WO2015186794A1 - フルオロポリマー水性分散液の製造方法 - Google Patents
フルオロポリマー水性分散液の製造方法 Download PDFInfo
- Publication number
- WO2015186794A1 WO2015186794A1 PCT/JP2015/066211 JP2015066211W WO2015186794A1 WO 2015186794 A1 WO2015186794 A1 WO 2015186794A1 JP 2015066211 W JP2015066211 W JP 2015066211W WO 2015186794 A1 WO2015186794 A1 WO 2015186794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluoropolymer
- fluorine
- aqueous
- polymerization
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F114/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F114/18—Monomers containing fluorine
- C08F114/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
- C08F14/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/50—Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
Definitions
- the present invention relates to a method for producing an aqueous fluoropolymer dispersion.
- the aqueous fluororesin dispersion is generally produced by emulsion polymerization of a fluoromonomer in the presence of a fluorine-containing surfactant.
- Patent Document 1 tetrafluoroethylene alone or together with another monomer capable of copolymerization, when performing emulsion polymerization in an aqueous medium, Formula: XCF 2 CF 2 (O) m CF 2 CF 2 OCF 2 COOA (Wherein X is a hydrogen atom or a fluorine atom, A is a hydrogen atom, an alkali metal or NH 4 , and m is an integer of 0 to 1).
- X is a hydrogen atom or a fluorine atom
- A is a hydrogen atom, an alkali metal or NH 4
- m is an integer of 0 to 1
- an aqueous polytetrafluoroethylene emulsion obtained by using 1,500 to 20,000 ppm is proposed.
- Patent Document 2 in the presence of a reactive compound and a chain transfer agent, tetrafluoroethylene or emulsion polymerization of tetrafluoroethylene and a modified monomer copolymerizable with the tetrafluoroethylene is carried out in an aqueous medium.
- the reactive compound has a functional group capable of reacting by radical polymerization and a hydrophilic group, and the amount of the reactive compound exceeds an amount corresponding to 10 ppm with respect to the aqueous medium.
- a low molecular weight polytetrafluoroethylene aqueous dispersion produced by a process for producing fluoroethylene is described.
- Patent Document 3 discloses a method for preparing an aqueous dispersion of fluoropolymer particles, comprising a step of providing dispersed fine particles of a fluorinated ionomer in an aqueous polymerization medium, and a step of adding the fluorinated ionomer in the aqueous polymerization medium.
- An aqueous dispersion of fluoropolymer particles produced by a process comprising polymerizing at least one fluorinated monomer in the presence of dispersed microparticles and an initiator to form an aqueous dispersion of fluoropolymer particles is described. Has been.
- the present invention has been made in view of the above situation, and an object of the present invention is to provide a method capable of producing an aqueous fluoropolymer dispersion having a very small particle size and excellent dispersion stability.
- the present inventors have found that a fluoropolymer obtained by a conventional polymerization method has a fluorine-containing surfactant concentration at the time of polymerization of not less than 0.8 times the critical micelle concentration of the fluorine-containing surfactant.
- the inventors have found that the particle diameter is dramatically smaller than that of the particles, and have completed the present invention.
- the present invention relates to polytetrafluoroethylene and melt processable fluororesin (excluding polytetrafluoroethylene) in which fluoromonomer is polymerized in an aqueous medium in the presence of a fluorine-containing surfactant and a polymerization initiator.
- concentration of the fluorine-containing surfactant in the aqueous medium is a critical micelle of the fluorine-containing surfactant.
- the fluorine-containing surfactant preferably has a Log POW of 3.4 or less.
- the fluorine-containing surfactant is represented by the following general formula (1) X- (CF 2 ) m1 -Y (1) (Wherein X represents H or F, m1 represents an integer of 3 to 5, Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3 A fluorine-containing compound represented by M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms); General formula (3) CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOX (3) In the formula, X is preferably at least one selected from the group consisting of fluorine-containing compounds represented by the formula (X represents a hydrogen atom, NH 4 or an alkali metal atom).
- the polymerization is represented by the following general formula (2) X- (CF 2 ) m2 -Y (2) (Wherein X represents H or F, m2 represents an integer of 6 or more, and Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3 M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms)) in the absence of a fluorine-containing compound represented by Preferably it is done.
- the fluoropolymer is preferably a particle having a volume average particle diameter of 0.1 nm or more and less than 20 nm.
- the polymerization initiator is preferably at least one selected from the group consisting of persulfates and organic peroxides.
- the polymerization initiator is preferably in an amount corresponding to 1 to 5,000 ppm of the aqueous medium.
- an aqueous fluoropolymer dispersion of the present invention it is possible to produce an aqueous dispersion excellent in dispersion stability containing fluoropolymer particles having a very small particle diameter.
- the fluororesin is a partially crystalline fluoropolymer, not fluororubber but fluoroplastics.
- the fluororesin has a melting point and thermoplasticity, but may be melt processable or non-melt processable.
- melt processability means that the polymer can be melted and processed using conventional processing equipment such as an extruder and an injection molding machine. Therefore, the melt processable fluororesin usually has a melt flow rate of 0.01 to 500 g / 10 min as measured by the measurement method described later.
- the perfluoro resin is a resin made of a perfluoro polymer in which all monovalent atoms bonded to carbon atoms constituting the main chain of the polymer are fluorine atoms.
- a group such as an alkyl group, a fluoroalkyl group, an alkoxy group, a fluoroalkoxy group may be bonded to the carbon atom constituting the main chain of the polymer in addition to a monovalent atom (fluorine atom).
- Some of the fluorine atoms bonded to the carbon atoms constituting the main chain of the polymer may be substituted with chlorine atoms.
- the polymer end group is usually a group derived from the polymerization initiator or chain transfer agent used for the polymerization reaction.
- the fluororubber is an amorphous fluoropolymer.
- “Amorphous” means a melting peak ( ⁇ H) that appears in differential scanning calorimetry [DSC] (temperature rise temperature 10 ° C./min) or differential thermal analysis [DTA] (temperature rise rate 10 ° C./min) of a fluoropolymer. ) Is 4.5 J / g or less.
- Fluoro rubber exhibits elastomeric properties by crosslinking. By elastomeric properties is meant a property that allows the polymer to be stretched and retain its original length when the force required to stretch the polymer is no longer applied.
- the perfluoromonomer is a monomer that does not contain a carbon atom-hydrogen atom bond in the molecule.
- the perfluoromonomer may be a monomer in which some of the fluorine atoms bonded to the carbon atom are substituted with a chlorine atom in addition to the carbon atom and the fluorine atom. And those having a sulfur atom.
- the perfluoromonomer is preferably a monomer in which all hydrogen atoms are substituted with fluorine atoms.
- the perfluoromonomer does not include a monomer that provides a crosslinking site.
- the monomer that gives a crosslinking site is a monomer having a crosslinkable group that gives the fluoropolymer a crosslinking site for forming a crosslink with a curing agent (cure site monomer).
- the polytetrafluoroethylene [PTFE] is preferably a fluoropolymer having a tetrafluoroethylene content of 99 mol% or more based on all polymerized units.
- all fluororesin is a fluoropolymer whose content of tetrafluoroethylene with respect to all the polymerized units is less than 99 mol%.
- the content of each monomer constituting the fluoropolymer can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
- polytetrafluoroethylene [PTFE] and melt processability are obtained by polymerizing a fluoromonomer in an aqueous medium in the presence of a fluorine-containing surfactant and a polymerization initiator.
- An aqueous dispersion containing at least one fluoropolymer selected from the group consisting of a fluororesin (excluding polytetrafluoroethylene) is prepared.
- the concentration of the fluorine-containing surfactant in the aqueous medium obtained in the production method of the present invention is 0 when the fluoropolymer aqueous dispersion having a solid content concentration of fluoropolymer particles of less than 8% by mass is produced. A concentration of 8 times or more and less than 1.5 times the concentration is preferable.
- the concentration of the fluorine-containing surfactant in the aqueous medium obtained in the production method of the present invention is such that the critical micelle concentration is used when producing an aqueous fluoropolymer dispersion having a solid content concentration of fluoropolymer particles of 8% by mass or more.
- the density is preferably larger than 1.1 times and less than 3.0 times.
- the above production method is characterized in that the concentration of the fluorine-containing surfactant in the aqueous medium is at least 0.8 times the critical micelle concentration of the fluorine-containing surfactant.
- the concentration of the fluorine-containing surfactant is preferably larger than 0.8 times the critical micelle concentration, and in view of polymerization stability and cost, it is not more than 3 times the critical micelle concentration. Is preferred.
- the critical micelle concentration can be determined by measuring the surface tension. The surface tension can be measured, for example, with a surface tension meter CBVP-A3 manufactured by Kyowa Interface Chemical Co., Ltd. In addition, the critical micelle concentration can be confirmed using, for example, Environmental Science & Technology (2011), 45 (19), 8120-8128, or references cited therein.
- the amount of fluorine-containing surfactant in the aqueous medium necessary to obtain an aqueous fluoropolymer dispersion having the desired particle size is smaller than the change amount in the vicinity.
- the amount of change in the particle diameter is preferably less than 25.00 nm per 1000 ppm of the fluorine-containing surfactant in the aqueous medium, more preferably less than 3.40 nm, still more preferably less than 1.30 nm, It is even more preferable that it is less than 0.20 nm, and it is especially preferable that it is less than 0.04 nm.
- the critical micelle concentration and Log POW of typical fluorine-containing surfactants are as follows.
- the fluorine-containing surfactant preferably has a Log POW of 3.4 or less.
- the above Log POW is the partition coefficient between 1-octanol and water, and Log P [wherein P is the octanol / water (1: 1) mixture containing the fluorine-containing surfactant in the octanol when the phase separation occurs. Represents the fluorine-containing surfactant concentration / fluorine-containing surfactant concentration ratio in water].
- the Log POW is preferably 1.5 or more, more preferably 3.0 or less, and even more preferably 2.8 or less in terms of easy removal from the fluoropolymer.
- a fluorine-containing anionic surfactant is preferable.
- the fluorine-containing surfactant is preferably an anionic surfactant.
- anionic surfactant for example, carboxylic acid-based surfactants, sulfonic acid-based surfactants and the like are preferable, and as these surfactants, perfluorocarboxylic acid represented by the following general formula (I) ( I), ⁇ -H perfluorocarboxylic acid (II) represented by the following general formula (II), perfluoropolyether carboxylic acid (III) represented by the following general formula (III), and the following general formula (IV) Perfluoroalkylalkylene carboxylic acid (IV) represented by the following general formula (V), perfluoroalkoxyfluorocarboxylic acid (V), perfluoroalkyl sulfonic acid represented by the following general formula (VI) ( VI) and / or a perfluoroalkylalkylene sulfonic acid (VII) represented by the following general formula (VII).
- perfluorocarboxylic acid represented by the following general formula (I) ( I)
- the perfluorocarboxylic acid (I) is represented by the following general formula (I) F (CF 2 ) n1 COOM (I) (Wherein n1 is an integer of 3 to 6, and M is H, NH 4 or an alkali metal element).
- the preferable lower limit of n1 is 4 in terms of stability of the polymerization reaction.
- the M is preferably NH 4 in that it hardly remains during processing of the obtained fluoropolymer aqueous dispersion.
- perfluorocarboxylic acid (I) examples include F (CF 2 ) 6 COOM, F (CF 2 ) 5 COOM, and F (CF 2 ) 4 COOM (wherein M is as defined above). .) Etc. are preferred.
- the ⁇ -H perfluorocarboxylic acid (II) has the following general formula (II) H (CF 2 ) n2 COOM (II) (Wherein n2 is an integer of 4 to 8, and M is as defined above).
- the preferable upper limit of n2 is 6 from the viewpoint of the stability of the polymerization reaction.
- the M is preferably NH 4 in that it hardly remains during processing of the obtained fluoropolymer aqueous dispersion.
- Examples of the ⁇ -H perfluorocarboxylic acid (II) include H (CF 2 ) 8 COOM, H (CF 2 ) 7 COOM, H (CF 2 ) 6 COOM, H (CF 2 ) 5 COOM, H ( CF 2 ) 4 COOM (wherein M is as defined above) is preferred.
- the perfluoropolyether carboxylic acid (III) is represented by the following general formula (III) Rf 1 —O— (CF (CF 3 ) CF 2 O) n3 CF (CF 3 ) COOM (III) (Wherein Rf 1 is a perfluoroalkyl group having 1 to 5 carbon atoms, n3 is an integer of 0 to 3, and M is as defined above). .
- Rf 1 is preferably a perfluoroalkyl group having 4 or less carbon atoms from the viewpoint of stability during polymerization, and n3 is preferably 0 or 1, M is preferably NH 4 in that it hardly remains during processing of the resulting fluoropolymer aqueous dispersion.
- perfluoropolyether carboxylic acid (III) for example, C 4 F 9 OCF (CF 3 ) COOM, C 3 F 7 OCF (CF 3 ) COOM, C 2 F 5 OCF (CF 3 ) COOM, CF 3 OCF (CF 3 ) COOM, CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOM (In each formula, M is as defined above) and the like are preferable, and both the stability during polymerization and the removal efficiency are good.
- CF 3 OCF (CF 3 ) COOM, CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOM (Wherein M is as defined above) and the like are more preferred.
- the perfluoroalkylalkylene carboxylic acid (IV) is represented by the following general formula (IV): Rf 2 (CH 2 ) n4 Rf 3 COOM (IV) (Wherein Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms, Rf 3 is a linear or branched perfluoroalkylene group having 1 to 3 carbon atoms, and n4 is a group having 1 to 3 carbon atoms. It is an integer and M is as defined above.
- Rf 2 is preferably a perfluoroalkyl group having 2 or more carbon atoms or a perfluoroalkyl group having 4 or less carbon atoms.
- Rf 3 is preferably a perfluoroalkylene group having 1 or 2 carbon atoms, and more preferably — (CF 2 ) — or —CF (CF 3 ) —.
- N4 is preferably 1 or 2, and more preferably 1.
- the M is preferably NH 4 in that it hardly remains during processing of the obtained fluoropolymer aqueous dispersion.
- perfluoroalkylalkylene carboxylic acid (IV) for example, C 4 F 9 CH 2 CF 2 COOM, C 3 F 7 CH 2 CF 2 COOM, C 2 F 5 CH 2 CF 2 COOM, C 4 F 9 CH 2 CF (CF 3) COOM, C 3 F 7 CH 2 CF ( CF 3) COOM, C 2 F 5 CH 2 CF (CF 3) COOM, C 4 F 9 CH 2 CH 2 CF 2 COOM, C 3 F 7 CH 2 CH 2 CF 2 COOM, C 2 F 5 CH 2 CH 2 CF 2 COOM (Wherein M is as defined above) and the like are preferred.
- the perfluoroalkoxyfluorocarboxylic acid (V) is represented by the following general formula (V) Rf 4 —O—CY 1 Y 2 CF 2 —COOM (V) (Wherein Rf 4 is a perfluoroalkyl group having 1 to 5 carbon atoms, Y 1 and Y 2 are the same or different and are H or F, and M is as defined above.) It is represented by
- Rf 4 is preferably a perfluoroalkyl group having 1 to 3 carbon atoms and more preferably a perfluoroalkyl group having 3 carbon atoms from the viewpoint of polymerization stability.
- the M is preferably NH 4 in that it hardly remains during processing of the obtained fluoropolymer aqueous dispersion.
- the perfluoroalkylsulfonic acid (VI) is represented by the following general formula (VI) F (CF 2 ) n5 SO 3 M (VI) (Wherein n5 is an integer of 3 to 6 and M is as defined above).
- n5 is preferably an integer of 4 or 5 from the viewpoint of polymerization stability, and the M is less likely to remain during processing of the obtained fluoropolymer aqueous dispersion. NH 4 is preferred.
- F (CF 2 ) 4 SO 3 M, F (CF 2 ) 5 SO 3 M (Wherein M is as defined above) and the like are preferred.
- the perfluoroalkylalkylene sulfonic acid (VII) is represented by the following general formula (VII) Rf 5 (CH 2 ) n6 SO 3 M (VII) (Wherein Rf 5 is a perfluoroalkyl group of 1 to 6, n6 is an integer of 1 to 3, and M is as defined above).
- Rf 5 is preferably a perfluoroalkyl group having 1 to 3 carbon atoms, and more preferably a perfluoroalkyl group having 3 carbon atoms.
- N6 is preferably 1 or 2, and more preferably 1.
- the M is preferably NH 4 in that it hardly remains at the time of processing of the obtained fluoropolymer aqueous dispersion.
- Examples of the perfluoroalkylalkylene sulfonic acid (VII) include: C 3 F 7 CH 2 SO 3 M, C 6 F 13 (CH 2) 2 SO 3 M (Wherein, M is as defined above) and the like are preferred, and both the stability during polymerization and the removal efficiency are good. C 3 F 7 CH 2 SO 3 M (Wherein M is as defined above) is more preferred.
- X- (CF 2 ) m1 -Y (1)
- X represents H or F
- m1 represents an integer of 3 to 5
- Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3 M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms)
- fluorine-containing surfactant following General formula (1) X- (CF 2 ) m1 -Y (1) (Wherein X represents H or F, m1 represents an integer of 3 to 5, Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3
- M 2 , —PO 4 M 2 M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms).
- X- (CF 2 ) m1 -Y (1)
- X represents H or F
- m1 represents an integer of 3 to 5
- Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM
- —PO 3 A fluorine-containing compound represented by M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms);
- General formula (3) CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOX (3) It is more preferable that it is at least one selected from the group consisting of fluorine-containing compounds represented by the formula (wherein X represents a hydrogen atom, NH 4 or an alkali metal atom).
- fluorine-containing surfactant following General formula (1) X- (CF 2 ) m1 -Y (1) (Wherein X represents H or F, m1 represents an integer of 3 to 5, Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3 Even more preferred is a fluorine-containing compound represented by M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms). .
- a fluorinated alkyl vinyl ether represented by the following formula: a fluorine-containing olefin having a nitrile group; a fluorine-containing vinyl ether having a nitrile group, and the like.
- perfluoro (alkyl vinyl ether) represented by CF 2 ⁇ CF—ORf 6 CF 2 ⁇ CF—OCF 3 , CF 2 ⁇ CF—OCF 2 CF 3 and CF 2 ⁇ CF—OCF 2 CF 2 CF 3 may be used. Can be mentioned.
- a fluorine-free monomer may be polymerized.
- the fluorine-free monomer include hydrocarbon monomers that are reactive with the fluoromonomer.
- the hydrocarbon monomer include alkenes such as ethylene, propylene, butylene, and isobutylene; alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether; vinyl acetate, vinyl propionate, n -Vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl pivalate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl versatate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, benzoic acid Vinyl, vinyl para-t-butylbenzoate, vinyl cyclohexanecarboxylate, vinyl monochloroa
- the fluorine-free monomer may also be a functional group-containing hydrocarbon monomer.
- the functional group-containing hydrocarbon monomers include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether, hydroxyisobutyl vinyl ether, hydroxycyclohexyl vinyl ether; and glycidyl groups such as glycidyl vinyl ether and glycidyl allyl ether.
- Non-fluorine containing monomer Non-fluorine containing monomer
- Non-fluorine containing monomer having amino group such as aminoalkyl vinyl ether, aminoalkyl allyl ether
- Non-fluorine containing monomer having amide group such as (meth) acrylamide, methylolacrylamide
- non-fluorine containing nitrile group Yes monomer and the like.
- an aqueous dispersion containing at least one fluoropolymer selected from the group consisting of PTFE and melt processable fluororesin (excluding PTFE) is obtained.
- the PTFE may be homo-PTFE or modified PTFE.
- Modified PTFE includes TFE units and modified monomer units based on modified monomers copolymerizable with TFE.
- the PTFE may be high molecular weight PTFE having non-melt processability and fibrillation properties, or may be low molecular weight PTFE having melt processability and no fibrillation properties.
- the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
- perfluoroolefin such as hexafluoropropylene [HFP]; chlorofluoroolefin such as chlorotrifluoroethylene [CTFE];
- HFP hexafluoropropylene
- CTFE chlorofluoroolefin
- examples thereof include hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VDF]; perfluorovinyl ether; perfluoroalkylethylene; ethylene; fluorine-containing vinyl ether having a nitrile group.
- denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
- the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
- the perfluoro organic group may have ether oxygen.
- perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf 8 represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (6).
- the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
- perfluoroalkyl group in the PAVE examples include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
- Preferred are purple chloromethyl vinyl ether [PMVE] whose group is a perfluoromethyl group, and purple chloropropyl vinyl ether [PPVE] whose perfluoroalkyl group is a perfluoropropyl group.
- the perfluorovinyl ether further, in the above general formula (6), what Rf 8 is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, Rf 8 is the following formula:
- Rf 8 is a group represented by the following formula:
- n an integer of 1 to 4
- the perfluoroalkylethylene is not particularly limited, and examples thereof include perfluorobutylethylene (PFBE), perfluorohexylethylene (PFHE), perfluorooctylethylene (PFOE), and the like.
- fluorine-containing vinyl ether having a nitrile group CF 2 ⁇ CFORf 9 CN (wherein Rf 9 represents an alkylene group having 2 to 7 carbon atoms in which an oxygen atom may be inserted between two carbon atoms. ) Is more preferable.
- fluorine-containing vinyl ether having a nitrile group include perfluoro [3- (1-methyl-2-vinyloxy-ethoxy) propionitrile] (CNVE).
- the modified monomer in the modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PMVE, PPVE, PFBE, PFHE, CNVE and ethylene. More preferably, it is at least one monomer selected from the group consisting of PMVE, PPVE, PFHE, CNVE, HFP and CTFE.
- the modified PTFE preferably has a modified monomer unit in the range of 0.001 to 2 mol%, more preferably in the range of 0.001 to less than 1 mol%, and 0.001 to 0.5 mol%. Is more preferably in the range of 0.001 to 0.03 mol%.
- each monomer constituting PTFE can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
- the PTFE obtained by the production method of the present invention preferably has a melt flow rate (MFR) of 0 g / 10 min or more and less than 80 g / 10 min. It is more preferably 30 g / 10 min or less, further preferably 10 g / 10 min or less, and further preferably 5 g / 10 min or less.
- MFR melt flow rate
- a small MFR means that the molecular weight of PTFE is high.
- the aqueous dispersion may contain PTFE particles having a high molecular weight and at the same time having an extremely small particle size.
- MFR is measured temperature (for example, 372 degreeC in the case of PFA and FEP) according to the kind of fluoropolymer using a melt indexer (made by Yasuda Seiki Seisakusyo) according to ASTM D1238. 297 ° C for ETFE, 380 ° C for PTFE), and the mass of polymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load (for example, 5 kg for PFA, FEP, ETFE and PTFE) It is a value obtained as (g / 10 minutes).
- PTFE obtained by the production method of the present invention has a melting point of 324 to 360 ° C.
- the melting point is preferably 350 ° C. or lower, and more preferably 348 ° C. or lower.
- the melting point is the maximum value in the heat of fusion curve when 3 mg of a sample with no history heated to 300 ° C. or higher is heated at a rate of 10 ° C./min using a differential scanning calorimeter [DSC]. Corresponding temperature.
- the PTFE obtained by the production method of the present invention preferably has a thermal decomposition starting temperature of 400 ° C. or higher.
- the thermal decomposition starting temperature is more preferably 420 ° C. or higher, and further preferably 430 ° C. or higher.
- the thermal decomposition starting temperature is determined by using a differential thermal / thermogravimetric measuring apparatus [TG-DTA] (trade name: TG / DTA6200, manufactured by Seiko Denshi), and a 10 mg sample at a heating rate of 10 ° C./min. The temperature was raised from room temperature and the sample was reduced by 1% by mass.
- TG-DTA differential thermal / thermogravimetric measuring apparatus
- Melt-processable fluororesins include TFE / PAVE copolymer [PFA], TFE / HFP copolymer [FEP], ethylene [Et] / TFE copolymer [ETFE], Et / TFE / HFP copolymer It is preferably at least one fluororesin selected from the group consisting of polychlorotrifluoroethylene [PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, and PVF, from PFA and FEP More preferably, it is at least one perfluoro resin selected from the group consisting of:
- the copolymer whose molar ratio (TFE unit / PAVE unit) of a TFE unit and a PAVE unit is 70/30 or more and less than 99/1 is preferable.
- a more preferable molar ratio is 70/30 or more and 98.9 / 1.1 or less, and a still more preferable molar ratio is 80/20 or more and 98.9 / 1.1 or less.
- monomer units derived from monomers copolymerizable with TFE and PAVE are 0.1 to 10 mol%, and TFE units and PAVE units are 90 to 99.9 mol% in total.
- a copolymer is also preferred.
- the PFA has a melting point lower than that of the PTFE, preferably 180 to 324 ° C., more preferably 230 to 320 ° C., and further preferably 280 to 320 ° C.
- the PFA preferably has a melt flow rate (MFR) of 1 to 500 g / 10 minutes.
- the PFA preferably has a thermal decomposition starting temperature of 380 ° C. or higher.
- the thermal decomposition start temperature is more preferably 400 ° C. or higher, and still more preferably 410 ° C. or higher.
- the copolymer whose molar ratio (TFE unit / HFP unit) of a TFE unit and a HFP unit is 70/30 or more and less than 99/1 is preferable.
- a more preferable molar ratio is 70/30 or more and 98.9 / 1.1 or less, and a still more preferable molar ratio is 80/20 or more and 98.9 / 1.1 or less.
- the monomer units derived from monomers copolymerizable with TFE and HFP are 0.1 to 10 mol%, and the total of TFE units and HFP units is 90 to 99.9 mol%.
- a copolymer is also preferred.
- monomers copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
- the FEP has a melting point lower than the melting point of the PTFE, preferably 150 to 324 ° C., more preferably 200 to 320 ° C., and further preferably 240 to 320 ° C.
- the FEP preferably has an MFR of 1 to 500 g / 10 minutes.
- the FEP preferably has a thermal decomposition starting temperature of 360 ° C. or higher.
- the thermal decomposition starting temperature is more preferably 380 ° C. or higher, and further preferably 390 ° C. or higher.
- ETFE a copolymer having a molar ratio of TFE units to ethylene units (TFE units / ethylene units) of 20/80 or more and 90/10 or less is preferable. A more preferable molar ratio is 37/63 or more and 85/15 or less, and a further preferable molar ratio is 38/62 or more and 80/20 or less.
- ETFE may be a copolymer composed of TFE, ethylene, and a monomer copolymerizable with TFE and ethylene.
- the monomer copolymerizable with TFE and ethylene may be an aliphatic unsaturated carboxylic acid such as itaconic acid or itaconic anhydride.
- the monomer copolymerizable with TFE and ethylene is preferably from 0.1 to 10 mol%, more preferably from 0.1 to 5 mol%, particularly preferably from 0.2 to 4 mol%, based on the fluoropolymer. preferable.
- the ETFE has a melting point lower than that of the PTFE, preferably 140 to 324 ° C., more preferably 160 to 320 ° C., and still more preferably 195 to 320 ° C.
- the ETFE preferably has an MFR of 1 to 500 g / 10 min.
- the ETFE preferably has a thermal decomposition starting temperature of 330 ° C. or higher.
- the thermal decomposition starting temperature is more preferably 340 ° C. or higher, and further preferably 350 ° C. or higher.
- the content of each monomer unit in the copolymer can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
- the fluoropolymer is preferably a particle having a volume average particle diameter of 0.1 nm or more and less than 20 nm.
- the volume average particle diameter is in the above range, since the fine dispersion is possible with respect to the matrix material, there is an effect that the slipperiness and the texture of the coating film surface can be further improved.
- fluoropolymer particles having a volume average particle diameter in the above range are subjected to multistage polymerization, an aqueous dispersion containing fluororesin particles having an extremely small particle diameter can be produced.
- volume average particle diameter is too large, an aqueous dispersion containing fluororesin particles having an extremely large particle diameter is obtained, so that the reaction stability is poor in some cases, and unexpected aggregates may be generated during the polymerization.
- fluoropolymer particles having a volume average particle size that is too large are subjected to multistage polymerization, an aqueous dispersion excellent in dispersion stability containing fluororesin particles having a very small particle size cannot be produced. Fluoropolymer particles having a volume average particle diameter of less than 0.1 nm are not easy to produce.
- the volume average particle diameter of the fluoropolymer particles is more preferably 0.5 nm or more, particularly preferably 1.0 nm or more, more preferably 15 nm or less, still more preferably 10 nm or less, More preferably, it is less than 5 nm, and it is especially preferable that it is less than 3 nm.
- the volume average particle diameter is measured by a dynamic light scattering method. This is a value obtained by preparing an aqueous fluoropolymer dispersion adjusted to a fluoropolymer solid content concentration of 1.0% by mass and using ELSZ-1000S (manufactured by Otsuka Electronics Co., Ltd.) at 25 ° C. and 70 times in total.
- the refractive index of the solvent (water) was 1.3328, and the viscosity of the solvent (water) was 0.8878 mPa ⁇ s.
- the volume average particle diameter is an average particle diameter in a state dispersed in primary particles.
- the fluoropolymer is preferably not a fluorinated ionomer because it is difficult to apply to the use of an aqueous fluoropolymer dispersion described later.
- the fluoropolymer preferably has an equivalent weight (EW) of 6,000 or more.
- the equivalent weight (EW) is a dry weight per equivalent of ion exchange groups, and a large equivalent weight (EW) of the fluoropolymer means that the monomer constituting the fluoropolymer contains almost no ionomer.
- the fluoropolymer surprisingly has a very small volume average particle size, despite the fact that it contains little ionomer.
- the equivalent weight (EW) is more preferably 10,000 or more, and the upper limit is not particularly limited, but is preferably 50,000,000 or less.
- the equivalent weight can be measured by the following method. Hydrochloric acid or nitric acid is added to the aqueous dispersion containing the fluoropolymer to coagulate the fluoropolymer. The coagulated fluoropolymer is washed with pure water until the washing solution becomes neutral, and then vacuum-dried at 110 ° C. or lower until no water remains. Approximately 0.3 g of the dried fluoropolymer is immersed in 30 mL of a saturated aqueous NaCl solution at 25 ° C. and left for 30 minutes with stirring. Next, the protons in the saturated NaCl aqueous solution are neutralized and titrated with 0.01N sodium hydroxide aqueous solution using phenolphthalein as an indicator.
- the fluoropolymer in which the counter ion of the ion exchange group obtained after neutralization is in the state of sodium ion is rinsed with pure water, further vacuum dried and weighed.
- the amount of sodium hydroxide required for neutralization is M (mmol)
- the mass of the fluoropolymer whose ion-exchange group counter ion is sodium ion is W (mg)
- the equivalent weight EW (g / eq) is calculated from the following formula.
- Ask. EW (W / M) ⁇ 22
- the polymerization initiator is not particularly limited as long as it can generate radicals in the polymerization temperature range, and known oil-soluble and / or water-soluble polymerization initiators can be used. Furthermore, the polymerization can be started as a redox in combination with a reducing agent or the like. The concentration of the polymerization initiator is appropriately determined depending on the type of monomer, the molecular weight of the target polymer, and the reaction rate.
- the polymerization initiator is preferably at least one selected from the group consisting of persulfates and organic peroxides.
- persulfates such as ammonium persulfate and potassium persulfate, disuccinic acid peroxide, diglutanic acid peroxide, etc. And water-soluble organic peroxides. In view of ease of handling and cost, ammonium persulfate is preferable.
- the amount of the polymerization initiator used can be appropriately determined in accordance with the MFR of the target fluoropolymer.
- the amount of the polymerization initiator used is usually preferably an amount corresponding to 1 to 5,000 ppm of the aqueous medium.
- a more preferred upper limit is 500 ppm, a still more preferred upper limit is 300 ppm, and a still more preferred upper limit is 100 ppm.
- a more preferred lower limit is 2 ppm. Since the dispersion stability of the fluoropolymer particles in the aqueous dispersion is improved, the amount is preferably equal to or more than 2 ppm of the aqueous medium.
- the aqueous medium is a reaction medium for performing polymerization and means a liquid containing water.
- the aqueous medium is not particularly limited as long as it contains water, and water and, for example, a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower. May be included.
- the polymerization in the production method of the present invention may be performed in the presence of a chain transfer agent.
- a chain transfer agent known ones can be used, for example, saturated hydrocarbons such as methane, ethane, propane and butane, halogenated hydrocarbons such as chloromethane, dichloromethane and difluoroethane, alcohols such as methanol and ethanol. And hydrogen and the like, but those in a gaseous state at normal temperature and pressure are preferred, and ethane or propane is more preferred.
- the amount of the chain transfer agent used is usually 1 to 50,000 ppm, preferably 1 to 20,000 ppm, based on the total amount of fluoromonomer supplied.
- Use of a large amount of a fluorine-containing surfactant and a small amount of a chain transfer agent is also one of preferable conditions of the above method. By adopting such conditions, it becomes possible to easily produce fluoropolymer particles having a high molecular weight and a small particle size.
- a particularly preferable condition is that a fluorine-containing surfactant is used at 6,000 ppm or more and a chain transfer agent is used at 20,000 ppm or less.
- the fluorine-containing surfactant is more preferably 8,000 ppm or more, further preferably 18,000 ppm or more, particularly preferably 20,000 ppm or more, and 400,000 ppm or less.
- the chain transfer agent is more preferably not more than 10,000 ppm, still more preferably not more than 7,000 ppm, and more preferably not less than 50 ppm. Preferably, it is 100 ppm or more.
- the chain transfer agent may be added to the reaction vessel all at once before the start of polymerization, may be added in several portions during the polymerization, or may be added continuously during the polymerization. May be.
- a stabilizer may be added.
- paraffin wax hydrocarbon having 16 or more carbon atoms
- fluorinated oil fluorinated compound
- silicone oil and the like are preferable, and paraffin wax is particularly preferable.
- the melting point of paraffin wax is usually preferably 40 to 65 ° C.
- the paraffin wax is preferably 0.1 to 12 parts by mass with respect to 100 parts by mass of the aqueous medium from the viewpoint of more stably emulsifying PTFE.
- the content is more preferably 1 part by mass and more preferably 8 parts by mass with respect to 100 parts by mass of the aqueous medium.
- the polymerization is preferably performed at 10 to 95 ° C., more preferably 30 ° C. or more, and more preferably 90 ° C. or less.
- the polymerization is preferably performed at 0.05 to 3.9 MPaG, more preferably 0.1 MPaG or more, and more preferably 3.0 MPaG or less.
- the polymerization reactor is charged with TFE and, if necessary, the modified monomer, the reactor contents are stirred, the reactor is maintained at a predetermined polymerization temperature, and then a polymerization initiator is added to the polymerization reactor. This is done by starting the reaction. Prior to the start of the polymerization reaction, additives such as an aqueous medium and a stabilizer may be charged into the reactor as necessary. After the polymerization reaction is started, TFE, a modified monomer, a polymerization initiator, a chain transfer agent, and the like may be additionally added depending on the purpose.
- an aqueous dispersion containing fluoropolymer particles By performing the polymerization, an aqueous dispersion containing fluoropolymer particles can be produced.
- the solid content concentration of the obtained aqueous dispersion is generally 1 to 40% by mass, and preferably 5 to 30% by mass.
- the above-mentioned solid concentration was obtained by drying 1 g of the aqueous dispersion in a blow dryer at 150 ° C. for 60 minutes, and expressing the ratio of the mass of the heating residue to the mass of the aqueous dispersion (1 g) as a percentage. Is.
- the amount of sediment of the fluoropolymer particles measured with respect to the aqueous fluoropolymer dispersion in which the solid content concentration of the fluoropolymer particles is 5.0% by mass is 10.0% by mass or less.
- it is 7.0 mass% or less, more preferably 5.5 mass% or less, and particularly preferably 3.0 mass% or less.
- the lower limit is not particularly limited.
- the amount of sediment of fluoropolymer particles is measured, for example, by the following method. 30 g of the fluoropolymer aqueous dispersion kept at 25 ° C. was put in a special container and 5 rpm at a rotation speed of 5000 rpm using a Hitachi Koki centrifuge (Himac CT15D) equipped with a RT15A7 type rotor. Hold for a minute and separate into a sediment layer and an aqueous fluoropolymer dispersion layer. The aqueous fluoropolymer dispersion layer is taken out to determine the solid content, and the amount of sediment is calculated from the difference from the solid content in the fluoropolymer aqueous dispersion used. The amount of sediment is measured as a ratio (% by mass) to the amount of fluoropolymer contained in the aqueous fluoropolymer dispersion used. It shows that it is excellent in storage stability, so that a ratio is low.
- the mesh-up amount of the fluoropolymer particles measured with respect to the aqueous fluoropolymer dispersion in which the solid content concentration of the fluoropolymer particles is 5.0% by mass is 2.5% by mass or less. Is preferably 2.0% by mass or less, more preferably 1.8% by mass or less, and particularly preferably 1.3% by mass or less.
- the lower limit is not particularly limited.
- the “mesh-up amount of fluoropolymer particles” is measured, for example, by the following method.
- the pump is circulated for 2 hours at a discharge flow rate of 10 L / hour.
- the mesh-up amount when filtered using a 200-mesh SUS net is measured as a ratio (mass%) to the fluoropolymer amount contained in the used fluoropolymer aqueous dispersion. It shows that it is excellent in mechanical stability, so that a ratio is low.
- the polymerization in the production method of the present invention is represented by the following general formula (2).
- X represents H or F, m2 represents an integer of 6 or more, and Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM, —PO 3 M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms)) in the absence of a fluorine-containing compound represented by Preferably it is done.
- the polymerization in the production method of the present invention is preferably emulsion polymerization.
- the polymerization in the production method of the present invention is preferably radical polymerization.
- the aqueous fluoropolymer dispersion obtained by the production method of the present invention may be subjected to multistage polymerization. Since the aqueous fluoropolymer dispersion obtained by the production method of the present invention contains fluoropolymer particles having an extremely small particle size, it has a core-shell structure having the fluoropolymer particles as a core portion by being subjected to multistage polymerization. An aqueous dispersion containing fluororesin particles having a very small particle diameter can be produced.
- a fluoropolymer fine powder is produced by coagulating the aqueous fluoropolymer dispersion obtained by the production method of the present invention, washing the obtained coagulated particles, and drying. You can also
- An aqueous fluoropolymer dispersion having a high concentration can also be produced.
- the concentration of the solid content of the fluoropolymer aqueous dispersion after the concentration is as follows: 1 g of the aqueous dispersion is dried in a blow dryer at 300 ° C. for 60 minutes, and the heating residue relative to the mass (1 g) of the aqueous dispersion The ratio of the mass is expressed as a percentage.
- the step of contacting with the ion exchange resin can be performed by a conventionally known method. Moreover, the above-mentioned thing is mentioned as said concentration method.
- the production method of the present invention preferably includes a step of separating the fluoropolymer aqueous dispersion and the ion exchange resin and recovering the fluoropolymer aqueous dispersion after the step (I).
- nonionic surfactant if it consists of a nonionic compound which does not contain a fluorine, it will not specifically limit, A well-known thing can be used.
- the nonionic surfactant include ether-type nonionic surfactants such as polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether; and polyoxyethylene alkyl propylene oxide block copolymers.
- ester-type nonionic surfactants such as sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters; polyoxyethylene alkylamines, alkylalkanolamides, etc.
- Amine-based nonionic surfactants and the like. These are all non-fluorinated nonionic surfactants.
- the hydrophobic group may be any of an alkylphenol group, a linear alkyl group and a branched alkyl group, but a compound having no alkylphenol group in its structure, etc. It is preferable that it does not have.
- polyoxyethylene alkyl ether is preferable.
- the polyoxyethylene alkyl ether preferably has a polyoxyethylene alkyl ether structure having an alkyl group having 10 to 20 carbon atoms, and has a polyoxyethylene alkyl ether structure having an alkyl group having 10 to 15 carbon atoms. Is more preferable.
- the alkyl group in the polyoxyethylene alkyl ether structure preferably has a branched structure.
- Examples of the commercially available polyoxyethylene alkyl ether include Genapol X080 (product name, manufactured by Clariant), Taditol 9-S-15 (product name, manufactured by Clariant), Neugen TDS-80 (product name, No. 1 Kogyo Seiyaku Co., Ltd.), Leocoal TD-90 (product name, manufactured by Lion) and the like.
- Fluoropolymer aqueous dispersion and fluoropolymer fine powder obtained by the production method of the present invention include molding materials, inks, cosmetics, paints, greases, office automation equipment components, toner modifying additives, and addition to plating solutions It can be suitably used as an agent or the like.
- the molding material include engineering plastics such as polyoxybenzoyl polyester, polyimide, polyamide, polyamideimide, polyacetal, polycarbonate, and polyphenylene sulfide.
- the fluoropolymer aqueous dispersion obtained by the production method of the present invention and the above-mentioned fluoropolymer fine powder are used as additives for molding materials, for example, improvement of non-adhesiveness / sliding characteristics of copy rolls, furniture surface sheets, automobile Applications that improve the texture of engineering plastic moldings such as dashboards and household electrical appliance covers, light duty bearings, gears, cams, buttons for push phones, projectors, camera parts, sliding parts, etc. It can be suitably used as an application for improving slipperiness and wear resistance, a processing aid for engineering plastics, and the like.
- the aqueous fluoropolymer dispersion obtained by the production method of the present invention and the above-mentioned fluoropolymer fine powder can be used for the purpose of improving the slipperiness of varnish and paint as an additive for paints.
- the aqueous fluoropolymer dispersion and fluoropolymer fine powder of the present invention can be used as an additive for cosmetics for the purpose of improving the slipperiness of cosmetics such as foundations.
- the aqueous fluoropolymer dispersion obtained by the production method of the present invention and the above-mentioned fluoropolymer fine powder are also suitable for uses such as wax to improve oil repellency or water repellency and to improve the slipperiness of grease and toner. It is.
- the aqueous fluoropolymer dispersion obtained by the production method of the present invention and the above-mentioned fluoropolymer fine powder can also be used as an electrode binder for secondary batteries and fuel cells, a hardness adjusting agent for electrode binders, a water repellent treatment agent for electrode surfaces, etc. Can be used.
- fluoropolymer aqueous dispersions are often preferred over fluoropolymer fine powders.
- DLS Volume average particle diameter Measured by dynamic light scattering
- ELSZ-1000S manufactured by Otsuka Electronics Co., Ltd.
- the sample used was a fluoropolymer aqueous dispersion adjusted to a fluoropolymer solid content concentration of 1.0 mass%.
- the refractive index of the solvent (water) was 1.3328
- the viscosity of the solvent (water) was 0.8878 mPa ⁇ s.
- the light source used was a 660 nm laser, and the scattered light from the sample was measured at 165 °, which is close to backscattering.
- the apparatus automatically adjusted the intensity of the laser beam applied to the sample and the observation position so that the optimum scattering intensity (10000 to 50000 cps) was obtained according to the intensity of the scattering intensity of the sample.
- the average particle diameter (d) and polydispersity index (PI) by the Cumulant method adapted to the autocorrelation function were obtained from the ELSZ-1000 software. Information is inadequate. For this reason, in order to obtain a particle size distribution, a histogram method is used in which approximation is performed by representing the distribution with a finite number of ⁇ j.
- the modified Marquardt method was used as the nonlinear least square method used for approximation. Since the obtained particle size distribution depends on the scattering intensity, it was converted into a weight distribution using the Rayleigh-Gans-Debye function. The average value in the weight distribution was defined as the weight average particle size. Further, since the specific gravity of the particles in the sample is the same regardless of the size of the particle size, the weight average particle size is assumed to be equivalent to the volume average particle size.
- Solid content concentration The solid content concentration of the aqueous dispersion before concentration obtained by polymerization was such that 1 g of the aqueous dispersion was dried in a blow dryer at 150 ° C. for 60 minutes, and heated against the mass (1 g) of the aqueous dispersion. A value representing the percentage of the remaining mass in percentage was adopted.
- concentration of the solid content of the fluoropolymer aqueous dispersion after the concentration is such that 1 g of the aqueous dispersion is dried in a blow dryer at 300 ° C. for 60 minutes, and the heating residue relative to the mass (1 g) of the aqueous dispersion is determined. A value expressing the mass ratio of the minute as a percentage was adopted.
- MFR Melt flow rate
- ASTM D12308 melt indexer
- a measurement temperature determined by the type of fluoropolymer (for example, 372 ° C. in the case of PFA or FEP, ETFE 297 ° C for PTFE, 380 ° C for PTFE), and the mass of polymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load (eg, 5 kg for PFA, FEP, ETFE and PTFE) g / 10 min).
- the amount of the polymer which flowed out was very small, when it was difficult to measure the mass of the polymer which flowed out, it was set to 0.2 g or less / 10 minutes.
- Example 1 Into a glass reactor equipped with a stirrer having an internal volume of 1 L, 530 g of deionized water, 30 g of paraffin wax and 49.5 g of ammonium perfluorohexanoate dispersant (APFH) were placed. The reactor contents were then aspirated while heating to 85 ° C. and simultaneously purged with TFE monomer to remove oxygen in the reactor. Thereafter, 0.03 g of ethane gas was added to the reactor and the contents were stirred at 540 rpm. TFE monomer was added into the reactor until a pressure of 0.73 MPaG was reached.
- APFH ammonium perfluorohexanoate dispersant
- Nitric acid was added to the obtained PTFE aqueous dispersion, and the mixture was agglomerated by vigorous stirring until solidified.
- the obtained aggregate was washed with deionized water and then dried at 150 ° C. to obtain PTFE powder.
- the MFR of the PTFE powder was 16.7 g / 10 min
- the melting point was 327.2 ° C.
- the thermal decomposition starting temperature of 1 mass% was 473.0 ° C.
- the amount of sediment was 0.1% by mass.
- the obtained PTFE aqueous dispersion was added with APFH, which is the same dispersant as when polymerized so that the amount of the dispersant was 10.0% by mass.
- deionized water was added so that the solid content concentration was 5.0% by mass, and mechanical stability was evaluated. As a result, the mesh-up amount was 0.1% by mass.
- a surfactant was added to 100 g of the obtained PTFE aqueous dispersion and mixed uniformly, and then passed through a column filled with an ion exchange resin.
- the obtained aqueous dispersion was kept at 60 ° C., and the concentrated phase obtained by phase separation was recovered. This concentrated phase had a solid content concentration of 62% by mass.
- water and a surfactant were added to adjust the pH to 9.7 with a solid content of 60% by mass and a surfactant amount of 8% by mass.
- Example 2 Polymerization was carried out in the same manner as in Example 1 except that 49.5 g of ammonium perfluorohexanoate dispersant (APFH) in Example 1 was changed to 55.0 g.
- the obtained PTFE aqueous dispersion had a solid content concentration of 20.5% by mass and a volume average particle size of 0.9 nm.
- the amount of change in the concentration of the fluorine-containing surfactant in the aqueous medium at this time is 10,000 ppm, and the amount of change in the volume average particle size is 0.3 nm.
- the amount was 0.03 nm per 1000 ppm of the fluorine-containing surfactant in the aqueous medium.
- Example 2 Polymerization was carried out in the same manner as in Example 1 except that the polymerization temperature at 85 ° C. in Example 1 was changed to 70 ° C.
- Example 3 Polymerization was performed in the same manner as in Example 1 except that 0.010 g of 0.110 g of ammonium persulfate (APS) initiator in Example 1 was used.
- APS ammonium persulfate
- Example 4 In Example 1, 0.110 g of ammonium persulfate (APS) initiator was 0.006 g, 49.5 g of ammonium perfluorohexanoate dispersant (APFH) was 55.0 g, and about 40 g of TFE monomer was reacted. Polymerization was carried out in the same manner as in Example 1 except that the polymerization was continued until the completion.
- APS ammonium persulfate
- APFH ammonium perfluorohexanoate dispersant
- Example 5 In Example 1, 0.110 g of ammonium persulfate (APS) initiator was 0.006 g, 49.5 g of ammonium perfluorohexanoate dispersant (APFH) was 27.5 g, and about 10 g of TFE monomer was reacted. Polymerization was carried out in the same manner as in Example 1 except that the polymerization was continued until the completion.
- APS ammonium persulfate
- APFH ammonium perfluorohexanoate dispersant
- Example 6 Polymerization was conducted in the same manner as in Example 4 except that 55.0 g of ammonium perfluorohexanoate dispersant (APFH) in Example 4 was changed to 26.4 g.
- APFH ammonium perfluorohexanoate dispersant
- Example 7 Polymerization was carried out in the same manner as in Example 4 except that 55.9 g of ammonium perfluorohexanoate dispersant (APFH) in Example 4 was changed to 25.9 g.
- APFH ammonium perfluorohexanoate dispersant
- Example 8 In Example 4, 55.0 g of ammonium perfluorohexanoate dispersant (APFH) was added to 20.9 g of 2,3,3,3-tetrafluoro-2- [1,1,2,3,3,3-hexa Fluoro-2- (trifluoromethoxy) propoxy] -propanoic acid ammonium salt dispersant (CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] went.
- APFH ammonium perfluorohexanoate dispersant
- Example 9 20.9 g 2,3,3,3-tetrafluoro-2- [1,1,2,3,3,3-hexafluoro-2- (trifluoromethoxy) propoxy] -ammonium propanoate in Example 8 Polymerization was carried out in the same manner as in Example 8 except that 13.8 g of the salt dispersant (CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] was used.
- the salt dispersant CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] was used.
- Example 10 20.9 g 2,3,3,3-tetrafluoro-2- [1,1,2,3,3,3-hexafluoro-2- (trifluoromethoxy) propoxy] -ammonium propanoate in Example 8 Polymerization was carried out in the same manner as in Example 8 except that 10.5 g of the salt dispersant (CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] was used.
- the salt dispersant CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] was used.
- Example 11 In a 6 L SUS reactor with a stirrer, 2860 g of deionized water, 104 g of paraffin wax, and 288.0 g of ammonium perfluorohexanoate dispersant (APFH) were placed. The reactor contents were then aspirated while heating to 85 ° C. and simultaneously purged with TFE monomer to remove oxygen in the reactor. Thereafter, 0.08 g of ethane gas was added to the reactor and the contents were stirred at 250 rpm. TFE monomer was added into the reactor until a pressure of 0.25 MPaG was reached.
- APFH ammonium perfluorohexanoate dispersant
- 0.029 g of ammonium persulfate (APS) initiator dissolved in 20 g of deionized water was injected into the reactor and the reactor was brought to a pressure of 0.30 MPaG. A pressure drop occurred after the injection of the initiator and the onset of polymerization was observed.
- TFE monomer was added to the reactor to maintain the pressure and polymerization was continued until about 250 g of TFE monomer had reacted. Thereafter, the reactor was evacuated until the pressure in the reactor reached normal pressure, and the contents were taken out of the reactor and cooled. The supernatant paraffin wax was removed from the PTFE aqueous dispersion.
- the obtained PTFE aqueous dispersion had a solid content concentration of 6.0% by mass and a volume average particle size of 2.5 nm.
- a part of the obtained PTFE aqueous dispersion was put in a freezer and frozen.
- the frozen PTFE aqueous dispersion was allowed to stand at 25 ° C. to obtain a solidified powder.
- the coagulated wet powder was washed with deionized water and then dried at 150 ° C.
- the MFR of the PTFE powder at this time was 0.2 g or less / 10 minutes, the melting point was 329.5 ° C., and the thermal decomposition starting temperature of 1% by mass was 490.8 ° C.
- Example 12 Polymerization was carried out in the same manner as in Example 11 except that 0.08 g of ethane gas in Example 11 was changed to 0.10 g of PMVE.
- Example 13 In Example 11, 0.08 g of ethane gas was changed to 0.49 g of HFP, a reactor having a pressure of 0.30 MPaG was used as a reactor having a pressure of 0.20 MPaG, and polymerization was performed until about 200 g of TFE monomer had reacted. Polymerization was carried out in the same manner as in Example 11 except for continuing.
- Example 14 Polymerization was carried out in the same manner as in Example 4 except that 0.03 g of ethane gas in Example 4 was changed to 0.41 g of PPVE.
- Example 15 Into a glass reactor equipped with a stirrer having an internal volume of 1 L, 530 g of deionized water, 30 g of paraffin wax and 55.0 g of an ammonium perfluorohexanoate dispersant (APFH) were placed. The reactor contents were then aspirated while heating to 85 ° C. and simultaneously purged with TFE monomer to remove oxygen in the reactor. Thereafter, 0.03 g ethane gas and 0.20 g perfluorohexylethylene (PFHE) were added to the reactor and the contents were stirred at 540 rpm. TFE monomer was added into the reactor until a pressure of 0.73 MPaG was reached.
- APFHE ammonium perfluorohexanoate dispersant
- ammonium persulfate (APS) initiator dissolved in 20 g deionized water was injected into the reactor and the reactor was brought to a pressure of 0.83 MPaG. A pressure drop occurred after the injection of the initiator and the onset of polymerization was observed.
- TFE monomer was added to the reactor to maintain the pressure and polymerization was continued until about 40 g of TFE monomer had reacted. Thereafter, the reactor was evacuated until the pressure in the reactor reached normal pressure, and the contents were taken out of the reactor and cooled. The supernatant paraffin wax was removed from the PTFE aqueous dispersion.
- the obtained PTFE aqueous dispersion had a solid content concentration of 6.6% by mass and a volume average particle size of 1.6 nm.
- a part of the obtained PTFE aqueous dispersion was put in a freezer and frozen.
- the frozen PTFE aqueous dispersion was allowed to stand at 25 ° C. to obtain a solidified powder.
- the coagulated wet powder was washed with deionized water and then dried at 150 ° C.
- the MFR of the PTFE powder at this time was 0.2 g or less / 10 minutes, the melting point was 329.3 ° C., and the thermal decomposition starting temperature of 1% by mass was 465.5 ° C.
- Example 16 The polymerization temperature at 85 ° C. in Example 15 is 70 ° C., 0.006 g of ammonium persulfate (APS) initiator is 0.110 g, and 55.0 g of ammonium perfluorohexanoate dispersant (APFH) is 44.0 g. 0.20 g of perfluorohexylethylene (PFHE) was changed to 1.12 g of perfluoro [3- (1-methyl-2-vinyloxy-ethoxy) propionitrile] [CNVE], and about 140 g of TFE monomer was Polymerization was carried out in the same manner as in Example 15 except that the polymerization was continued until the reaction was completed.
- APS ammonium persulfate
- APFH ammonium perfluorohexanoate dispersant
- PFHE perfluorohexylethylene
- Example 17 In Example 16, 44.0 g of ammonium perfluorohexanoate dispersant (APFH) was added to 22.0 g of 2,3,3,3-tetrafluoro-2- [1,1,2,3,3,3-hexa. Fluoro-2- (trifluoromethoxy) propoxy] -propanoic acid ammonium salt dispersant (CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ) [PMPA] went.
- APFH ammonium perfluorohexanoate dispersant
- Example 18 Polymerization was carried out in the same manner as in Example 15 except that 0.20 g of perfluorohexylethylene (PFHE) in Example 15 was changed to 0.18 g of CTFE.
- PFHE perfluorohexylethylene
- Example 19 In Example 15, 0.006 g of ammonium persulfate (APS) initiator was 0.110 g, 55.0 g of ammonium perfluorohexanoate dispersant (APFH) was 49.5 g, and 0.20 g of perfluorohexylethylene (Polymerization was carried out in the same manner as in Example 15, except that 8.80 g of PPVE was used and polymerization was continued until about 160 g of TFE monomer had reacted.
- APS ammonium persulfate
- APIH ammonium perfluorohexanoate dispersant
- Example 20 Polymerization was carried out in the same manner as in Example 16 except that 0.110 g of ammonium persulfate (APS) initiator in Example 16 was changed to 1.100 g.
- APS ammonium persulfate
- Example 21 In Example 16, 44.0 g of ammonium perfluorohexanoate dispersant (APFH) was changed to 33.0 g of perfluoropolyether alkyl acid ammonium salt dispersant (C 3 F 7 OCF (CF 3 ) COONH 4 ) (PFPE). Polymerization was carried out in the same manner as in Example 16 except that.
- APFH ammonium perfluorohexanoate dispersant
- PFPE perfluoropolyether alkyl acid ammonium salt dispersant
- Example 22 Polymerization was continued until 50.0 g of ammonium perfluorohexanoate dispersant (APFH) in Example 4 was changed to 100.0 g of ammonium perfluoropentanoate dispersant (APFP) and about 140 g of TFE monomer had reacted. Polymerization was carried out in the same manner as in Example 4 except that.
- APFH ammonium perfluorohexanoate dispersant
- APFP ammonium perfluoropentanoate dispersant
- Example 23 In Example 4, 55.0 g of ammonium perfluorohexanoate dispersant (APFH) was converted to 7.7 g of perfluoroalkylalkylene sulfonic acid dispersant (C 6 F 13 (CH 2 ) 2 SO 3 H) (6,2- Polymerization was carried out in the same manner as in Example 4 except that PFAS was used.
- APFH ammonium perfluorohexanoate dispersant
- C 6 F 13 (CH 2 ) 2 SO 3 H perfluoroalkylalkylene sulfonic acid dispersant
- Example 24 55.0 g of ammonium perfluorohexanoate dispersant (APFH) in Example 4 was replaced with 5.0 g of perfluoroalkylalkylene sulfonic acid dispersant (C 6 F 13 (CH 2 ) 2 SO 3 H) (6,2- Polymerization was carried out in the same manner as in Example 4 except that PFAS was used.
- APFH ammonium perfluorohexanoate dispersant
- C 6 F 13 (CH 2 ) 2 SO 3 H perfluoroalkylalkylene sulfonic acid dispersant
- Example 25 In Example 4, 55.0 g of ammonium perfluorohexanoate dispersant (APFH) was added to 3.9 g of perfluoroalkylalkylene sulfonic acid dispersant (C 6 F 13 (CH 2 ) 2 SO 3 H) (6,2- Polymerization was carried out in the same manner as in Example 4 except that PFAS was used.
- APFH ammonium perfluorohexanoate dispersant
- C 6 F 13 (CH 2 ) 2 SO 3 H perfluoroalkylalkylene sulfonic acid dispersant
- Example 2 Polymerization was carried out in the same manner as in Example 4 except that 55.0 g of ammonium perfluorohexanoate dispersant (APFH) in Example 4 was changed to 22.0 g.
- APFH ammonium perfluorohexanoate dispersant
- Fluoropolymer aqueous dispersion obtained by the production method of the present invention and fluoropolymer fine powder obtained from the aqueous dispersion are various molding materials, paints, cosmetics, waxes, greases, toners and other additives, secondary batteries, It can be suitably used for an electrode binder for a fuel cell, a hardness adjusting agent for the electrode binder, a water repellent treatment agent for the electrode surface, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
一般式: XCF2CF2(O)mCF2CF2OCF2COOA
(式中、Xは水素原子またはフッ素原子、Aは水素原子、アルカリ金属またはNH4であり、mは0~1の整数である。)で表される含フッ素乳化剤を最終ポリテトラフルオロエチレン収量に対して1,500~20,000ppm使用して得られることを特徴とするポリテトラフルオロエチレン水性乳化液が提案されている。
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物、及び、下記一般式(3)
CF3OCF(CF3)CF2OCF(CF3)COOX (3)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物からなる群より選択される少なくとも1種であることが好ましい。
X-(CF2)m2-Y (2)
(式中、XはH又はFを表し、m2は6以上の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物の非存在下に行うことが好ましい。
また、本発明の製造方法において得られる水性媒体中の含フッ素界面活性剤の濃度は、フルオロポリマー粒子の固形分濃度が8質量%以上のフルオロポリマー水性分散液を製造する場合は、臨界ミセル濃度の1.1倍の濃度より大きく3.0倍の濃度未満が好ましい。
上記製造方法は、水性媒体中の含フッ素界面活性剤の濃度が、含フッ素界面活性剤の臨界ミセル濃度の0.8倍の濃度以上であることを特徴とする。含フッ素界面活性剤の濃度は、臨界ミセル濃度の0.8倍の濃度よりも大きい濃度であることが好ましく、重合安定性、コストを鑑みれば、臨界ミセル濃度の3倍の濃度以下であることが好ましい。
上記臨界ミセル濃度は、表面張力を測定することで決定できる。表面張力は、例えば、協和界面化学株式会社製表面張力計CBVP-A3型により測定することができる。
また、臨界ミセル濃度は、例えば、Environmental Science & Technology(2011),45(19),8120-8128やその引用文献を用いて確認することができる。
所望する粒子径をもつフルオロポリマー水性分散液を安定的に製造することを鑑みれば、所望する粒子径をもつフルオロポリマー水性分散液を得るために必要な水性媒体中の含フッ素界面活性剤量の近傍での変化量に対して粒子径の変化量が小さいほど好ましい。粒子径の変化量は、水性媒体中の含フッ素界面活性剤1000ppm当り25.00nm未満であることが好ましく、3.40nm未満であることがより好ましく、1.30nm未満であることが更に好ましく、0.20nm未満であることが更により好ましく、0.04nm未満であることが特に好ましい。
代表的な含フッ素界面活性剤の臨界ミセル濃度とLogPOWは次のとおりである。
CF3(CF2)4COONH4:56g/L、2.4
CF3(CF2)3COONH4:82g/L、2.0
CF3OCF(CF3)CF2OCF(CF3)COONH4:22g/L、3.4
C3F7OCF(CF3)COONH4:48g/L、2.5
C6F13(CH2)2SO3H:1g/L、5.9
F(CF2)n1COOM (I)
(式中、n1は、3~6の整数であり、Mは、H、NH4又はアルカリ金属元素である。)で表されるものである。
H(CF2)n2COOM (II)
(式中、n2は、4~8の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf1-O-(CF(CF3)CF2O)n3CF(CF3)COOM (III)
(式中、Rf1は、炭素数1~5のパーフルオロアルキル基であり、n3は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。
C4F9OCF(CF3)COOM、C3F7OCF(CF3)COOM、
C2F5OCF(CF3)COOM、CF3OCF(CF3)COOM、
CF3OCF(CF3)CF2OCF(CF3)COOM
(各式中、Mは上記定義したものである)等が好ましく、重合時の安定性と除去効率とが共によい点で、
CF3OCF(CF3)COOM、CF3OCF(CF3)CF2OCF(CF3)COOM
(各式中、Mは上記定義したものである)等がより好ましい。
Rf2(CH2)n4Rf3COOM (IV)
(式中、Rf2は、炭素数1~5のパーフルオロアルキル基であり、Rf3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基、n4は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
C4F9CH2CF2COOM、C3F7CH2CF2COOM、
C2F5CH2CF2COOM、C4F9CH2CF(CF3)COOM、
C3F7CH2CF(CF3)COOM、C2F5CH2CF(CF3)COOM、
C4F9CH2CH2CF2COOM、C3F7CH2CH2CF2COOM、
C2F5CH2CH2CF2COOM
(各式中、Mは上記定義したものである)等が好ましい。
Rf4-O-CY1Y2CF2-COOM (V)
(式中、Rf4は、炭素数1~5のパーフルオロアルキル基であり、Y1及びY2は、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
C3F7OCH2CF2COOM、C3F7OCHFCF2COOM、
C3F7OCF2CF2COOM
(各式中、Mは上記定義したものである)等が好ましい。
F(CF2)n5SO3M (VI)
(式中、n5は、3~6の整数であり、Mは、上記定義したものである。)で表されるものである。
上記一般式(VI)において、上記n5は、重合安定性の点で、4又は5の整数であることが好ましく、上記Mは、得られるフルオロポリマー水性分散液の加工時に残存しにくいという点で、NH4であることが好ましい。
上記パーフルオロアルキルスルホン酸(VI)としては、例えば、
F(CF2)4SO3M、F(CF2)5SO3M
(各式中、Mは上記定義したものである)等が好ましい。
Rf5(CH2)n6SO3M (VII)
(式中、Rf5は、1~6のパーフルオロアルキル基であり、n6は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
C3F7CH2SO3M、C6F13(CH2)2SO3M
(式中、Mは上記定義したものである)等が好ましく、重合時の安定性と除去効率とが共によい点で、
C3F7CH2SO3M
(式中、Mは上記定義したものである)等がより好ましい。
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物、一般式(II)で表されるω-Hパーフルオロカルボン酸(II)、一般式(III)で表されるパーフルオロポリエーテルカルボン酸(III)、一般式(IV)で表されるパーフルオロアルキルアルキレンカルボン酸(IV)、一般式(V)で表されるパーフルオロアルコキシフルオロカルボン酸(V)、及び、一般式(VII)で表されるパーフルオロアルキルアルキレンスルホン酸(VII)からなる群より選択される少なくとも1種であることが好ましい。
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物、下記一般式(3)
CF3OCF(CF3)CF2OCF(CF3)COOX (3)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物、及び、下記一般式(4)
CF3CF2OCF2CF2OCF2COOX (4)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物、及び、下記一般式(5)
CF3OCF2CF2OCF2COOX (5)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物からなる群より選択される少なくとも1種であることがより好ましい。
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物、及び、下記一般式(3)
CF3OCF(CF3)CF2OCF(CF3)COOX (3)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物からなる群より選択される少なくとも1種であることが更に好ましい。
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物が更により好ましい。
CF2=CF-ORf8 (6)
(式中、Rf8は、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(6)において、Rf8が炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rf8が下記式:
パーフルオロアルキルエチレンとしては特に限定されず、例えば、パーフルオロブチルエチレン(PFBE)、パーフルオロヘキシルエチレン(PFHE)、パーフルオロオクチルエチレン(PFOE)等が挙げられる。
小さいMFRはPTFEの分子量が高いことを意味する。上記水性分散液は、分子量が高いと同時に、極めて小さな粒子径を有するPTFE粒子を含むことができる。
本明細書において、熱分解開始温度は、示差熱・熱重量測定装置〔TG-DTA〕(商品名:TG/DTA6200、セイコー電子社製)を用い、試料10mgを昇温速度10℃/分で室温から昇温し、試料が1質量%減少した温度である。
CH2=CX5Rf3、CF2=CFRf3、CF2=CFORf3、CH2=C(Rf3)2
(式中、X5は水素原子又はフッ素原子、Rf3はエーテル結合を含んでいてもよいフルオロアルキル基を表す。)で表される単量体が挙げられ、なかでも、CF2=CFRf3、CF2=CFORf3及びCH2=CX5Rf3で表される含フッ素ビニルモノマーが好ましく、HFP、CF2=CF-ORf4(式中、Rf4は炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)及びRf3が炭素数1~8のフルオロアルキル基であるCH2=CX5Rf3で表される含フッ素ビニルモノマーがより好ましい。また、TFE及びエチレンと共重合可能な単量体としては、イタコン酸、無水イタコン酸等の脂肪族不飽和カルボン酸であってもよい。TFE及びエチレンと共重合可能な単量体は、含フッ素重合体に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましく、0.2~4モル%が特に好ましい。
フルオロポリマーを含む水性分散液に塩酸あるいは硝酸を添加してフルオロポリマーを凝析させる。凝析したフルオロポリマーは、洗浄液が中性になるまで純水にて洗浄を行った後、水分がなくなるまで110℃以下で真空加熱乾燥させる。乾燥させたフルオロポリマーのおよそ0.3gを、25℃の飽和NaCl水溶液30mLに浸漬し、攪拌しながら30分間放置する。次いで、飽和NaCl水溶液中のプロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定する。中和後に得られたイオン交換基の対イオンがナトリウムイオンの状態となっているフルオロポリマーを、純水ですすぎ、さらに真空乾燥して秤量する。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンのフルオロポリマーの質量をW(mg)とし、下記式より当量重量EW(g/eq)を求める。
EW=(W/M)-22
多量の含フッ素界面活性剤と少量の連鎖移動剤とを使用することも、上記方法の好ましい条件の一つである。このような条件を採用すれば、高分子量かつ小粒径のフルオロポリマー粒子を容易に製造することが可能となる。
特に好ましい条件は、含フッ素界面活性剤を6,000ppm以上使用し、連鎖移動剤を20,000ppm以下使用することである。この好適な条件において、含フッ素界面活性剤は、8,000ppm以上であることがより好ましく、18,000ppm以上であることが更に好ましく、20,000ppm以上であることが特に好ましく、400,000ppm以下であることが好ましく、300,000ppm以下であることがより好ましく、連鎖移動剤は、10,000ppm以下であることがより好ましく、7,000ppm以下であることが更に好ましく、50ppm以上であることが好ましく、100ppm以上であることがより好ましい。
X-(CF2)m2-Y (2)
(式中、XはH又はFを表し、m2は6以上の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物の非存在下に行うことが好ましい。
本発明の製造方法における重合は、乳化重合であることが好ましい。本発明の製造方法における重合は、ラジカル重合であることが好ましい。
上記濃縮後のフルオロポリマー水性分散液の固形分濃度は、水性分散液1gを、送風乾燥機中で300℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表したものである。
本発明の製造方法は、上記工程(I)の後、フルオロポリマーの水性分散液とイオン交換樹脂とを分離してフルオロポリマーの水性分散液を回収する工程を含むことが好ましい。
動的光散乱法(DLS)により測定される。動的光散乱(DLS)測定は、ELSZ-1000S(大塚電子株式会社製)を使用して25℃で行った。試料はフルオロポリマー固形分濃度1.0質量%に調整したフルオロポリマー水性分散液を用いた。その時、溶媒(水)の屈折率は1.3328、溶媒(水)の粘度は0.8878mPa・sとした。光源は660nmレーザーを用いて、試料からの散乱光は後方散乱に近い165°で測定を行った。1測定には70回の積算を行い、およそ3分間かけてデータを取り込んだ。試料の散乱強度の強弱に応じて、最適な散乱強度(10000~50000cps)になるよう、試料に照射するレーザー光強度や観測位置を装置が自動的に調整を行った。
得られた自己相関関数をもとに、自己相関関数に適合されたCumulant法による平均粒子径(d)と多分散指数(PI)がELSZ-1000ソフトウエアから得られたが、粒度分布についての情報は不十分である。
このため、粒度分布を得るために有限個数のΓjで分布を代表させて近似を行うヒストグラム法を用いた。ここで近似に使用する非線形最少二乗法には修正Marquardt法を用いた。得られた粒度分布は散乱強度に依存した分布であるため、Rayleigh-Gans-Debye関数を用いて重量分布に換算した。重量分布における平均値を重量平均粒子径とした。また、試料中の粒子の比重は粒度の大きさに関わりなく同一であるので、重量平均粒子径は体積平均粒子径と等価であるとした。
NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせて測定した。
示差走査熱量計〔DSC〕を用いて、300℃以上に加熱した履歴の無い試料3mgを10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
示差熱・熱重量測定装置〔TG-DTA〕(商品名:TG/DTA6200、セイコー電子社製)を用い、試料10mgを昇温速度10℃/分で室温から昇温し、試料が1質量%減少した温度を測定した。
重合により得られた濃縮前の水性分散液の固形分濃度は、水性分散液1gを、送風乾燥機中で150℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
また、濃縮後のフルオロポリマー水性分散液の固形分濃度は、水性分散液1gを、送風乾燥機中で300℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
MFRは、ASTM D1238に準拠した方法で、メルトインデクサー((株)安田精機製作所製)を用いて、フルオロポリマーの種類によって定められた測定温度(例えば、PFAやFEPの場合は372℃、ETFEの場合は297℃、PTFEの場合は380℃)、荷重(例えば、PFA、FEP、ETFE及びPTFEの場合は5kg)において内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)を測定した。
なお、流出したポリマー量がごく微量であることから、流出したポリマーの質量を測定することが困難である場合は0.2g以下/10分とした。
(貯蔵安定性試験)
25℃に保持した30gのフルオロポリマー水性分散液を、専用の容器に入れ、RT15A7型のロータを備えた日立工機社製の遠心分離機(himac CT15D)を用いて、5000rpmの回転数で5分間保持し、沈降物層とフルオロポリマー水性分散液層に分離した。フルオロポリマー水性分散液層を取り出して固形分量を求め、用いたフルオロポリマー水性分散液中の固形分量との差から沈降物量を計算した。沈降物量を、用いたフルオロポリマー水性分散液に含まれるフルオロポリマー量に占める割合(質量%)として測定した。割合が低いほど貯蔵安定性に優れることを示す。
65℃に保持した100gのフルオロポリマー水性分散液を、内径4.76mm、外径7.94mmのチューブ(タイゴンチューブ)を備えた東京理化器械株式会社製の定量送液ポンプ(RP-2000型 ローラーポンプ)を用い、吐出流量が10L/時間の条件で2時間循環した。その後、200メッシュSUS網を用いてろ過した際のメッシュアップ量を、用いたフルオロポリマー水性分散液に含まれるフルオロポリマー量に占める割合(質量%)として測定した。割合が低いほど機械的安定性に優れることを示す。
内容量1Lの撹拌機付きガラス製反応器に、530gの脱イオン水、30gのパラフィンワックス及び49.5gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を入れた。次いで反応器の内容物を85℃まで加熱しながら吸引すると同時にTFE単量体でパージして反応器内の酸素を除いた。その後、0.03gのエタンガスを反応器に加え、内容物を540rpmで攪拌した。反応器中にTFE単量体を0.73MPaGの圧力となるまで加えた。20gの脱イオン水に溶解した0.110gの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。TFE単量体を反応器に加えて圧力を保ち、約140gのTFE単量体が反応し終わるまで重合を続けた。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
得られたPTFE水性分散液の固形分濃度は20.9質量%であり、体積平均粒子径は1.2nmであった。
得られたPTFE水性分散液を分散剤量が10.0質量%となるように、重合したときと同一の分散剤であるAPFHを加えた。さらに、固形分濃度が5.0質量%なるように脱イオン水を加え、機械的安定性を評価した結果、メッシュアップ量は0.1質量%であった。
実施例1における49.5gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を55.0gとした以外は実施例1と同様に重合を行った。得られたPTFE水性分散液の固形分濃度は20.5質量%であり、体積平均粒子径は0.9nmであった。
実施例1と比較して、この時の水性媒体中の含フッ素界面活性剤の濃度変化量は10000ppm、体積平均粒子径の変化量は0.3nmであるので、体積平均粒子径の変化量は水性媒体中の含フッ素界面活性剤1000ppm当り0.03nmであった。
実施例1における85℃の重合温度を70℃とした以外は実施例1と同様に重合を行った。
実施例1における0.110gの過硫酸アンモニウム(APS)開始剤を0.028gとした以外は実施例1と同様に重合を行った。
実施例1における0.110gの過硫酸アンモニウム(APS)開始剤を0.006gとし、49.5gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を55.0gとし、約40gのTFE単量体が反応し終わるまで重合を続けた以外は実施例1と同様に重合を行った。
実施例1における0.110gの過硫酸アンモニウム(APS)開始剤を0.006gとし、49.5gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を27.5gとし、約10gのTFE単量体が反応し終わるまで重合を続けた以外は実施例1と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を26.4gとした以外は実施例4と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を25.9gとした以外は実施例4と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を20.9gの2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメトキシ)プロポキシ]-プロパン酸アンモニウム塩分散剤(CF3OCF(CF3)CF2OCF(CF3)COONH4)〔PMPA〕とした以外は実施例4と同様に重合を行った。
実施例8における20.9gの2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメトキシ)プロポキシ]-プロパン酸アンモニウム塩分散剤(CF3OCF(CF3)CF2OCF(CF3)COONH4)〔PMPA〕を13.8gとした以外は実施例8と同様に重合を行った。
実施例8における20.9gの2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメトキシ)プロポキシ]-プロパン酸アンモニウム塩分散剤(CF3OCF(CF3)CF2OCF(CF3)COONH4)〔PMPA〕を10.5gとした以外は実施例8と同様に重合を行った。
内容量6Lの撹拌機付きSUS製反応器に、2860gの脱イオン水、104gのパラフィンワックス及び288.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を入れた。次いで反応器の内容物を85℃まで加熱しながら吸引すると同時にTFE単量体でパージして反応器内の酸素を除いた。その後、0.08gのエタンガスを反応器に加え、内容物を250rpmで攪拌した。反応器中にTFE単量体を0.25MPaGの圧力となるまで加えた。20gの脱イオン水に溶解した0.029gの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.30MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。TFE単量体を反応器に加えて圧力を保ち、約250gのTFE単量体が反応し終わるまで重合を続けた。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
得られたPTFE水性分散液の固形分濃度は6.0質量%であり、体積平均粒子径は2.5nmであった。
得られたPTFE水性分散液の一部を冷凍庫に入れて凍結した。凍結したPTFE水性分散液を25℃になるまで放置して凝固した粉末を得た。凝固した湿潤粉末を脱イオン水で水洗いした後150℃で乾燥した。このときのPTFE粉末のMFRは0.2g以下/10分、融点は329.5℃、1質量%の熱分解開始温度は490.8℃であった。
実施例11における0.08gのエタンガスを0.10gのPMVEとした以外は実施例11と同様に重合を行った。
実施例11における0.08gのエタンガスを0.49gのHFPとし、0.30MPaGの圧力の反応器を0.20MPaGの圧力の反応器とし、約200gのTFE単量体が反応し終わるまで重合を続けた以外は実施例11と同様に重合を行った。
実施例4における0.03gのエタンガスを0.41gのPPVEとした以外は実施例4と同様に重合を行った。
内容量1Lの撹拌機付きガラス製反応器に、530gの脱イオン水、30gのパラフィンワックス及び55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を入れた。次いで反応器の内容物を85℃まで加熱しながら吸引すると同時にTFE単量体でパージして反応器内の酸素を除いた。その後、0.03gのエタンガスと0.20gのパーフルオロヘキシルエチレン(PFHE)を反応器に加え、内容物を540rpmで攪拌した。反応器中にTFE単量体を0.73MPaGの圧力となるまで加えた。20gの脱イオン水に溶解した0.006gの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。TFE単量体を反応器に加えて圧力を保ち、約40gのTFE単量体が反応し終わるまで重合を続けた。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
得られたPTFE水性分散液の固形分濃度は6.6質量%であり、体積平均粒子径は1.6nmであった。
得られたPTFE水性分散液の一部を冷凍庫に入れて凍結した。凍結したPTFE水性分散液を25℃になるまで放置して凝固した粉末を得た。凝固した湿潤粉末を脱イオン水で水洗いした後150℃で乾燥した。このときのPTFE粉末のMFRは0.2g以下/10分、融点は329.3℃、1質量%の熱分解開始温度は465.5℃であった。
実施例15における85℃の重合温度を70℃とし、0.006gの過硫酸アンモニウム(APS)開始剤を0.110gとし、55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を44.0gとし、0.20gのパーフルオロヘキシルエチレン(PFHE)を1.12gのパーフルオロ[3-(1-メチル-2-ビニルオキシ-エトキシ)プロピオニトリル]〔CNVE〕とし、約140gのTFE単量体が反応し終わるまで重合を続けた以外は実施例15と同様に重合を行った。
実施例16における44.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を22.0gの2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメトキシ)プロポキシ]-プロパン酸アンモニウム塩分散剤(CF3OCF(CF3)CF2OCF(CF3)COONH4)〔PMPA〕とした以外は実施例16と同様に重合を行った。
実施例15における0.20gのパーフルオロヘキシルエチレン(PFHE)を0.18gのCTFEとした以外は実施例15と同様に重合を行った。
実施例15における0.006gの過硫酸アンモニウム(APS)開始剤を0.110gとし、55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を49.5gとし、0.20gのパーフルオロヘキシルエチレン(PFHE)を8.80gのPPVEとし、約160gのTFE単量体が反応し終わるまで重合を続けた以外は実施例15と同様に重合を行った。
実施例16における0.110gの過硫酸アンモニウム(APS)開始剤を1.100gとした以外は実施例16と同様に重合を行った。
実施例16における44.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を33.0gのパーフルオロポリエーテルアルキル酸アンモニウム塩分散剤(C3F7OCF(CF3)COONH4)(PFPE)とした以外は実施例16と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を100.0gのパーフルオロペンタン酸アンモニウム分散剤(APFP)とし、約140gのTFE単量体が反応し終わるまで重合を続けた以外は実施例4と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を7.7gのパーフルオロアルキルアルキレンスルホン酸分散剤(C6F13(CH2)2SO3H)(6,2-PFAS)とした以外は実施例4と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を5.0gのパーフルオロアルキルアルキレンスルホン酸分散剤(C6F13(CH2)2SO3H)(6,2-PFAS)とした以外は実施例4と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を3.9gのパーフルオロアルキルアルキレンスルホン酸分散剤(C6F13(CH2)2SO3H)(6,2-PFAS)とした以外は実施例4と同様に重合を行った。
実施例8における20.9gの2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメトキシ)プロポキシ]-プロパン酸アンモニウム塩分散剤(CF3OCF(CF3)CF2OCF(CF3)COONH4)〔PMPA〕を8.8gとした以外は実施例8と同様に重合を行った。
実施例4における55.0gのパーフルオロヘキサン酸アンモニウム分散剤(APFH)を22.0gとした以外は実施例4と同様に重合を行った。
Claims (7)
- 含フッ素界面活性剤及び重合開始剤の存在下、フルオロモノマーの重合を水性媒体中で行う、ポリテトラフルオロエチレン及び溶融加工性のフッ素樹脂(但し、ポリテトラフルオロエチレンを除く)からなる群より選択される少なくとも1種のフルオロポリマーを含む水性分散液の製造方法であって、
前記水性媒体中の前記含フッ素界面活性剤の濃度が、前記含フッ素界面活性剤の臨界ミセル濃度の0.8倍の濃度以上である
ことを特徴とするフルオロポリマー水性分散液の製造方法。 - 含フッ素界面活性剤は、LogPOWが3.4以下である請求項1記載のフルオロポリマー水性分散液の製造方法。
- 含フッ素界面活性剤は、下記一般式(1)
X-(CF2)m1-Y (1)
(式中、XはH又はFを表し、m1は3~5の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物、及び、下記一般式(3)
CF3OCF(CF3)CF2OCF(CF3)COOX (3)
(式中、Xは水素原子、NH4又はアルカリ金属原子を表す。)で表される含フッ素化合物からなる群より選択される少なくとも1種である請求項1又は2記載のフルオロポリマー水性分散液の製造方法。 - 前記重合を、下記一般式(2)
X-(CF2)m2-Y (2)
(式中、XはH又はFを表し、m2は6以上の整数を表し、Yは-SO3M、-SO4M、-SO3R、-SO4R、-COOM、-PO3M2、-PO4M2(MはH、NH4又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物の非存在下に行う請求項1、2又は3記載のフルオロポリマー水性分散液の製造方法。 - 前記フルオロポリマーは、体積平均粒子径が0.1nm以上、20nm未満の粒子である請求項1、2、3又は4記載のフルオロポリマー水性分散液の製造方法。
- 前記重合開始剤は、過硫酸塩及び有機過酸化物からなる群より選択される少なくとも1種である請求項1、2、3、4又は5記載のフルオロポリマー水性分散液の製造方法。
- 前記重合開始剤は、水性媒体の1~5,000ppmに相当する量である請求項1、2、3、4、5又は6記載のフルオロポリマー水性分散液の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016525237A JP6369541B2 (ja) | 2014-06-04 | 2015-06-04 | フルオロポリマー水性分散液の製造方法 |
CN201580029235.6A CN106414512B (zh) | 2014-06-04 | 2015-06-04 | 含氟聚合物水性分散液的制造方法 |
US15/316,024 US20170096504A1 (en) | 2014-06-04 | 2015-06-04 | Method for producing fluoropolymer aqueous dispersion liquid |
EP15803136.9A EP3153527A4 (en) | 2014-06-04 | 2015-06-04 | Method for producing fluoropolymer aqueous dispersion liquid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014116292 | 2014-06-04 | ||
JP2014-116292 | 2014-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186794A1 true WO2015186794A1 (ja) | 2015-12-10 |
Family
ID=54766862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066211 WO2015186794A1 (ja) | 2014-06-04 | 2015-06-04 | フルオロポリマー水性分散液の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170096504A1 (ja) |
EP (1) | EP3153527A4 (ja) |
JP (1) | JP6369541B2 (ja) |
CN (1) | CN106414512B (ja) |
WO (1) | WO2015186794A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122700A1 (ja) * | 2016-01-14 | 2017-07-20 | 旭硝子株式会社 | 水性分散液、その製造方法、水性塗料および塗装物品 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9902787B2 (en) | 2014-06-04 | 2018-02-27 | Daikin Industries, Ltd. | Polytetrafluoroethylene powder |
WO2015186793A1 (ja) | 2014-06-04 | 2015-12-10 | ダイキン工業株式会社 | ポリテトラフルオロエチレン水性分散液 |
CN116041605A (zh) * | 2018-10-03 | 2023-05-02 | 大金工业株式会社 | 聚四氟乙烯的制造方法 |
CN112724424B (zh) * | 2020-12-02 | 2022-08-19 | 乐凯胶片股份有限公司 | 制备亲水改性含氟聚合物颗粒的方法及其应用 |
CN116144008A (zh) * | 2021-11-23 | 2023-05-23 | 中昊晨光化工研究院有限公司 | 一种稳定剂及其在制备含氟聚合物中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10513497A (ja) * | 1995-02-06 | 1998-12-22 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | テトラフルオロエチレンとヘキサフルオロプロピレンの非晶質コポリマー類 |
WO2005042593A1 (ja) * | 2003-10-31 | 2005-05-12 | Daikin Industries, Ltd. | 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体 |
JP2009155558A (ja) * | 2007-12-27 | 2009-07-16 | Daikin Ind Ltd | 溶融加工性含フッ素ポリマーの製造方法 |
WO2014084399A1 (ja) * | 2012-11-30 | 2014-06-05 | ダイキン工業株式会社 | ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4927587A (ja) * | 1972-07-07 | 1974-03-12 | ||
JPS6381104A (ja) * | 1986-06-06 | 1988-04-12 | イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− | 異方性液晶状のポリテトラフルオロエチレン及びテトラフルオロエチレン共重合体水性分散物 |
US6046271A (en) * | 1995-01-18 | 2000-04-04 | W. L. Gore & Associates, Inc. | Microemulsion polymerization systems for the production of small melt-processible fluoropolymer particles |
US6429258B1 (en) * | 1999-05-20 | 2002-08-06 | E. I. Du Pont De Nemours & Company | Polymerization of fluoromonomers |
US6774164B2 (en) * | 2000-09-22 | 2004-08-10 | Dupont Dow Elastomers L.L.C. | Process for producing fluoroelastomers with fluorinated anionic surfactants |
JP4207442B2 (ja) * | 2002-03-20 | 2009-01-14 | 旭硝子株式会社 | ポリテトラフルオロエチレン水性分散液組成物の製造方法 |
US20060270780A1 (en) * | 2005-05-25 | 2006-11-30 | Ping Xu | High purity perfluoroelastomer composites and a processes to produce the same |
CN101824119B (zh) * | 2010-04-15 | 2013-12-25 | 上海三爱富新材料股份有限公司 | 多元共聚四氟乙烯-丙烯氟弹性体及其制备方法 |
-
2015
- 2015-06-04 WO PCT/JP2015/066211 patent/WO2015186794A1/ja active Application Filing
- 2015-06-04 EP EP15803136.9A patent/EP3153527A4/en not_active Withdrawn
- 2015-06-04 US US15/316,024 patent/US20170096504A1/en not_active Abandoned
- 2015-06-04 JP JP2016525237A patent/JP6369541B2/ja active Active
- 2015-06-04 CN CN201580029235.6A patent/CN106414512B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10513497A (ja) * | 1995-02-06 | 1998-12-22 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | テトラフルオロエチレンとヘキサフルオロプロピレンの非晶質コポリマー類 |
WO2005042593A1 (ja) * | 2003-10-31 | 2005-05-12 | Daikin Industries, Ltd. | 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体 |
JP2009155558A (ja) * | 2007-12-27 | 2009-07-16 | Daikin Ind Ltd | 溶融加工性含フッ素ポリマーの製造方法 |
WO2014084399A1 (ja) * | 2012-11-30 | 2014-06-05 | ダイキン工業株式会社 | ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー |
Non-Patent Citations (1)
Title |
---|
See also references of EP3153527A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122700A1 (ja) * | 2016-01-14 | 2017-07-20 | 旭硝子株式会社 | 水性分散液、その製造方法、水性塗料および塗装物品 |
JPWO2017122700A1 (ja) * | 2016-01-14 | 2018-11-22 | Agc株式会社 | 水性分散液、その製造方法、水性塗料および塗装物品 |
Also Published As
Publication number | Publication date |
---|---|
JP6369541B2 (ja) | 2018-08-08 |
CN106414512A (zh) | 2017-02-15 |
US20170096504A1 (en) | 2017-04-06 |
CN106414512B (zh) | 2018-10-16 |
EP3153527A1 (en) | 2017-04-12 |
EP3153527A4 (en) | 2017-11-29 |
JPWO2015186794A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6156543B2 (ja) | フルオロポリマー水性分散液の製造方法 | |
JP6241528B2 (ja) | ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー | |
JP6369541B2 (ja) | フルオロポリマー水性分散液の製造方法 | |
JP5954432B2 (ja) | ポリテトラフルオロエチレン水性分散液の製造方法 | |
JP5435089B2 (ja) | 含フッ素ポリマー水性分散液 | |
JP6365664B2 (ja) | ポリテトラフルオロエチレン水性分散液 | |
JP2010180364A (ja) | 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法 | |
JP6225683B2 (ja) | フルオロポリマー水性分散液の製造方法 | |
JP2010235667A (ja) | 含フッ素ポリマーの製造方法 | |
JP2009029854A (ja) | 含フッ素(メタ)アクリルポリマー及びフルオロポリマーの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016525237 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15316024 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015803136 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015803136 Country of ref document: EP |