WO2015194766A1 - 발광 소자 패키지 - Google Patents

발광 소자 패키지 Download PDF

Info

Publication number
WO2015194766A1
WO2015194766A1 PCT/KR2015/005272 KR2015005272W WO2015194766A1 WO 2015194766 A1 WO2015194766 A1 WO 2015194766A1 KR 2015005272 W KR2015005272 W KR 2015005272W WO 2015194766 A1 WO2015194766 A1 WO 2015194766A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
light
device package
recess
Prior art date
Application number
PCT/KR2015/005272
Other languages
English (en)
French (fr)
Inventor
김병목
김하나
코다이라히로시
김백준
이정우
황상웅
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN201580032652.6A priority Critical patent/CN106463590B/zh
Priority to US15/319,318 priority patent/US10714660B2/en
Publication of WO2015194766A1 publication Critical patent/WO2015194766A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the embodiment relates to a light emitting device package.
  • GaN gallium nitride
  • LEDs red, green, and blue light emitting diodes
  • LEDs do not contain environmentally harmful substances such as mercury (Hg) used in existing lighting equipment such as incandescent lamps and fluorescent lamps, so they have excellent eco-friendliness and have advantages such as long life and low power consumption. It is replacing.
  • Hg mercury
  • a key competitive factor in these LED devices is their high brightness and high brightness by high efficiency chip and packaging technology.
  • FIG. 1 is a schematic cross-sectional view of a conventional light emitting device package and includes a package body 10 having a cavity C, an LED 20, a glass 30, and an adhesive 40.
  • the glass 30 is a force of about 400gf Press to bond the glass 30 to the package body 10.
  • the adhesive 40 flows into the cavity C as shown in FIG. 1 by the pressing force of the glass 30, and thus the adhesive into which the function of reflecting light from the inclined surface of the cavity C flows. (40) can be disturbed.
  • the LED 20 emits light having a deep ultraviolet wavelength band
  • the adhesive 40 introduced into the cavity C is discolored by being exposed to deep ultraviolet light for a long time, a large amount of the adhesive 40 is introduced. Light may be absorbed to lower the luminous efficiency.
  • the adhesive 40 is made of silicone or epoxy, the adhesive 40 may be discolored and then deteriorated so that bonding between the glass 30 and the package body 10 may be broken, and micro cracks may be generated to cause moisture. The penetration of the light emitting device package may be shortened.
  • the adhesive 40 may play a role of preventing external moisture or moisture from entering the inside of the cavity C.
  • the external impurities 50 are in the form of gas, for example, when the gas molecules including water molecules penetrate from the outside, the adhesive 40 may be difficult to properly block them.
  • moisture or moisture penetrates into the cavity C, so that the plating part of the light emitting device package and the electrode part of the LED 20 are discolored and thus the life and Performance may be further degraded.
  • the embodiment provides a light emitting device package having improved luminous efficiency and long life and having waterproof, moisture proof, and dustproof functions.
  • a light emitting device includes: a package body including a cavity and a recess formed around the cavity and having at least one recess; At least one light emitting element mounted in the cavity; A light transmissive member disposed to cover an upper portion of the cavity and transmitting light emitted from the at least one light emitting element; And a bonding member accommodated in the at least one recess so that the light transmitting member and the package body are adhered to the recess.
  • the space volume of the recess may be greater than or equal to the volume of the bonding member.
  • the at least one concave portion may have a ring plane shape or a dot plane shape.
  • the at least one recess may include a plurality of recesses spaced at predetermined intervals in a direction perpendicular to the thickness direction of the package body.
  • the distance between the plurality of recesses may be less than or equal to half the length of each of the plurality of recesses.
  • the at least one recess may be spaced apart from the cavity by a first distance.
  • the second distance that the light transmitting member is spaced apart from the upper surface of the package body in the thickness direction of the package body in the recess may be greater than 0 and less than the depth of the at least one recess.
  • At least one of the cavity or the at least one recess may have a circular, elliptical or polygonal planar shape.
  • the bonding member may be arranged to seal a space between the package body and the light transmissive member.
  • the at least one light emitting device may emit light in an ultraviolet wavelength band.
  • the bonding member may include UV bond, acrylic, urethane, silicone, or epoxy.
  • the at least one light emitting device may comprise a submount; And a light emitting diode flip-bonded on the sub-mount.
  • the light transmitting member may include a flat sheet, a hemispherical lens, or a spherical lens.
  • the light emitting device package may further include a molding member disposed to surround the at least one light emitting device in the cavity.
  • the cavity may be a vacuum.
  • the light emitting device package may further include a rubber ring disposed between the side of the light transmitting member and the package body.
  • the rubber ring may be disposed in a space between the light transmissive member and the package body on the bonding member.
  • the rubber ring may have a circular, elliptical or polygonal planar shape.
  • the rubber ring may have a width of 0.1 mm to 0.15 mm.
  • the light emitting device package according to the embodiment may improve light extraction efficiency and have an extended lifetime, and the bonding member bonds the package body and the light transmissive member in a larger area to enhance the bonding force, As it can prevent the inflow of moisture or dust into the cavity, it can have excellent functions of moisture proof, waterproof and dustproof.
  • FIG. 1 is a schematic cross-sectional view of a conventional light emitting device package.
  • FIG. 2 is a plan view of a light emitting device package according to an embodiment
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2.
  • FIG. 4 is a plan view of a light emitting device package according to another embodiment
  • FIG. 5 is a plan view of a light emitting device package according to still another embodiment
  • FIG. 6 is a cross-sectional view taken along the line CC ′ of FIG. 5.
  • FIG. 7 is a plan view of a light emitting device package according to still another embodiment.
  • FIG. 8 is a plan view of a light emitting device package according to still another embodiment
  • FIG. 9 is an exploded perspective view showing an embodiment of a lighting device including a light emitting device package according to the embodiment.
  • FIG. 10 is an exploded perspective view illustrating an exemplary embodiment of a display device in which a light emitting device package is disposed.
  • the top (bottom) or bottom (bottom) (on or under) when described as being formed on the “top” or “bottom” (on or under) of each element, the top (bottom) or bottom (bottom) (on or under) includes both the two elements are in direct contact with each other (directly) or one or more other elements are formed indirectly between the two elements (indirectly).
  • the top (bottom) or bottom (bottom) (on or under) when expressed as “up” or “down” (on or under), it may include the meaning of the downward direction as well as the upward direction based on one element.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • relational terms such as “first” and “second,” “upper / upper / up” and “lower / lower / lower”, etc., as used below, may be used to refer to any physical or logical relationship between such entities or elements, or It may be used only to distinguish one entity or element from another entity or element without necessarily requiring or implying an order.
  • FIG. 2 is a plan view illustrating a light emitting device package 100A according to an exemplary embodiment
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2.
  • the illustration of the light transmitting member 130 and the molding member 150 illustrated in FIG. 3 is omitted.
  • the light emitting device package 100A includes a package body 110A, a light emitting device 120A, a light transmitting member 130, a bonding member 140, and a molding member ( 150, an insulation unit 160, and first and second wires 172 and 174.
  • the package body 110A includes a cavity C and a recess R. As shown in FIG.
  • the cavity C is defined as a space formed in the package body 110A, having a bottom surface CB and a side surface CS, and surrounded by the bottom surface CB and the side surface CS.
  • the cavity C may be formed in the center of the direction (X-axis direction) perpendicular to the thickness direction (Z-axis direction) of the package body 110A. Is not limited to the position of the cavity C.
  • a reflection layer (not shown) may be coated or disposed on the side surface CS of the cavity C. Therefore, the light emitted from the light emitting element 120A may be reflected by the reflective layer disposed on the side surface CS of the cavity C and may be directed to the light transmitting member 130.
  • the first width W1 of the side surface CS of the cavity C may be greater than or equal to '0'.
  • the recessed portion R is formed around the cavity C.
  • the recess R may include a lower portion of the first upper surface PU1, the first side surface PU2, the second upper surface PU3, the second side surface PU4, and the light transmitting member 130. It is defined as the space surrounded by face 132.
  • the first upper surface PU1 corresponds to the upper surface of the package body 110A adjacent to the side surface CS of the cavity C.
  • the first side surface PU2 corresponds to the side surface of the upper portion of the package body 110A extending from the first upper surface PU1 in the thickness direction (Z-axis direction) of the package body 110A.
  • the second upper surface PU3 is formed on the upper surface of the package body 110A extending from the first side surface PU2 in a direction perpendicular to the thickness direction (Z axis direction) of the package body 110A (X axis direction).
  • the second side surface PU4 corresponds to the side surface of the upper portion of the package body 110A extending from the second upper surface PU3 in the thickness direction (Z-axis direction) of the package body 110A.
  • the recess R may include first and second recesses R1 and R2.
  • the first recessed part (or the recessed part) R1 is the first side surface PU2, the second upper surface PU3, the second side surface PU4, and the lower surface 132 of the light transmissive member 130. It is defined as a space surrounded by).
  • the first recess R1 may have a ring planar shape and may be spaced apart from the cavity C by a first distance d1.
  • the second recessed portion R2 is defined as a space excluding the first recessed portion R1 from the recessed portion R.
  • planar shape of at least one of the cavity C, the first or second recesses R1 and R2 may be circular, as illustrated in FIG. 2, but embodiments are not limited thereto. That is, according to another embodiment, the planar shape of at least one of the cavity C, the first or second recesses R1 and R2 may be an ellipse or a polygon, for example a quadrangle, as illustrated in FIG. 2. .
  • the width of the bottom surface CB of the cavity C is 'X1' in the package body 110A, and the bottom surface CB and the side surface CS of the cavity C are shown.
  • the width including 'X2' is the width including the cavity C and the first upper surface PU1 is 'X3', and the cavity C and the first and second upper surfaces PU1 and PU3 are defined. Included width is 'X4', the overall width of the package body 110A may be 'X5'.
  • At least one light emitting device 120A is mounted on the bottom surface CB of the cavity C. 2 and 3, only one light emitting device 120A is shown, but the embodiment is not limited to the number of light emitting devices 120A.
  • the at least one light emitting device 120A may emit light in the visible or ultraviolet wavelength band, but the embodiment is not limited to the wavelength band of the emitted light.
  • the wavelength band of the light emitted from the at least one light emitting element 120A may be an ultraviolet wavelength band of 200 nm to 405 nm, or may be a deep ultraviolet wavelength band of 200 nm to 300 nm.
  • the at least one light emitting device 120A may include a sub-mount 122 and a light emitting diode 124, but the structure of the light emitting device 120A of the embodiment is not limited thereto.
  • the submount 122 may be formed of, for example, a semiconductor substrate such as AlN, BN, silicon carbide (SiC), GaN, GaAs, Si, or the like, but may be formed of a semiconductor material having excellent thermal conductivity.
  • a semiconductor substrate such as AlN, BN, silicon carbide (SiC), GaN, GaAs, Si, or the like, but may be formed of a semiconductor material having excellent thermal conductivity.
  • an element for preventing electrostatic discharge (ESD) in the form of a zener diode may be included in the submount 122.
  • the light emitting diode 124 may be flip bonded to the sub-mount 122, but the embodiment is not limited to the bonding form of the light emitting device 120A. That is, according to another embodiment, the light emitting device 120A may have a vertical bonding structure or a horizontal bonding structure, in which case the submount 122 is omitted.
  • the light emitting diode 124 may be a side view type light emitting diode or a top view type light emitting diode.
  • the light emitting diode 124 may be configured as a blue LED or an ultraviolet LED, or may be configured as a package in which at least one or more of red LED, green LED, blue LED, yellow green LED, and white LED are combined. It may be.
  • the package body 110A includes the first and second body parts 110A-1 and 110A-2, and may be made of a metal having excellent electrical conductivity and heat dissipation.
  • the package body 110A may be made of aluminum. Since the package body 110A is made of metal, the insulator 160 may be configured to electrically insulate the first and second body parts 110A-1 and 110A-2 from each other. 1, 110A-2).
  • the sub-mount 122 is illustrated as being disposed on the first body portion 110A-1, but the embodiment is not limited thereto. That is, the submount 122 may be disposed on the second body portion 110A-2 instead of the first body portion 110A-1.
  • First and second electrodes (not shown) of the light emitting device 120A are connected to the first and second body parts 110A-1 and 110A-2 by the first and second wires 172 and 174, respectively. .
  • the light transmitting member 130 may cover the upper portion of the cavity (C) and transmit the light emitted from the at least one light emitting device (120A) in the vertical direction (Z-axis direction).
  • the light transmissive member 130 may be made of a transparent material so that light emitted from the light emitting device 120A can be transmitted.
  • the light transmissive member 130 may be implemented with quartz or sapphire, but the embodiment is not limited to the material of the light transmissive member 130.
  • the light transmissive member 130 may have a flat plate shape as illustrated in FIG. 3, but embodiments are not limited thereto. That is, according to another embodiment, the light transmissive member 130 may be hemispherical or spherical in shape. In addition, the light transmitting member 130 may include a flat sheet, a hemispherical lens or a spherical lens.
  • the first thickness t1 of the light transmissive member 130 may be several ⁇ m to several tens of ⁇ m, but embodiments are not limited thereto.
  • a second distance in which the light transmissive member 130 is spaced apart from the first upper surface PU1 of the package body 110A in the thickness direction (Z-axis direction) of the package body 110A d2) may be greater than or equal to '0'. If the second distance d2 is '0', the lower surface 132 of the light transmissive member 130 is in contact with the first upper surface PU1 of the package body 110A. For this reason, the front end of the side surface CS of the cavity C may be in contact with the lower surface 132 of the light transmissive member 130. Therefore, the light emitted from the light emitting element 120A may be reflected at the side surface CS of the cavity C and may pass through the light transmitting member 130 to be emitted toward the upper side (Z-axis direction).
  • the bonding member 140 may flow into the interior space of the cavity C when the 130 is pressed in the Z-axis direction to be coupled with the package body 110A.
  • the second distance d2 may be greater than zero and smaller than the depth d3, the embodiment is not limited to the second distance d2.
  • the bonding member 140 is disposed in the recess portion R to bond the light transmitting member 130 to the package body 110A, it can be accommodated in at least one recess (R1).
  • the bonding member 140 when the light transmitting member 130 is pressed in the thickness direction (Z-axis direction) of the package body 110A with a force of 400 gf, for example, a part of the bonding member 140 is concave.
  • a portion of the first upper surface PU1 of the package body 110A may overflow.
  • the first distance d1 may be determined in consideration of the overflow of the bonding member 140 to the first upper surface PU1. Therefore, it can be seen that the first distance d1 is set to be larger than '0'. That is, the bonding member 140 may be accommodated in the first recess R1 and disposed up to a part of the second recess R2.
  • the cavity C is The side surface CS may be contaminated to reduce the reflection function of the reflective layer.
  • the bonding member 140 overflowing to the side surface CS of the cavity C is discolored, which is aesthetically detrimental and may be discolored and deteriorated.
  • the volume formed by the first recess portion R as well as the first distance d1 may be greater than or equal to the volume of the bonding member 140.
  • the second thickness t2 of the bonding member 140 may be determined.
  • the bonding member 140, the package body 110A, and the light may be overflowed by the second recess R2.
  • the contact area between the transmissive members 130 may be widened to enhance the bonding force.
  • the bonding member 140 may be formed of an organic material.
  • the bonding member 140 when light in the deep ultraviolet wavelength band is emitted from the light emitting device 120A, the bonding member 140 may be implemented as, for example, UV bond, but the embodiment is not limited thereto.
  • the bonding member 140 when light in the visible wavelength band is emitted from the light emitting device 120A, the bonding member 140 may be formed of various materials such as acrylic, urethane, silicon, epoxy, and the like.
  • the bonding member 140 when the bonding member 140 is disposed to seal an empty space between the package body 110A and the light transmissive member 130, penetration of moisture, moisture, or dust from the outside into the cavity C is prevented. Can be.
  • the light emitting device package 100A may further include a molding member 150.
  • the molding member 150 is disposed to surround at least one light emitting device 120A in the cavity C.
  • the molding member 150 may include a phosphor to change the wavelength of light emitted from the light emitting device 120A.
  • white light may be emitted onto the light transmitting member 130.
  • the light emitting device 120A emits blue light and the red member and the green phosphor are included in the molding member 150
  • white light may be emitted onto the light transmitting member 130.
  • the light emitting device 120A emits blue light and the red member and the green phosphor are included in the molding member 150
  • the light transmitting member 130 White light may be emitted to the top of the.
  • FIG. 4 is a plan view of a light emitting device package 100B according to another embodiment.
  • a cross-sectional view taken along the line BB 'shown in FIG. 4 is the same as the cross-sectional view shown in FIG. 3.
  • the first recess R1 has a closed curve ring plane shape.
  • the first recessed portion R1 may include a plurality of first recessed portions R1-1, R1-2, R1-3, and R1-4.
  • the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 are arranged in the fourth interval d4 in a direction ⁇ perpendicular to the thickness direction Z of the package body 110A. It can be arranged spaced apart from each other.
  • the lengths L of the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 may be the same as or different from each other.
  • the spacing d4 between the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 may be the same as or different from each other.
  • the separation distance d4 between the first-first recess R1-1 and the second-recess recess R1-2 may be defined by the first-second recess R1-2 and the second recess part R1-2. It may be different from the separation interval d4 between the 1-3 recessed portions (R1-3).
  • the bonding member 140 If the fourth distance d4 in which the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 are spaced apart is greater than half of the length L, the bonding member 140.
  • the space occupied by the first recess R1 accommodating) may become narrow so that the bonding member 140 may overflow into the cavity C.
  • the fourth distance d4 may be, for example, less than half the length of each of the plurality of first recesses R1-1, R1-2, R1-3, and R1-4. Examples are not limited to this.
  • the light emitting device package 100B illustrated in FIG. 4 is the same as the light emitting device package 100A illustrated in FIGS. 2 and 3, and thus the same reference numerals are used, and overlapping descriptions thereof will be omitted.
  • FIG. 5 is a plan view of a light emitting device package 100C according to still another embodiment
  • FIG. 6 is a cross-sectional view taken along the line CC ′ of FIG. 5.
  • the illustration of the light transmissive member 130 shown in FIG. 6 is omitted.
  • the recess R of the light emitting device package 100A illustrated in FIGS. 2 and 3 has only the first and second recesses R1 and R2.
  • the light emitting device package 100C illustrated in FIGS. 5 and 6 may further include a third recess R3 in addition to the first and second recesses R1 and R2.
  • the recess R is formed around the cavity C as in the light emitting device package 100A shown in FIGS. 2 and 3.
  • the recess R may include a first upper surface PU1, a first side surface PU2, a second upper surface PU3, a second side surface PU4, a third upper surface PU6, and a first upper surface PU1. It is defined as a space surrounded by the three side surfaces PU7 and the lower surface 132 of the light transmissive member 130.
  • the first upper surface PU1, the first side surface PU2, the second upper surface PU3, and the second side surface PU4 are the same as those described with reference to FIG. 3.
  • the third upper surface PU6 corresponds to the upper surface of the package body 110B extending from the second side surface PU4 in a direction perpendicular to the thickness direction (Z-axis direction) (X-axis direction).
  • the third side surface PU7 corresponds to the side surface of the upper portion of the package body 110B extending from the third upper surface PU6 in the thickness direction (Z-axis direction) of the package body 110B.
  • the recess R may include first, second and third recesses R1, R2, and R3.
  • the first recessed portion (or concave portion) R1 is defined in the same manner as the first recessed portion R1 described with reference to FIG. 3.
  • the third recess R3 is defined as a space surrounded by the third upper surface PU6, the third side surface PU7, and the lower surface 132 of the light transmissive member 130.
  • the second recess R2 is defined as a space in the recess R except for the first and third recesses R1 and R3.
  • the package body 110B, the first body 110B-1, and the second body illustrated in FIGS. 5 and 6 are different.
  • the portion 110B-2 is identical to the package body 110A, the first body portion 110A-1, and the second body portion 110A-2 illustrated in FIGS. 2 and 3, respectively.
  • the bonding member 140 when the light transmitting member 130 is pressed in the thickness direction (Z-axis direction) of the package body 110B, a part of the bonding member 140 may be accommodated in the recess R1.
  • the first upper surface PU1 and the third upper surface PU6 of the package body 110B may be overflowed after being accommodated in the recess R1.
  • the first distance d1 and the volume of the recess R1 are determined as described above. That is, the bonding member 140 may be accommodated in the first recessed portion R1 and disposed up to a part of the second and third recessed portions R2 and R3.
  • the inner planar shape (ie, the inner edge planar shape) of the fourth upper surface PU5 is circular and the outer planar shape (ie, the outer edge). Plane shape) is square.
  • the inner and outer planar shapes of the fourth upper surface PU5 are both rectangular.
  • the embodiment is not limited thereto.
  • both the inner and outer planar shapes of the fourth upper surface PU5 may be circular (or elliptical), and the inner planar shape is rectangular and the outer planar shape is circular ( Or elliptical), and the inner planar shape of the fourth upper surface PU5 may be elliptical, and the outer planar shape may be rectangular.
  • a third recess portion ( R3) is further arranged to have different widths of X1 to X6.
  • the cavity C is not filled with the molding member 150 in the light emitting device package 100C illustrated in FIG. 6. May be in a vacuum state.
  • the embodiment is not limited thereto. That is, in the light emitting device package 100A illustrated in FIG. 3, the cavity C is in a vacuum state, and in the cavity C in the light emitting device package 100C illustrated in FIG. 6, the molding member ( 150 may be filled.
  • the light emitting device 120B illustrated in FIGS. 5 and 6 may have a horizontal, vertical, or flip type bonding method.
  • the light emitting device 120B may have a vertical bonding structure.
  • the first electrode of the light emitting device 120B is electrically connected directly to the first body part 110B-1
  • the second electrode is electrically connected to the second body part 110B-2 through the wire 176. Can be connected.
  • the light emitting device package 100C illustrated in FIGS. 5 and 6 is the same as the light emitting device package 100A illustrated in FIGS. 2 and 3, and thus the same reference numerals are used, and overlapping descriptions are omitted. do.
  • FIG. 7 is a plan view of a light emitting device package 100D according to still another embodiment.
  • the illustration of the light transmissive member 130 is omitted for convenience of description.
  • the light transmissive member 130 may be disposed as shown in FIG. 6.
  • a cross-sectional view taken along the line D-D 'of the light emitting device package 100D illustrated in FIG. 7 is as illustrated in FIG. 6.
  • the first recess R1 in which the bonding member 140 is accommodated has a closed curve ring plane shape.
  • the first recess R1 may include a plurality of first recesses R1-1, R1-2, R1-3, and R1-4 separated from each other. .
  • the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 are fourth in a direction perpendicular to the thickness direction (Z-axis direction) of the package body 110D ( ⁇ axis direction). Spaced apart from each other at an interval d4.
  • each of the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 are as described with reference to FIG. 4. That is, the lengths L of the first recesses R1-1, R1-2, R1-3, and R1-4 may be the same as or different from each other.
  • the bonding member 140 When the fourth distance d4 having the plurality of first recesses R1-1, R1-2, R1-3, and R1-4 is greater than half of the length L, the bonding member 140 may be disconnected. Since the space occupied by the first recess R1 to be accommodated becomes narrow, the bonding member 140 may flow into the cavity C. In order to prevent this, the fourth distance d4 may be, for example, less than half the length of each of the plurality of first recesses R1-1, R1-2, R1-3, and R1-4. Examples are not limited to this.
  • the light emitting device package 100D illustrated in FIG. 7 is the same as the light emitting device package 100C illustrated in FIGS. 5 and 6, and thus the same reference numerals are used, and overlapping descriptions thereof will be omitted.
  • FIG 8 is a plan view of a light emitting device package 100E according to still another embodiment.
  • the illustration of the light transmissive member 130 is omitted for convenience of description.
  • FIG. 8 is a cross-sectional view taken along the line E-E 'of the light emitting device package 100E illustrated in FIG. 8.
  • the first recess R1 in which the bonding member 140 is accommodated has a closed curved ring shape.
  • the first recess R1 has a dot plane shape.
  • the bonding member 140 is accommodated in the first recessed portion R1 having a dot plane shape as described above.
  • at least one of the number of dots, the distance between the dots, or the size of the dots may be set to a sufficient number and interval to secure bonding between the light transmissive member 130 and the package body 110B.
  • the number of dots may be 12 as illustrated in FIG. 8, but the embodiment may include more or fewer than 12 dots.
  • the light emitting device package 100E illustrated in FIG. 8 is the same as the light emitting device package 100C illustrated in FIGS. 5 and 6, and thus the same reference numerals are used, and overlapping descriptions thereof will be omitted.
  • the bonding member 140 since the bonding member 140 is accommodated in the first recess R1, the light transmitting member 130 The bonding member 140 does not flow into the cavity C when it is pressed to bond the package bodies 110A and 110B. Therefore, the above-mentioned problems that may occur as the bonding member 140 is introduced into the cavity C may be eliminated, so that the light extraction efficiency may be improved and the life may be extended.
  • the contact area between the bonding member 140 and the light transmissive member 130 is widened, but also the contact area between the bonding member 140 and the top of the package body 110A is widened, and thus the light transmissive member 130 and Bonding strength between the package bodies 110A can be maximized.
  • each of the light emitting device packages 100A, 100B, 100C, 100D, and 100E may further include a rubber ring 180 as illustrated in FIGS. 2 to 8.
  • the rubber ring 180 is disposed between the side surface 134 of the light transmissive member 130 and the package bodies 110A, 110B.
  • the rubber ring 180 is disposed between the side surface 134 of the light transmissive member 130 and the second side surface PU4 of the package body 110A.
  • the rubber ring 180 may be disposed in the space between the side surface 134 of the light transmissive member 130 and the second side surface PU4 of the package body 110A above the bonding member 140.
  • the rubber ring 180 may be disposed between the side surface 134 of the light transmissive member 130 and the third side surface PU7 of the package body 110B.
  • the rubber ring 180 may have a circular, oval or polygonal planar shape. That is, the rubber ring 180 may have a circular planar shape as illustrated in each of FIGS. 2 and 4, and the rubber ring 180 may have a rectangular planar shape as illustrated in each of FIGS. 5, 7, and 8. May have
  • a member such as the rubber ring 180 of the embodiment is not provided. For this reason, as described above, gas molecules containing moisture or moisture may flow into the cavity C in a high temperature and high humidity environment.
  • the light emitting device package (100A, 100B, 100C, 100D, 100E) provides a rubber ring 180. Therefore, when the light emitting device package 100A, 100B, 100C, 100D, or 100E operates in a high temperature of 50 ° C to 85 ° C and a high humidity environment of 80% RH (Relative Humidity) to 95% RH, the rubber ring 180 External water vapor, moisture, dust, or foreign matter in the form of a gas may be prevented from entering the package (C).
  • RH Relative Humidity
  • a material such as silicone or epoxy is placed between the side surfaces of the light transmitting member 130 and the side surfaces PU4 and PU7 of the package bodies 110A and 110B, and then cured. It may not function properly. This is because silicone or epoxy, which is not in the solid state before curing, may not seal the circumference of the side of the light transmissive member 130.
  • the rubber ring 180 in a solid state since the rubber ring 180 in a solid state is used, the circumference of the side surface 132 of the light transmissive member 130 can be completely sealed by mechanical rubber tension, thereby allowing gas molecules containing moisture to be contained. It is possible to reliably block back or dust from entering the cavity C. Therefore, in the material of the rubber ring 180, it can be replaced with a material having a low transmittance of liquid or gas in the solid state instead of the rubber.
  • a plurality of light emitting device packages according to the embodiment may be arranged on a substrate, and a light guide plate, a prism sheet, a diffusion sheet, or the like, which is an optical member, may be disposed on an optical path of the light emitting device package.
  • the light emitting device package, the substrate, and the optical member may function as a light unit.
  • Another embodiment may be implemented as a display device, an indicator device, or a lighting system including the semiconductor light emitting device or the light emitting device package described in the above embodiments, for example, the lighting system may include a lamp, a street lamp. .
  • FIG. 9 is an exploded perspective view showing an embodiment of a lighting device including a light emitting device package according to the embodiment.
  • the lighting apparatus includes a light emitting module 600 for projecting light, a housing 400 in which the light emitting module 600 is built, and a heat dissipation part 500 and a light emitting module 600 for dissipating heat from the light emitting module 600. And a holder 700 for coupling the heat dissipation part 500 to the housing 400.
  • the housing 400 includes a socket coupling portion 410 coupled to an electrical socket (not shown), and a body portion 420 connected to the socket coupling portion 410 and having a light source 600 built therein.
  • One air flow port 430 may be formed in the body portion 420.
  • a plurality of air flow port 430 is provided on the body portion 420 of the housing 400, the air flow port 430 is composed of one air flow port, or a plurality of flow ports other than the radial arrangement as shown Various arrangements are also possible.
  • the light emitting module 600 includes a plurality of light emitting device packages 650 disposed on the circuit board 610.
  • the light emitting device package 650 may include the light emitting device packages 100A, 100B, 100C, 100D, and 100E according to the above-described embodiment.
  • the circuit board 610 may have a shape that may be inserted into an opening of the housing 400, and may be made of a material having high thermal conductivity to transfer heat to the heat dissipation part 500, as described below.
  • a holder 700 is provided below the light emitting module, and the holder 700 may include a frame and another air flow port.
  • an optical member may be provided below the light emitting module 600 to diffuse, scatter, or converge the light projected from the light emitting device module 650 of the light emitting module 600.
  • FIG. 10 is an exploded perspective view illustrating an exemplary embodiment of a display device 800 in which a light emitting device package is disposed.
  • the display device 800 is disposed in front of the light emitting modules 830 and 835, the reflector 820 on the bottom cover 810, and the reflector 820, and emits light from the light emitting module.
  • the light emitting module includes the above-described light emitting device package 835 on the circuit board 830.
  • the PCB 830 may be used, and the light emitting device package 835 may be the above-described light emitting device packages 100A, 100B, 100C, 100D, and 100E.
  • the bottom cover 810 may receive components in the display device 800.
  • the reflecting plate 820 may be provided as a separate component as shown in the figure, or may be provided in the form of coating with a highly reflective material on the back of the light guide plate 840, or the front of the bottom cover 810.
  • the reflective plate 820 may use a material having a high reflectance and being extremely thin, and may use polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the light guide plate 840 scatters the light emitted from the light emitting device package module so that the light is uniformly distributed over the entire area of the screen of the liquid crystal display. Therefore, the light guide plate 840 is made of a material having a good refractive index and a high transmittance, and may be formed of polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene (PE), or the like. In addition, the light guide plate may be omitted, and thus an air guide method in which light is transmitted in a space on the reflective sheet 820 may be possible.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PE polyethylene
  • the first prism sheet 850 is formed of a translucent and elastic polymer material on one surface of the support film, and the polymer may have a prism layer in which a plurality of three-dimensional structures are repeatedly formed.
  • the plurality of patterns may be provided in the stripe type and the valley repeatedly as shown.
  • the direction of the floor and the valley of one surface of the support film may be perpendicular to the direction of the floor and the valley of one surface of the support film in the first prism sheet 850. This is to evenly distribute the light transmitted from the light emitting module and the reflective sheet in the front direction of the panel 870.
  • the first prism sheet 850 and the second prism sheet 860 form an optical sheet, which is composed of another combination, for example, a micro lens array or a combination of a diffusion sheet and a micro lens array or one. It can be made of a combination of a prism sheet and a micro lens array.
  • the liquid crystal display panel (Liquid Crystal Display) may be disposed in the panel 870, and in addition to the liquid crystal display panel 860, another type of display device requiring a light source may be provided.
  • the panel 870 is in a state where the liquid crystal is located between the glass bodies and the polarizing plates are placed on both glass bodies in order to use the polarization of light.
  • the liquid crystal has an intermediate characteristic between a liquid and a solid.
  • the liquid crystal which is an organic molecule having a fluidity like a liquid, has a state in which the liquid crystal is regularly arranged like a crystal, and the image of the liquid crystal is changed by an external electric field. Is displayed.
  • the liquid crystal display panel used in the display device uses a transistor as an active matrix method as a switch for adjusting a voltage supplied to each pixel.
  • the front surface of the panel 870 is provided with a color filter 880 to transmit the light projected by the panel 870, only the red, green and blue light for each pixel can represent an image.
  • the bonding member for bonding the light transmitting member and the package body is accommodated in the recess around the cavity, the bonding member flows into the inclined surface of the cavity to hinder the reflection of light and the inside of the cavity.
  • This can be strengthened, and the rubber ring can be mechanically sandwiched between the side of the light transmitting member and the package body to prevent external moisture, moisture or dust from entering the interior of the cavity. It can have a function.
  • the light emitting device package according to the embodiment may be used in a display device, an indicator device, and an illumination system.
  • the illumination system may include a lamp and a street lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예의 발광 소자 패키지는, 캐비티 및 캐비티의 둘레에 형성되며 적어도 하나의 오목부를 갖는 리세스부를 포함하는 패키지 몸체; 캐비티 내에 실장된 적어도 하나의 발광 소자; 캐비티의 상부를 덮도록 배치되며 적어도 하나의 발광 소자로부터 방출된 광을 투과시키는 광 투과성 부재; 및 리세스부에서 광 투과성 부재와 패키지 몸체가 접착되도록 적어도 하나의 오목부에 수용되는 본딩 부재를 포함한다.

Description

발광 소자 패키지
실시 예는 발광 소자 패키지에 관한 것이다.
질화갈륨(GaN)의 금속 유기 화학 기상 증착법 및 분자선 성장법 등의 발달을 바탕으로 고휘도 및 백색광 구현이 가능한 적색, 녹색 및 청색 발광 다이오드(LED:Light Emitting Diode)가 개발되었다.
이러한 LED는 백열등과 형광등 등의 기존 조명기구에 사용되는 수은(Hg)과 같은 환경 유해물질이 포함되어 있지 않아 우수한 친환경성을 가지며, 긴 수명, 저전력 소비특성 등과 같은 장점이 있기 때문에 기존의 광원들을 대체하고 있다. 이러한 LED 소자의 핵심 경쟁 요소는 고효율 및 고출력 칩 및 패키징 기술에 의한 고휘도의 구현이다.
도 1은 기존의 발광 소자 패키지의 개략적인 단면도로서, 캐비티(C)를 갖는 패키지 몸체(10), LED(20), 글래스(glass)(30) 및 접착제(40)로 구성된다.
도 1에 도시된 기존의 발광 소자 패키지를 제조하는 과정을 살펴보면, 접착제(40)를 패키지 몸체(10)에서 캐비티(C)에 인접한 상부면에 증착한 후, 글래스(30)를 약 400gf의 힘으로 눌러 패키지 몸체(10)에 글래스(30)를 본딩시킨다. 이때, 글래스(30)를 누르는 힘에 의해 도 1에 도시된 바와 같이 접착제(40)가 캐비티(C)의 내부로 흘러 들어감으로써, 캐비티(C)의 경사면에서 광을 반사시키는 기능이 흘러 들어간 접착제(40)에 의해 방해를 받을 수 있다.
게다가, LED(20)에서 심자외선 파장 대역의 광을 방출할 경우, 캐비티(C)의 내부로 유입된 접착제(40)가 심자외선 광에 장시간 노출되어 변색되면, 유입된 접착제(40)로 많은 광이 흡수되어 발광 효율이 저하될 수 있다. 특히, 접착제(40)가 실리콘이나 에폭시로 이루어질 경우, 접착제(40)가 변색된 후 변질됨으로써 글래스(30)와 패키지 몸체(10) 사이의 본딩이 깨질 수 있고, 마이크로 크랙 등이 발생되어 수분이 침투하는 등 발광 소자 패키지의 수명이 단축될 수 있다.
또한, 외부의 습기나 수분이 캐비티(C)의 내부로 유입되지 않도록 하는 역할을 접착제(40)가 어느 정도 수행할 수 있다. 그러나, 외부의 불순물(50)이 가스 형태일 경우 예를 들어 물 분자를 포함하는 기체 분자 등이 외부로부터 침투할 경우 접착제(40)는 이를 제대로 차단하기 어려울 수 있다. 특히, 발광 소자 패키지가 고온 및 고습의 환경에서 장시간 동작할 경우 습기나 수분 등이 캐비티(C)의 내부로 침투함으로써 발광 소자 패키지의 도금부 및 LED(20)의 전극부 등이 변색되어 수명과 성능이 더욱 저하될 수 있다.
실시 예는 개선된 발광 효율과 긴 수명을 갖고 방수, 방습 및 방진 기능을 갖는 발광 소자 패키지를 제공한다.
실시 예의 발광 소자는, 캐비티 및 상기 캐비티의 둘레에 형성되며 적어도 하나의 오목부를 갖는 리세스부를 포함하는 패키지 몸체; 상기 캐비티 내에 실장된 적어도 하나의 발광 소자; 상기 캐비티의 상부를 덮도록 배치되며 상기 적어도 하나의 발광 소자로부터 방출된 광을 투과시키는 광 투과성 부재; 및 상기 리세스부에서 상기 광 투과성 부재와 상기 패키지 몸체가 접착되도록 상기 적어도 하나의 오목부에 수용되는 본딩 부재를 포함할 수 있다. 상기 오목부의 공간 체적은 상기 본딩 부재의 체적 이상일 수 있다.
예를 들어, 상기 적어도 하나의 오목부는 링 평면 형상을 갖거나, 도트 평면 형상을 가질 수 있다.
예를 들어, 상기 적어도 하나의 오목부는 상기 패키지 몸체의 두께 방향에 수직한 방향으로 소정 간격으로 이격되어 배치된 복수의 오목부를 포함할 수 있다.
예를 들어, 상기 복수의 오목부가 이격된 거리는 상기 복수의 오목부 각각의 길이의 절반 이하일 수 있다.
예를 들어, 상기 적어도 하나의 오목부는 상기 캐비티로부터 제1 거리만큼 이격될 수 있다.
예를 들어, 상기 리세스부에서 상기 패키지 몸체의 두께 방향으로 상기 광 투과성 부재가 상기 패키지 몸체의 상부면과 이격된 제2 거리는 0 이상이고 상기 적어도 하나의 오목부의 깊이보다 작을 수 있다.
예를 들어, 상기 캐비티 또는 상기 적어도 하나의 오목부 중 적어도 하나는 원형, 타원형 또는 다각형 평면 형상을 가질 수 있다.
예를 들어, 상기 본딩 부재는 상기 패키지 몸체와 상기 광 투과성 부재 사이의 공간을 밀봉하도록 배치될 수 있다.
예를 들어, 상기 적어도 하나의 발광 소자는 자외선 파장 대역의 광을 방출할 수 있다.
예를 들어, 상기 본딩 부재는 UV 본드, 아크릴, 우레탄, 실리콘, 또는 에폭시를 포함할 수 있다.
예를 들어, 상기 적어도 하나의 발광 소자는 서브 마운트; 및 상기 서브 마운트 위에 플립 본딩된 발광 다이오드를 포함할 수 있다.
예를 들어, 상기 광 투과성 부재는 평판형 시트, 반구형 렌즈 또는 구형 렌즈를 포함할 수 있다.
예를 들어, 상기 발광 소자 패키지는 상기 캐비티 내에서 상기 적어도 하나의 발광 소자를 포위하여 배치되는 몰딩 부재를 더 포함할 수 있다. 또는, 상기 캐비티는 진공일 수도 있다.
예를 들어, 상기 발광 소자 패키지는 상기 광 투과성 부재의 측면과 상기 패키지 몸체 사이에 배치된 고무 링을 더 포함할 수 있다.
예를 들어, 상기 고무 링은 상기 본딩 부재의 위에서 상기 광 투과성 부재와 상기 패키지 몸체 사이의 공간에 배치될 수 있다.
예를 들어, 상기 고무 링은 원형, 타원형 또는 다각형 평면 형상을 가질 수 있다. 상기 고무 링은 0.1 ㎜ 내지 0.15 ㎜의 폭을 가질 수 있다.
실시 예에 따른 발광 소자 패키지는 광 추출 효율을 개선시키고 연장된 수명을 가질 수 있고, 보다 넓은 면적에서 본딩 부재가 패키지 몸체와 광 투과성 부재를 본딩시켜 본딩력이 강화될 수 있고, 외부의 습기나 수분이나 먼지 등이 캐비티의 내부로 유입됨을 막아줄 수 있기 때문에 우수한 방습, 방수 및 방진의 기능을 가질 수 있다.
도 1은 기존의 발광 소자 패키지의 개략적인 단면도이다.
도 2는 일 실시 예에 의한 발광 소자 패키지의 평면도를 나타낸다.
도 3은 도 2에 도시된 A-A'선을 따라 절취한 단면도를 나타낸다.
도 4는 다른 실시 예에 의한 발광 소자 패키지의 평면도를 나타낸다.
도 5는 또 다른 실시 예에 의한 발광 소자 패키지의 평면도를 나타낸다.
도 6은 도 5에 도시된 C-C'선을 따라 절취한 단면도를 나타낸다.
도 7은 또 다른 실시 예에 의한 발광 소자 패키지의 평면도를 나타낸다.
도 8은 또 다른 실시 예에 의한 발광 소자 패키지의 평면도를 나타낸다.
도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 조명장치의 일 실시예를 나타낸 분해 사시도이다.
도 10은 실시 예에 따른 발광 소자 패키지가 배치된 표시장치의 일 실시예를 나타낸 분해 사시도이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명에 따른 실시 예의 설명에 있어서, 각 element의 " 상(위)" 또는 "하(아래)"(on or under)에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)"(on or under)로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
또한, 이하에서 이용되는 "제1" 및 "제2," "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.
도 2는 일 실시 예에 의한 발광 소자 패키지(package)(100A)의 평면도를 나타내고, 도 3은 도 2에 도시된 A-A'선을 따라 절취한 단면도를 나타낸다. 실시 예의 이해를 돕기 위해, 도 2에서 도 3에 예시된 광 투과성 부재(130) 및 몰딩 부재(150)의 도시가 생략되었다.
도 2 및 도 3를 참조하면, 발광 소자 패키지(100A)는 패키지 몸체(110A), 발광 소자(120A), 광 투과성 부재(130), 본딩(bonding) 부재(140), 몰딩(molding) 부재(150), 절연부(160), 제1 및 제2 와이어(172, 174)를 포함할 수 있다.
패키지 몸체(110A)는 캐비티(C:Cavity) 및 리세스(Recess)부(R)를 포함한다.
캐비티(C)는 패키지 몸체(110A)에 형성되고 바닥면(CB)과 측면(CS)을 가지며, 바닥면(CB)과 측면(CS)에 의해 에워싸인 공간으로 정의된다. 또한, 도 2 및 도 3에 예시된 바와 같이, 패키지 몸체(110A)의 두께 방향(Z축 방향)에 수직한 방향(X축 방향)의 중앙에 캐비티(C)가 형성될 수 있지만, 실시 예는 캐비티(C)의 위치에 국한되지 않는다.
이때, 캐비티(C)의 측면(CS)에는 반사층(미도시)이 코팅되거나 배치될 수 있다. 따라서, 발광 소자(120A)로부터 방출된 광이 캐비티(C)의 측면(CS)에 배치된 반사층에서 반사되어 광 투과 부재(130)로 향할 수 있다. 또한, 캐비티(C)의 측면(CS)의 제1 폭(W1)은 '0' 이상일 수 있다.
리세스부(R)는 캐비티(C)의 둘레에 형성된다. 더욱 자세하게, 리세스부(R)는 제1 상부면(PU1), 제1 측부면(PU2), 제2 상부면(PU3), 제2 측부면(PU4), 광 투과성 부재(130)의 하부면(132)에 의해 에워싸인 공간으로 정의된다. 여기서, 제1 상부면(PU1)은 캐비티(C)의 측면(CS)에 인접한 패키지 몸체(110A)의 상부면에 해당한다. 제1 측부면(PU2)은 제1 상부면(PU1)으로부터 패키지 몸체(110A)의 두께 방향(Z축 방향)으로 연장된 패키지 몸체(110A)의 상부의 측부면에 해당한다. 제2 상부면(PU3)은 제1 측부면(PU2)으로부터 패키지 몸체(110A)의 두께 방향(Z축 방향)에 수직한 방향(X축 방향)으로 연장된 패키지 몸체(110A)의 상부면에 해당한다. 제2 측부면(PU4)은 제2 상부면(PU3)으로부터 패키지 몸체(110A)의 두께 방향(Z축 방향)으로 연장된 패키지 몸체(110A)의 상부의 측부면에 해당한다.
또한, 리세스부(R)는 제1 및 제2 리세스부(R1, R2)를 포함할 수 있다.
제1 리세스부(또는, 오목부)(R1)는 제1 측부면(PU2), 제2 상부면(PU3), 제2 측부면(PU4) 및 광 투과성 부재(130)의 하부면(132)으로 에워싸인 공간으로 정의된다. 제1 리세스부(R1)는 링(ring) 평면 형상을 가질 수 있으며, 캐비티(C)로부터 제1 거리(d1)만큼 이격되어 배치될 수 있다.
제2 리세스부(R2)는 리세스부(R)에서 제1 리세스부(R1)를 제외한 공간으로 정의된다.
캐비티(C), 제1 또는 제2 리세스부(R1, R2) 중 적어도 하나의 평면 형상은 도 2에 예시된 바와 같이 원형일 수 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 캐비티(C), 제1 또는 제2 리세스부(R1, R2) 중 적어도 하나의 평면 형상은 도 2에 예시된 바와 달리 타원형 또는 다각형 예를 들어 사각형일 수도 있다.
또한, 도 2 및 도 3를 참조하면, 패키지 몸체(110A)에서 캐비티(C)의 바닥면(CB)의 폭은 'X1'이고, 캐비티(C)의 바닥면(CB)과 측면(CS)을 포함하는 폭은 'X2'이고, 캐비티(C)와 제1 상부면(PU1)을 포함하는 폭은 'X3'이고, 캐비티(C)와 제1 및 제2 상부면(PU1, PU3)을 포함하는 폭은 'X4'이고, 패키지 몸체(110A)의 전체 폭은 'X5'일 수 있다.
한편, 적어도 하나의 발광 소자(120A)는 캐비티(C)의 바닥면(CB) 위에 실장된다. 도 2 및 도 3의 경우, 한 개의 발광 소자(120A) 만이 도시되어 있지만, 실시 예는 발광 소자(120A)의 개수에 국한되지 않는다.
적어도 하나의 발광 소자(120A)는 가시광선이나 자외선 파장 대역의 광을 방출할 수 있으나, 실시 예는 방출되는 광의 파장 대역에 국한되지 않는다. 예를 들어, 적어도 하나의 발광 소자(120A)로부터 방출되는 광의 파장 대역은 200 ㎚ 내지 405 ㎚의 자외선 파장 대역일 수도 있고, 200 ㎚ 내지 300 ㎚의 심자외선 파장 대역일 수도 있다.
또한, 적어도 하나의 발광 소자(120A)는 서브 마운트(122) 및 발광 다이오드(124)를 포함할 수 있으나, 실시 예의 발광 소자(120A)의 구조는 이에 국한되지 않는다.
서브 마운트(122)는 예를 들어 AlN, BN, 탄화규소(SiC), GaN, GaAs, Si 등의 반도체 기판으로 이루어질 수 있으며, 이에 국한되지 않고 열전도도가 우수한 반도체 물질로 이루어질 수도 있다. 또한, 서브 마운트(122) 내에 제너 다이오드 형태의 정전기(ESD:Electro Static Discharge) 방지를 위한 소자가 포함될 수도 있다.
발광 다이오드(124)는 서브 마운트(122) 위에 플립 본딩될 수 있으나, 실시 예는 발광 소자(120A)의 본딩 형태에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 발광 소자(120A)는 수직형 본딩 구조나 수평형 본딩 구조를 가질 수도 있으며, 이 경우, 서브 마운트(122)는 생략된다.
발광 다이오드(124)는 측면 발광형(side view type) 발광 다이오드 또는 상면 발광형(top view type) 발광 다이오드일 수 있다.
또한, 발광 다이오드(124)는 블루 LED 또는 자외선 LED로 구성되거나 또는 레드 LED, 그린 LED, 블루 LED, 엘로우 그린(Yellow green) LED, 화이트 LED 중에서 적어도 하나 또는 그 이상을 조합한 패키지 형태로 구성될 수도 있다.
전술한, 패키지 몸체(110A)는 제1 및 제2 몸체부(110A-1, 110A-2)를 포함하며, 전기적 전도성과 방열성이 우수한 금속으로 이루어질 수 있다. 예를 들어, 패키지 몸체(110A)는 알루미늄으로 구현될 수 있다. 패키지 몸체(110A)가 금속으로 구현되므로, 제1 및 제2 몸체부(110A-1, 110A-2)를 서로 전기적으로 절연시키기 위해 절연부(160)가 제1 및 제2 몸체부(110A-1, 110A-2) 사이에 배치될 수 있다.
또한, 도 3를 참조하면, 서브 마운트(122)는 제1 몸체부(110A-1) 위에 배치된 것으로 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 서브 마운트(122)는 제1 몸체부(110A-1)가 아니라 제2 몸체부(110A-2) 위에 배치될 수도 있다.
발광 소자(120A)의 제1 및 제2 전극(미도시)은 제1 및 제2 와이어(172, 174)에 의해 제1 및 제2 몸체부(110A-1, 110A-2)와 각각 연결된다.
한편, 광 투과성 부재(130)는 캐비티(C)의 상부를 덮고 적어도 하나의 발광 소자(120A)로부터 방출된 광을 수직 방향(Z축 방향)으로 투과시킬 수 있다. 이를 위해, 광 투과성 부재(130)는 발광 소자(120A)로부터 방출되는 광이 투과될 수 있도록 투명한 재질로 구현될 수 있다. 예를 들어, 광 투과성 부재(130)는 석영 또는 사파이어 등으로 구현될 수 있으나, 실시 예는 광 투과성 부재(130)의 구성 물질에 국한되지 않는다.
또한, 광 투과성 부재(130)는 도 3에 예시된 바와 같이 평판 형상을 가질 수 있으나, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 광 투과성 부재(130)는 반구형상 또는 구형 형상일 수 있다. 또한, 광 투과성 부재(130)는 평판 시트, 반구형 렌즈 또는 구형 렌즈를 포함할 수 있다.
또한, 광 투과성 부재(130)의 제1 두께(t1)는 수 ㎛ 내지 수십 ㎛일 수 있으나, 실시 예는 이에 국한되지 않는다.
또한, 리세스부(R)에서 패키지 몸체(110A)의 두께 방향(Z축 방향)으로 광 투과성 부재(130)가 패키지 몸체(110A)의 제1 상부면(PU1)과 이격된 제2 거리(d2)는 '0' 이상일 수 있다. 만일, 제2 거리(d2)가 '0'일 경우, 광 투과성 부재(130)의 하부면(132)은 패키지 몸체(110A)의 제1 상부면(PU1)과 접하게 된다. 이로 인해, 캐비티(C)의 측면(CS)의 선단은 광 투과성 부재(130)의 하부면(132)과 접할 수 있다. 따라서, 발광 소자(120A)로부터 방출된 광은 캐비티(C)의 측면(CS)에서 반사되어 광 투과성 부재(130)를 투과하여 상측(Z축 방향)으로 출사될 수 있다.
만일, 제2 거리(d2)가 제1 리세스부(R1)에서 오목한 부분의 깊이(d3)보다 클 경우, 본딩 부재(140)를 수용 가능한 오목부(R1)의 공간이 협소하여 광 투과성 부재(130)를 Z축 방향으로 가압하여 패키지 몸체(110A)와 결합시킬 때 본딩 부재(140)가 캐비티(C)의 내부 공간으로 흐를 수 있다.
따라서, 제2 거리(d2)는 0 이상이고 깊이(d3)보다 작을 수 있지만, 실시 예는 제2 거리(d2)에 국한되지 않는다.
한편, 본딩 부재(140)는 리세스부(R)에 배치되어 광 투과성 부재(130)를 패키지 몸체(110A)에 본딩시키며, 적어도 하나의 오목부(R1)에 수용 가능하다. 이때, 도 3에 예시된 바와 같이, 광 투과성 부재(130)를 패키지 몸체(110A)의 두께 방향(Z축 방향)으로 예를 들어 400gf의 힘으로 가압할 때 본딩 부재(140)의 일부가 오목부(R1)에 모두 수용된 후 패키지 몸체(110A)의 제1 상부면(PU1)의 일부까지 넘칠 수 있다. 이와 같이, 제1 상부면(PU1)으로 본딩 부재(140)가 넘침을 고려하여 제1 거리(d1)는 결정될 수 있다. 따라서, 제1 거리(d1)는 '0'보다 크게 설정됨을 알 수 있다. 즉, 본딩 부재(140)는 제1 리세스부(R1)에 수용되되, 제2 리세스부(R2)의 일부까지 배치될 수 있다.
본딩 부재(140)가 제1 리세스부(R1)에 모두 수용되지 않고 패키지 몸체(110A)의 제1 상부면(PU1)을 경유하여 캐비티(C)의 내부까지 흘러 넘칠 경우, 캐비티(C)의 측면(CS)이 오염되어 반사층의 반사 기능을 저하시킬 수 있다. 이 경우, 특히 발광 소자(120A)로부터 심자외선 파장 대역의 광이 방출될 경우, 캐비티(C)의 측면(CS)까지 넘쳐 흐른 본딩 부재(140)가 변색되어 미관상 해로우며 변색 및 변질될 수 있다. 이를 방지하기 위해, 제1 거리(d1)를 결정함은 물론 제1 리세스부(R)가 형성하는 체적은 본딩 부재(140)의 체적 이상일 수 있다.
패키지 몸체(110A)의 상부에 리세스부(R)를 형성 가능한 공정 마진, 광 투과성 부재(130)를 패키지 몸체(110A)의 상부에 본딩시키기 위해 필요한 최소한의 본딩 부재(140)의 량 등을 고려하여, 본딩 부재(140)의 제2 두께(t2)를 결정할 수 있다.
또한, 제1 리세스부(R1)에 본딩 부재(140)가 모두 수용되도록 하기 보다는, 제2 리세스부(R2)로 넘치도록 할 경우, 본딩 부재(140)와 패키지 몸체(110A) 및 광 투과성 부재(130) 간의 접촉 면적이 넓어져서 본딩력을 강화시킬 수 있다.
또한, 본딩 부재(140)는 유기물로 이루어질 수 있다. 특히, 발광 소자(120A)로부터 심자외선 파장 대역의 광이 방출될 경우, 본딩 부재(140)는 예를 들어, UV 본드로 구현될 수 있으나, 실시 예는 이에 국한되지 않는다. 그러나, 발광 소자(120A)로부터 가시광 파장 대역의 광이 방출될 경우, 본딩 부재(140)는 아크릴, 우레탄, 실리콘, 에폭시 등 다양한 물질로 구현될 수 있다.
또한, 본딩 부재(140)가 패키지 몸체(110A)와 광 투과성 부재(130) 사이의 빈 공간을 밀봉하도록 배치될 경우, 외부로부터 캐비티(C)의 내부로 습기, 수분 또는 먼지 등의 침투가 방지될 수 있다.
또한, 도 3를 참조하면, 발광 소자 패키지(100A)는 몰딩 부재(150)를 더 포함할 수 있다. 몰딩 부재(150)는 캐비티(C) 내에서 적어도 하나의 발광 소자(120A)를 포위하여 배치된다. 또한, 몰딩 부재(150)는 형광체를 포함하여, 발광 소자(120A)에서 방출된 광의 파장을 변화시킬 수 있다. 예를 들어, 발광 소자(120A)가 블루 광을 방출하고 몰딩 부재(150)에 옐로우 형광체(Yellow phosphor)가 포함될 경우, 광 투과성 부재(130)의 상부로 백색 광이 출사될 수 있다. 또는, 발광 소자(120A)가 블루 광을 방출하고 몰딩 부재(150)에 레드 형광체(Red phosphor) 및 그린 형광체(Green phosphor)가 포함될 경우, 광 투과성 부재(130)의 상부로 백색 광이 출사될 수 있다. 또는, 발광 소자(120A)가 블루 광을 방출하고 몰딩 부재(150)에 옐로우 형광체(Yellow phosphor)와, 레드 형광체(Red phosphor) 및 그린 형광체(Green phosphor)가 포함될 경우, 광 투과성 부재(130)의 상부로 백색 광이 출사될 수 있다.
도 4은 다른 실시 예에 의한 발광 소자 패키지(100B)의 평면도를 나타낸다.
도 4에 도시된 B-B'선을 따라 절취한 단면도는 도 3에 도시된 단면도와 동일하다. 도 2에 도시된 발광 소자 패키지(100A)에서 제1 리세스부(R1)는 폐곡선 링 평면 형상을 갖는다. 반면에, 도 4을 참조하면, 제1 리세스부(R1)는 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)를 포함할 수 있다. 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)는 패키지 몸체(110A)의 두께 방향(Z)에 수직한 방향(Φ)으로 제4 간격(d4)만큼 서로 이격되어 배치될 수 있다.
여기서, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 각각의 길이(L)는 서로 동일할 수도 있고 서로 다를 수도 있다. 또한, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 간의 이격 간격(d4)은 서로 동일할 수도 있고 서로 다를 수 있다. 예를 들어, 제1-1 리세스부(R1-1)와 제1-2 리세스부(R1-2) 간의 이격 간격(d4)은 제1-2 리세스부(R1-2)와 제1-3 리세스부(R1-3) 간의 이격 간격(d4)과 다를 수 있다.
만일, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)가 이격된 제4 거리(d4)가 길이(L)의 절반보다 클 경우, 본딩 부재(140)를 수용하는 제1 리세스부(R1)가 차지하는 공간이 협소해져서 본딩 부재(140)가 캐비티(C)로 흘러 넘칠 수도 있다. 이를 방지하기 위해, 제4 거리(d4)는 예를 들어, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 각각의 길이의 절반 이하일 수 있으나, 실시 예는 이에 국한되지 않는다.
전술한 차이점을 제외하면, 도 4에 예시된 발광 소자 패키지(100B)는 도 2 및 도 3에 예시된 발광 소자 패키지(100A)와 동일하므로 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 5는 또 다른 실시 예에 의한 발광 소자 패키지(100C)의 평면도를 나타내고, 도 6은 도 5에 도시된 C-C'선을 따라 절취한 단면도를 나타낸다. 설명의 편의상 도 5에서 도 6에 도시된 광 투과성 부재(130)의 도시는 생략되었다.
도 2 및 도 3에 예시된 발광 소자 패키지(100A)의 리세스부(R)는 제1 및 제2 리세스부(R1, R2)만을 갖는다. 반면에, 도 5 및 도 6에 예시된 발광 소자 패키지(100C)는 제1 및 제2 리세스부(R1, R2) 이외에 제3 리세스부(R3)를 더 포함할 수 있다.
리세스부(R)가 캐비티(C)의 둘레에 형성됨은 도 2 및 도 3에 도시된 발광 소자 패키지(100A)와 같다. 이때, 리세스부(R)는 제1 상부면(PU1), 제1 측부면(PU2), 제2 상부면(PU3), 제2 측부면(PU4), 제3 상부면(PU6), 제3 측부면(PU7) 및 광 투과성 부재(130)의 하부면(132)에 의해 에워싸인 공간으로 정의된다. 여기서, 제1 상부면(PU1), 제1 측부면(PU2), 제2 상부면(PU3), 및 제2 측부면(PU4)은 도 3에서 설명한 바와 같다. 그 밖에 제3 상부면(PU6)은 제2 측부면(PU4)으로부터 두께 방향(Z축 방향)에 수직한 방향(X축 방향)으로 연장된 패키지 몸체(110B)의 상부면에 해당한다. 또한, 제3 측부면(PU7)은 제3 상부면(PU6)으로부터 패키지 몸체(110B)의 두께 방향(Z축 방향)으로 연장된 패키지 몸체(110B)의 상부의 측부면에 해당한다.
또한, 리세스부(R)는 제1, 제2 및 제3 리세스부(R1, R2, R3)를 포함할 수 있다.
제1 리세스부(또는, 오목부)(R1)는 도 3에서 설명한 제1 리세스부(R1)와 같이 동일하게 정의된다. 제3 리세스부(R3)는 제3 상부면(PU6), 제3 측부면(PU7) 및 광 투과성 부재(130)의 하부면(132)으로 에워싸인 공간으로 정의된다. 제2 리세스부(R2)는 리세스부(R)에서 제1 및 제3 리세스부(R1, R3)를 제외한 공간으로 정의된다.
이와 같이, 패키지 몸체(110B)에서 리세스부(R)의 구조가 다름을 제외하면, 도 5 및 도 6에 예시된 패키지 몸체(110B), 제1 몸체부(110B-1) 및 제2 몸체부(110B-2)는 도 2 및 도 3에 예시된 패키지 몸체(110A), 제1 몸체부(110A-1) 및 제2 몸체부(110A-2)와 각각 동일하다.
또한, 도 6에 예시된 바와 같이, 광 투과성 부재(130)를 패키지 몸체(110B)의 두께 방향(Z축 방향)으로 누를 때 본딩 부재(140)의 일부는 오목부(R1)에 모두 수용될 수도 있고, 오목부(R1)에 수용된 이후 패키지 몸체(110B)의 제1 상부면(PU1)과 제3 상부면(PU6)의 일부까지 넘칠 수 있다. 이를 위해, 제1 거리(d1) 및 오목부(R1)의 체적이 결정됨은 전술한 바와 같다. 즉, 본딩 부재(140)는 제1 리세스부(R1)에 수용되되, 제2 및 제3 리세스부(R2, R3)의 일부까지 배치될 수 있다.
또한, 도 2 및 도 3에 예시된 발광 소자 패키지(100A)에서 제4 상부면(PU5)의 내부 평면 형상(즉, 내측 가장 자리의 평면 형상)은 원형이고 외부 평면 형상(즉, 외측 가장 자리의 평면 형상)은 사각형이다. 반면에, 도 5 및 도 6에 예시된 발광 소자 패키지(100C)에서 제4 상부면(PU5)의 내부 및 외부 평면 형상은 모두 사각형이다. 그러나, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 도시되지는 않았지만, 제4 상부면(PU5)의 내부 및 외부 평면 형상은 모두 원형(또는, 타원형)일 수도 있고, 내부 평면 형상은 사각형이고 외부 평면 형상은 원형(또는, 타원형)일 수도 있고, 제4 상부면(PU5)의 내부 평면 형상은 타원형이고 외부 평면 형상은 사각형일 수 있다.
또한, X1 내지 X5의 서로 다른 폭을 갖는 도 2 및 도 3에 예시된 발광 소자 패키지(100A)와 달리, 도 5 및 도 6에 예시된 발광 소자 패키지(100C)의 경우 제3 리세스부(R3)가 더 배치됨으로 인해 X1 내지 X6의 서로 다른 폭을 갖는다.
또한, 도 3에 예시된 발광 소자 패키지(100A)가 몰딩 부재(150)를 포함하는 반면, 도 6에 예시된 발광 소자 패키지(100C)에서 캐비티(C)는 몰딩 부재(150)로 채워지지 않고 진공 상태일 수 있다. 그러나, 실시 예는 이에 국한되지 않는다. 즉, 도 3에 예시된 발광 소자 패키지(100A)에서 캐비티(C)는 진공 상태이고, 도 6에 예시된 발광 소자 패키지(100C)에서 캐비티(C)에 도 3에 예시된 바와 같이 몰딩 부재(150)가 채워질 수도 있다.
또한, 도 2 및 도 3에 예시된 발광 소자(120A)와 마찬가지로, 도 5 및 도 6에 예시된 발광 소자(120B)는 수평형, 수직형 또는 플립형 본딩 방식을 가질 수 있다. 예를 들어, 도 6에 예시된 바와 같이, 발광 소자(120B)는 수직형 본딩 구조를 가질 수 있다. 이 경우, 발광 소자(120B)의 제1 전극은 제1 몸체부(110B-1)와 전기적으로 직접 연결되고, 제2 전극은 제2 몸체부(110B-2)와 와이어(176)를 통해 전기적으로 연결될 수 있다.
전술한 차이점을 제외하면, 도 5 및 도 6에 예시된 발광 소자 패키지(100C)는 도 2 및 도 3에 예시된 발광 소자 패키지(100A)와 동일하므로 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 7은 또 다른 실시 예에 의한 발광 소자 패키지(100D)의 평면도를 나타낸다. 여기서, 설명의 편의상 광 투과성 부재(130)의 도시는 생략되었다. 그러나, 광 투과성 부재(130)는 도 6에 도시된 바와 같이 배치될 수 있다.
도 7에 예시된 발광 소자 패키지(100D)에서 D-D'선을 따라 절취한 단면도는 도 6에 예시된 바와 같다.
도 5에 도시된 발광 소자 패키지(100C)에서 본딩 부재(140)가 수용되는 제1 리세스부(R1)는 폐곡선 링 평면 형상을 갖는다. 반면에, 도 7을 참조하면, 제1 리세스부(R1)는 서로 분리된 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)를 포함할 수 있다. 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)는 패키지 몸체(110D)의 두께 방향(Z축 방향)에 수직한 방향(Φ축 방향)으로 제4 간격(d4)으로 서로 이격되어 배치된다. 여기서, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 각각의 특성은 도 4에서 설명한 바와 같다. 즉, 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 각각의 길이(L)는 서로 동일할 수도 있고 서로 다를 수도 있다.
복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4)가 이격된 제4 거리(d4)가 길이(L)의 절반보다 클 경우, 본딩 부재(140)를 수용하는 제1 리세스부(R1)가 차지하는 공간이 협소해져서 본딩 부재(140)가 캐비티(C)로 흘러 넘칠 수 있다. 이를 방지하기 위해, 제4 거리(d4)는 예를 들어, 복수의 제1 리세스부(R1-1, R1-2, R1-3, R1-4) 각각의 길이의 절반 이하일 수 있으나, 실시 예는 이에 국한되지 않는다.
전술한 차이점을 제외하면, 도 7에 예시된 발광 소자 패키지(100D)는 도 5 및 도 6에 예시된 발광 소자 패키지(100C)와 동일하므로 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 8은 또 다른 실시 예에 의한 발광 소자 패키지(100E)의 평면도를 나타낸다. 여기서, 설명의 편의상 광 투과성 부재(130)의 도시는 생략되었다.
도 8에 예시된 발광 소자 패키지(100E)에서 E-E'선을 따라 절취한 단면도는 도 6에 예시된 바와 같다.
도 5에 도시된 발광 소자 패키지(100C)에서 본딩 부재(140)가 수용되는 제1 리세스부(R1)는 폐곡선 링 형면 형상을 갖는다. 반면에, 도 8을 참조하면, 제1 리세스부(R1)는 도트(dot) 평면 형상을 갖는다. 이때, 도트 평면 형상의 제1 리세스부(R1)에 본딩 부재(140)가 수용됨은 전술한 바와 같다. 이때, 도트의 개수, 도트 간의 간격 또는 도트의 크기 중 적어도 하나는 광 투과성 부재(130)와 패키지 몸체(110B) 간에 본딩을 확보하기 위해 충분한 개수 및 간격으로 설정될 수 있다. 예를 들어, 도트의 개수는 도 8에 예시된 바와 같이 12개일 수 있으나, 실시 예는 12개보다 더 많거나 더 적은 도트를 포함할 수도 있다.
전술한 차이점을 제외하면, 도 8에 예시된 발광 소자 패키지(100E)는 도 5 및 도 6에 예시된 발광 소자 패키지(100C)와 동일하므로 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
전술한 바와 같이, 실시 예에 의한 발광 소자 패키지(100A, 100B, 100C, 100D, 100E)의 경우 본딩 부재(140)를 제1 리세스부(R1)에 수용하기 때문에, 광 투과성 부재(130)를 패키지 몸체(110A, 110B)에 본딩시키기 위해 가압할 때 본딩 부재(140)가 캐비티(C)의 내부로 흘러들어가지 않는다. 따라서, 본딩 부재(140)가 캐비티(C)의 내부로 유입됨에 따라 발생할 수 있는 전술한 제반 문제점들을 해소하여, 광 추출 효율이 개선되고 수명이 연장될 수 있다.
또한, 본딩 부재(140)와 광 투과성 부재(130) 간의 접촉 면적이 넓어질 뿐만 아니라, 본딩 부재(140)와 패키지 몸체(110A)의 상부 간의 접촉 면적이 넓어져서, 광 투과성 부재(130)와 패키지 몸체(110A) 간의 본딩 강도가 최대화될 수 있다.
한편, 전술한 실시 예에 의한 발광 소자 패키지(100A, 100B, 100C, 100D, 100E) 각각은 도 2 내지 도 8에 예시된 바와 같이 고무 링(180)을 더 포함할 수 있다.
고무 링(180)은 광 투과성 부재(130)의 측면(134)과 패키지 몸체(110A, 110B) 사이에 배치된다.
예를 들어, 도 3을 참조하면, 고무 링(180)은 광 투과성 부재(130)의 측면(134)과 패키지 몸체(110A)의 제2 측부면(PU4) 사이에 배치된다. 이 경우, 고무 링(180)은 본딩 부재(140)의 위에서 광 투과성 부재(130)의 측면(134)과 패키지 몸체(110A)의 제2 측부면(PU4) 사이의 공간에 배치될 수 있다.
또한, 도 6을 참조하면, 고무 링(180)은 광 투과성 부재(130)의 측면(134)과 패키지 몸체(110B)의 제3 측부면(PU7) 사이에 배치될 수 있다.
또한, 고무 링(180)은 원형, 타원형 또는 다각형 평면 형상을 가질 수 있다. 즉, 도 2 및 도 4 각각에 예시된 바와 같이 고무 링(180)은 원형 평면 형상을 가질 수도 있고, 도 5, 도 7 및 도 8 각각에 예시된 바와 같이 고무 링(180)은 사각 평면 형상을 가질 수도 있다.
또한, 도 3 및 도 6을 참조하면, 고무 링(180)의 제2 폭(W2)이 0.1 ㎜보다 작을 경우 광 투과성 부재(130)와 패키지 몸체(110A, 110B)의 측부면(PU4, PU7) 간의 공간을 밀봉하지 못해 방수, 방습 또는 방진의 기능을 제대로 수행하지 못할 수 있고, 0.15 ㎜보다 클 경우 고무 링(180)의 존재로 인해 광 투과성 부재(130)의 측면(132)과 패키지 몸체(110A, 110B)의 측부면(PU4, PU7) 사이의 이격 거리를 증가시킬 수도 있다. 따라서, 제2 폭(W2)은 0.1 ㎜ 내지 0.15 ㎜일 수 있으나, 실시 예는 이에 국한되지 않는다.
도 1에 예시된 기존의 발광 소자 패키지의 경우 실시 예의 고무 링(180)과 같은 부재를 마련하지 않는다. 이로 인해, 고온 및 고습의 환경에서 습기나 수분을 포함하는 기체 분자가 캐비티(C)로 유입될 수 있음은 전술한 바와 같다.
반면에, 실시 예에 의한 발광 소자 패키지(100A, 100B, 100C, 100D, 100E)는 고무 링(180)을 마련한다. 따라서, 50℃ 내지 85℃의 고온과 80%RH(Relative Humidity) 내지 95%RH의 고습 환경에서 발광 소자 패키지(100A, 100B, 100C, 100D, 100E)가 동작할 때, 고무 링(180)은 외부의 수증기, 수분이나, 먼지 등이나 가스 형태의 이물이 패키지(C)로 유입됨을 막아줄 수 있다.
또한, 고무 링(180) 대신에 실리콘이나 에폭시 같은 물질을 광 투과성 부재(130)의 측면과 패키지 몸체(110A, 110B)의 측부면(PU4, PU7) 사이에 위치시킨 후 경화시킬 경우, 방습이나 방수의 기능을 제대로 수행하지 못할 수도 있다. 왜냐하면, 경화되기 이전에 고체 상태가 아닌 실리콘이나 에폭시가 광 투과성 부재(130)의 측면의 둘레를 밀봉하지 못할 수 있기 때문이다. 반면에, 실시 예에 의하면, 고체 상태의 고무 링(180)을 이용하므로, 기계적 고무 장력에 의해 광 투과성 부재(130)의 측면(132)의 둘레를 완전히 밀봉할 수 있어, 수분을 포함한 기체 분자 등이나 먼지가 캐비티(C)의 내부로 유입됨을 확실하게 차단할 수 있다. 따라서, 고무 링(180)의 재질에 있어서, 고무 대신에 고체 상태에서 액체나 기체의 투과율이 낮은 물질로 대체할 수 있음은 물론이다.
실시 예에 따른 발광소자 패키지는 복수 개가 기판 상에 어레이되며, 발광 소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광소자 패키지, 기판, 광학 부재는 라이트 유닛으로 기능할 수 있다. 또 다른 실시 예는 상술한 실시 예들에 기재된 반도체 발광 소자 또는 발광소자 패키지를 포함하는 표시 장치, 지시 장치, 조명 시스템으로 구현될 수 있으며, 예를 들어, 조명 시스템은 램프, 가로등을 포함할 수 있다.
도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 조명장치의 일 실시예를 나타낸 분해 사시도이다.
실시예에 따른 조명 장치는 광을 투사하는 발광 모듈(600)과 발광 모듈(600)이 내장되는 하우징(400)과 발광 모듈(600)의 열을 방출하는 방열부(500) 및 발광 모듈(600)과 방열부(500)를 하우징(400)에 결합하는 홀더(700)를 포함하여 이루어진다.
하우징(400)은 전기 소켓(미도시)에 결합되는 소켓 결합부(410)와, 소켓 결합부(410)와 연결되고 광원(600)이 내장되는 몸체부(420)를 포함한다. 몸체부(420)에는 하나의 공기유동구(430)가 관통하여 형성될 수 있다.
하우징(400)의 몸체부(420) 상에 복수 개의 공기유동구(430)가 구비되어 있는데, 공기유동구(430)는 하나의 공기유동구로 이루어지거나, 복수 개의 유동구를 도시된 바와 같은 방사상 배치 이외의 다양한 배치도 가능하다.
발광 모듈(600)은 회로 기판(610) 상에 배치된 복수 개의 발광 소자 패키지(650)를 포함한다. 발광 소자 패키지(650)는 상술한 실시 예에 따른 발광 소자 패키지(100A, 100B, 100C, 100D, 100E)를 포함할 수 있다. 회로 기판(610)은 하우징(400)의 개구부에 삽입될 수 있는 형상일 수 있으며, 후술하는 바와 같이 방열부(500)로 열을 전달하기 위하여 열전도율이 높은 물질로 이루어질 수 있다.
발광 모듈의 하부에는 홀더(700)가 구비되는데 홀더(700)는 프레임과 또 다른 공기 유동구를 포함할 수 있다. 또한, 도시되지는 않았으나 발광 모듈(600)의 하부에는 광학 부재가 구비되어 발광 모듈(600)의 발광소자 모듈(650)에서 투사되는 빛을 확산, 산란 또는 수렴시킬 수 있다.
도 10은 실시 예에 따른 발광 소자 패키지가 배치된 표시장치(800)의 일 실시예를 나타낸 분해 사시도이다.
도 10을 참조하면, 실시 예에 따른 표시장치(800)는 발광 모듈(830, 835)과, 바텀 커버(810) 상의 반사판(820)과, 반사판(820)의 전방에 배치되며 발광 모듈에서 방출되는 빛을 표시장치 전방으로 가이드하는 도광판(840)과, 도광판(840)의 전방에 배치되는 제1 프리즘시트(850)와 제2 프리즘시트(860)와, 제2 프리즘시트(860)의 전방에 배치되는 패널(870)과 패널(870)의 전반에 배치되는 컬러필터(880)를 포함하여 이루어진다.
발광 모듈은 회로 기판(830) 상의 상술한 발광 소자 패키지(835)를 포함하여 이루어진다. 여기서, 회로 기판(830)은 PCB 등이 사용될 수 있고, 발광 소자 패키지(835)는 전술한 발광 소자 패키지(100A, 100B, 100C, 100D, 100E)일 수 있다.
바텀 커버(810)는 표시 장치(800) 내의 구성 요소들을 수납할 수 있다.
반사판(820)은 본 도면처럼 별도의 구성요소로 마련될 수도 있고, 도광판(840)의 후면이나, 바텀 커버(810)의 전면에 반사도가 높은 물질로 코팅되는 형태로 마련되는 것도 가능하다.
여기서, 반사판(820)은 반사율이 높고 초박형으로 사용 가능한 소재를 사용할 수 있고, 폴리에틸렌 테레프탈레이트(PolyEthylene Terephtalate; PET)를 사용할 수 있다.
도광판(840)은 발광소자 패키지 모듈에서 방출되는 빛을 산란시켜 그 빛이 액정 표시 장치의 화면 전영역에 걸쳐 균일하게 분포되도록 한다. 따라서, 도광판(840)은 굴절률과 투과율이 좋은 재료로 이루어지는데, 폴리메틸메타크릴레이트(PolyMethylMethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 또는 폴리에틸렌(PolyEthylene; PE) 등으로 형성될 수 있다. 그리고, 도광판이 생략되어 반사시트(820) 위의 공간에서 빛이 전달되는 에어 가이드 방식도 가능하다.
제1 프리즘 시트(850)는 지지필름의 일면에, 투광성이면서 탄성을 갖는 중합체 재료로 형성되는데, 중합체는 복수 개의 입체구조가 반복적으로 형성된 프리즘층을 가질 수 있다. 여기서, 상기 복수 개의 패턴은 도시된 바와 같이 마루와 골이 반복적으로 스트라이프 타입으로 구비될 수 있다.
제2 프리즘 시트(860)에서 지지필름 일면의 마루와 골의 방향은, 제1 프리즘 시트(850) 내의 지지필름 일면의 마루와 골의 방향과 수직할 수 있다. 이는 발광 모듈과 반사시트로부터 전달된 빛을 패널(870)의 전방향으로 고르게 분산하기 위함이다.
실시 예에서 제1 프리즘시트(850)과 제2 프리즘시트(860)가 광학시트를 이루는데, 광학시트는 다른 조합 예를 들어, 마이크로 렌즈 어레이로 이루어지거나 확산시트와 마이크로 렌즈 어레이의 조합 또는 하나의 프리즘 시트와 마이크로 렌즈 어레이의 조합 등으로 이루어질 수 있다.
패널(870)은 액정 표시 패널(Liquid crystal display)가 배치될 수 있는데, 액정 표시 패널(860) 외에 광원을 필요로 하는 다른 종류의 디스플레이 장치가 구비될 수 있다.
패널(870)은, 유리 바디 사이에 액정이 위치하고 빛의 편광성을 이용하기 위해 편광판을 양 유리바디에 올린 상태로 되어있다. 여기서, 액정은 액체와 고체의 중간적인 특성을 가지는데, 액체처럼 유동성을 갖는 유기분자인 액정이 결정처럼 규칙적으로 배열된 상태를 갖는 것으로, 분자 배열이 외부 전계에 의해 변화되는 성질을 이용하여 화상을 표시한다.
표시장치에 사용되는 액정 표시 패널은, 액티브 매트릭스(Active Matrix) 방식으로서, 각 화소에 공급되는 전압을 조절하는 스위치로서 트랜지스터를 사용한다.
패널(870)의 전면에는 컬러 필터(880)가 구비되어 패널(870)에서 투사된 빛을, 각각의 화소마다 적색과 녹색 및 청색의 빛만을 투과하므로 화상을 표현할 수 있다.
결국, 전술한 실시 예에 의한 발광 소자 패키지는, 광 투과성 부재와 패키지 몸체를 본딩시키는 본딩 부재가 캐비티 주변의 오목부에 수용되므로, 본딩 부재가 캐비티의 경사면으로 유입되어 광의 반사를 방해하고 캐비티 내부로 유입된 본딩 부재가 변색되어 수명을 단축시키는 기존의 문제점들을 해소함으로써 광 추출 효율을 개선시키고 연장된 수명을 가질 수 있고, 보다 넓은 면적에서 본딩 부재가 패키지 몸체와 광 투과성 부재를 본딩시켜 본딩력이 강화될 수 있고, 고무 링을 광 투과성 부재의 측면과 패키지 몸체 사이에 기계적으로 끼움으로써 외부의 습기나 수분이나 먼지 등이 캐비티의 내부로 유입됨을 막아줄 수 있기 때문에 우수한 방습, 방수 및 방진의 기능을 가질 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
발명의 실시를 위한 형태는 전술한 "발명의 실시를 위한 최선의 형태"에서 충분히 설명되었다.
실시 예에 따른 발광소자 패키지는 표시 장치, 지시 장치, 조명 시스템에 이용될 수 있으며, 예를 들어, 조명 시스템은 램프, 가로등을 포함할 수 있다.

Claims (20)

  1. 캐비티 및 상기 캐비티의 둘레에 형성되며 적어도 하나의 오목부를 갖는 리세스부를 포함하는 패키지 몸체;
    상기 캐비티 내에 실장된 적어도 하나의 발광 소자;
    상기 캐비티의 상부를 덮도록 배치되며 상기 적어도 하나의 발광 소자로부터 방출된 광을 투과시키는 광 투과성 부재; 및
    상기 리세스부에서 상기 광 투과성 부재와 상기 패키지 몸체가 접착되도록 상기 적어도 하나의 오목부에 수용되는 본딩 부재를 포함하는 발광 소자 패키지.
  2. 제1 항에 있어서, 상기 적어도 하나의 오목부는 링 평면 형상을 갖는 발광 소자 패키지.
  3. 제1 항에 있어서, 상기 적어도 하나의 오목부는 도트 평면 형상을 갖는 발광 소자 패키지.
  4. 제1 항에 있어서, 상기 적어도 하나의 오목부는 상기 패키지 몸체의 두께 방향에 수직한 방향으로 소정 간격으로 이격되어 배치된 복수의 오목부를 포함하는 발광 소자 패키지.
  5. 제4 항에 있어서, 상기 복수의 오목부가 이격된 거리는 상기 복수의 오목부 각각의 길이의 절반 이하에 해당하는 발광 소자 패키지.
  6. 제1 항에 있어서, 상기 적어도 하나의 오목부는 상기 캐비티로부터 제1 거리만큼 이격된 발광 소자 패키지.
  7. 제1 항에 있어서, 상기 리세스부에서 상기 패키지 몸체의 두께 방향으로 상기 광 투과성 부재가 상기 패키지 몸체의 상부면과 이격된 제2 거리는 0 이상이고 상기 적어도 하나의 오목부의 깊이보다 작은 발광 소자 패키지.
  8. 제1 항에 있어서, 상기 캐비티 또는 상기 적어도 하나의 오목부 중 적어도 하나는 원형. 타원형, 또는 다각형 평면 형상을 갖는 발광 소자 패키지.
  9. 제1 항에 있어서, 상기 본딩 부재는 상기 패키지 몸체와 상기 광 투과성 부재 사이의 공간을 밀봉하도록 배치된 발광 소자 패키지.
  10. 제1 항에 있어서, 상기 적어도 하나의 발광 소자는 자외선 파장 대역의 광을 방출하는 발광 소자 패키지.
  11. 제1 항에 있어서, 상기 본딩 부재는 UV 본드, 아크릴, 우레탄, 실리콘, 또는 에폭시를 포함하는 발광 소자 패키지.
  12. 제10 항에 있어서, 상기 적어도 하나의 발광 소자는
    서브 마운트; 및
    상기 서브 마운트 위에 플립 본딩된 발광 다이오드를 포함하는 발광 소자 패키지.
  13. 제1 항에 있어서, 상기 광 투과성 부재는 평판형 시트, 반구형 렌즈 또는 구형 렌즈를 포함하는 발광 소자 패키지.
  14. 제1 항에 있어서, 상기 캐비티 내에서 상기 적어도 하나의 발광 소자를 포위하여 배치되는 몰딩 부재를 더 포함하는 발광 소자 패키지.
  15. 제1 항에 있어서, 상기 캐비티는 진공인 발광 소자 패키지.
  16. 제1 항에 있어서, 상기 광 투과성 부재의 측면과 상기 패키지 몸체 사이에 배치된 고무 링을 더 포함하는 발광 소자 패키지.
  17. 제16 항에 있어서, 상기 고무 링은 상기 본딩 부재의 위에서 상기 광 투과성 부재와 상기 패키지 몸체 사이의 공간에 배치되는 발광 소자 패키지.
  18. 제16 항에 있어서, 상기 고무 링은 원형, 타원형, 또는 다각형 평면 형상을 갖는 발광 소자 패키지.
  19. 제16 항에 있어서, 상기 고무 링은 0.1 ㎜ 내지 0.15 ㎜의 폭을 갖는 발광 소자 패키지.
  20. 제1 항에 있어서, 상기 오목부의 공간 체적은 상기 본딩 부재의 체적 이상인 발광 소자 패키지.
PCT/KR2015/005272 2014-06-16 2015-05-27 발광 소자 패키지 WO2015194766A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580032652.6A CN106463590B (zh) 2014-06-16 2015-05-27 发光器件封装
US15/319,318 US10714660B2 (en) 2014-06-16 2015-05-27 Light-emitting device package having a device to prevent permeation of foreign substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140072693A KR102221598B1 (ko) 2014-06-16 2014-06-16 발광 소자 패키지
KR10-2014-0072693 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194766A1 true WO2015194766A1 (ko) 2015-12-23

Family

ID=54935708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005272 WO2015194766A1 (ko) 2014-06-16 2015-05-27 발광 소자 패키지

Country Status (4)

Country Link
US (1) US10714660B2 (ko)
KR (1) KR102221598B1 (ko)
CN (1) CN106463590B (ko)
WO (1) WO2015194766A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075342A (ja) * 2017-10-19 2019-05-16 学校法人慶應義塾 発光素子、赤外光源、及び発光素子の製造方法
KR20200140792A (ko) * 2018-05-03 2020-12-16 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 소자 모듈
CN112425015A (zh) * 2018-05-11 2021-02-26 Lg伊诺特有限公司 表面发射激光器封装件和包括其的发光装置
JP7184599B2 (ja) * 2018-11-06 2022-12-06 ローム株式会社 半導体発光装置
JP2021077692A (ja) * 2019-11-06 2021-05-20 日本碍子株式会社 パッケージ及び透明封止部材
CN112086038B (zh) * 2020-09-27 2022-03-29 深圳市东陆科技有限公司 吸尘器显示模组的防尘密封生产方法及显示模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234637A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 発光装置およびそれを用いた照明装置
US20090065793A1 (en) * 2007-09-11 2009-03-12 Lee Kee Hon Light emitting device
KR20120118692A (ko) * 2011-04-19 2012-10-29 엘지전자 주식회사 발광 소자 패키지 및 이를 이용한 발광 장치
KR20130047169A (ko) * 2011-10-31 2013-05-08 서울옵토디바이스주식회사 발광 다이오드 패키지 및 그것을 제조하는 방법
KR20130101846A (ko) * 2012-03-06 2013-09-16 한국광기술원 발광 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066965A (en) * 1990-02-06 1991-11-19 Asahi Kogaku Kogyo Kabushiki Kaisha Waterproof and/or water-resistant camera
US7279346B2 (en) 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
KR100665262B1 (ko) * 2005-10-20 2007-01-09 삼성전기주식회사 발광다이오드 패키지
KR101181112B1 (ko) * 2005-10-27 2012-09-14 엘지이노텍 주식회사 발광 다이오드, 발광 다이오드 제조 방법 및 발광 다이오드 모듈
WO2008057624A2 (en) * 2006-04-05 2008-05-15 Baker Hughes Incorporated Fuel additives useful for reducing particulate emissions
JP2007317816A (ja) 2006-05-25 2007-12-06 Matsushita Electric Works Ltd 発光装置
JP2007317815A (ja) * 2006-05-25 2007-12-06 Matsushita Electric Works Ltd 発光装置
JP2008071859A (ja) * 2006-09-13 2008-03-27 Shin Etsu Chem Co Ltd 微小電子部品の封止方法
DE202007004480U1 (de) * 2007-03-23 2007-06-14 Oase Gmbh Leuchteinheit für Wasserspiele, Teichanlagen o.dgl.
KR101007134B1 (ko) * 2009-06-05 2011-01-10 엘지이노텍 주식회사 조명 장치
EP2287640B1 (en) * 2009-05-25 2014-08-20 LG Innotek Co., Ltd. Gap member, lens and lighting device having the same
TW201115775A (en) * 2009-10-19 2011-05-01 Everlight Electronics Co Ltd Light emitting diode package structure
FR2955539B1 (fr) * 2010-01-26 2016-03-25 Saint Gobain Vitrage lumineux de vehicule, fabrications
US8525213B2 (en) * 2010-03-30 2013-09-03 Lg Innotek Co., Ltd. Light emitting device having multiple cavities and light unit having the same
TW201207568A (en) * 2010-08-12 2012-02-16 Foxsemicon Integrated Tech Inc Heat dissipation structure of LED light source
JP2012109475A (ja) * 2010-11-19 2012-06-07 Rohm Co Ltd 発光装置、発光装置の製造方法、および光学装置
JP5746919B2 (ja) * 2011-06-10 2015-07-08 新光電気工業株式会社 半導体パッケージ
US9397274B2 (en) * 2011-08-24 2016-07-19 Lg Innotek Co., Ltd. Light emitting device package
WO2013133594A1 (en) * 2012-03-05 2013-09-12 Seoul Opto Device Co., Ltd. Light-emitting device and method of manufacturing the same
KR20140108172A (ko) * 2013-02-28 2014-09-05 서울반도체 주식회사 발광 모듈
EP3001466B1 (en) * 2013-05-23 2019-07-03 LG Innotek Co., Ltd. Light-emitting module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234637A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 発光装置およびそれを用いた照明装置
US20090065793A1 (en) * 2007-09-11 2009-03-12 Lee Kee Hon Light emitting device
KR20120118692A (ko) * 2011-04-19 2012-10-29 엘지전자 주식회사 발광 소자 패키지 및 이를 이용한 발광 장치
KR20130047169A (ko) * 2011-10-31 2013-05-08 서울옵토디바이스주식회사 발광 다이오드 패키지 및 그것을 제조하는 방법
KR20130101846A (ko) * 2012-03-06 2013-09-16 한국광기술원 발광 장치

Also Published As

Publication number Publication date
US10714660B2 (en) 2020-07-14
KR102221598B1 (ko) 2021-03-02
US20170117443A1 (en) 2017-04-27
CN106463590A (zh) 2017-02-22
CN106463590B (zh) 2020-10-30
KR20150144059A (ko) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2015194766A1 (ko) 발광 소자 패키지
JP6339161B2 (ja) 発光素子パッケージ
WO2012005489A2 (en) Display device
WO2012008692A2 (en) Display device
WO2013168949A1 (ko) 조명 장치
WO2011037436A2 (ko) 발광장치에 사용되는 복합필름, 발광장치 및 그 제조방법
WO2016080676A1 (ko) 발광소자 패키지
WO2019168233A1 (ko) 발광소자 패키지 및 발광소자 패키지 제조 방법
EP2786428A1 (en) Light emitting module and lens
WO2012124986A2 (en) Display device
WO2010044548A2 (ko) 발광 소자 패키지 및 그 제조방법, 발광 장치
WO2011049373A2 (ko) 발광소자 패키지 및 이를 구비한 조명 시스템
WO2013036061A1 (en) Lighting device
WO2013024916A1 (ko) 파장변환형 발광다이오드 칩 및 그 제조방법
WO2010074479A2 (ko) 엘이디 패키지, 엘이디 패키지의 제조방법, 및 백라이트 유니트와 조명장치
WO2015137623A1 (ko) 발광 소자 패키지
WO2018155875A1 (ko) 발광모듈
WO2015194779A1 (ko) 발광 소자 패키지
WO2016080769A1 (ko) 발광 장치
WO2020209587A1 (ko) 조명 모듈 및 이를 구비한 조명장치
WO2015046820A1 (ko) 발광소자 패키지
WO2023008935A1 (ko) 발광 다이오드 패키지 및 이를 포함하는 백라이트 유닛
WO2022085944A1 (ko) 디스플레이 장치
WO2023146004A1 (ko) 반도체 발광 소자를 이용한 면광원 장치
KR101992367B1 (ko) 발광소자 패키지 및 이를 포함한 소켓형 발광 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15319318

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810024

Country of ref document: EP

Kind code of ref document: A1