WO2015186558A1 - 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム - Google Patents

熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム Download PDF

Info

Publication number
WO2015186558A1
WO2015186558A1 PCT/JP2015/064942 JP2015064942W WO2015186558A1 WO 2015186558 A1 WO2015186558 A1 WO 2015186558A1 JP 2015064942 W JP2015064942 W JP 2015064942W WO 2015186558 A1 WO2015186558 A1 WO 2015186558A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
heat cycle
composition
hfo
heat
Prior art date
Application number
PCT/JP2015/064942
Other languages
English (en)
French (fr)
Inventor
正人 福島
聡史 河口
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP15803231.8A priority Critical patent/EP3153560A4/en
Priority to CN201580029973.0A priority patent/CN106414655A/zh
Priority to JP2016525778A priority patent/JPWO2015186558A1/ja
Publication of WO2015186558A1 publication Critical patent/WO2015186558A1/ja
Priority to US15/350,335 priority patent/US20170058171A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • the present invention relates to a working medium for heat cycle, a composition for heat cycle system, and a heat cycle system.
  • Those using HFC are known.
  • R410A an azeotrope-like mixed refrigerant having a mass ratio of 1: 1 of difluoromethane (HFC-32) and pentafluoroethane (HFC-125)
  • HFC may cause global warming. Therefore, there is an urgent need to develop a working medium that has little influence on the ozone layer and has a low global warming potential (GWP).
  • HFO hydrofluoroolefin
  • thermal cycle systems (1) to (3) can be mentioned.
  • HFO-1243zf 3,3,3-trifluoropropene
  • HFO-1234ze 1,3,3,3-tetrafluoropropene
  • 2-fluoropropene HFO-1261yf
  • 1,1,2-trifluoropropene HFO-1243yc
  • a non-azeotropic composition when used as a working medium, the working medium is charged (transferred) from a pressure vessel accommodated for storage or transfer to a refrigeration air conditioner or the like that is a thermal cycle system device. ) Or when leaking from refrigeration and air-conditioning equipment, the composition may change. Furthermore, when the composition of the working medium changes, it is difficult to restore the working medium to the initial composition. Therefore, when a non-azeotropic composition is used as a working medium, there has been a problem that the manageability of the working medium is poor. In addition, when a non-azeotropic composition is used as a working medium, there is a problem that a temperature gradient becomes large.
  • the present invention provides a working medium for a heat cycle and a composition for a heat cycle system that can be substituted for R410A, have a small composition change, a small temperature gradient, and excellent cycle performance (capacity), and a heat cycle system using the composition.
  • the purpose is to provide.
  • the present invention provides a working medium for heat cycle, a composition for heat cycle system, and a heat cycle system having the following configuration.
  • a working medium for heat cycle comprising an azeotrope-like composition comprising HFO-1132 (E) and HFC-32 and / or HFC-125.
  • the azeotrope-like composition contains 1 to 99% by mass of the HFO-1132 (E) and 99 to 1% by mass of the total amount of the HFC-32 and HFC-125, [1] or [2 ]
  • [7] The working medium for heat cycle according to any one of [1] to [6], wherein the ratio of the azeotropic-like composition to the total amount of the working medium for heat cycle is 50% by mass or more.
  • a composition for a heat cycle system comprising the heat cycle working medium according to any one of [1] to [10] and a refrigerating machine oil.
  • the thermal cycle system according to [12] which is a refrigeration / refrigeration device, an air conditioning device, a power generation system, a heat transport device, or a secondary cooler.
  • Room air conditioner store packaged air conditioner, building packaged air conditioner, facility packaged air conditioner, gas engine heat pump, train air conditioner, automotive air conditioner, built-in showcase, separate showcase, commercial refrigerator / refrigerator
  • the heat cycle system according to [13] which is an ice making machine or a vending machine.
  • a working medium for a heat cycle and a composition for a heat cycle system that can replace R410A, provide a heat cycle system having a small composition change, a small temperature gradient, and excellent cycle performance (capacity). Can do. Moreover, the thermal cycle system which is excellent in cycle performance (capability) can be provided.
  • FIG. 3 is a cycle diagram in which a change in state of a working medium for heat cycle in a refrigeration cycle system is described on a pressure-enthalpy diagram.
  • the working medium for heat cycle of the present invention is a working medium for heat cycle containing an azeotrope-like composition comprising HFO-1132 (E) and HFC-32 and / or HFC-125.
  • the azeotrope-like composition comprising HFO-1132 (E) and HFC-32 and / or HFC-125 in the present invention is referred to as “the azeotrope-like composition”.
  • the azeotrope composition comprising HFO-1132 (E) and HFC-32 and / or HFC-125
  • the azeotrope composition is referred to as “the azeotrope composition”.
  • an azeotropic composition means a composition in which the composition of the gas phase and the liquid phase is the same in the vapor-liquid equilibrium state of a mixture of two or more components, and the azeotrope-like composition is an azeotropic composition. It refers to a composition that exhibits substantially the same behavior as the aforementioned behavior at the time of vapor-liquid equilibrium.
  • an azeotrope-like composition can be handled equivalent to an azeotrope composition, in this specification, an azeotrope-like composition shall contain an azeotrope composition.
  • This azeotropic composition has a relative volatility represented by the following formula of 1.00.
  • Specific volatility (mass% of HFO-1132 (E) in the gas phase part / total mass% of HFC-32 and HFC-125 in the gas phase part) / (mass% of HFO-1132 (E) in the liquid phase part) / Total mass% of HFC-32 and HFC-125 in the liquid phase part)
  • the relative volatility can be obtained by measuring the composition of the gas phase and liquid phase of a mixture of HFO-1132 (E) in a gas-liquid equilibrium state and HFC-32 and / or HFC-125.
  • the azeotropic composition of HFO-1132 (E) and HFC-32 is specifically determined by the following method.
  • HFO-1132 (E) and HFC-32 having a predetermined concentration were filled in a pressure vessel at 25 ° C., stirred, and allowed to stand until a vapor-liquid equilibrium state was reached. Thereafter, the gas phase and the liquid phase in the pressure vessel were collected, and the composition was analyzed by gas chromatography. Moreover, relative volatility was calculated
  • FIG. 1 shows the liquid phase concentration (mass%) and gas phase of HFO-1132 (E) in a vapor-liquid equilibrium state of a mixture of HFO-1132 (E) and HFC-32 prepared by changing the above various compositions. It is a graph which shows the relationship of a phase concentration (mass%).
  • the solid line shows the relationship between the liquid phase concentration (mass%) and the gas phase concentration (mass%) of HFO-1132 (E) measured above, and the broken line shows the same composition in the gas phase and liquid phase.
  • a straight line having a relative volatility of 1.00 is shown.
  • the present azeotrope-like composition comprising HFO-1132 (E) and HFC-32 has a mass ratio of HFO-1132 (E) and HFC-32 (HFO-1132 (E) [ Mass%] / HFC-32 [mass%]) is in the range of 1/99 to 99/1, and the relative volatility is in the range of 1.00 ⁇ 0.40.
  • Test 2 for determining azeotropic composition
  • a composition comprising HFO-1132 (E) and HFC-125 was tested in the same manner as in Test 1 for obtaining the azeotropic composition, and the formula for obtaining the relative volatility described above from the composition ratio of the two.
  • the relative volatility was determined by The results are shown in Table 2.
  • FIG. 2 shows the liquid phase concentration (mass%) and gas phase of HFO-1132 (E) in a vapor-liquid equilibrium state of a mixture of HFO-1132 (E) and HFC-125 prepared by changing the above various compositions. It is a graph which shows the relationship of a phase concentration (mass%).
  • the solid line shows the relationship between the liquid phase concentration (mass%) and the gas phase concentration (mass%) of HFO-1132 (E) measured above, and the broken line shows the same composition in the gas phase and liquid phase.
  • a straight line having a relative volatility of 1.00 is shown.
  • the intersection of the curve indicated by the solid line and the straight line indicated by the broken line is the azeotropic composition
  • HFO-1132 (E): HFC-125 40% by mass: 60% by mass.
  • the azeotrope-like composition composed of HFO-1132 (E) and HFC-125 has a mass ratio of HFO-1132 (E) and HFC-125 (HFO-1132 (E) [mass% ] / HFC-32 [mass%]) is in the range of 1/99 to 99/1, and the relative volatility is in the range of 1.00 ⁇ 0.40.
  • HFO-1132 (E), HFC-32, and HFC-125 have extremely close boiling points and similar physical properties.
  • the temperature gradient of the working medium for heat cycle consisting of three components of HFO-1132 (E), HFC-32 and HFC-125 is shown in the examples below.
  • HFO-1132 (E) and HFC-32 or HFC- The trend which approximated the temperature gradient of the working medium for heat cycle which consists of 125 two components is shown.
  • the temperature gradient is a factor reflecting the azeotrope-like composition. If the temperature gradient of the composition is 1.50 or less, it can be said that the composition has an azeotrope-like composition.
  • the composition comprising HFO-1132 (E), HFC-32 and HFC-125 is similar to the composition comprising HFO-1132 (E) and HFC-32 or HFC-125.
  • E) and the mass ratio of HFC-125 and HFC-32 ((HFO-1132 (E) [mass%]) / (HFC-125 [mass%] + HFC-32 [mass%])) is 1 /
  • An azeotrope-like composition is formed in the range of 99 to 99/1.
  • the boiling points of HFO-1132 (E), HFC-32, and HFC-125 are values measured at a pressure of 1.013 ⁇ 10 5 Pa, and the boiling point of HFO-1132 (E) is ⁇ 50 ° C.
  • the azeotrope-like composition has a HFO-1132 (E) content of 1 to 99% by mass, HFC-32 and HFC-125.
  • a composition having a total content ratio of 99 to 1% by mass was selected.
  • temperature gradient is used as one of the indexes for measuring the properties when a mixture is used as a working medium.
  • a temperature gradient is defined as the nature of heat exchangers, such as evaporation in an evaporator or condensation in a condenser, with different start and end temperatures. Since the working medium for heat cycle of the present invention contains this azeotrope-like composition, the temperature gradient is close to zero. Therefore, when this is applied to a thermal cycle system, an energy efficient thermal cycle system can be obtained as described below.
  • FIG. 3 is a schematic configuration diagram showing an example of the refrigeration cycle system of the present invention.
  • the refrigeration cycle system 10 compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B, and cools and liquefies the working medium vapor B discharged from the compressor 11 to operate at a low temperature and high pressure.
  • the condenser 12 as the medium C, the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form the low-temperature and low-pressure working medium D, and the working medium D discharged from the expansion valve 13 are heated.
  • the temperature of the working medium rises from the inlet of the evaporator 14 to the outlet during evaporation, and conversely, the temperature of the working medium decreases from the inlet of the condenser 12 to the outlet during condensation.
  • the evaporator 14 and the condenser 12 are configured by exchanging heat with a heat source fluid such as water or air that flows facing the working medium.
  • the heat source fluid is indicated by “E ⁇ E ′” in the evaporator 14 and “F ⁇ F ′” in the condenser 12 in the refrigeration cycle system 10.
  • the temperature difference between the outlet temperature and the inlet temperature of the evaporator 14 is substantially constant.
  • the azeotropic composition does not change in composition when the composition is repeatedly evaporated and condensed, when used as a working medium, the azeotropic composition can be handled almost equally as a working medium having a single composition.
  • the azeotrope-like composition has a small variation in composition when repeated evaporation and condensation, and can be handled in the same manner as the azeotrope composition. Therefore, even when an azeotropic composition or an azeotrope-like composition is used as the working medium, the temperature difference between the outlet temperature and the inlet temperature of the evaporator 14 is substantially constant.
  • the temperature difference is not constant.
  • the inlet temperature becomes lower than 0 ° C., which causes a problem of frost formation in the evaporator 14.
  • the larger the temperature gradient the lower the inlet temperature and the greater the possibility of frost formation.
  • the working medium flowing through the heat exchanger such as the evaporator 14 and the condenser 12 and the heat source fluid such as water and air are always opposed to each other.
  • the device is designed to improve the heat exchange efficiency by making it flow.
  • the temperature difference of the heat source fluid is small in a stable operation state that is generally operated for a long time apart from the start-up time, the temperature gradient is large in the case of a non-azeotropic composition in which the composition of the gas-liquid phase is greatly different. It is difficult to obtain an energy efficient thermal cycle system.
  • an azeotropic composition is used as a working medium, an energy efficient thermal cycle system can be obtained.
  • the content of HFO-1132 (E) in the working medium for heat cycle of the present invention is preferably 80% by mass or less with respect to the total amount of the working medium for heat cycle.
  • HFO-1132 (E) has a so-called self-decomposition property that, when used alone, explodes when an ignition source is present at high temperature or high pressure.
  • HFO-1132 (E) is mixed with HFC-32 and / or HFC-125 to make a mixture in which the content of HFO-1132 (E) is suppressed. Decomposition reaction can be suppressed.
  • the content ratio of HFO-1132 (E) in the azeotrope-like composition to 80% by mass or less, the temperature when applied to the thermal cycle system, Since it does not have self-decomposability under pressure conditions, a safer working medium for heat cycle can be obtained.
  • the working medium for heat cycle of the present invention further contains an optional component described later in the azeotrope-like composition
  • the content ratio of HFO-1132 (E) is 80% by mass or less. Since it does not have self-decomposability under temperature and pressure conditions when applied to a heat cycle system, a highly safe working medium for heat cycle can be obtained. In order to obtain higher safety, the content of HFO-1132 (E) is more preferably 60% by mass or less.
  • the working medium for heat cycle of the present invention can be used in a heat cycle system with sufficient care depending on the use conditions even if it has a composition having self-degradability.
  • the ratio of HFO-1132 (E) to the total amount of the working medium for heat cycle of the present invention is preferably 20% by mass or more, and more preferably 40% by mass or more.
  • Examples of the cycle performance in the working medium include coefficient of performance and refrigeration capacity.
  • R410A is a standard (1. 000)
  • a cycle performance equal to or higher than the refrigerating capacity can be obtained.
  • the content ratio of the azeotrope-like composition in the working medium for heat cycle of the present invention is preferably 50% by weight or more, more preferably 60% by weight or more, based on the total amount of the working medium for heat cycle. % Is more preferable.
  • the working medium for heat cycle of the present invention is preferably composed of the azeotrope-like composition.
  • the working medium for heat cycle of the present invention contains not less than 50% by mass of the present azeotrope-like composition, so that the cycle performance is excellent and the composition change and the temperature gradient can be further reduced.
  • the working medium for heat cycle of the present invention is composed only of the present azeotrope-like composition, it is possible to obtain a working medium for heat cycle whose composition change and temperature gradient are nearly zero.
  • the working medium for heat cycle of the present invention may optionally contain a compound that is normally used as a working medium in addition to the azeotrope-like composition as long as the effects of the present invention are not impaired.
  • optional component examples of the compound (hereinafter referred to as optional component) which the working medium for heat cycle of the present invention may optionally contain in addition to the azeotrope-like composition include HFO other than HFO-1132 (E), HFC-32 HFCs, hydrocarbons, HCFOs and CFOs having other carbon-carbon double bonds.
  • the content of optional components is a total amount, preferably 20% by weight or less, and more preferably 10% by weight or less in the working medium for heat cycle (100% by weight).
  • the refrigerant manageability can be improved, for example, when the leakage from the heat cycle equipment occurs in the application of the refrigerant or the like, the composition change of the working medium for the heat cycle may increase. May decrease.
  • HFO other than HFO-1132 (E) examples include cis-1,2-difluoroethylene (HFO-1132 (Z)), HFO-1261yf, HFO-1243yc, trans -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), HFO-1234ze (E), HFO-1234ze (Z), HFO-1243zf, and the like.
  • HFO may be used individually by 1 type and may be used in combination of 2 or more type.
  • the heat cycle working medium of the present invention contains HFO other than HFO-1132 (E)
  • the content thereof is preferably 1 to 20% by weight in the heat cycle working medium (100% by weight). More preferred is 10% by mass.
  • HFC other than HFC-32 and HFC-125
  • HFC is a component that improves the cycle performance (capacity) of a thermal cycle system.
  • HFCs other than HFC-32 and HFC-125 that may be included in the working fluid for heat cycle of the present invention include tetrafluoroethane, difluoroethane, trifluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, and pentafluorobutane. And heptafluorocyclopentane.
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFC-152a 1,1-difluoroethane
  • the working medium for heat cycle of the present invention contains HFC other than HFC-32, the content thereof is preferably 1 to 20% by weight in the working medium for heat cycle (100% by weight), and 2 to 10% by weight. % Is more preferable.
  • the content of these HFCs can be controlled according to the required characteristics of the working medium for heat cycle.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium for heat cycle of the present invention contains hydrocarbon, the content thereof is preferably 1 to 20% by weight, more preferably 2 to 5% by weight in the working medium for heat cycle (100% by weight). . If the hydrocarbon is 1% by mass or more, the solubility of the refrigerating machine oil in the working medium for heat cycle is sufficiently improved. If the hydrocarbon is 20% by mass or less, there is an effect in suppressing the combustibility of the working medium for heat cycle.
  • HCFO and CFO are components that improve the solubility of refrigerating machine oil in the working medium for heat cycle.
  • HCFO include hydrochlorofluoropropene, hydrochlorofluoroethylene, and the like. From the point of sufficiently suppressing the flammability of the working medium for the heat cycle without greatly reducing the cycle performance (capacity) of the heat cycle system.
  • HCFO-1224yd -Chloro-2,3,3,3-tetrafluoropropene
  • HCFO-1122 1-chloro-1,2-difluoroethylene
  • HCFO may be used alone or in combination of two or more.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • 1,1 -Dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are particularly preferred.
  • the working medium for heat cycle of the present invention contains HCFO and / or CFO, the total content thereof is preferably 1 to 20% by weight in the working medium for heat cycle (100% by weight).
  • Chlorine atoms have the effect of suppressing combustibility, and if the contents of HCFO and CFO are in this range, the cycle performance (capacity) of the thermal cycle system is not greatly reduced, and the thermal cycle working medium Combustibility can be sufficiently suppressed.
  • HCFO and CFO HCFO having little influence on the ozone layer and little influence on global warming is preferable.
  • the heat cycle working medium of the present invention can be used as a composition for a heat cycle system of the present invention, usually mixed with refrigeration oil when applied to a heat cycle system.
  • the composition for thermal cycle systems of this invention may contain well-known additives other than these, such as a stabilizer and a leak detection substance.
  • refrigerator oil As refrigerating machine oil, well-known refrigerating machine oil used for the composition for heat cycle systems is used. Examples of the refrigerating machine oil include oxygen-containing synthetic oils (ester-based refrigerating machine oils, ether-based refrigerating machine oils, etc.), fluorine-based refrigerating machine oils, mineral oils, hydrocarbon-based synthetic oils, and the like.
  • ester refrigerating machine oils include dibasic acid ester oils, polyol ester oils, complex ester oils, and polyol carbonate oils.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • ditridecyl glutarate di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
  • esters of is preferable.
  • the polyol ester oil may have a free hydroxyl group.
  • Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • the polyol carbonate oil is an ester of carbonic acid and polyol.
  • examples of the polyol include the same diol as described above and the same polyol as described above.
  • the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • ether refrigerating machine oil examples include polyvinyl ether oil and polyoxyalkylene oil.
  • polyvinyl ether oil examples include a polymer of a vinyl ether monomer, a copolymer of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and a copolymer of a vinyl ether monomer and a vinyl ether monomer having a polyoxyalkylene chain. It is done.
  • alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether are preferable.
  • the vinyl ether monomer having a polyoxyalkylene chain include compounds in which one of the hydroxyl groups of polyoxyalkylene diol is alkyl etherified and the other is vinyl etherified.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyvinyl ether copolymer may be either a block or a random copolymer.
  • polyoxyalkylene oil examples include polyoxyalkylene monools, polyoxyalkylene polyols, alkyl etherified products of polyoxyalkylene monools and polyoxyalkylene polyols, and esterified products of polyoxyalkylene monools and polyoxyalkylene polyols.
  • Polyoxyalkylene monools and polyoxyalkylene polyols are used to open a C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) in an initiator such as water or a hydroxyl group-containing compound in the presence of a catalyst such as an alkali hydroxide. Examples thereof include those obtained by a method of addition polymerization.
  • the oxyalkylene units in the polyalkylene chain may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • hydroxyl group-containing compound examples include monovalent or polyhydric alcohols (methanol, butanol, ethylene glycol, propylene glycol, 1,4-butanediol, glycerol, pentaerythritol and the like.
  • polyoxyalkylene oil what is called polyalkylene glycol oil (PAG) obtained by alkyl etherifying all the hydroxyl groups of polyoxyalkylene monool or polyoxyalkylene diol is preferable.
  • fluorinated refrigerating machine oil examples include compounds obtained by substituting hydrogen atoms of synthetic oils (such as mineral oils and hydrocarbon synthetic oils described later) with fluorine atoms, perfluoropolyether oils, and fluorinated silicone oils.
  • the refrigerating machine oil fraction obtained by subjecting crude oil to atmospheric distillation or vacuum distillation is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, And paraffinic mineral oils, naphthenic mineral oils, etc., which are refined by appropriately combining white clay treatment and the like.
  • hydrocarbon synthetic oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
  • Refrigerating machine oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a polyol ester oil and a polyoxyalkylene oil are preferable from the viewpoint of compatibility with the working medium for the heat cycle, and a polyalkylene glycol oil is particularly preferable because a remarkable antioxidant effect is obtained by the stabilizer. preferable.
  • the content of the refrigerating machine oil in the composition for the heat cycle system may be within a range that does not significantly reduce the effect of the present invention, and varies depending on the use, the type of the compressor, etc., but the heat cycle working medium (100 parts by mass) ) Is usually 10 to 100 parts by mass, preferably 20 to 50 parts by mass.
  • the content of HFO-1132 (E) is preferably 5% by weight or more, more preferably 20% by weight or more, in the heat cycle composition (100% by weight), 30% by weight. % Or more is more preferable, and 40 mass% or more is particularly preferable.
  • Stabilizers are components that improve the stability of the thermal cycle working medium against heat and oxidation.
  • examples of the stabilizer include an oxidation resistance improver, a heat resistance improver, and a metal deactivator.
  • oxidation resistance improver and heat resistance improver examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
  • Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzimidazole, 3,5-dimethyl Of pyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Examples thereof include amine salts and derivatives thereof.
  • the content of the stabilizer may be in a range that does not significantly reduce the effect of the present invention, and is usually 5% by mass or less and preferably 1% by mass or less in the composition for a heat cycle system (100% by mass).
  • leak detection substance examples include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • known ultraviolet fluorescent dyes examples include known fragrances such as those described in JP-T-2008-500337 and JP-T-2008-531836.
  • solubilizer which improves the solubility of the leak detection substance to the working medium for thermal cycles.
  • solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the content of the leak detection substance may be in a range that does not significantly reduce the effect of the present invention, and is usually 2% by mass or less and 0.5% by mass or less in the composition for a heat cycle system (100% by mass). preferable.
  • composition for heat cycle of the present invention may contain a compound used as a conventional working medium, refrigerant, or heat transfer medium (hereinafter referred to as other compound).
  • other compounds include the following compounds.
  • Fluorine-containing ether (perfluoropropyl) methyl ether (C 3 F 7 OCH 3 ), (perfluorobutyl) methyl ether (C 4 F 9 OCH 3 ), (perfluorobutyl) ethyl ether (C 4 F 9 OC 2 H 5 ) 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (CF 2 HCF 2 OCH 2 CF 3 , manufactured by Asahi Glass Co., Ltd., AE-3000).
  • the content of the other compound may be in a range that does not significantly reduce the effect of the present invention, and is usually 30% by mass or less, preferably 20% by mass or less in the composition for a heat cycle system (100% by mass), 15 mass% or less is more preferable.
  • the working medium for heat cycle and the composition for heat cycle system of the present invention replace R410A by containing HFO-1132 (E) and an azeotrope-like composition comprising HFC-32 and / or HFC-125.
  • the composition change is extremely small, the temperature gradient is small, and a better cycle performance (capacity) can be obtained.
  • a heat cycle system using a heat exchanger such as a condenser or an evaporator
  • a heat cycle system using a heat exchanger such as a condenser or an evaporator
  • a heat cycle system for example, a refrigeration cycle
  • a gas working medium is compressed by a compressor, cooled by a condenser to produce a high-pressure liquid, the pressure is reduced by an expansion valve, and vaporized at a low temperature by an evaporator. It has a mechanism that takes heat away with heat.
  • a refrigeration cycle system which is an example of a thermal cycle system, will be described with reference to FIG.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to obtain a high-temperature and high-pressure working medium vapor B.
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to obtain a low temperature and high pressure working medium C.
  • the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D.
  • the refrigeration cycle system 10 is a cycle system including adiabatic / isoentropic change, isoenthalpy change, and isopressure change.
  • the state change of the working medium is described on the pressure-enthalpy diagram, it can be expressed as a trapezoid having A, B, C, and D as apexes as shown in FIG.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to convert the high-temperature and low-pressure working medium vapor A into the high-temperature and high-pressure working medium vapor B, which is indicated by an AB line in FIG.
  • the working medium vapor A is introduced into the compressor 11 in an overheated state, and the obtained working medium vapor B is also an overheated vapor.
  • the BC process is a process in which the condenser 12 performs isobaric cooling to convert the high-temperature and high-pressure working medium vapor B into a low-temperature and high-pressure working medium C, and is indicated by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • the temperature gradient when the working medium is a non-azeotropic composition is shown as the difference between T 1 and T 2 .
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D, and is indicated by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (SC).
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low temperature / low pressure working medium D to the high temperature / low pressure working medium vapor A, which is indicated by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (SH).
  • T 4 indicates the temperature of the working medium D.
  • the cycle performance of the working medium for heat cycle is, for example, the refrigeration capacity of the working medium for heat cycle (hereinafter referred to as “Q” as necessary) and the coefficient of performance (hereinafter referred to as “COP” as necessary). It can be evaluated by.
  • Q and COP of the heat cycle working medium are A (after evaporation, high temperature and low pressure), B (after compression, high temperature and high pressure), C (after condensation, low temperature and high pressure), and D (low temperature after expansion).
  • each enthalpy, h A , h B , h C , h D in each state of low pressure is used, it can be obtained from the following equations (1) and (2).
  • Q indicated by (h A -h D ) corresponds to the output (kW) of the refrigeration cycle, and is required for operating the compression work indicated by (h B -h A ), for example, the compressor.
  • the amount of electric power corresponds to the consumed power (kW).
  • Q means the ability to freeze the load fluid, and the higher Q means that more work can be done in the same system. In other words, a large Q indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • a method for suppressing the water concentration in the heat cycle system a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • a desiccant sica gel, activated alumina, zeolite, etc.
  • a zeolitic desiccant is preferable from the viewpoint of chemical reactivity between the desiccant and the heat cycle working medium and the moisture absorption capacity of the desiccant.
  • the main component is a compound represented by the following formula (3) from the viewpoint of excellent hygroscopic capacity.
  • Zeolite desiccants are preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is the valence of M
  • x and y are values determined by the crystal structure.
  • pore size and fracture strength are particularly important.
  • a desiccant having a pore size larger than the molecular diameter of the heat cycle working medium is used, the heat cycle working medium is adsorbed in the desiccant, and as a result, a chemical reaction between the heat cycle working medium and the desiccant.
  • undesirable phenomena such as generation of non-condensable gas, decrease in the strength of the desiccant, and decrease in adsorption ability occur.
  • a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 angstroms or less is preferable.
  • sodium / potassium type A synthetic zeolite having a pore size smaller than the molecular diameter of the heat cycle working medium only moisture in the heat cycle system is selectively absorbed without adsorbing the heat cycle working medium. Can be removed by adsorption.
  • the heat cycle working medium is less likely to be adsorbed to the desiccant, thermal decomposition is less likely to occur, and as a result, deterioration of materials constituting the heat cycle system and generation of contamination can be suppressed.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdered zeolite with a binder (such as bentonite). As long as the zeolitic desiccant is mainly used, other desiccants (silica gel, activated alumina, etc.) may be used in combination.
  • the use ratio of the zeolitic desiccant with respect to the working medium for heat cycle is not particularly limited.
  • the presence of chlorine in the heat cycle system has undesirable effects such as deposit formation due to reaction with metals, wear of bearings, decomposition of heat cycle working medium and refrigeration oil.
  • the chlorine concentration in the heat cycle system is preferably 100 ppm or less, and particularly preferably 50 ppm or less in terms of a mass ratio with respect to the heat cycle working medium.
  • Non-condensable gas concentration If a non-condensable gas is mixed in the heat cycle system, it adversely affects the heat transfer in the condenser or the evaporator and the operating pressure rises. Therefore, it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of non-condensable gases, reacts with a heat cycle working medium and refrigeration oil, and promotes decomposition.
  • the non-condensable gas concentration is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less in terms of the volume ratio with respect to the thermal cycle working medium in the gas phase portion of the thermal cycle working medium.
  • the thermal cycle working medium of the present invention having excellent cycle performance and small composition change and temperature gradient is used, and therefore the system can be miniaturized. Moreover, since the working medium for heat cycle of the present invention that can be substituted for R410A is used, the cycle performance is excellent.
  • a working medium for heat cycle in which HFO-1132 (E) and HFC-32 or HFC-125 are mixed in various proportions in a spherical pressure vessel having an internal volume of 650 cm 3 controlled to a predetermined temperature from the outside. After sealing up to a predetermined pressure, an energy of about 30 J was applied by fusing a platinum wire installed inside. The presence or absence of self-decomposability was confirmed by measuring temperature and pressure changes in the pressure-resistant container generated after application. When pressure increase and temperature increase were observed, it was judged that there was self-degradability. The results are shown in Table 3. The pressure in Table 3 is a gauge pressure.
  • Example 1 Evaluation of refrigeration cycle performance
  • the cycle performance was evaluated as follows. 3 are applied to the refrigeration cycle system 10 shown in FIG. 3, respectively, and the thermal cycle shown in FIG. 3, ie, adiabatic compression by the compressor 11 in the AB process, and isobaric pressure by the condenser 12 in the BC process.
  • the refrigeration cycle performance was evaluated as the cycle performance (capacity and efficiency) when cooling, isoenthalpy expansion by the expansion valve 13 in the CD process, and isobaric heating by the evaporator 14 in the DA process.
  • the average evaporation temperature of the working medium for heat cycle in the evaporator 14 is 0 ° C.
  • the average condensation temperature of the working medium for heat cycle in the condenser 12 is 40 ° C.
  • the degree of supercooling of the working medium for heat cycle in the condenser 12 is evaluated.
  • the degree of superheat of the working medium for heat cycle in the evaporator 14 was 5 ° C.
  • the refrigeration capacity and the coefficient of performance are A (after evaporation, high temperature and low pressure), B (after compression, high temperature and high pressure), C (after condensation, low temperature and high pressure), and D (after expansion, low temperature and low pressure).
  • A after evaporation, high temperature and low pressure
  • B after compression, high temperature and high pressure
  • C after condensation, low temperature and high pressure
  • D after expansion, low temperature and low pressure
  • Thermodynamic properties necessary for calculation of the refrigeration cycle performance were calculated based on a generalized equation of state (Soave-Redrich-Kwong equation) based on the corresponding state principle and thermodynamic relational equations. When characteristic values were not available, calculations were performed using an estimation method based on the group contribution method.
  • the relative performance (respective heat cycle working medium / R410A) of the refrigerating cycle performance (refrigeration capacity and coefficient of performance) of the working medium for heat cycle 1 to 28 with respect to R410A was determined.
  • the results are shown in Tables 4 to 6 together with the compositions of the heat cycle working media 1 to 28.
  • Table 7 shows the global warming potential (GWP) by value. Note that the GWP of HFO-1132 (E) is a value assumed to be measured according to the IPCC Fourth Evaluation Report.
  • the thermal cycle working medium composed of the azeotrope-like composition comprising HFO-1132 (E) and HFC-32 and / or HFC-125 has a small temperature gradient. It can also be seen that a coefficient of performance and a refrigerating capacity equal to or higher than those of the working medium made of R410A can be obtained.
  • the GWP in the mixture can be shown as a weighted average by the composition mass.
  • the GWP of the thermal cycle working medium of each composition in Tables 4 to 6 can be calculated from the values shown in Table 7.
  • the thermal cycle working medium of the present invention can select R410A by selecting the composition. It can be seen that the GWP can be made smaller than the working medium consisting of
  • the working medium for heat cycle of the present invention includes a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (waste heat recovery power generation, etc.), a working medium for a latent heat transport device (heat pipe, etc.), a secondary cooling medium, etc. It is useful as a working medium.
  • a refrigerant for a refrigerator a refrigerant for an air conditioner
  • a working fluid for a power generation system waste heat recovery power generation, etc.
  • a working medium for a latent heat transport device heat pipe, etc.
  • secondary cooling medium etc.

Abstract

 R410Aに代替可能で、組成変化が小さく、温度勾配が小さく、サイクル性能(能力)に優れる熱サイクル用作動媒体、熱サイクルシステム用組成物および該組成物を用いた熱サイクルシステムの提供。 HFO-1132(E)と、HFC-32および/またはHFC-125からなる共沸様組成物を含む熱サイクル用作動媒体。

Description

熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
 本発明は、熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムに関する。
 冷凍機、空調機器、発電システム(廃熱回収発電等)、潜熱輸送装置(ヒートパイプ等)等に用いられる熱サイクルシステムとしては、作動媒体として、オゾン層への影響が少ないヒドロフルオロカーボン(以下、HFCと記す。)を用いるものが知られている。例えば、R410A(ジフルオロメタン(HFC-32)とペンタフルオロエタン(HFC-125)の質量比1:1の共沸様混合冷媒。)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。そのため、オゾン層への影響が少なく、かつ地球温暖化係数(GWP)の小さい作動媒体の開発が急務となっている。なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記し、本明細書では必要に応じて化合物名に代えてその略称を用いる。また、化合物名の前または化合物の略称の後に(E)または(Z)等の表記があるものは、幾何異性体のトランス体(E体)またはシス体(Z体)であることを示す。
 オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体を用いた熱サイクルシステムとしては、ヒドロフルオロオレフィン(以下、HFOと記す。)を用いた熱サイクルシステムが提案されている。HFOは、オゾン層への影響が少ないうえ、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有するため、地球温暖化への影響も少ない。
 具体的には、以下の(1)~(3)の熱サイクルシステムが挙げられる。
 (1)3,3,3-トリフルオロプロペン(HFO-1243zf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2-フルオロプロペン(HFO-1261yf)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)等を含む作動媒体を用いた熱サイクルシステム(例えば、特許文献1参照)。
 (2)1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、HFO-1234yf等を含む作動媒体を用いた熱サイクルシステム(例えば、特許文献2参照)。
 (3)トランス-1,2-ジフルオロエチレン(HFO-1132(E))、シス-1,2-ジフルオロエチレン(HFO-1132(Z))を含む作動媒体を用いた熱サイクルシステム(例えば、特許文献3参照)。
 しかし、熱サイクルシステム(1)、(2)は、いずれもサイクル性能(能力)が不充分であった。
 また、一般に、非共沸組成物を作動媒体とした際には、作動媒体が、保管や移送のために収容された圧力容器から、熱サイクルシステム機器である冷凍空調機器等へ充てん(移充てん)される際や、冷凍空調機器から漏えいした際に、組成変化を生じることがある。さらに、作動媒体の組成が変化した場合には、作動媒体を初期の組成に復元することが困難である。そのため、非共沸組成物を作動媒体として使用した際には、作動媒体の管理性に劣るという課題があった。また、非共沸組成物を作動媒体として使用した際には、温度勾配が大きくなるという課題もあった。
特開平4-110388号公報 特表2006-512426号公報 国際公開第2012/157765号
 本発明は、R410Aに代替可能で、組成変化が小さく、温度勾配が小さく、サイクル性能(能力)に優れる熱サイクル用作動媒体および熱サイクルシステム用組成物および該組成物を用いた熱サイクルシステムを提供することを目的とする。
 本発明は、以下の構成を有する熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムを提供する。
[1]HFO-1132(E)と、HFC-32および/またはHFC-125とからなる共沸様組成物を含むことを特徴とする熱サイクル用作動媒体。
[2]前記共沸様組成物が、比揮発度が1.00±0.40の範囲にある組成物である、[1]に記載の熱サイクル用作動媒体。
[3]前記共沸様組成物が、前記HFO-1132(E)を1~99質量%、前記HFC-32およびHFC-125の合計量を99~1質量%含む、[1]または[2]に記載の熱サイクル用作動媒体。
[4]前記共沸様組成物が、HFO-1132(E)とHFC-32とからなる、[1]~[3]のいずれかに記載の熱サイクル用作動媒体。
[5]前記共沸様組成物が、HFO-1132(E)とHFC-125とからなる、[1]~[3]のいずれかに記載の熱サイクル用作動媒体。
[6]前記共沸様組成物が、HFO-1132(E)とHFC-32とHFC-125とからなる、[1]~[3]のいずれかに記載の熱サイクル用作動媒体。
[7]前記熱サイクル用作動媒体の全量に対する前記共沸様組成物の割合が50質量%以上である、[1]~[6]のいずれかに記載の熱サイクル用作動媒体。
[8]前記熱サイクル用作動媒体の全量に対する前記HFO-1132(E)の割合が80質量%以下である、[1]~[7]のいずれかに記載の熱サイクル用作動媒体。
[9]前記熱サイクル用作動媒体の全量に対する前記HFO-1132(E)の割合が20質量%以上である、[1]~[8]のいずれかに記載の熱サイクル用作動媒体。
[10]前記熱サイクル用作動媒体が前記共沸様組成物からなる、[1]~[9]のいずれかに記載の熱サイクル用作動媒体。
[11]前記[1]~[10]のいずれかに記載の熱サイクル用作動媒体と、冷凍機油とを含む、熱サイクルシステム用組成物。
[12]前記[11]に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
[13]冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である、[12]に記載の熱サイクルシステム。
[14]ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である、[13]に記載の熱サイクルシステム。
 本発明によれば、R410Aに代替可能で、組成変化が小さく、温度勾配が小さく、サイクル性能(能力)に優れる熱サイクルシステムを与える熱サイクル用作動媒体および熱サイクルシステム用組成物を提供することができる。また、サイクル性能(能力)に優れる熱サイクルシステムを提供することができる。
HFO-1132(E)とHFC-32からなる組成物の気液平衡グラフである。 HFO-1132(E)とHFC-125からなる組成物の気液平衡グラフである。 冷凍サイクルシステムの一例を示す概略構成図である。 冷凍サイクルシステムにおける熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。
 以下、本発明の実施の形態について説明する。
[熱サイクル用作動媒体]
 本発明の熱サイクル用作動媒体は、HFO-1132(E)と、HFC-32および/またはHFC-125とからなる共沸様組成物を含む熱サイクル用の作動媒体である。
 以下、本発明における「HFO-1132(E)と、HFC-32および/またはHFC-125とからなる共沸様組成物」を「本共沸様組成物」という。また、本共沸様組成物のうち、「HFO-1132(E)と、HFC-32および/またはHFC-125とからなる共沸組成物」を「本共沸組成物」という。
 本明細書において、共沸組成物とは、2成分以上の混合液の気液平衡状態において、気相と液相の組成が同じである組成物をいい、共沸様組成物は共沸組成物における気液平衡時の前記挙動と略同様の挙動を示す組成物をいう。なお、共沸様組成物は、共沸組成物と同等に取り扱えるため、本明細書において、共沸様組成物は共沸組成物を含むものとする。
(共沸組成物)
 本共沸組成物は、以下の式で示される比揮発度が1.00である。
(比揮発度を求める式)
 比揮発度=(気相部におけるHFO-1132(E)の質量%/気相部におけるHFC-32およびHFC-125の合計質量%)/(液相部におけるHFO-1132(E)の質量%/液相部におけるHFC-32およびHFC-125の合計質量%)
 なお、上記比揮発度は気液平衡状態のHFO-1132(E)と、HFC-32および/またはHFC-125との混合物の気相および液相の組成を測定することで求められる。例えば、HFO-1132(E)とHFC-32の共沸組成は、具体的には、以下の方法で求められる。
(共沸組成を求める試験1)
 所定の濃度のHFO-1132(E)とHFC-32とを、25℃で耐圧容器内に充填し、撹拌した後、気液平衡状態となるまで静置した。その後、耐圧容器内の気相および液相を採取し、それぞれガスクロマトグラフによって組成の分析を行った。また、両者の組成比から、上に説明した比揮発度を求める式により比揮発度を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、表1の結果に基いて、HFO-1132(E)とHFC-32とからなる組成物の気液平衡グラフを作成した。これを、図1に示す。図1は、上記各種組成を変えて準備されたHFO-1132(E)とHFC-32とからなる混合物の気液平衡状態における、HFO-1132(E)の液相濃度(質量%)と気相濃度(質量%)の関係を示すグラフである。図1において、実線が上記で測定されたHFO-1132(E)の液相濃度(質量%)と気相濃度(質量%)の関係を示し、破線は気相と液相における組成が一致する比揮発度1.00となる直線を示す。図1において実線で示す曲線と破線で示す直線の交点が共沸組成であり、HFO-1132(E):HFC-32=30質量%:70質量%である。
(共沸様組成物)
 また、図1より、HFO-1132(E)とHFC-32とからなる組成物においては、HFO-1132(E)が1~99質量%の範囲で気液平衡状態における液相濃度(質量%)と気相濃度(質量%)の関係が、上記破線で示す比揮発度1.00の直線に近似していることがわかる。上記測定結果によれば、HFO-1132(E)とHFC-32とからなる本共沸様組成物は、HFO-1132(E)とHFC-32との質量比(HFO-1132(E)[質量%]/HFC-32[質量%])が1/99~99/1の範囲で、比揮発度が1.00±0.40の範囲である。
(共沸組成を求める試験2)
 また、HFO-1132(E)とHFC-125とからなる組成物について、上記共沸組成を求める試験1と同様に試験を行い、両者の組成比から、上に説明した比揮発度を求める式により比揮発度を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 さらに、表2の結果に基いて、HFO-1132(E)とHFC-125とからなる組成物の気液平衡グラフを作成した。これを、図2に示す。図2は、上記各種組成を変えて準備されたHFO-1132(E)とHFC-125とからなる混合物の気液平衡状態における、HFO-1132(E)の液相濃度(質量%)と気相濃度(質量%)の関係を示すグラフである。図2において、実線が上記で測定されたHFO-1132(E)の液相濃度(質量%)と気相濃度(質量%)の関係を示し、破線は気相と液相における組成が一致する比揮発度1.00となる直線を示す。図2において実線で示す曲線と破線で示す直線の交点が共沸組成であり、HFO-1132(E):HFC-125=40質量%:60質量%である。
(共沸様組成物)
 また、図2より、HFO-1132(E)とHFC-125とからなる組成物においては、HFO-1132(E)が1~99質量%の範囲で気液平衡状態における液相濃度(質量%)と気相濃度(質量%)の関係が、上記破線で示す比揮発度1.00の直線に近似していることがわかる。上記測定結果によれば、HFO-1132(E)とHFC-125とからなる共沸様組成物は、HFO-1132(E)とHFC-125の質量比(HFO-1132(E)[質量%]/HFC-32[質量%])が1/99~99/1の範囲で、比揮発度が1.00±0.40の範囲である。
 また、HFO-1132(E)、HFC-32およびHFC-125は、それぞれ沸点が極めて近く、物性も類似している。HFO-1132(E)、HFC-32およびHFC-125の3成分からなる熱サイクル用作動媒体の温度勾配は、後述の実施例で示すようにHFO-1132(E)とHFC-32またはHFC-125の2成分からなる熱サイクル用作動媒体の温度勾配と近似した動向を示す。以下に説明するように、温度勾配は、共沸様組成を反映するファクターであり、組成物の温度勾配が1.50以下であれば、当該組成物が共沸様組成であるといえる。したがって、HFO-1132(E)、HFC-32およびHFC-125からなる組成物についても、HFO-1132(E)と、HFC-32またはHFC-125とからなる組成物と同様に、HFO-1132(E)と、HFC-125およびHFC-32との質量比((HFO-1132(E)[質量%])/(HFC-125[質量%]+HFC-32[質量%]))が1/99~99/1の範囲で共沸様組成物を形成する。なお、HFO-1132(E)、HFC-32、HFC-125の沸点は、圧力が1.013×10Paで測定される値で、それぞれ、HFO-1132(E)の沸点:-50℃、HFC-32の沸点:-52℃、HFC-125の沸点:-48℃である。
 上記の結果を勘案して、本発明の熱サイクル用作動媒体においては、本共沸様組成物として、HFO-1132(E)の含有割合が1~99質量%、HFC-32およびHFC-125の合計の含有割合が99~1質量%の組成物を選択することとした。
 本共沸様組成物において、HFO-1132(E)と、HFC-32およびHFC-125との合計の含有割合が上記した範囲であれば、気液両相の組成比の差が極めて小さく、組成の安定性に優れた熱サイクル用作動媒体を得ることができる。また、本発明の熱サイクル用作動媒体を熱サイクルシステムに適用した場合に、移充てん、あるいは機器からの漏えい時の組成変化が極めて小さいため、極めて安定したサイクル性能が得られる。そのため、熱サイクル用作動媒体の管理が容易であるという利点を有し、一定の能力を維持しながら効率をより高めることで良好なサイクル性能を得ることができる。
 また、混合物を作動媒体として使用した場合における性質をはかる指標の一つとして、「温度勾配」が用いられる。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。本発明の熱サイクル用作動媒体は、本共沸様組成物を含有するため、温度勾配が0に近い。したがって、これを熱サイクルシステムに適用した場合に、以下に説明するように、エネルギー効率のよい熱サイクルシステムを得ることができる。
 共沸様組成物を作動媒体として用いる場合の熱サイクルシステムにおける温度勾配の影響について、図3に示す熱サイクルシステムに用いた場合を例に以下に説明する。
 図3は、本発明の冷凍サイクルシステムの一例を示す概略構成図である。冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。
 冷凍サイクルシステム10において、作動媒体は、蒸発時、蒸発器14の入口から出口に向かい温度が上昇し、反対に凝縮時、凝縮器12の入口から出口に向かい温度が低下する。冷凍サイクルシステム10においては、蒸発器14および凝縮器12において、作動媒体と対向して流れる水や空気等の熱源流体との間で熱交換を行うことにより構成されている。熱源流体は、冷凍サイクルシステム10において、蒸発器14では「E→E’」で示され、凝縮器12では「F→F’」で示される。
 ここで、単一組成の作動媒体を用いた場合には温度勾配がないため、蒸発器14の出口温度と入口温度との温度差がほぼ一定である。
 また、共沸組成物は、該組成物を繰り返し蒸発、凝縮させた場合、組成変化がないため、作動媒体として用いる場合に、単一組成の作動媒体とほぼ等しく取り扱える。また、共沸様組成物は、蒸発、凝縮を繰り返した場合の組成の変動が小さく、共沸組成物と同等に取り扱える。したがって、共沸組成物または共沸様組成物を作動媒体として用いた場合にも、蒸発器14の出口温度と入口温度との温度差がほぼ一定となる。
 一方、非共沸組成物を用いた場合は、温度差が一定とならない。例えば、蒸発器14で、0℃で蒸発させようとした場合、入口温度が0℃よりも低い温度となり、蒸発器14において着霜する問題が生じる。特に、温度勾配が大きいほど、入口温度が低くなり、着霜の可能性が大きくなる。
 また、例えば、上記冷凍サイクルシステム10に示されるとおり、通常、熱サイクルシステムにおいては、蒸発器14および凝縮器12等の熱交換器を流れる作動媒体と水や空気等の熱源流体とは常に対向流にすることにより熱交換効率の向上をはかる工夫がされている。ここで、起動時を別とし、一般に長期稼働する安定運転状態においては熱源流体の温度差が小さいことから、気液両相の組成が大きく異なる非共沸組成物の場合、温度勾配が大きいため、エネルギー効率のよい熱サイクルシステムを得ることが困難である。これに対し、共沸組成物を作動媒体として用いた場合には、エネルギー効率のよい熱サイクルシステムを得ることができる。
 また、冷凍サイクルシステム10に気液両相の組成が大きく異なる非共沸組成物を用いた場合、システム10内を循環する非共沸組成物が漏えいした場合に、その前後でシステム10内を循環する非共沸組成物の組成が大きく変化する原因になる。
 本発明の熱サイクル用作動媒体におけるHFO-1132(E)の含有量は、熱サイクル用作動媒体全量に対して80質量%以下であることが好ましい。
 HFO-1132(E)は、単独で用いた場合に高温または高圧下で着火源があると爆発する、いわゆる自己分解性を有することが知られている。本発明の熱サイクル用作動媒体においては、HFO-1132(E)を、HFC-32および/またはHFC-125と混合してHFO-1132(E)の含有量を抑えた混合物とすることで自己分解反応を抑えることができる。このとき、後述の実施例に示すように、本共沸様組成物中のHFO-1132(E)の含有割合を80質量%以下に調整することで、熱サイクルシステムに適用する場合の温度や圧力条件下で自己分解性を有しないため、安全性のより高い熱サイクル用作動媒体を得ることができる。また、本発明の熱サイクル用作動媒体が、本共沸様組成物にさらに、後述する任意成分を含有する場合にも、HFO-1132(E)の含有割合が80質量%以下であることで、熱サイクルシステムに適用する場合の温度や圧力条件下で自己分解性を有しないため、安全性の高い熱サイクル用作動媒体を得ることができる。より高い安全性を得るためには、HFO-1132(E)の含有割合は、60質量%以下であることがより好ましい。
 なお、本発明の熱サイクル用作動媒体においては、自己分解性を有する組成であっても使用条件によっては取り扱いを十分に注意することで熱サイクルシステムに使用することが可能である。
 本発明の熱サイクル用作動媒体の全量に対するHFO-1132(E)の割合は、20質量%以上であることが好ましく、40質量%以上であることがより好ましい。作動媒体におけるサイクル性能としては、成績係数、冷凍能力が挙げられるが、本発明の熱サイクル用作動媒体がHFO-1132(E)を20質量%以上含有することで、例えばR410Aを基準(1.000)とした成績係数、冷凍能力と同等またはこれ以上のサイクル性能を得ることができる。
 本発明の熱サイクル用作動媒体における、本共沸様組成物の含有割合は、熱サイクル用作動媒体全量に対して50質量%以上であることが好ましく、60質量%以上がより好ましく、80質量%がさらに好ましい。特に、本発明の熱サイクル用作動媒体は本共沸様組成物からなることが好ましい。
 本発明の熱サイクル用作動媒体は、本共沸様組成物を50質量%以上含有することで、サイクル性能に優れる上に、組成変化および温度勾配をより小さくすることができる。本発明の熱サイクル用作動媒体を、本共沸様組成物のみで構成すれば、組成変化および温度勾配がほぼ0に近い熱サイクル用作動媒体を得ることができる。
(任意成分)
 本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲で上記共沸様組成物以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
 本発明の熱サイクル用作動媒体が、上記共沸様組成物以外に任意に含有してもよい化合物(以下、任意成分という。)としては、HFO-1132(E)以外のHFO、HFC-32以外の炭素-炭素二重結合を有するHFC、炭化水素、HCFOおよびCFOが挙げられる。
 本発明の熱サイクル用作動媒体において、任意成分の含有量は合量で、熱サイクル用作動媒体(100質量%)中、20質量%以下が好ましく、10質量%以下が好ましい。任意成分の含有量が20質量%を超えると、冷媒等の用途において、熱サイクル機器からの漏えいが生じた場合、熱サイクル用作動媒体の組成変化が大きくなるおそれがある等、冷媒管理性が低下することがある。
(HFO-1132(E)以外のHFO)
 本発明の熱サイクル用作動媒体が含んでもよいHFO-1132(E)以外のHFOとしては、シス-1,2-ジフルオロエチレン(HFO-1132(Z))、HFO-1261yf、HFO-1243yc、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1243zf等が挙げられる。HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の熱サイクル用作動媒体が、HFO-1132(E)以外のHFOを含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~20質量%が好ましく、2~10質量%がより好ましい。
(HFC-32およびHFC-125以外のHFC)
 HFCは、熱サイクルシステムのサイクル性能(能力)を向上させる成分である。本発明の熱サイクル用作動媒体が含んでもよいHFC-32およびHFC-125以外のHFCとしては、テトラフルオロエタン、ジフルオロエタン、トリフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 HFCとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点から、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1-ジフルオロエタン(HFC-152a)が特に好ましい。
 本発明の熱サイクル用作動媒体が、HFC-32以外のHFCを含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~20質量%が好ましく、2~10質量%がより好ましい。これらHFCの含有量は、熱サイクル用作動媒体の要求特性に応じて制御を行うことができる。
(炭化水素)
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の熱サイクル用作動媒体が、炭化水素を含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~20質量%が好ましく、2~5質量%がより好ましい。炭化水素が1質量%以上であれば、熱サイクル用作動媒体への冷凍機油の溶解性が充分に向上する。炭化水素が20質量%以下であれば、熱サイクル用作動媒体の燃焼性を抑制するのに効果がある。
(HCFO、CFO)
 HCFO、CFOは、熱サイクル用作動媒体への冷凍機油の溶解性を向上させる成分である。HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられ、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑える点から、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が特に好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられ、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑える点から、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が特に好ましい。
 本発明の熱サイクル用作動媒体が、HCFOおよび/またはCFOを含有する場合には、それの含有量は合計で、熱サイクル用作動媒体(100質量%)中、1~20質量%が好ましい。塩素原子は燃焼性を抑制する効果を有しており、HCFOとCFOの含有量がこの範囲にあると、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑えることができる。HCFO、CFOとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHCFOが好ましい。
[熱サイクルシステムへの適用]
 本発明の熱サイクル用作動媒体は、熱サイクルシステムへの適用に際して、通常、冷凍機油と混合して本発明の熱サイクルシステム用組成物として使用することができる。また、本発明の熱サイクルシステム用組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
(冷凍機油)
 冷凍機油としては、熱サイクルシステム用組成物に用いられる公知の冷凍機油が用いられる。
 冷凍機油としては、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油等)、フッ素系冷凍機油、鉱物油、炭化水素系合成油等が挙げられる。
 エステル系冷凍機油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
 二塩基酸エステル油としては、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
 ポリオールエステル油としては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオール等)または水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸等)とのエステルが好ましい。
 ポリオールエステル油は、遊離の水酸基を有していてもよい。
 ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネート等)が好ましい。
 コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、上述と同様のジオールや上述と同様のポリオールが挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
 エーテル系冷凍機油としては、ポリビニルエーテル油やポリオキシアルキレン油が挙げられる。
 ポリビニルエーテル油としては、ビニルエーテルモノマーの重合体、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとの共重合体、ビニルエーテルモノマーとポリオキシアルキレン鎖を有するビニルエーテルモノマーとの共重合体等が挙げられる。
 ビニルエーテルモノマーとしては、メチルビニルエーテルやエチルビニルエーテル等のアルキルビニルエーテルが好ましい。また、ポリオキシアルキレン鎖を有するビニルエーテルモノマーとしては、ポリオキシアルキレンジオールの水酸基の一方がアルキルエーテル化され、他方がビニルエーテル化された化合物等が挙げられる。
 ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオール、ポリオキシアルキレンポリオール、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのアルキルエーテル化物、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのエステル化物等が挙げられる。
 ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールは、水酸化アルカリなどの触媒の存在下、水や水酸基含有化合物などの開始剤に炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を開環付加重合させる方法等により得られたものが挙げられる。また、ポリアルキレン鎖中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 水酸基含有化合物としては、1価または多価アルコール(メタノール、ブタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセロール、ペンタエリスリトール等が挙げられる。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオールまたはポリオキシアルキレンジオールの水酸基のすべてをアルキルエーテル化して得られる、ポリアルキレングリコール油(PAG)と呼ばれているものが好ましい。
 フッ素系冷凍機油としては、合成油(後述する鉱物油、炭化水素系合成油等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
 鉱物油としては、原油を常圧蒸留または減圧蒸留して得られた冷凍機油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
 冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 冷凍機油としては、熱サイクル用作動媒体との相溶性の点から、ポリオールエステル油およびポリオキシアルキレン油が好ましく、安定化剤によって顕著な酸化防止効果が得られる点から、ポリアルキレングリコール油が特に好ましい。
 熱サイクルシステム用組成物中の冷凍機油の含有量は、本発明の効果を著しく低下させない範囲であればよく、用途、圧縮機の形式等によっても異なるが、熱サイクル用作動媒体(100質量部)に対して、通常10~100質量部であり、20~50質量部が好ましい。
 また、熱サイクルシステム用組成物において、HFO-1132(E)の含有量は、熱サイクル用組成物(100質量%)中、5質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%以上が特に好ましい。
(安定剤)
 安定剤は、熱および酸化に対する熱サイクル用作動媒体の安定性を向上させる成分である。安定剤としては、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズイミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
 安定剤の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常5質量%以下であり、1質量%以下が好ましい。
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、熱サイクル用作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
 漏れ検出物質の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常2質量%以下であり、0.5質量%以下が好ましい。
(他の化合物)
 本発明の熱サイクル用組成物は、従来の作動媒体、冷媒、熱伝達媒体として用いられている化合物(以下、他の化合物と記す。)を含んでいてもよい。
 他の化合物としては、下記の化合物が挙げられる。
 含フッ素エーテル:(ペルフルオロプロピル)メチルエーテル(COCH)、(ペルフルオロブチル)メチルエーテル(COCH)、(ペルフルオロブチル)エチルエーテル(COC)、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(CFHCFOCHCF、旭硝子社製、AE-3000)等。
 他の化合物の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常30質量%以下であり、20質量%以下が好ましく、15質量%以下がより好ましい。
(作用効果)
 本発明の熱サイクル用作動媒体および熱サイクルシステム用組成物は、HFO-1132(E)と、HFC-32および/またはHFC-125からなる共沸様組成物を含有することで、R410Aに代替可能で、組成変化が極めて小さく、温度勾配が小さく、さらに良好なサイクル性能(能力)が得られるものである。
(冷凍サイクルシステム)
 本発明の熱サイクルシステム用組成物が適用される熱サイクルシステムとしては、凝縮器や蒸発器等の熱交換器による熱サイクルシステムが特に制限なく用いられる。熱サイクルシステム、例えば、冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。
 熱サイクルシステムの一例である冷凍サイクルシステムについて図3を参照して説明する。
 冷凍サイクルシステム10においては、以下のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される。
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。作動媒体の状態変化を圧力-エンタルピ線図上に記載すると図4のように、A,B、C、Dを頂点とする台形として表すことができる。
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図4においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図4においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。ここで、作動媒体が非共沸組成物である場合の温度勾配は、TとTの差として示される。
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図4においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図4においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは蒸発温度である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、Tは作動媒体Dの温度を示す。
 ここで、熱サイクル用作動媒体のサイクル性能は、例えば、熱サイクル用作動媒体の冷凍能力(以下、必要に応じて「Q」で示す。)と成績係数(以下、必要に応じて「COP」で示す。)で評価できる。熱サイクル用作動媒体のQとCOPは、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、h、h、h、hを用いると、下式(1)、(2)からそれぞれ求められる。
 Q=h-h  …(1)
 COP=Q/圧縮仕事=(h-h)/(h-h)  …(2)
 上記(h-h)で示されるQが冷凍サイクルの出力(kW)に相当し、(h-h)で示される圧縮仕事、例えば、圧縮機を運転するために必要とされる電力量が、消費された動力(kW)に相当する。また、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。
(水分濃度)
 熱サイクルシステム内に水分が混入する問題がある。水分の混入は、キャピラリーチューブ内での氷結、熱サイクル用作動媒体や冷凍機油の加水分解、熱サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等により発生する。特に、上述したポリアルキレングリコール油、ポリオールエステル油等は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。また、自動車空調機器においては、振動を吸収する目的で使用されている冷媒ホースや圧縮機の軸受け部から水分が混入しやすい傾向にある。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を抑制する必要がある。
 熱サイクルシステム内の水分濃度を抑制する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)を用いる方法が挙げられる。乾燥剤としては、乾燥剤と熱サイクル用作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(3)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO ・・・(3)。
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
 乾燥剤の選定においては、細孔径および破壊強度が特に重要である。
 熱サイクル用作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、熱サイクル用作動媒体が乾燥剤中に吸着され、その結果、熱サイクル用作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。熱サイクル用作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、熱サイクル用作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、熱サイクル用作動媒体の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。
 熱サイクル用作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
(塩素濃度)
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、軸受け部の磨耗、熱サイクル用作動媒体や冷凍機油の分解等、好ましくない影響をおよぼす。
 熱サイクルシステム内の塩素濃度は、熱サイクル用作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
(不凝縮性気体濃度)
 熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、熱サイクル用作動媒体や冷凍機油と反応し、分解を促進する。
 不凝縮性気体濃度は、熱サイクル用作動媒体の気相部において、熱サイクル用作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
(作用効果)
 以上説明した熱サイクルシステムにあっては、サイクル性能に優れ、組成変化および温度勾配の小さい本発明の熱サイクル用作動媒体を用いているため、システムを小型化できる。
 また、R410Aに代替可能な本発明の熱サイクル用作動媒体を用いているため、サイクル性能に優れる。
 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
(HFO-1132(E)の自己分解性の評価)
 自己分解性の評価は、高圧ガス保安法における個別通達においてハロゲンを含むガスを混合したガスにおける燃焼範囲を測定する設備として推奨されているA法に準拠した設備を用い実施した。
 具体的には、外部より所定の温度に制御された内容積650cmの球形耐圧容器内にHFO-1132(E)とHFC-32またはHFC-125を種々の割合で混合した熱サイクル用作動媒体を所定圧力まで封入した後、内部に設置された白金線を溶断することにより約30Jのエネルギーを印加した。印加後に発生する耐圧容器内の温度と圧力変化を測定することにより自己分解性の有無を確認した。圧力上昇並びに温度上昇が認められた場合に自己分解性ありと判断した。結果を、表3に示す。なお表3中の圧力はゲージ圧である。
Figure JPOXMLDOC01-appb-T000003
 表3より、HFO-1132(E)が80質量%以下の組成からなる熱サイクル用作動媒体は、自己分解性を有しないことが確認された。
[例1]
(冷凍サイクル性能の評価)
 表4~6に示す割合の本共沸様組成物からなる熱サイクル用作動媒体1~28について、サイクル性能の評価を次のように行った。図3の冷凍サイクルシステム10に、熱サイクル用作動媒体1~28をそれぞれ適用して、図3に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合のサイクル性能(能力および効率)として冷凍サイクル性能(冷凍能力および成績係数)を評価した。
 評価は、蒸発器14における熱サイクル用作動媒体の平均蒸発温度を0℃、凝縮器12における熱サイクル用作動媒体の平均凝縮温度を40℃、凝縮器12における熱サイクル用作動媒体の過冷却度を5℃、蒸発器14における熱サイクル用作動媒体の過熱度を5℃として実施した。また、機器効率および配管、熱交換器における圧力損失はないものとした。
 冷凍能力および成績係数は、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態のエンタルピhを用いて、上記式(1)、(2)から求めた。
 冷凍サイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。
 R410Aの冷凍サイクル性能を基準にし、R410Aに対する熱サイクル用作動媒体1~28の冷凍サイクル性能(冷凍能力および成績係数)の相対性能(各熱サイクル用作動媒体/R410A)をそれぞれ求めた。結果を熱サイクル用作動媒体1~28の組成とあわせて表4~6に示す。また、R410A、HFO-1132(E)、HFC-32、HFC-125のそれぞれ単独での、相対性能および、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)の100年値による地球温暖化係数(GWP)を表7に示す。なお、HFO-1132(E)のGWPは、IPCC第4次評価報告書に準じて測定したとして想定される値である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4~6の結果から、HFO-1132(E)と、HFC-32および/またはHFC-125からなる共沸様組成物から構成される熱サイクル用作動媒体は、温度勾配が小さいことが分かる。また、R410Aからなる作動媒体と同等またはこれ以上の成績係数、冷凍能力が得られることが分かる。
 また、混合物におけるGWPは、組成質量による加重平均として示すことができる。例えば、HFO-1132(E)とHFC-32の質量比1:1の混合物におけるGWPは、(10+625)/2=317と算出できる。このように、表7に示す値から表4~6における各組成の熱サイクル用作動媒体のGWPを算出することができ、本発明の熱サイクル用作動媒体は、組成を選択することで、R410Aからなる作動媒体と比べてGWPを小さくできることが分かる。
 本発明の熱サイクル用作動媒体は、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動流体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の作動媒体として有用である。
 なお、2014年6月6日に出願された日本特許出願2014-118164号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ、A,B…作動媒体蒸気、C,D…作動媒体、E,E‘…負荷流体,F…流体。

Claims (14)

  1.  トランス-1,2-ジフルオロエチレンと、ジフルオロメタンおよび/またはペンタフルオロエタンとからなる共沸様組成物を含むことを特徴とする熱サイクル用作動媒体。
  2.  前記共沸様組成物が、比揮発度が1.00±0.40の範囲にある組成物である、請求項1に記載の熱サイクル用作動媒体。
  3.  前記共沸様組成物が、前記トランス-1,2-ジフルオロエチレンを1~99質量%、前記ジフルオロメタンおよびペンタフルオロエタンの合計量を99~1質量%含む、請求項1または2に記載の熱サイクル用作動媒体。
  4.  前記共沸様組成物が、トランス-1,2-ジフルオロエチレンとジフルオロメタンとからなる、請求項1~3のいずれか1項に記載の熱サイクル用作動媒体。
  5.  前記共沸様組成物が、トランス-1,2-ジフルオロエチレンとペンタフルオロエタンとからなる、請求項1~3のいずれか1項に記載の熱サイクル用作動媒体。
  6.  前記共沸様組成物が、トランス-1,2-ジフルオロエチレンとジフルオロメタンとペンタフルオロエタンとからなる、請求項1~3のいずれか1項に記載の熱サイクル用作動媒体。
  7.  前記熱サイクル用作動媒体の全量に対する前記共沸様組成物の割合が50質量%以上である、請求項1~6のいずれか1項に記載の熱サイクル用作動媒体。
  8.  前記熱サイクル用作動媒体の全量に対する前記トランス-1,2-ジフルオロエチレンの割合が80質量%以下である、請求項1~7のいずれか1項に記載の熱サイクル用作動媒体。
  9.  前記熱サイクル用作動媒体の全量に対する前記トランス-1,2-ジフルオロエチレンの割合が20質量%以上である、請求項1~8のいずれか1項に記載の熱サイクル用作動媒体。
  10.  前記熱サイクル用作動媒体が前記共沸様組成物からなる、請求項1~9のいずれか1項に記載の熱サイクル用作動媒体。
  11.  請求項1~10のいずれか1項に記載の熱サイクル用作動媒体と、冷凍機油とを含む、熱サイクルシステム用組成物。
  12.  請求項11に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
  13.  冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である、請求項12に記載の熱サイクルシステム。
  14.  ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である、請求項13に記載の熱サイクルシステム。
PCT/JP2015/064942 2014-06-06 2015-05-25 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム WO2015186558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15803231.8A EP3153560A4 (en) 2014-06-06 2015-05-25 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
CN201580029973.0A CN106414655A (zh) 2014-06-06 2015-05-25 热循环用工作介质、热循环系统用组合物以及热循环系统
JP2016525778A JPWO2015186558A1 (ja) 2014-06-06 2015-05-25 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
US15/350,335 US20170058171A1 (en) 2014-06-06 2016-11-14 Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014118164 2014-06-06
JP2014-118164 2014-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,335 Continuation US20170058171A1 (en) 2014-06-06 2016-11-14 Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Publications (1)

Publication Number Publication Date
WO2015186558A1 true WO2015186558A1 (ja) 2015-12-10

Family

ID=54766632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064942 WO2015186558A1 (ja) 2014-06-06 2015-05-25 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Country Status (5)

Country Link
US (1) US20170058171A1 (ja)
EP (1) EP3153560A4 (ja)
JP (1) JPWO2015186558A1 (ja)
CN (1) CN106414655A (ja)
WO (1) WO2015186558A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145375A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 トランス-1,2-ジフルオロエチレンを含む組成物
WO2020145377A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 シス-1,2-ジフルオロエチレンを含む組成物
WO2020256098A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256100A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256119A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
WO2020256126A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
WO2020256122A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2020203863A (ja) * 2019-06-18 2020-12-24 ダイキン工業株式会社 ジフルオロエチレンを含有する作動媒体の製造方法
WO2020255966A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷凍サイクル装置
JP2021095412A (ja) * 2019-04-19 2021-06-24 ダイキン工業株式会社 トランス−1,2−ジフルオロエチレン(hfo−1132(e))及び/又はシス−1,2−ジフルオロエチレン(hfo−1132(z))と水とを含有する精製物
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
CN113993973B (zh) * 2019-06-19 2024-04-23 大金工业株式会社 含有制冷剂的组合物、其用途、具有该组合物的冷冻机、该冷冻机的运转方法以及具有冷冻机的冷冻循环装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029821B (zh) * 2014-01-31 2020-06-02 Agc株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
EP3334989B1 (en) * 2015-08-11 2023-09-27 Trane International Inc. Refrigerant recovery and repurposing
DE102016204378A1 (de) * 2016-03-16 2017-09-21 Weiss Umwelttechnik Gmbh Prüfkammer
CN111479910A (zh) * 2017-12-18 2020-07-31 大金工业株式会社 制冷剂用或制冷剂组合物用的制冷机油、制冷机油的使用方法、以及作为制冷机油的用途
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
EP4230707A1 (en) 2018-07-17 2023-08-23 Daikin Industries, Ltd. Refrigerant cycle apparatus
CN113366268A (zh) 2019-02-05 2021-09-07 大金工业株式会社 含有制冷剂的组合物以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
CN113412398A (zh) 2019-02-06 2021-09-17 大金工业株式会社 含有制冷剂的组合物及使用了该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
JP2020139072A (ja) * 2019-02-28 2020-09-03 出光興産株式会社 冷凍機用組成物
JP6897814B2 (ja) * 2019-06-19 2021-07-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN112877035B (zh) * 2020-12-28 2022-04-08 珠海格力电器股份有限公司 一种制冷剂混合物和空调系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252801A1 (en) * 2010-04-15 2011-10-20 E.I. Du Pont Nemours And Company Compositions comprising z-1,2-difluoroethylene and uses thereof
WO2012157765A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
CN102994052A (zh) * 2012-11-30 2013-03-27 徐超 一种空调用制冷剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252801A1 (en) * 2010-04-15 2011-10-20 E.I. Du Pont Nemours And Company Compositions comprising z-1,2-difluoroethylene and uses thereof
WO2012157765A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
CN102994052A (zh) * 2012-11-30 2013-03-27 徐超 一种空调用制冷剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153560A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
WO2020145375A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 トランス-1,2-ジフルオロエチレンを含む組成物
WO2020145377A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 シス-1,2-ジフルオロエチレンを含む組成物
JP2020111742A (ja) * 2019-01-11 2020-07-27 ダイキン工業株式会社 トランス−1,2−ジフルオロエチレンを含む組成物
JP2020111743A (ja) * 2019-01-11 2020-07-27 ダイキン工業株式会社 シス−1,2−ジフルオロエチレンを含む組成物
JP7073420B2 (ja) 2019-01-11 2022-05-23 ダイキン工業株式会社 トランス-1,2-ジフルオロエチレンを含む組成物
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11618724B2 (en) 2019-04-19 2023-04-04 Daikin Industries, Ltd. Method for purifying 1,2-difluoroethylene (HFO-1132)
JP2021095412A (ja) * 2019-04-19 2021-06-24 ダイキン工業株式会社 トランス−1,2−ジフルオロエチレン(hfo−1132(e))及び/又はシス−1,2−ジフルオロエチレン(hfo−1132(z))と水とを含有する精製物
JP2020203863A (ja) * 2019-06-18 2020-12-24 ダイキン工業株式会社 ジフルオロエチレンを含有する作動媒体の製造方法
WO2020255986A1 (ja) * 2019-06-18 2020-12-24 ダイキン工業株式会社 ジフルオロエチレンを含有する作動媒体の製造方法
JP2021001318A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN114008171A (zh) * 2019-06-19 2022-02-01 大金工业株式会社 含有制冷剂的组合物、其用途以及具有其的冷冻机和该冷冻机的运转方法
JP2021001321A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
JP2021001324A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
JP2021001320A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020255966A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷凍サイクル装置
CN113993973A (zh) * 2019-06-19 2022-01-28 大金工业株式会社 含有制冷剂的组合物、其用途、具有该组合物的冷冻机、该冷冻机的运转方法以及具有冷冻机的冷冻循环装置
JP2021001304A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256122A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256126A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
WO2020256119A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
WO2020256100A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256098A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN113993973B (zh) * 2019-06-19 2024-04-23 大金工业株式会社 含有制冷剂的组合物、其用途、具有该组合物的冷冻机、该冷冻机的运转方法以及具有冷冻机的冷冻循环装置

Also Published As

Publication number Publication date
EP3153560A1 (en) 2017-04-12
CN106414655A (zh) 2017-02-15
EP3153560A4 (en) 2018-01-10
JPWO2015186558A1 (ja) 2017-04-20
US20170058171A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP7131579B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6950765B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6891925B2 (ja) 作動媒体および熱サイクルシステム
JP6848861B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186558A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6848977B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2020071380A1 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6477679B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6524995B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP5783341B1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2016011423A (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6493388B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6634393B2 (ja) 電気自動車用のエアコン用作動媒体および電気自動車用のエアコン用作動媒体組成物
WO2015129548A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2015145452A (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803231

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015803231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803231

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016525778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE