WO2015186834A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2015186834A1 WO2015186834A1 PCT/JP2015/066402 JP2015066402W WO2015186834A1 WO 2015186834 A1 WO2015186834 A1 WO 2015186834A1 JP 2015066402 W JP2015066402 W JP 2015066402W WO 2015186834 A1 WO2015186834 A1 WO 2015186834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode group
- welded
- lead
- electrode
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Embodiments of the present invention relate to a secondary battery.
- a lithium ion battery includes an electrode assembly in which a laminate of a positive electrode and a negative electrode with a separator interposed therebetween is wound.
- a lithium ion secondary battery has a configuration in which an electrode assembly is enclosed in a battery can (exterior can) filled with an organic electrolyte.
- Secondary batteries have a problem of improving energy efficiency.
- it is important to secure the maximum space for the electrode group.
- it is important to secure the maximum cross-sectional area of the conductive path such as a lead and reduce the resistance of the conductive path to suppress heat generation.
- the configuration for increasing the capacity of the secondary battery and the configuration for increasing the output of the secondary battery ensure the maximum space for the electrode group and maximize the cross-sectional area of the conductive path. It has a trade-off relationship with securing.
- the electrode assembly manufactured by winding the laminate as in the prior art has a problem that the curve of the laminate is loose and excess space is generated in the battery can.
- the problem to be solved by the present invention is to provide a secondary battery having high capacity and energy efficiency.
- a secondary battery is connected to an electrode group, a first terminal, a second terminal, a first lead connected to the first terminal, and the second terminal.
- a second lead, a first current collecting tab, and a second current collecting tab are provided.
- the electrode group is configured by winding a winding body in which a positive electrode and a negative electrode, which are stacked via a separator, are wound in a flat shape, and are bent around a line parallel to the winding axis direction of the winding body.
- the first current collecting tab extends from one end of the electrode group in the winding axis direction and is welded to the first lead.
- the second current collecting tab extends from the other end of the electrode group in the winding axis direction and is welded to the second lead.
- FIG. 1 is a view for explaining the appearance of a secondary battery according to an embodiment.
- FIG. 2 is a diagram for explaining an example of the configuration of the secondary battery according to the embodiment.
- FIG. 3 is a diagram for explaining an example of the configuration of the secondary battery according to the embodiment.
- FIG. 4 is a diagram for explaining an example of the configuration of the electrode group of the secondary battery according to the embodiment.
- FIG. 5 is a diagram for explaining an example of the configuration of the electrode group of the secondary battery according to the embodiment.
- FIG. 6 is a diagram for explaining the ratio of the storage volume of the electrode group of the secondary battery according to the embodiment.
- FIG. 7 is a diagram for explaining an example of the configuration of the cap electrode assembly of the secondary battery according to the embodiment.
- FIG. 8 is a diagram for explaining an example of the configuration of the electrode group of the secondary battery according to the embodiment.
- FIG. 9 is a diagram for explaining an example of the configuration of the cap electrode assembly of the secondary battery according to the embodiment.
- FIG. 10 is a diagram for explaining an example of the configuration of the cap electrode assembly of the secondary battery according to the embodiment.
- FIG. 1 is a perspective view showing an example of the appearance of the secondary battery 1.
- FIG. 2 is a perspective view showing an example of the contents of the secondary battery 1.
- the secondary battery 1 of this example includes an outer can 19, an electrode assembly 10 accommodated in the outer can, a positive electrode terminal 14, a negative electrode terminal 15, a gasket 23, a cap 24, a positive electrode lead 28, and a negative electrode lead 29.
- the electrode assembly 10 includes an electrode group 11, a positive current collecting tab 12, and a negative current collecting tab 13. Further, the electrolyte is held in the electrode group 11.
- the electrolyte is a nonaqueous electrolyte, for example.
- 3 is a cross-sectional view in which the outer can 19, the positive electrode terminal 14, the negative electrode terminal 15, the gasket 23, the cap 24, the positive electrode lead 28, and the negative electrode lead 29 of the secondary battery 1 are cut along the line AA in FIG. 1. .
- the outer can 19 can be formed from, for example, aluminum or an aluminum alloy.
- the outer can 19 is formed in a bottomed rectangular tube shape, for example, and includes an opening.
- As the aluminum alloy an alloy containing an element such as manganese, iron, copper, silicon, or zinc is preferable.
- the thickness of the outer can 19 can be 1 mm or less, and more preferably 0.2 to 0.7 mm.
- the electrode assembly 10 is obtained by winding a laminate in which a positive electrode and a negative electrode are laminated via a separator therebetween into a flat shape.
- the positive electrode is a positive current collector excluding, for example, a strip-shaped positive current collector made of metal foil, a positive current collector tab 12 having one end parallel to the long side of the positive current collector, and at least the positive current collector tab 12 portion.
- the negative electrode is, for example, except for a strip-shaped negative electrode current collector made of a metal foil, a negative electrode current collector tab 13 having one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 13.
- the electrode group 11 represents a portion of the electrode assembly 10 excluding the positive electrode current collecting tab 12 and the negative electrode current collecting tab 13.
- Such a positive electrode, separator, and negative electrode are such that the positive electrode current collecting tab 12 protrudes from the separator in the winding axis direction of the electrode assembly 10 and the negative electrode current collecting tab 13 protrudes from the separator in the opposite direction. Winding is performed by shifting the positions of the positive electrode and the negative electrode. By such winding, the electrode assembly 10 has a positive electrode current collecting tab 12 wound in a spiral shape from one end face and a negative electrode current collecting tab 13 wound in a spiral form from the other end face. Protruding state.
- the positive and negative current collecting tabs are formed of the same material as the positive and negative current collectors, but at least one element selected from the group consisting of aluminum, Mg, Ti, Zn, Mn, Fe, Cu, and Si You may form from the aluminum alloy containing.
- the positive electrode terminal 14 is electrically connected to the positive electrode current collecting tab 12 through an internal positive electrode lead 28.
- the negative electrode terminal 15 is electrically connected to the negative electrode current collecting tab 13 through an internal negative electrode lead 29.
- the positive electrode terminal 14 is generally made of aluminum or an aluminum alloy
- the negative electrode terminal 15 is made of copper, nickel, nickel-plated iron, or the like. Metal is used.
- lithium titanate is used as the negative electrode active material
- aluminum or an aluminum alloy may be used for the negative electrode terminal 15 in addition to the above.
- the positive electrode current collecting tab 12, the negative electrode current collecting tab 13, the positive electrode lead 28, and the negative electrode lead 29 are preferably formed from aluminum or an aluminum alloy.
- an aluminum alloy containing at least one element selected from the group consisting of aluminum, Mg, Ti, Zn, Mn, Fe, Cu, and Si can be used.
- the cap 24 is a plate that covers the upper surface of the outer can 19.
- the cap 24 includes a hole through which the positive electrode terminal 14 passes and a hole through which the negative electrode terminal 15 passes.
- the cap 24 fixes the positive electrode terminal 14 and the negative electrode terminal 15 through a gasket 23 that is an insulating member installed in the hole.
- the cap 24 can be formed from, for example, aluminum or an aluminum alloy.
- As the aluminum alloy an alloy containing an element such as manganese, iron, copper, silicon, or zinc is preferable.
- the positive electrode lead 28 and the negative electrode lead 29 are each made of a conductive plate (conductive plate).
- the positive electrode lead 28 is electrically connected to the positive electrode current collecting tab 12, and the negative electrode lead 29 is electrically connected to the negative electrode current collecting tab 13.
- the tip of the positive electrode lead 28 is electrically connected to the positive electrode terminal 14, and the tip of the negative electrode lead 29 is electrically connected to the negative electrode terminal 15.
- the positive electrode lead 28 is fixed when the positive electrode terminal 14 is caulked to the cap 24.
- the positive electrode lead 28 is fixed to the positive electrode current collecting tab 12 of the electrode group 11 by ultrasonic welding.
- the negative electrode lead 29 is fixed by caulking the negative electrode terminal 15 to the cap 24.
- the negative electrode lead 29 is fixed to the negative electrode current collecting tab 13 of the electrode group 11 by ultrasonic welding.
- the cap electrode assembly 18 in which the electrode group 11, the positive electrode current collecting tab 12, the negative electrode current collecting tab 13, the positive electrode terminal 14, the negative electrode terminal 15, the positive electrode lead 28, and the negative electrode lead 29 are fixed to the cap 24. Composed. As shown in FIG. 2, the cap electrode assembly 18 is inserted from the opening of the outer can 19 with the electrode group 11 side as the head.
- the secondary battery 1 is manufactured by welding the cap 24 of the cap electrode assembly 18 in contact with the periphery of the opening of the outer can 19 and filling the outer can 19 with the electrolyte. .
- the positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil.
- a positive electrode active material The oxide, sulfide, polymer, etc. which can occlude / release lithium can be used.
- Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential.
- the negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil.
- the negative electrode active material is not particularly limited, and metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used.
- the lithium ion occlusion and release potential is metal lithium. It is a substance that becomes noble 0.4V or more with respect to the potential. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component.
- lithium titanium composite oxide such as lithium titanate, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc.
- lithium titanium composite oxide is preferable.
- the separator a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used.
- Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.
- the electrolytic solution a nonaqueous electrolytic solution prepared by dissolving an electrolyte (for example, lithium salt) in a nonaqueous solvent is used.
- non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
- Nonaqueous solvents may be used alone or in combination of two or more.
- electrolyte examples include lithium perchlorate (LiClO4), lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium arsenic hexafluoride (LiAsF6), lithium trifluorometasulfonate ( Lithium salts such as LiCF3SO3) can be mentioned.
- the electrolyte may be used alone or in combination of two or more.
- the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol / L to 3 mol / L.
- FIG. 4 shows an example of the structure of the electrode group 11.
- the electrode group 11 is obtained by winding a laminate in which a positive electrode and a negative electrode are laminated via a separator therebetween into a flat shape.
- the wound body of the electrode group 11 is laminated
- the wound body of the electrode group 11 includes a first end portion 11e and a second end portion 11f.
- the electrode group 11 has a width dimension of X and a thickness direction dimension of Y.
- the separator 11a and the negative electrode 11b separating the negative electrode 11b and the positive electrode 11c are arranged so that the ends thereof are shorter than the positive electrode 11c by 1/4 turn. That is, the outermost peripheral end portions of the separator 11 a and the negative electrode 11 b that separate the negative electrode 11 b and the positive electrode 11 c are arranged to be short by half the width X of the electrode group 11.
- the separator 11a and the negative electrode 11b that separate the negative electrode 11b and the positive electrode 11c are arranged so that the ends are shorter than the positive electrode 11c by 1 ⁇ 2 cycle. That is, the innermost peripheral end portions of the separator 11 a and the negative electrode 11 b that separate the negative electrode 11 b and the positive electrode 11 c are arranged to be short by the width X of the electrode group 11.
- the positive electrode 11 c and the negative electrode 11 b face each other via the two separators 11 a in the innermost peripheral portion of the electrode group 11. According to such a configuration, the electrode group 11 can store electricity also in the innermost periphery.
- the electrode group 11 is bent around the fulcrum F.
- the fulcrum F is the surface of the electrode group 11 and the center of the electrode group 11 in the width direction. That is, the length from the fulcrum F to the first end portion 11e and the second end portion 11f is X / 2.
- the fulcrum F corresponds to the positions of the end portions of the separator 11a and the negative electrode 11b that separate the negative electrode 11b and the positive electrode 11c on the outermost peripheral side of the electrode group 11.
- the electrode group 11 is divided into a portion where the positive electrode 11c exists on the outer periphery from the negative electrode 11b and a portion where the negative electrode 11b exists on the outer periphery from the positive electrode 11c with the fulcrum F as a boundary.
- a plurality of fulcrums F exist on the surface of the electrode group 11 in parallel with the winding axis direction of the electrode group 11. Specifically, the electrode group 11 is bent around a line composed of a plurality of fulcrums F. When the electrode group 11 is bent around the fulcrum F, it is as shown in FIG.
- FIG. 5 shows an example of the electrode group 11 bent at the fulcrum F.
- FIG. 5 shows an example of the electrode group 11 bent at the fulcrum F.
- the electrode group 11 when the electrode group 11 is bent (folded) at the fulcrum F, the positive electrode 11c and the negative electrode b face each other via the two separators 11a. According to such a configuration, the electrode group 11 can store electricity even in the folded innermost part.
- the electrode group 11 is folded, it is heated and pressed at about 120 ° C., whereby the electrode assembly 10 accommodated in the outer can 19 is manufactured. In this case, the second end portion 11f is folded back and overlaps the first end portion 11e.
- FIG. 6 shows the ratio between the thickness T and the width W of the electrode group 11 and the ratio of the storage volume of the electrode group 11 in the outer can 19.
- FIG. 7 is a view of the cap electrode assembly 18 as viewed from the direction of the winding axis of the electrode group 11.
- the secondary battery 1 includes a three-pronged positive electrode lead 28.
- the positive electrode lead 28 includes a base portion 31 extending in the thickness direction of the electrode assembly 10, a first welded portion 32 extending from the base portion 31 in the width direction of the electrode assembly 10, a second welded portion 33, And a third weld 34.
- the base part 31, the first welded part 32, the second welded part 33, and the third welded part 34 are each a part of the positive electrode lead 28 and are conductive metals.
- the base portion 31 is a support column that supports the first welded portion 32, the second welded portion 33, and the third welded portion 34.
- the 1st welding part 32, the 2nd welding part 33, and the 3rd welding part 34 are members connected with the positive electrode current collection tab 12 of the electrode assembly 10 by welding.
- the positive electrode current collecting tab 12 of the electrode assembly 10 is bundled by a not-shown clamping member (backup lead) and welded to the first welded portion 32, the second welded portion 33, and the third welded portion 34.
- the electrode assembly 10 has a shape in which a wound body as shown in FIG. 4 is folded back as shown in FIG. For this reason, the positive electrode current collecting tab 12 on the first end portion 11e side of the electrode assembly 10 is sandwiched between the first welded portion 32 and the second welded portion 33, and the first welded portion 32 and It is welded to the second welding part 33. Further, the positive electrode current collecting tab 12 on the second end portion 11f side of the electrode assembly 10 is sandwiched between the second welded portion 33 and the third welded portion 34, and the second welded portion 33 and the second welded portion 34 are connected to each other. 3 welds 34.
- connection plate 30 is provided so as to fill a space between the welded portions of the positive electrode lead 28. That is, the connection plate 30 has a thickness obtained by subtracting the thickness of the positive electrode current collecting tab 12 sandwiched between the weld portions of the positive electrode lead 28 from the distance between the weld portions of the positive electrode lead 28.
- connection plate 30 By inserting such a connection plate 30, the first welded portion 32, the second welded portion 33, the third welded portion 34, the positive electrode current collecting tab 12 on the first end 11 e side, the second The positive electrode current collecting tab 12 on the end portion 11f side and the connection plate 30 are integrally welded without a gap.
- the configuration on the positive electrode side of the secondary battery 1 is shown and described.
- the negative electrode side of the secondary battery 1 has the same configuration as the positive electrode side, and thus illustration and detailed description thereof are omitted.
- the negative electrode lead 29 of the secondary battery 1 is also formed in a three-pronged shape.
- the negative electrode current collecting tab 13 and the connection plate 30 are sandwiched and welded between the welded portions of the negative electrode lead 29. Thereby, the negative electrode lead 29, the negative electrode current collection tab 13, and the connection board 30 are welded together without gap similarly to the positive electrode side.
- connection plate 30 can increase the cross-sectional area of the conductive path to reduce the resistance of the conductive path and suppress heat generation. Thereby, the output of the secondary battery 1 can be increased.
- FIG. 8 shows an example of comparison between the volume of the electrode group of the conventional electrode assembly and the volume of the electrode group 11 of the electrode assembly 10 shown in FIG.
- the first end portion 11e and the second end portion 11f of the electrode group 11 of the electrode assembly 10 have a sharper end curve (small radius) than the conventional electrode group. It is. For this reason, the volume of the end 11g where the first end 11e and the second end 11f are overlapped is larger than that of the other end 11h. That is, the end portion 11g has a higher density of the electrode group 11 in the same volume than the end portion of the conventional electrode group.
- the secondary battery 1 can increase the density of the electrode group 11 in the outer can 19. As a result, a secondary battery having high capacity and energy efficiency can be provided. Furthermore, the secondary battery 1 can increase the connection area of the positive electrode current collection tab 12 and the negative electrode current collection tab 13 and an electrode lead. Thereby, the secondary battery 1 can ensure the space of the electrode group 11 to the maximum, and can ensure the cross-sectional area of a conductive path to the maximum. As a result, a secondary battery with high capacity and energy efficiency and high output can be provided.
- the positive electrode lead 28 and the negative electrode lead 29 are formed in a three-pronged shape, but the present invention is not limited to this configuration.
- the positive electrode lead 28 and the negative electrode lead 29 may be formed in any shape as long as the cross-sectional area of the conductive path can be sufficiently secured.
- FIG. 9 is an explanatory diagram for explaining another example of the positive electrode lead and the negative electrode lead. Since the positive electrode lead and the negative electrode lead have the same shape, the positive electrode lead will be described as an example, and the detailed description of the negative electrode lead will be omitted.
- the positive electrode lead 28a includes a base portion 31a formed in a plane shape parallel to the thickness direction of the electrode assembly 10 and the winding axis direction, and a weld portion extending from the base portion 31a in the width direction of the electrode assembly 10. 35a.
- the positive electrode lead 28a includes a base portion 31a and a welded portion 35a when a metal plate punched by punching is bent by bending.
- the positive terminal 14 is connected to the base portion 31a. Further, the base portion 31 a may be formed integrally with the positive electrode terminal 14.
- the welded portion 35a is connected to the positive electrode current collecting tab 12 bundled by the backup lead 36 by welding. The welding portion 35a is connected to either the positive electrode current collecting tab 12a on the first end portion 11e side of the electrode assembly 10 or the positive electrode current collecting tab 12b on the second end portion 11f side by welding.
- the welded portion 35a of the positive electrode lead 28a may be formed thicker than the base portion 31a in order to ensure a sufficient cross-sectional area of the conductive path.
- the electrode assembly 10 and the lead are electrically connected by welding the current collecting tab provided at one of the pair of end portions of the electrode assembly 10 and the welded portion of the lead.
- This makes it possible to reduce the number of welding points.
- the assembly of the cap electrode assembly 18 can be simplified.
- the lead can be manufactured by punching and bending, the manufacturing cost of the positive electrode lead and the negative electrode lead can be suppressed.
- FIG. 10 is an explanatory diagram for explaining still another example of the positive electrode lead and the negative electrode lead. Since the positive electrode lead and the negative electrode lead have the same shape, the positive electrode lead will be described as an example, and the detailed description of the negative electrode lead will be omitted.
- the positive electrode lead 28b includes a base portion 31b formed in a plane shape parallel to the thickness direction of the electrode assembly 10 and the winding axis direction, and a weld portion extending from the base portion 31b in the width direction of the electrode assembly 10. 35b.
- the base portion 31b and the welded portion 35b are configured by bending a metal plate punched by punching similarly to the positive electrode lead 28a.
- the base portion 31b is connected to the positive terminal 14. Further, the base portion 31 a may be formed integrally with the positive electrode terminal 14.
- the welding portion 35b is formed in a shape that can be welded to both the positive electrode current collecting tab 12a on the first end portion 11e side of the electrode assembly 10 and the positive electrode current collecting tab 12b on the second end portion 11f side. ing.
- the welding portion 35 b is provided at the center of the base portion 31 a in the thickness direction of the electrode assembly 10.
- One of the welded portions 35b in the thickness direction of the electrode assembly 10 is in contact with the positive electrode current collecting tab 12a bundled by the backup lead 36a, and the other is in contact with the positive electrode current collection tab 12b bundled by the backup lead 36b. In this state, it is welded and connected to the positive electrode current collecting tabs 12a and 12b.
- the welded portion 35b of the positive electrode lead 28b may be formed thicker than the base portion 31b in order to ensure a sufficient cross-sectional area of the conductive path.
- the electrode assembly 10 and the lead are electrically connected by welding the current collecting tab provided at the pair of end portions of the electrode assembly 10 and one welded portion of the lead.
- This makes it possible to reduce the number of welding points.
- the assembly of the cap electrode assembly 18 can be simplified.
- the lead can be manufactured by punching and bending, the manufacturing cost of the lead can be suppressed.
- the bending structure for increasing the contact area with the current collecting tab is formed, a sufficient cross-sectional area of the conductive path can be ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
一実施形態に係る二次電池は、電極群と、第1の端子と、第2の端子と、前記第1の端子に接続された第1のリードと、前記第2の端子に接続された第2のリードと、第1の集電タブと、第2の集電タブと、を具備する。前記電極群は、セパレータを介して重ねられた正極及び負極が偏平形状に捲回された捲回体が前記捲回体の捲回軸方向と平行な線を中心に折り曲げられて構成される。前記第1の集電タブは、前記電極群の前記捲回軸方向の一方の端部から延出し、前記第1のリードに溶接される。前記第2の集電タブは、前記電極群の前記捲回軸方向の他方の端部から延出し、前記第2のリードに溶接される。
Description
本発明の実施形態は、二次電池に関する。
近年、二次電池としてリチウムイオン電池などが一般的に普及している。二次電池は、応用分野によって高エネルギー密度と高い耐久性とが要求されている。例えば、リチウムイオン電池は、セパレータを介した正極と負極との積層体が捲回された電極組立体を備える。リチウムイオン二次電池は、電極組立体が有機電解液で満たされた電池缶(外装缶)内に封入された構成を備える。
二次電池は、エネルギー効率の向上という課題を有する。二次電池を大容量化する為に、電極群のスペースを最大限確保することが重要である。また、二次電池を高出力化する為に、リード等の導電経路の断面積を最大限確保し、導電経路の抵抗を小さくして発熱を抑制することが重要である。このように、二次電池を大容量化する為の構成と、二次電池を高出力化する為の構成とは、電極群のスペースを最大限確保することと導電経路の断面積を最大限確保することとで互いにトレードオフの関係を持つ。
しかし、従来のように積層体が捲回されて製造された電極組立体では、積層体のカーブが緩く、電池缶内に余剰スペースが生じるという課題がある。
本発明が解決しようとする課題は、容量及びエネルギー効率が高い二次電池を提供する
ことである。
ことである。
一実施形態に係る二次電池は、電極群と、第1の端子と、第2の端子と、前記第1の端子に接続された第1のリードと、前記第2の端子に接続された第2のリードと、第1の集電タブと、第2の集電タブと、を具備する。前記電極群は、セパレータを介して重ねられた正極及び負極が偏平形状に捲回された捲回体が前記捲回体の捲回軸方向と平行な線を中心に折り曲げられて構成される。前記第1の集電タブは、前記電極群の前記捲回軸方向の一方の端部から延出し、前記第1のリードに溶接される。前記第2の集電タブは、前記電極群の前記捲回軸方向の他方の端部から延出し、前記第2のリードに溶接される。
以下、図面を参照しながら説明する。
図1乃至図3は、一実施形態に係る二次電池1の例を示す。図1は、二次電池1の外観の例を示す斜視図である。図2は、二次電池1の内容物の例を示す斜視図である。
図1乃至図3は、一実施形態に係る二次電池1の例を示す。図1は、二次電池1の外観の例を示す斜視図である。図2は、二次電池1の内容物の例を示す斜視図である。
本例の二次電池1は、外装缶19、外装缶内に収納される電極組立体10、正極端子14、負極端子15、ガスケット23、キャップ24、正極リード28、及び負極リード29などを備える。電極組立体10は、電極群11、正極集電タブ12、及び負極集電タブ13を備える。また、電解質が電極群11に保持されている。なお、電解質は、例えば、非水電解質である。また、図3は、図1のAA線で二次電池1の外装缶19、正極端子14、負極端子15、ガスケット23、キャップ24、正極リード28、及び負極リード29を切断した断面図である。
外装缶19は、例えば、アルミニウム又はアルミニウム合金等から形成することができる。外装缶19は、例えば有底角筒形状に形成されており、開口部を備える。アルミニウム合金としては、マンガン、鉄、銅、、ケイ素、亜鉛等の元素を含む合金が好ましい。外装缶19の板厚は、1mm以下にすることができ、0.2~0.7mmであることがより好ましい。
電極組立体10は、正極と負極がその間にセパレータを介して積層された積層体が偏平形状に捲回されたものである。正極は、例えば金属箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ12と、少なくとも正極集電タブ12の部分を除いて正極集電体に形成された正極材料層(正極活物質含有層)とを含む。一方、負極は、例えば金属箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ13と、少なくとも負極集電タブ13の部分を除いて負極集電体に形成された負極材料層(負極活物質含有層)とを含む。電極群11は、電極組立体10の正極集電タブ12及び負極集電タブ13を除いた部分を示す。
このような正極、セパレータ、及び負極は、正極集電タブ12が電極組立体10の捲回軸方向にセパレータから突出し、かつ負極集電タブ13がこれとは反対方向にセパレータから突出するよう、正極及び負極の位置をずらして捲回されている。このような捲回により、電極組立体10は、一方の端面から渦巻状に捲回された正極集電タブ12が突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ13が突出する状態になる。
正負極の集電タブは、正負極の集電体と同じ材料から形成しても、アルミニウム、Mg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含むアルミニウム合金から形成しても良い。
正極端子14は、内部の正極リード28を介して正極集電タブ12に電気的に接続されている。また、負極端子15は、内部の負極リード29を介して負極集電タブ13に電気的に接続されている。
負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極端子14は一般的に、アルミニウムあるいはアルミニウム合金が使用され、負極端子15は、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。また、負極活物質にチタン酸リチウムを使用する場合は、上記に加え、負極端子15にアルミニウムあるいはアルミニウム合金を使用してもかまわない。正極端子14及び負極端子15にアルミニウムあるいはアルミニウム合金を使用する場合、正極集電タブ12、負極集電タブ13、正極リード28及び負極リード29は、アルミニウムあるいはアルミニウム合金から形成することが望ましい。例えば、アルミニウム、Mg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含むアルミニウム合金を使用することができる。
キャップ24は、外装缶19の上面を覆うプレートである。キャップ24は、正極端子14を通過させる穴と、負極端子15を通過させる穴と、を備える。キャップ24は、穴に設置される絶縁部材であるガスケット23を介して正極端子14及び負極端子15を固定する。キャップ24は、例えば、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マンガン、鉄、銅、ケイ素、亜鉛等の元素を含む合金が好ましい。
正極リード28及び負極リード29は、それぞれ、導電性の板(導電板)からなる。正極リード28が正極集電タブ12に電気的に接続され、また、負極リード29が負極集電タブ13に電気的に接続されている。正極リード28の先端は、正極端子14に電気的に接続され、負極リード29の先端は負極端子15に電気的に接続されている。
なお、正極リード28は、キャップ24に正極端子14がかしめられることにより固着される。また、正極リード28は、電極群11の正極集電タブ12に超音波溶接により固着される。また、負極リード29は、キャップ24に負極端子15がかしめられることにより固着される。また、負極リード29は、電極群11の負極集電タブ13に超音波溶接により固着される。
上記のように、キャップ24に電極群11、正極集電タブ12、負極集電タブ13、正極端子14、負極端子15、正極リード28、及び負極リード29が固定されたキャップ電極組立体18が構成される。図2により示されるように、キャップ電極組立体18は、電極群11側を先頭にして外装缶19の開口部から挿入される。キャップ電極組立体18のキャップ24と外装缶19の開口部周縁とが当接した状態で溶接され、外装缶19内が電解液で満たされることにより、二次電池1が作製される。。
以下、正極、負極、セパレータ、及び非水電解質について説明する。
正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。正極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。
また、負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。負極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、チタン酸リチウムのようなリチウムチタン複合酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材又は異種材の積層物等を用いることができる。
セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー等を挙げることができる。
電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製された非水電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L~3mol/Lとすることが望ましい。
電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製された非水電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L~3mol/Lとすることが望ましい。
図4は、電極群11の構造の例を示す。
上記したように、電極群11は、正極と負極がその間にセパレータを介して積層された積層体が偏平形状に捲回されたものである。この場合、電極群11の捲回体は、外周からセパレータ11a、負極11b、セパレータ11a、正極11cの順に積層されている。また、電極群11の捲回体は、第1の端部11eと第2の端部11fとを備える。図4の例によると、電極群11は、幅方向の寸法がXであり厚さ方向の寸法がYである。
上記したように、電極群11は、正極と負極がその間にセパレータを介して積層された積層体が偏平形状に捲回されたものである。この場合、電極群11の捲回体は、外周からセパレータ11a、負極11b、セパレータ11a、正極11cの順に積層されている。また、電極群11の捲回体は、第1の端部11eと第2の端部11fとを備える。図4の例によると、電極群11は、幅方向の寸法がXであり厚さ方向の寸法がYである。
なお、電極群11の最外周側において、負極11bと正極11cとを隔てるセパレータ11a及び負極11bは、端部が正極11cより1/4周分短く配置される。即ち、負極11bと正極11cとを隔てるセパレータ11a及び負極11bの最外周側の端部は、電極群11の幅Xの半分の長さだけ短く配置される。
また、電極群11の最内周側において、負極11bと正極11cとを隔てるセパレータ11a及び負極11bは、端部が正極11cより1/2周分短く配置される。即ち、負極11bと正極11cとを隔てるセパレータ11a及び負極11bの最内周側の端部は、電極群11の幅Xだけ短く配置される。このように配置された場合、図4に示されたように、電極群11の最内周部において正極11cと負極11bとが2枚のセパレータ11aを介して対向する。このような構成によると、電極群11は、最内周部にも電気を蓄えることができる。
電極群11は、支点Fを中心に折り曲げられる。支点Fは、電極群11の表面であって、電極群11の幅方向の中心である。即ち、支点Fから第1の端部11e及び第2の端部11fまでの長さはそれぞれX/2である。また、支点Fは、電極群11の最外周側の負極11bと正極11cとを隔てるセパレータ11a及び負極11bの端部の位置に相当する。即ち、電極群11は、支点Fを境界として正極11cが負極11bより外周に存在する部分と、負極11bが正極11cより外周に存在する部分とに分かれる。
なお、支点Fは、電極群11の捲回軸方向と平行に電極群11の表面に複数存在する。即ち、具体的には、電極群11は、複数の支点Fから成る線を中心に折り曲げられる。電極群11は、支点Fを中心に折り曲げられた場合、図5に示されたようになる。
図5は、支点Fで折り曲げられた電極群11の例を示す。
上記したように、電極群11が支点Fで折り曲げられ(折り畳まれ)た場合、二枚のセパレータ11aを介して正極11cと負極bとが対向する。このような構成によると、電極群11は、折り畳まれて最内周になった部分にも電気を蓄えることができる。なお、電極群11が折り畳まれた後約120℃で加熱プレスされることにより、外装缶19内に収納される電極組立体10が作製される。この場合、第2の端部11fが折り返されて第1の端部11eと重なる位置にくる。
上記したように、電極群11が支点Fで折り曲げられ(折り畳まれ)た場合、二枚のセパレータ11aを介して正極11cと負極bとが対向する。このような構成によると、電極群11は、折り畳まれて最内周になった部分にも電気を蓄えることができる。なお、電極群11が折り畳まれた後約120℃で加熱プレスされることにより、外装缶19内に収納される電極組立体10が作製される。この場合、第2の端部11fが折り返されて第1の端部11eと重なる位置にくる。
図5に示されたように、折り曲げ後の電極群11の厚さをT、折り曲げ後の電極群11の幅をWとした場合、電極群11は、W/T≧2.0を満たしていることが望ましい。なお、厚さYの電極群が折り曲げられて重ねられている為、図5の電極群11の厚さは、T=2Yである。また、電極群が折り曲げられる際に電極群11の厚さの分だけ電極群の幅が長くなる。この為、折り曲げ後の電極群の幅は、W=(X/2)+Yである。
図6は、電極群11の厚さTと幅Wとの比と、外装缶19内における電極群11の収納容積の比率を示す。
図6に示されたように、電極群11の幅Wが厚さTに対して大きいほど外装缶19内の電極群11の収納容積の比率が高くなる。
図7は、キャップ電極組立体18を電極群11の捲回軸の方向から見た図である。
図7に示されたように、二次電池1は、三又形状の正極リード28を備える。正極リード28は、電極組立体10の厚さ方向に伸びたベース部31と、このベース部31から電極組立体10の幅方向に伸びた第1の溶接部32、第2の溶接部33、及び第3の溶接部34を備える。
図7に示されたように、二次電池1は、三又形状の正極リード28を備える。正極リード28は、電極組立体10の厚さ方向に伸びたベース部31と、このベース部31から電極組立体10の幅方向に伸びた第1の溶接部32、第2の溶接部33、及び第3の溶接部34を備える。
ベース部31、第1の溶接部32、第2の溶接部33、及び第3の溶接部34は、それぞれ正極リード28の一部であり、導電性の金属である。ベース部31は、第1の溶接部32、第2の溶接部33、及び第3の溶接部34を支える支柱である。第1の溶接部32、第2の溶接部33、及び第3の溶接部34は、電極組立体10の正極集電タブ12と溶接により接続される部材である。
電極組立体10の正極集電タブ12は、図示されない挟持部材(バックアップリード)により束ねられて第1の溶接部32、第2の溶接部33、及び第3の溶接部34に溶接される。
なお、上記したように、電極組立体10は、図4に示されたような捲回体が図5に示されるように折り返された形状で構成されている。この為、電極組立体10の第1の端部11e側の正極集電タブ12は、第1の溶接部32と第2の溶接部33との間に挟持されて第1の溶接部32及び第2の溶接部33に溶接される。また、電極組立体10の第2の端部11f側の正極集電タブ12は、第2の溶接部33と第3の溶接部34との間に挟持されて第2の溶接部33と第3の溶接部34とに溶接される。
また、正極集電タブ12は、接続板30を介して正極リード28に溶接されている。図7に示されるように、接続板30は、正極リード28の各溶接部間の空間を埋めるように設けられている。即ち、接続板30は、正極リード28の各溶接部間の距離から正極リード28の各溶接部間に挟み込まれる正極集電タブ12の厚さを引いた厚さを有する。
このような接続板30が挿入されることにより、第1の溶接部32、第2の溶接部33、第3の溶接部34、第1の端部11e側の正極集電タブ12、第2の端部11f側の正極集電タブ12、及び接続板30が隙間なく一体に溶接される。
なお、図7では、二次電池1の正極側の構成について示して説明したが、二次電池1の負極側も正極側と同様の構成である為、図示及び詳細な説明を省略する。二次電池1の負極リード29も正極側と同様に、三又形状で形成されている。さらに、負極リード29の各溶接部間に負極集電タブ13と接続板30とが挟み込まれて溶接されている。これにより、正極側と同様に負極リード29、負極集電タブ13、及び接続板30が隙間なく一体に溶接される。
このように、接続板30は、導電経路の断面積を大きくして導電経路の抵抗を小さくし、発熱を抑制することができる。これにより二次電池1を高出力化することができる。
図8は、従来の電極組立体の電極群の容積と、図5により示された電極組立体10の電極群11の容積との比較の例を示す。
図8に示されるように、電極組立体10の電極群11の第1の端部11e及び第2の端部11fは、従来の電極群に比べて端部のカーブが急(半径が小さい)である。この為、第1の端部11eと第2の端部11fとが重ねられた端部11gは、他方の端部11hに比べてより容積が大きい。即ち、端部11gは、従来の電極群の端部に比べて同じ体積内の電極群11の密度が高い。
上記した構成によると、二次電池1は、外装缶19内の電極群11の密度を高めることができる。この結果、容量及びエネルギー効率が高い二次電池を提供することができる。さらに、二次電池1は、正極集電タブ12及び負極集電タブ13と、電極リードとの接続面積を増やすことができる。これにより、二次電池1は、電極群11のスペースを最大限確保し、且つ導電経路の断面積を最大限確保することができる。この結果、容量及びエネルギー効率が高く、高出力の二次電池を提供することができる。
なお、上記の実施形態では、正極リード28及び負極リード29が三又形状で形成されていると説明したがこの構成に限定されない。正極リード28及び負極リード29は、導電経路の断面積を十分に確保することができる形状であれば、如何なる形状で形成されていてもよい。
図9は、正極リード及び負極リードの他の例について説明する為の説明図である。なお、正極リードと負極リードとは、同形状で構成されている為、正極リードを例に挙げて説明し、負極リードについては詳細な説明を省略する。
正極リード28aは、電極組立体10の厚さ方向と捲回軸方向とに平行な面状に形成されたベース部31aと、このベース部31aから電極組立体10の幅方向に伸びた溶接部35aとを備える。例えば、正極リード28aは、打ち抜き加工により打ち抜かれた金属板が折り曲げ加工により折り曲げられることによりベース部31aと溶接部35aとが構成される。
ベース部31aは、正極端子14が接続される。また、ベース部31aは、正極端子14と一体に形成されていてもよい。溶接部35aは、バックアップリード36により束ねられた正極集電タブ12と溶接により接続される。溶接部35aは、電極組立体10の第1の端部11e側の正極集電タブ12aと、第2の端部11f側の正極集電タブ12bと、のいずれかと溶接により接続される。
なお、正極リード28aの溶接部35aは、導電経路の断面積を十分に確保する為にベース部31aよりも厚く形成されていてもよい。
上記のような構成によると、電極組立体10の一対の端部の一方に設けられた集電タブとリードの溶接部とを溶接することにより、電極組立体10とリードとを電気的に接続することができる為、溶接個所を減らすことが可能になる。これにより、キャップ電極組立体18の組立をより簡易にすることができる。またさらに、リードを打ち抜き加工と折り曲げ加工とにより作製することができる為、正極リード及び負極リードの作製コストを抑えることができる。
図10は、正極リード及び負極リードのさらに他の例について説明する為の説明図である。なお、正極リードと負極リードとは、同形状で構成されている為、正極リードを例に挙げて説明し、負極リードについては詳細な説明を省略する。
正極リード28bは、電極組立体10の厚さ方向と捲回軸方向とに平行な面状に形成されたベース部31bと、このベース部31bから電極組立体10の幅方向に伸びた溶接部35bとを備える。
例えば、正極リード28bは、正極リード28aと同様に打ち抜き加工により打ち抜かれた金属板が折り曲げ加工により折り曲げられることによりベース部31bと溶接部35bとが構成される。
ベース部31bは、正極端子14が接続される。また、ベース部31aは、正極端子14と一体に形成されていてもよい。溶接部35bは、電極組立体10の第1の端部11e側の正極集電タブ12aと、第2の端部11f側の正極集電タブ12bと、の両方と溶接可能な形状で形成されている。例えば、溶接部35bは、電極組立体10の厚さ方向におけるベース部31aの中央に設けられている。
溶接部35bは、電極組立体10の厚さ方向における一方がバックアップリード36aにより束ねられた正極集電タブ12aと当接し、且つ他方がバックアップリード36bにより束ねられた正極集電タブ12bと当接した状態で溶接されて正極集電タブ12a及び12bと接続される。
溶接部35bは、電極組立体10の厚さ方向における一方がバックアップリード36aにより束ねられた正極集電タブ12aと当接し、且つ他方がバックアップリード36bにより束ねられた正極集電タブ12bと当接した状態で溶接されて正極集電タブ12a及び12bと接続される。
なお、正極リード28bの溶接部35bは、導電経路の断面積を十分に確保する為にベース部31bよりも厚く形成されていてもよい。
上記のような構成によると、電極組立体10の一対の端部に設けられた集電タブとリードの1つの溶接部とを溶接することにより、電極組立体10とリードとを電気的に接続することができる為、溶接個所を減らすことが可能になる。これにより、キャップ電極組立体18の組立をより簡易にすることができる。またさらに、リードを打ち抜き加工と折り曲げ加工とにより作製することができる為、リードの作製コストを抑えることができる。また、集電タブとの当接面積を増やすための曲げ構成が形成されていることにより、導電経路の断面積を十分に確保することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (10)
- セパレータを介して重ねられた正極及び負極が偏平形状に捲回された捲回体が前記捲回体の捲回軸方向と平行な線を中心に折り曲げられた電極群と、
第1の端子と、
第2の端子と、
前記第1の端子に接続された第1のリードと、
前記第2の端子に接続された第2のリードと、
前記電極群の前記捲回軸方向の一方の端部から延出し、前記第1のリードに溶接された第1の集電タブと、
前記電極群の前記捲回軸方向の他方の端部から延出し、前記第2のリードに溶接された第2の集電タブと、
を具備する二次電池。 - 前記電極群は、前記捲回体の幅方向の中間であり、且つ前記捲回体の表面の前記捲回軸方向と平行な線を中心として折り曲げられた前記捲回体である、請求項1に記載の二次電池。
- 前記電極群は、前記捲回体の最内周側で前記正極と負極とのいずれかが対向する極に対して前記捲回体の幅未満の長さの範囲で短い、請求項1または2に記載の二次電池。
- 前記電極群は、前記捲回体の最外周側で前記正極と負極とのいずれかが対向する極に対して前記捲回体の幅の1/2未満の長さの範囲で短い、請求項1に記載の二次電池。
- 前記電極群の幅は、前記電極群の厚さの二倍以上である請求項1に記載の二次電池。
- 前記第1のリードは、前記第1の端子が接続される第1のベース部と、前記第1のベース部から前記電極群の幅方向に伸び且つ前記第1の集電タブが溶接された第1の溶接部とを具備し、
前記第2のリードは、前記第2の端子が接続される第2のベース部と、前記第2のベース部から前記電極群の幅方向に伸び且つ前記第2の集電タブが溶接された第2の溶接部とを具備する請求項1に記載の二次電池。 - 前記第1のリードは、前記第1の溶接部を複数具備し、
前記第2のリードは、前記第2の溶接部を複数具備し、
前記第1の集電タブは、前記複数の前記第1の溶接部の間に挟み込まれて溶接され、
前記第2の集電タブは、前記複数の前記第2の溶接部の間に挟み込まれて溶接される、
請求項6に記載の二次電池。 - 前記第1のリード及び前記第2のリードは、前記複数の溶接部の間に挿入された接続板をさらに具備し、
前記第1の集電タブ及び前記第2の集電タブは、前記複数の溶接部の間に挟み込まれて前記接続板と共に一体に溶接される、
請求項7に記載の二次電池。 - 前記第1の溶接部は、折り曲げられて前記電極群の厚さ方向に形成された一対の端部の一方の前記第1の集電タブと溶接され、
前記第2の溶接部は、折り曲げられて前記電極群の厚さ方向に形成された一対の端部の一方の前記第2の集電タブと溶接される請求項6に記載の二次電池。 - 前記第1の溶接部は、前記電極群の幅方向に延びて形成され、折り曲げられて前記電極群の厚さ方向に形成された一対の端部の両方の前記第1の集電タブと溶接され、
前記第2の溶接部は、前記電極群の幅方向に延びて形成され、折り曲げられて前記電極群の厚さ方向に形成された一対の端部の両方の前記第2の集電タブと溶接される請求項6に記載の二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014117125A JP2017126400A (ja) | 2014-06-05 | 2014-06-05 | 二次電池 |
JP2014-117125 | 2014-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186834A1 true WO2015186834A1 (ja) | 2015-12-10 |
Family
ID=54766900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066402 WO2015186834A1 (ja) | 2014-06-05 | 2015-06-05 | 二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017126400A (ja) |
WO (1) | WO2015186834A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107195957A (zh) * | 2017-05-23 | 2017-09-22 | 深圳吉阳智能科技有限公司 | 正负极同侧布置的锂离子电池及其制法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112204791A (zh) | 2018-09-21 | 2021-01-08 | 株式会社东芝 | 电池及电池包 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157503A (ja) * | 2008-12-30 | 2010-07-15 | Sb Limotive Co Ltd | 2次電池 |
JP2011071109A (ja) * | 2009-08-27 | 2011-04-07 | Toshiba Corp | 電池 |
JP2011134685A (ja) * | 2009-12-25 | 2011-07-07 | Honda Motor Co Ltd | 二次電池 |
-
2014
- 2014-06-05 JP JP2014117125A patent/JP2017126400A/ja active Pending
-
2015
- 2015-06-05 WO PCT/JP2015/066402 patent/WO2015186834A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157503A (ja) * | 2008-12-30 | 2010-07-15 | Sb Limotive Co Ltd | 2次電池 |
JP2011071109A (ja) * | 2009-08-27 | 2011-04-07 | Toshiba Corp | 電池 |
JP2011134685A (ja) * | 2009-12-25 | 2011-07-07 | Honda Motor Co Ltd | 二次電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107195957A (zh) * | 2017-05-23 | 2017-09-22 | 深圳吉阳智能科技有限公司 | 正负极同侧布置的锂离子电池及其制法 |
CN107195957B (zh) * | 2017-05-23 | 2024-05-28 | 深圳吉阳智能科技有限公司 | 正负极同侧布置的锂离子电池及其制法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017126400A (ja) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6293501B2 (ja) | 二次電池、及び二次電池の製造方法 | |
JP6794502B2 (ja) | 電池及び電池パック | |
JP5583421B2 (ja) | 角形密閉二次電池及び角形密閉二次電池の製造方法 | |
JP6863710B2 (ja) | 二次電池 | |
JP5520017B2 (ja) | ラミネートフィルム外装体を有する蓄電素子 | |
JP2016225117A (ja) | 二次電池 | |
US10199616B2 (en) | Battery pack including cell frames coupled to each other | |
JP5566651B2 (ja) | 電池およびその製造方法 | |
JP2011049065A (ja) | 非水電解質電池およびその製造方法 | |
JP2011171079A (ja) | 電池 | |
JP6173729B2 (ja) | 電池の製造方法 | |
JP6972175B2 (ja) | 電池パック | |
WO2012093588A1 (ja) | 非水系二次電池 | |
JP5483587B2 (ja) | 電池およびその製造方法 | |
CN106058080A (zh) | 电池 | |
US10516152B2 (en) | Energy storage device | |
JP6407665B2 (ja) | 組電池 | |
WO2015186834A1 (ja) | 二次電池 | |
JP6639111B2 (ja) | 二次電池 | |
JP2017004888A (ja) | 二次電池、及び二次電池の製造方法 | |
JP5472941B2 (ja) | 非水電解質電池 | |
JP2017157372A (ja) | 二次電池、電池モジュール及び車両 | |
US20200350634A1 (en) | Cylindrical secondary battery | |
JP5954339B2 (ja) | 角形二次電池及びその製造方法 | |
JP2019053821A (ja) | 蓄電素子、及び蓄電素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803604 Country of ref document: EP Kind code of ref document: A1 |