潤状態のサンプルの透明性を目視観察し、下記の基準で5段階評価した。
5:濁りがなく透明。 
4:かすかに白濁。
3:若干白濁があり半透明。
2:白濁があり透明性が全くない。
1:完全に白い。
 (3)弾性率・伸度
 湿潤状態のコンタクトレンズサンプルから、最も狭い部分の幅5mmのアレイ型サンプルを切り出し、ABCデジマチックインジケータ(ID-C112、株式会社ミツトヨ製)を用いて厚みを測定し、次にテンシロン(東洋ボールドウィン社製RTM-100、クロスヘッド速度100mm/分)により、弾性率及び伸度を測定した。
 (4)応力ゼロ時間
 湿潤状態のコンタクトレンズサンプルの中央付近から幅5mm、長さ1.5cmの短冊状サンプルを切り出し、(株)サン科学製レオメータCR-500DXを用いて測定した。チャック幅5mmにてサンプルを取り付け、速度100mm/分で5mm引っ張った後、このサンプルを同速度で初期長(5mm)まで戻す、というこのサイクルを3回繰り返した。サンプルを初期長まで戻す2回目の途中で応力がゼロになった時点から3回目の引っ張りサイクル開始後に応力がかかり始めた(応力がゼロでなくなった)時点までの時間の長さを求め、応力ゼロ時間とした。応力ゼロ時間は、短いほどシリコーンハイドロゲルの形状回復性が良好であることを示し、値は2.0秒以下が好ましく、1.8秒以下がより好ましく、1.5秒以下が最も好ましい。
 (5)含水率
 シリコーンハイドロゲルの湿潤状態の質量(W1)、及び乾燥状態の質量(W2)を測定し、次式により含水率を算出した。
 含水率(%)=(W1-W2)/W1×100。
 (6)湿潤状態
 本発明において、湿潤状態とは、サンプルを室温(25℃)のホウ酸緩衝液に24時間以上浸漬した状態を意味する。湿潤状態での物性値の測定は、サンプルをホウ酸緩衝液から取り出した後、可及的速やかに表面のホウ酸緩衝液をきれいな布で軽く拭き取った後、可及的速やかに実施される。
 (7)乾燥状態
 本発明において、乾燥状態とは、湿潤状態のサンプルを真空乾燥機で40℃、16時間以上乾燥を行った状態を意味する。乾燥状態での物性値の測定は、サンプルを乾燥装置から可及的速やかに取り出した後、可及的速やかに実施される。
 (8)動的接触角
 湿潤状態のコンタクトレンズサンプルから、幅5mmの短冊状サンプルを切り出し、レスカ社製動的接触角計WET-6000を用いて、ホウ酸緩衝液に対する動的接触角の測定を行った(浸漬速度7mm/分)。
 (9)濡れ性
 コンタクトレンズサンプルを、室温(25℃)でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(1分間)。試験片をホウ酸緩衝液から引き上げ、空中に直径方向が垂直になるように保持した際の表面の様子を目視観察し、表面の液膜の保持時間を測定した。液膜の保持時間は5秒以上が好ましく、10秒以上がより好ましく、20秒以上が最も好ましい。ここで直径とはコンタクトレンズの縁部が形成する円の直径である。
 (10)ホウ酸緩衝液
 本発明においてホウ酸緩衝液とは、特表2004-517163号公報の実施例1中に記載の「塩溶液」である。具体的には塩化ナトリウム8.48g、ホウ酸9.26g、ホウ酸ナトリウム(四ホウ酸ナトリウム十水和物)1.0g、及びエチレンジアミン四酢酸0.10gを純水に溶かして1000mLとした水溶液である。
 (11)直径
 コンタクトレンズサンプルをシャーレ中で一定量のホウ酸緩衝液に浸した状態で、Nikon社製万能投影機V-10Aを用いて投射した拡大像(10倍)の直径を定規で測り、1/10にした値をレンズ直径として記録した。
 実施例1
 下記式(s1)で表されるシリコーンモノマー(サイラプレーン(登録商標)FM0711、平均分子量1000、JNC株式会社製、1.3202g、33質量部)、
Figure JPOXMLDOC01-appb-C000010
下記式(s2)で表されるシリコーンモノマー(0.8801g、22質量部)、
Figure JPOXMLDOC01-appb-C000011
下式(h1)で表されるメタクリル酸ポリエチレングリコールモノメチルエーテル(ブレンマー(登録商標)PME200、q≒4、日油株式会社製、1.2614g、31.53質量部)、
Figure JPOXMLDOC01-appb-C000012
メタクリル酸2-ヒドロキシエチル(0.3200g、8質量部)、下記式(c1)で表される両末端にメタクリロイロキシ基を有するシロキサン(信越化学工業株式会社製、0.3200g、8質量部)、
Figure JPOXMLDOC01-appb-C000013
紫外線吸収剤2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール(0.0880g、2.2質量部)、t-アミルアルコール(TAA、1.8002g、45質量部)及び光開始剤イルガキュア(登録商標)819(0.0100g、0.25質量部)をブレンドして混合した。得られたモノマーブレンドをアルゴン環境下で脱気した。窒素ガス環境下のグローブボックス中で、レンズ形状を有する透明樹脂(フロントカーブ側:ゼオノア(登録商標)、ベースカーブ側:ポリプロピレン)製モールドの空隙にモノマーブレンドを注入し、光照射(フィリップスTL03、1.6mW/cm、15分間)して硬化させることによりレンズを得た。得られたレンズをモールドから剥離し、70%(体積比)2-プロパノール(IPA)水溶液に室温で70分間浸漬することにより残存モノマーなどの不純物を抽出した。水中に10分間浸漬後、サンプルを1.2質量%ポリアクリル酸(PAA、分子量25万)に30分間浸漬した。純水で余剰のPAAをすすいだ後、5mLバイアル瓶中のホウ酸緩衝液中に沈め、バイアル瓶をオートクレーブに入れて120℃で30分間煮沸した。
 得られたレンズサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであり、透明で良好な物性バランスを有するレンズが得られた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例2
 表1に示す通りに組成を変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例3~4
 実施例1のシリコーンモノマーを式(s3)に変更し、組成を表1に示すとおりに変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
Figure JPOXMLDOC01-appb-C000016
 実施例5~8
 実施例1のシリコーンモノマーを表1の通り変更し、架橋モノマーを下記式(c2)で表される架橋モノマーに変更し、
Figure JPOXMLDOC01-appb-C000017
組成を表1に示すとおりに変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例9~10
 実施例1のシリコーンモノマーを表1の通り変更し、架橋モノマーを信越化学工業株式会社製X-22-164Aに変更し、組成を表1に示すとおりに変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例11
 実施例1のシリコーンモノマーを表1の通り変更し、架橋モノマーをテトラエチレングリコールジメタクリレート(4G)に変更し、組成を表1に示すとおりに変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例12
 架橋モノマーを式(c2)で表される架橋モノマーに変更し、組成を表1に示すとおりに変更する以外は実施例1と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例13
 親水性モノマーを式(h1)で表されるメタクリル酸ポリエチレングリコールモノメチルエーテル(ブレンマーPME100、q≒2、日油株式会社製、1.2614g、31.53質量部)に変更する以外は実施例12と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例14
 親水性モノマーを式(h1)で表されるメタクリル酸ポリエチレングリコールモノメチルエーテル(ブレンマーPME400、q≒9、日油株式会社製、1.2614g、31.53質量部)に変更する以外は実施例12と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例15
 親水性モノマーを式(h1)で表されるメタクリル酸2-メトキシエチル(q=1、東京化成工業株式会社製、1.2614g、31.53質量部)に変更する以外は実施例12と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例16
 親水性モノマーを下記式(h2)で表されるメタクリル酸2-エトキシエチル(東京化成工業株式会社製、1.2614g、31.53質量部)に変更する以外は実施例12と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
Figure JPOXMLDOC01-appb-C000018
 実施例17
 親水性モノマーを下記式(h3)で表されるメタクリル酸2-ヒドロキシプロピル(和光純薬工業株式会社製、1.2614g、31.53質量部)に変更する以外は実施例12と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
Figure JPOXMLDOC01-appb-C000019
 比較例1
 実施例11の組成を表1の通り、式(s1)の単官能直鎖シリコーンメタアクリレートを含まない組成に変更する以外は実施例11と同様の方法で重合を行い、レンズサンプルを得た。得られたサンプルの直径、透明性、濡れ性、含水率、伸度、弾性率、及び応力ゼロ時間は表2に示す通りであった。
 実施例18
 (1)GPC測定
GPC測定は以下の条件で行った。
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:東ソー株式会社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=50/50(体積比、0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1質量%
注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)。
 (2)モノマー消費率の算出
 式(s2)で表されるシリコーンモノマー(27.50g、26.03質量%)、ブレンマーPME200(18.74g、17.74質量%)、HEMA(3.99g、3.78質量%)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(重合開始剤、0.2552g、0.24質量%)、t-アミルアルコール(54.96g、52.03質量%)、ドデシルメルカプタン(0.19g、0.18質量%)を四つ口フラスコ中で混合し、重合溶液を調製した。前記四つ口フラスコを60℃に加熱した水浴に浸漬し、その時点を0分として、0分、20分、40分、60分、80分、100分、120分、150分、180分、240分、300分、360分、720分の各時点で反応溶液から100μLずつサンプルを抜き出し、上記1)のGPC測定の移動相と同じ組成の溶液を加えてGPCサンプルとした。反応液の各サンプルについて、(1)と同様にしてGPC測定を行った。
 式(s2)、ブレンマーPME200(PME200)、HEMAのピーク面積、及び抜き出したサンプルの重量、HPLCサンプルの重量を元に、両モノマーの消費率を計算した。重合時間(T)とモノマー消費率(M)のグラフをプロットすることにより(図1)、両モノマーの消費率曲線を作成した。その結果、重合に用いた各種メタクリレートの重合速度がそろっていることが確認された。
 なお、GPCによる測定が困難である場合には、例えば以下の条件でHPLC測定を行い、モノマー消費率を計算してもよい。
装置:島津製作所製 Prominence HPLCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
検出器:SPD-20A(検出波長:254nm)
カラム:Agilent Zorbax Eclipse XDB C18
   (4.6mm×75mm、3.5μm)
溶媒A:アセトニトリル
溶媒B:水
溶媒グラジエント:溶媒A/溶媒B=50/50(0分)→50/50(3分)→100/0(5分)→100/0(12分)→50/50(15分)→50/50(20分)
流速:1.3mL/分
注入量:5μL
カラム温度:35℃
分析時間:20分
 また、他のモノマー組成におけるモノマー消費率を算出する場合、モノマーのピーク同士が重なる、検出波長が適切ではない等の理由により上記のHPLC測定条件でモノマー消費率が算出できないときは、測定可能な条件に適宜変更して測定し、モノマー消費率を計算してもよい。
 比較例2
 上記実施例18のブレンマーPME200を、親水性アクリルアミドであるN,N-ジメチルアクリルアミド(DMA)に置き換える以外は実施例18と同様の方法により実験を行い、モノマー消費率曲線を作成した(図2)。その結果、DMAのみ重合速度が異なっており、得られる共重合体の組成が重合当初と重合末期で異なるものになっていることが示唆された。
 したがって、本発明のシリコーンハイドロゲルは、医療器具用途に好適であり、コンタクトレンズ、眼内レンズ、人工角膜などの用途に特に好適である。

Claims (13)

  1.  単官能直鎖シリコーン(メタ)アクリレート由来の繰り返し単位と、親水性(メタ)アクリレート由来の繰り返し単位とを有し、
     (メタ)アクリレート由来の繰り返し単位の含有量が80質量%を超える、シリコーンハイドロゲル。
  2.  前記単官能直鎖シリコーン(メタ)アクリレートは、下記一般式(a)で示される、請求項1記載のシリコーンハイドロゲル。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素又はメチル基を表し、Rは置換されていてもよい炭素数1~20の2価の有機基を表し、R~Rはそれぞれ独立に置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表し、Rは置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表し、nは分布を有していてもよい1~200の整数を表す。]
  3.  前記単官能直鎖シリコーン(メタ)アクリレートとは異なる単官能シリコーン(メタ)アクリレート由来の繰り返し単位をさらに含む、請求項1又は2記載のシリコーンハイドロゲル。
  4.  シリコーン(メタ)アクリレート由来の繰り返し単位の含有量が30~95質量%である、請求項1~3のいずれか一項記載のシリコーンハイドロゲル。
  5.  前記親水性(メタ)アクリレートは、分子内に水酸基、アルコキシ基、カルボキシ基及びスルホン酸基からなる群から選択される基を有する、請求項1~4のいずれか一項記載のシリコーンハイドロゲル。
  6.  前記親水性(メタ)アクリレートは、下記一般式(c)で表される、請求項5記載のシリコーンハイドロゲル。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは水素又はメチル基を表す。R~R12はそれぞれ独立に水素、置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表す。R13は水素、置換されていてもよい炭素数1~20のアルキル基又は置換されていてもよい炭素数6~20のアリール基を表す。mは分布を有していてもよい2~100の整数を表す。]
  7.  前記親水性(メタ)アクリレート由来の繰り返し単位の含有量が5~70質量%である、請求項1~6のいずれか一項記載のシリコーンハイドロゲル。
  8.  前記親水性(メタ)アクリレート由来の繰り返し単位中、水酸基を有さない親水性(メタ)アクリレート由来の繰り返し単位の割合が20質量%以上である、請求項1~7のいずれか一項記載のシリコーンハイドロゲル。
  9.  多官能(メタ)アクリレート由来の繰り返し単位を含む、請求項1~8のいずれか一項記載のシリコーンハイドロゲル。
  10.  前記多官能(メタ)アクリレート由来の繰り返し単位の含有量が0.05~10質量%である、請求項9記載のシリコーンハイドロゲル。
  11.  請求項1~10のいずれか一項記載のシリコーンハイドロゲルを用いてなる、医療用具。
  12.  眼用レンズである、請求項11記載の医療用具。
  13.  前記眼用レンズがコンタクトレンズである、請求項12記載の医療用具。
PCT/JP2015/067320 2014-06-27 2015-06-16 シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ WO2015198919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15812039.4A EP3162824B1 (en) 2014-06-27 2015-06-16 Silicone hydrogel, medical device, ocular lens and contact lens
JP2015534715A JP6613891B2 (ja) 2014-06-27 2015-06-16 シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ
US15/321,516 US10087274B2 (en) 2014-06-27 2015-06-16 Silicone hydrogel, medical device, lens for eye and contact lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-132299 2014-06-27
JP2014132299 2014-06-27
JP2014254863 2014-12-17
JP2014-254863 2014-12-17

Publications (1)

Publication Number Publication Date
WO2015198919A1 true WO2015198919A1 (ja) 2015-12-30

Family

ID=54938008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067320 WO2015198919A1 (ja) 2014-06-27 2015-06-16 シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ

Country Status (5)

Country Link
US (1) US10087274B2 (ja)
EP (1) EP3162824B1 (ja)
JP (1) JP6613891B2 (ja)
TW (1) TW201605932A (ja)
WO (1) WO2015198919A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207586A1 (ja) 2017-05-10 2018-11-15 東レ株式会社 医療デバイス
JP2019053125A (ja) * 2017-09-13 2019-04-04 日油株式会社 コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体及びその製造方法、並びにコンタクトレンズ及びその製造方法
WO2020017533A1 (ja) 2018-07-17 2020-01-23 富士フイルム株式会社 医療用潤滑性部材に用いる積層材料用組成物、医療用潤滑性部材に用いる積層材料、医療用潤滑性部材、及び医療機器
WO2020121941A1 (ja) * 2018-12-12 2020-06-18 東レ株式会社 医療デバイス
WO2023106395A1 (ja) * 2021-12-10 2023-06-15 三菱ケミカル株式会社 硬化性組成物、成形体、シリコーンハイドロゲル及びその製造方法、マクロモノマー

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020001337A2 (pt) * 2017-08-01 2020-08-11 Seed Co., Ltd. capa de endoscópio
KR20200098540A (ko) * 2017-12-13 2020-08-20 알콘 인코포레이티드 한 주 및 한 달 착용용 워터 그래디언트 콘택트 렌즈
EP3824790B1 (en) * 2018-07-17 2023-10-11 FUJIFILM Corporation Insertion aid tube composition, insertion aid tube, endoscope/insertion aid tube set, endoscope device, and method for producing insertion aid tube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185310A (ja) * 1983-04-06 1984-10-20 Toyo Contact Lens Co Ltd 酸素透過性軟質コンタクトレンズ用組成物
JPH06245991A (ja) * 1993-02-26 1994-09-06 Sagami Chem Res Center 皮膚モデル膜
JP2002241698A (ja) * 2001-02-16 2002-08-28 Kusumoto Kasei Kk 塗料・インキ用平滑剤
JP2002371116A (ja) * 2001-03-30 2002-12-26 Toray Ind Inc モノマー、ポリマー、それを用いた眼用レンズおよびコンタクトレンズ
JP2004075755A (ja) * 2002-08-13 2004-03-11 Mitsubishi Chemicals Corp ポリシロキサン基含有重合体
WO2006001510A1 (ja) * 2004-06-25 2006-01-05 Kansai Paint Co., Ltd. 表面処理剤
JP2009197071A (ja) * 2008-02-19 2009-09-03 Chisso Corp フッ素系重合体および樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943203B2 (en) * 1998-03-02 2005-09-13 Johnson & Johnson Vision Care, Inc. Soft contact lenses
US7052131B2 (en) * 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US6822016B2 (en) * 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
JP4834916B2 (ja) 2000-05-10 2011-12-14 東レ株式会社 表面処理プラスチック成形品
AU2002238883B2 (en) 2001-03-30 2007-04-26 Johnson And Johnson Vision Care, Inc. Monomers, polymers, and ophthalmic lenses and contact lenses made by using the same
US7214809B2 (en) 2004-02-11 2007-05-08 Johnson & Johnson Vision Care, Inc. (Meth)acrylamide monomers containing hydroxy and silicone functionalities
GB0623299D0 (en) 2006-11-22 2007-01-03 Sauflon Cl Ltd Contact lens
EP2953955B1 (en) * 2013-02-06 2018-08-15 Momentive Performance Materials Inc. (meth)acryloxy-containing trisiloxane, siloxane-containing polymers and biomedical devices therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185310A (ja) * 1983-04-06 1984-10-20 Toyo Contact Lens Co Ltd 酸素透過性軟質コンタクトレンズ用組成物
JPH06245991A (ja) * 1993-02-26 1994-09-06 Sagami Chem Res Center 皮膚モデル膜
JP2002241698A (ja) * 2001-02-16 2002-08-28 Kusumoto Kasei Kk 塗料・インキ用平滑剤
JP2002371116A (ja) * 2001-03-30 2002-12-26 Toray Ind Inc モノマー、ポリマー、それを用いた眼用レンズおよびコンタクトレンズ
JP2004075755A (ja) * 2002-08-13 2004-03-11 Mitsubishi Chemicals Corp ポリシロキサン基含有重合体
WO2006001510A1 (ja) * 2004-06-25 2006-01-05 Kansai Paint Co., Ltd. 表面処理剤
JP2009197071A (ja) * 2008-02-19 2009-09-03 Chisso Corp フッ素系重合体および樹脂組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153233B2 (ja) 2017-05-10 2022-10-14 東レ株式会社 医療デバイス
KR20200004351A (ko) 2017-05-10 2020-01-13 도레이 카부시키가이샤 의료 디바이스
JPWO2018207586A1 (ja) * 2017-05-10 2020-03-12 東レ株式会社 医療デバイス
US11872327B2 (en) 2017-05-10 2024-01-16 Toray Industries, Inc. Medical device
WO2018207586A1 (ja) 2017-05-10 2018-11-15 東レ株式会社 医療デバイス
JP2019053125A (ja) * 2017-09-13 2019-04-04 日油株式会社 コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体及びその製造方法、並びにコンタクトレンズ及びその製造方法
WO2020017533A1 (ja) 2018-07-17 2020-01-23 富士フイルム株式会社 医療用潤滑性部材に用いる積層材料用組成物、医療用潤滑性部材に用いる積層材料、医療用潤滑性部材、及び医療機器
US11351761B2 (en) 2018-07-17 2022-06-07 Fujifilm Corporation Composition for laminated material used for medical lubricating member, laminated material used for medical lubricating member, medical lubricating member, and medical device
CN113164642A (zh) * 2018-12-12 2021-07-23 东丽株式会社 医疗设备
CN113164642B (zh) * 2018-12-12 2023-02-14 东丽株式会社 医疗设备
JP7375551B2 (ja) 2018-12-12 2023-11-08 東レ株式会社 医療デバイス
WO2020121941A1 (ja) * 2018-12-12 2020-06-18 東レ株式会社 医療デバイス
WO2023106395A1 (ja) * 2021-12-10 2023-06-15 三菱ケミカル株式会社 硬化性組成物、成形体、シリコーンハイドロゲル及びその製造方法、マクロモノマー

Also Published As

Publication number Publication date
JPWO2015198919A1 (ja) 2017-04-20
US10087274B2 (en) 2018-10-02
TW201605932A (zh) 2016-02-16
US20170204213A1 (en) 2017-07-20
EP3162824A1 (en) 2017-05-03
EP3162824A4 (en) 2017-12-20
EP3162824B1 (en) 2019-07-24
JP6613891B2 (ja) 2019-12-04

Similar Documents

Publication Publication Date Title
JP5920332B2 (ja) シリコーンハイドロゲル、眼用レンズおよびコンタクトレンズ
JP6613891B2 (ja) シリコーンハイドロゲル、医療用具、眼用レンズ及びコンタクトレンズ
US11872327B2 (en) Medical device
JP6768196B2 (ja) シリコーンアクリルアミド共重合体
WO2015153404A1 (en) Silicone acrylamide copolymer
JP5831616B2 (ja) シリコーン(メタ)アクリルアミドモノマー

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812039

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015812039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE