WO2015184569A1 - 用于氯碱工业的离子传导膜及其制备方法 - Google Patents

用于氯碱工业的离子传导膜及其制备方法 Download PDF

Info

Publication number
WO2015184569A1
WO2015184569A1 PCT/CN2014/000653 CN2014000653W WO2015184569A1 WO 2015184569 A1 WO2015184569 A1 WO 2015184569A1 CN 2014000653 W CN2014000653 W CN 2014000653W WO 2015184569 A1 WO2015184569 A1 WO 2015184569A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
resin
perfluoro
ion
acid resin
Prior art date
Application number
PCT/CN2014/000653
Other languages
English (en)
French (fr)
Inventor
王婧
张永明
杨淼昆
张恒
Original Assignee
山东东岳高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410251263.XA external-priority patent/CN104018182B/zh
Application filed by 山东东岳高分子材料有限公司 filed Critical 山东东岳高分子材料有限公司
Priority to US15/314,927 priority Critical patent/US20170198404A1/en
Publication of WO2015184569A1 publication Critical patent/WO2015184569A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00042Organic membrane manufacture by agglomeration of particles by deposition of fibres, nanofibres or nanofibrils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes

Definitions

  • Ion-conducting membrane for chlor-alkali industry and preparation method thereof Ion-conducting membrane for chlor-alkali industry and preparation method thereof
  • the invention belongs to the technical field of ion membranes, and particularly relates to an ion conductive membrane used in the chlor-alkali industry and a preparation method thereof. Background technique
  • the bubbles block the current path, reducing the effective electrolytic area of the membrane, resulting in uneven current distribution on the membrane surface, and the local polarization is significantly increased.
  • the membrane resistance and the cell voltage are sharply increased, and the electrolytic power consumption is remarkably increased.
  • the adhered hydrogen bubbles are quickly released from the hydrophilic membrane surface, and the modification method of the hydrophilic coating on the surface of the ion membrane is developed.
  • the surface of the membrane is covered with a porous, electrocatalytically active non-electrode coating which is permeable to both gas and liquid, the hydrophilicity of the membrane surface is significantly increased, and the anti-foaming ability is remarkably improved.
  • the ionized membrane modified by the hydrophilic coating can be closely attached to the electrode to greatly reduce the cell voltage, and is currently widely used in the zero-pole ion membrane electrolysis process.
  • the hydrophilic coating modification process needs to be covered by the inorganic component and the special binder, and covered on the surface of the ion membrane by electrolytic deposition method, particle embedding method, etc.
  • Patented CA2446448 and CA2444585 specifically introduce the coating process.
  • the modification method is effective, the process is relatively complicated.
  • the hydrophilic coating attached to the surface of the ionic membrane gradually falls off, and the antifoaming function is gradually reduced to ineffective.
  • Patent No. 4502931 mentions that the surface of the ion film is subjected to surface roughening modification by ion etching, but the method is not easy to implement in a large area, and the anti-foaming ability is not high, when the distance between the electrodes is reduced to a certain extent, The cell voltage is still greater than 3.5V and the current efficiency is less than 90%.
  • a new type of ion-conducting membrane for the chlor-alkali industry has been developed, which has a long-term effective hydrophilic degassing function, and can continue to provide good anti-foaming effect in the most advanced electrolyzers and electrolysis processes. It is very important to reduce the cell voltage, improve current efficiency, and reduce power consumption.
  • an object of the present invention to provide an ion-conducting membrane for use in the chlor-alkali industry for chlor-alkali
  • the industry can stably and efficiently process a wide range of alkali metal chloride solutions, and is suitable for operation in a zero-pole electrolysis cell under a novel high current density condition, and has a very excellent product purity index; the present invention also provides a preparation method thereof, a process Simple and reasonable, easy to industrialize production.
  • the ion-conducting membrane for use in the chlor-alkali industry of the present invention comprises a perfluoro ion exchange resin base membrane, a porous reinforcing material, and a perfluoro ion exchange resin microparticle surface layer.
  • the perfluoro ion exchange resin base film is composed of a resin layer mainly composed of a perfluorosulfonic acid resin and a resin layer mainly composed of a perfluorocarboxylic acid resin, and a resin layer mainly composed of a perfluorosulfonic acid resin.
  • the thickness of the resin is 30-300 micrometers, preferably 50-150 micrometers.
  • the resin layer mainly composed of perfluorosulfonic acid resin has a small fixed ion content, and the repulsive force to the hydroxide is weak, and the thickness is not too thin;
  • the resin layer mainly composed of a fluorocarboxylic acid resin has a thickness of 2 to 30 ⁇ m, preferably 7 to 18 ⁇ m, and the resin layer mainly composed of a perfluorocarboxylic acid resin has a large electric resistance and the thickness is not excessively large.
  • the resin layer mainly composed of perfluorosulfonic acid resin is obtained by blending or copolymerizing a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin having a mass ratio of 100:0.1-100:10; the mass ratio thereof is preferably 100:0.5. -100:5.
  • the presence of a small amount of perfluorocarboxylic acid resin in a resin layer mainly composed of perfluorosulfonic acid resin can play a key transition role, so that the water and ion permeability gradient in the membrane is weakened, and the flux of the ion membrane is stabilized. Sex plays a key role and prevents stripping between different layers.
  • the resin layer mainly composed of a perfluorocarboxylic acid resin is blended or copolymerized with a perfluorocarboxylic acid resin and a perfluorosulfonic acid resin in a mass ratio of 100:0.1 to 100:10, preferably 100:0.5-100:5. .
  • the presence of a small amount of perfluorosulfonic acid resin in a resin layer mainly composed of a perfluorocarboxylic acid resin can also play a key transition role as described in the above paragraph.
  • the perfluorosulfonic acid resin has an exchange capacity of 0.8 to 1.5 mmol/g, preferably 0.9 to 1.1 mmol/g; and the perfluorocarboxylic acid resin has an exchange capacity of 0.8 to 1.2 mmol/g, preferably 0.85 to 1.0 mmol/ Gram.
  • the exchange capacity of the two resins should be matched and the difference should not be too large.
  • the surface layer thickness of the perfluoro ion exchange resin microparticles is between 20 nm and 100 microns, preferably between 50 nm and 1 micron.
  • the perfluoro ion exchange resin microparticles are a mixture of one or both of perfluorocarboxylic acid resin microparticles or perfluorosulfonic acid carboxylic acid copolymer resin microparticles and perfluorosulfonic acid resin microparticles; wherein: perfluorosulfonic acid
  • the mass percentage of the resin microparticles is 95% to 50% of the mixture, and since the hydrophilicity of the perfluorocarboxylic acid resin microparticles or the perfluorosulfonic acid carboxylic acid copolymer resin microparticles is different from that of the perfluorosulfonic acid resin microparticles, an appropriate amount is introduced.
  • the surface layer of the perfluoro ion exchange resin microparticles is a perfluoro ion exchange resin microparticle, which is obtained by grinding the resin pellet once in a low temperature crushing device and then grinding it in a cryogenic apparatus.
  • the particles have an irregular appearance and have an excellent effect on the desorption of the surface foaming.
  • the microparticle size ranges from 20 nm to 10 microns, preferably from 50 to 300 nm.
  • the ion exchange capacity of the perfluorinated ion exchange resin microparticles is between 0.01 and 1.5 millimeters. Molar/gram, preferably 0.3-1.0 mmol/g.
  • the porous reinforcing material is a polytetrafluoroethylene non-woven fabric, and the fiber boundary is overlapped or fused together, and the porous reinforcing material has a thickness of between 1 and 200 micrometers, preferably 10 to 50 micrometers; to improve mechanical strength, using existing The technology can be prepared.
  • the polytetrafluoroethylene nonwoven fabric has a porosity of between 20 and 99%, preferably between 50 and 85%. If the porosity is too low, it will cause the cell pressure to rise.
  • the ion-conducting membrane for chlor-alkali industry comprises the following preparation steps:
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is converted into a perfluoro ion exchange membrane having an ion exchange function.
  • Step (1) The porous reinforcing material is sonicated in a fluorocarbon solvent for 1-2 hours, taken out and dried, and then combined with a perfluoro ion exchange resin base film. Since the wetting of the polytetrafluoroethylene nonwoven fabric is very difficult, if it is directly combined with the base film without treatment, the resin matrix cannot completely fill the voids of the nonwoven fabric, thereby forming an uncompacted space inside the film body, not only It is easy to deposit impurities, and it can also form a space barrier and increase resistance.
  • the porous reinforcing material After the porous reinforcing material is immersed in the fluorocarbon solvent for 1-2 hours, the impregnation of the resin matrix is very easy, and the two can form a good and tight bond, which not only increases the mechanical strength, but also has a high open porosity of the nonwoven fabric. The effect of membrane resistance is minimal.
  • the fluorocarbon solvent according to the step (1) is selected from the group consisting of: trifluorotrichloroethane (F-113) or trifluorotrichloroacetate mixed with other solvents; other solvents are anhydrous ethanol, propanol, methanol, acetone One or more of dichloromethane or an aqueous surfactant solution.
  • the surfactant may be selected from commercially available anionic, cationic, amphoteric or nonionic surfactants.
  • Step (2) is to use the perfluoro ion exchange membrane precursor prepared in the step (1) at a temperature of 10 to 200 Torr at a pressure of 20 to 100 tons at an excessive pressure of 1 to 50 m/min.
  • the machine is subjected to an overpressure treatment, and after the overpressure treatment, the perfluoro ion exchange membrane precursor is immersed in a mixed aqueous solution of 15 wt% dimethyl sulfoxide and 20 wt% NaOH, and converted into an ion exchange function.
  • Perfluorinated ion exchange membrane is to use the perfluoro ion exchange membrane precursor prepared in the step (1) at a temperature of 10 to 200 Torr at a pressure of 20 to 100 tons at an excessive pressure of 1 to 50 m/min.
  • the machine is subjected to an overpressure treatment, and after the overpressure treatment, the perfluoro ion exchange membrane precursor is immersed in a mixed aqueous solution of 15 wt% dimethyl sulfoxide and 20 wt
  • Overpressure treatment further increases the compactness of the nonwoven fabric and the base film
  • the overpressure treatment also improves the physical structure of the nonwoven fabric and the base film to some extent, and the microfibrillation and base film of the nonwoven fabric.
  • the thermocompression-induced crystal structure is refined, which will effectively improve the ion transport effect.
  • the perfluoro ion exchange resin microparticles in the step (3) are obtained by grinding the resin pellets once in a low temperature crushing apparatus and then grinding them in a cryogenic apparatus.
  • the obtained perfluoro ion exchange resin microparticles have an irregular appearance and have an excellent effect on the defoaming of the surface layer.
  • Step (4) attaching the perfluoro ion exchange resin microparticle dispersion to the surface of the perfluoro ion exchange membrane obtained in the step (2), and attaching in various ways, including: spraying, brushing, roller coating, dipping, transferring, spinning Coating, etc., preferably spray coating, roll coating.
  • the process operation can be carried out according to the prior art.
  • the present invention has the following advantages:
  • the present invention replaces the inorganic oxide coating in the existing product with the surface layer of the perfluoro ion exchange resin microparticles, since the perfluoro ion exchange resin microparticles have the same chemical structure as the basement membrane material, and have good compatibility. And adhesion, thus ensuring a good degassing effect throughout the life of the ion-conducting membrane used in the chlor-alkali industry, and the degassing effect is much better than the inorganic oxide coating.
  • the surface layer of the perfluoro ion exchange resin microparticles is a perfluoro ion exchange resin microparticle, and the perfluoro ion exchange resin microparticle is one of a perfluorocarboxylic acid resin microparticle or a perfluorosulfonic acid carboxylic acid copolymer resin microparticle.
  • the surface layer of the perfluoro ion exchange resin microparticles has an ion exchange function, which is beneficial to the reduction of the ion conduction membrane groove voltage and the surface resistance.
  • the PTFE non-woven fabric is compounded with the base film after solvent treatment, and adopts an overpressure process to greatly improve the anti-impurity performance of the ion-conducting membrane while obtaining excellent electrochemical performance and mechanical properties.
  • the present invention provides an ion-conducting membrane for electrolytically preparing sodium chloride/potassium chloride to prepare chlorine gas and sodium hydroxide/potassium hydroxide, and the introduction of the polytetrafluoroethylene nonwoven fabric improves the purity of the product.
  • the purity of the chlorine gas obtained by electrolysis was 99.5%
  • the purity of hydrogen was 99.9%
  • the salt contained 5 ppm of salt.
  • the ion-conducting membrane of the present invention is suitable for electrolysis of a base of 30-35% by weight, whereas the ion-conducting membrane of the prior art is generally only suitable for electrolysis of a base of 30-32% concentration.
  • the ion-conducting membrane of the present invention can be used for the chlor-alkali industry to process a wide range of alkali metal chloride solutions stably and efficiently, and is suitable for operation in a zero-pole electrolysis cell under a novel high current density condition. At the same time of purity, the cell voltage is significantly lowered, and at a current density higher than 5.5 kA/m 2 , the cell pressure is lower than 2.75V.
  • the invention also provides a preparation method thereof, which is simple and reasonable in process and easy to industrialize.
  • the sulfonic acid resin-based resin layer has a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin in a mass ratio of 100:1, and a perfluorocarboxylic acid resin and a perfluorosulfonic acid in a resin layer mainly composed of a perfluorosulfonic acid resin.
  • the resin mass ratio was 100:1, wherein the resin layer mainly composed of perfluorosulfonic acid resin was 120 ⁇ m, and the thickness of the resin layer mainly composed of perfluorosulfonic acid resin was 10 ⁇ m. Then, the porous reinforcing material polytetrafluoroethylene nonwoven fabric was immersed in a trifluorotrichloroethane solvent in an ultrasonic processor for 1.5 hours, wherein the thickness of the non-woven fabric was 40 micrometers, and the porosity was 75%.
  • the perfluoro ion exchange resin base film is compounded, a porous reinforcing material is introduced between the film forming rolls, and the porous reinforcing material is pressed into the film body under the action of the pressure between the rolls to form a perfluoro ion exchange film precursor.
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is subjected to an overpressure treatment at a temperature of 80 Torr at a temperature of 80 Torr at a speed of 40 m/min. After the treatment, the perfluoro ion exchange membrane precursor was immersed in a mixed aqueous solution containing 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes, and converted into a perfluorinated ion exchange membrane having ion exchange function. .
  • the fluorine ion exchange resin microparticles are obtained by first pulverizing the resin pellets in a low temperature crushing device and then grinding in a cryogenic apparatus, and are homogenized in a ball mill to form a dispersion having a content of 15% by weight;
  • the perfluoro ion exchange resin microparticles are a mixture of perfluorocarboxylic acid resin microparticles and perfluorosulfonic acid resin microparticles; the perfluorosulfonic acid resin microparticles comprise 50% by mass of the mixture.
  • the dispersion is adhered to both sides of the perfluoro ion exchange membrane obtained in the step (2), and the surface layer has a thickness of 200 nm, and the finished product is formed after drying.
  • Performance test The prepared ion exchange membrane was subjected to electrolytic test of an aqueous solution of sodium chloride in an electrolytic cell, and a 300 g/L aqueous solution of sodium chloride was supplied to the anode chamber to supply water to the cathode chamber to ensure chlorination from the anode chamber.
  • the sodium concentration is 200g / L
  • the concentration of sodium hydroxide discharged from the cathode chamber is 34%
  • the test temperature is 90 ° C
  • the current density is 7.5 kA / m 2
  • after 23 days of electrolysis experiments the average cell pressure is 2.74V
  • the average current efficiency is 99.4%.
  • the purity of the electrolytic products was determined to be 99.4% purity of chlorine gas, 99.8% purity of hydrogen, and 4 ppm of salt in alkali.
  • An ion exchange membrane having an ion exchange function was prepared in the same manner as in Example 1, and then a dispersion liquid was prepared in the same manner except that the perfluoro ion exchange resin microparticles in the dispersion were replaced with an average particle diameter.
  • the 60 nm inorganic oxide particles were homogenized in a ball mill to form a dispersion having a content of 15% by weight.
  • the same operation as in Example 1 was carried out to obtain an ion exchange membrane having an inorganic oxide coating attached to both sides.
  • the electrolysis test of the sodium chloride solution was carried out under the same conditions as in Example 1. After 23 days of electrolysis, the average cell pressure was 2.91 V, the average current efficiency was 96.1%, and the sheet resistance was 2.4 ⁇ - 2 . The wear loss is l lmg.
  • An ion exchange membrane having an ion exchange function was prepared in the same manner as in Example 1, except that the porous reinforcing material was not immersed in a fluorocarbon solvent before being compounded with the perfluoro ion exchange resin base film, and thereafter Overpressure treatment with an overpressure press.
  • the perfluoro ion exchange resin-crushed microparticle dispersion was prepared in the same manner and homogenized in a ball mill to form a dispersion having a content of 15% by weight.
  • the ion exchange membrane finished product was obtained in the same manner as in Example 1.
  • the electrolysis test of the sodium chloride solution was carried out under the same conditions as in Example 1. After 23 days of electrolysis, the average cell pressure was 2.84 V, the average current efficiency was 99.1%, and the sheet resistance was 1.7 ⁇ - 2 . Thereafter, 15 ppb of inorganic Ca and Mg impurities were added to the aqueous sodium chloride solution, and an electrolysis experiment was carried out for 40 days under the same conditions as described above. The average cell pressure was stabilized at 2.94 V, and the average current efficiency was 97.4%. The purity of the tested products was 98.5% for chlorine, 98.6% for hydrogen, and 16 ppm for alkali.
  • the fluorosulfonic acid resin-based resin layer has a mass ratio of perfluorosulfonic acid resin to perfluorocarboxylic acid resin of 100:0.5, and a perfluorocarboxylic acid resin and perfluorosulfonic acid in a resin layer mainly composed of a perfluorosulfonic acid resin.
  • the mass ratio of the acid resin was 100:0.5, wherein the resin layer mainly composed of a perfluorosulfonic acid resin was 100 ⁇ m, and the thickness of the resin layer mainly composed of a perfluorosulfonic acid resin was 15 ⁇ m.
  • the porous reinforcing material polytetrafluoroethylene nonwoven fabric is then immersed in a mixed solvent of trifluorotrichloroethane and absolute ethanol in an ultrasonic processor for 1 hour, wherein the nonwoven fabric has a thickness of 30 micrometers and a porosity of 65%.
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is subjected to an overpressure treatment at a temperature of 160 ° C under a pressure of 100 tons at a speed of 40 m/min using an overpressure press.
  • the perfluoro ion exchange membrane precursor was immersed in a mixed aqueous solution containing 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes, and converted into a perfluoride ion having ion exchange function.
  • Exchange membrane 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes.
  • the perfluoro ion exchange resin microparticles are a mixture of perfluorocarboxylic acid resin microparticles, perfluorosulfonic acid carboxylic acid copolymer resin microparticles and perfluorosulfonic acid resin microparticles; perfluorosulfonic acid resin microparticles account for a percentage by mass 75% of the mixture.
  • the dispersion is adhered to both sides of the perfluoro ion exchange membrane obtained by the step (2) by a roll coating method, and the surface layer has a thickness of about 50 nm, and is dried to form a finished product.
  • the prepared ion exchange membrane is subjected to an electrolysis test of an aqueous solution of sodium chloride in an electrolytic cell, and a 300 g/L aqueous solution of sodium chloride is supplied to the anode chamber, and water is supplied to the cathode chamber to ensure that the concentration of sodium chloride discharged from the anode chamber is 200g / L, the sodium hydroxide concentration discharged from the cathode compartment was 35%; test temperature was 90 ° C, a current density of 6.5kA / m 2, 23 days after the electrolysis experiment, an average cell voltage of 2.73V, a current efficiency average It is 99.6%.
  • the surface resistance of the obtained film was ⁇ ⁇ ⁇ ⁇ 2 according to the standard SJ/T 10171.5 method, and the abrasion loss of the film obtained by ASTM standard D 1044-99 was 2.8 mg.
  • the purity of the electrolysis products was determined to be 99.5% purity of chlorine gas, 99.9% purity of hydrogen, and 3 ppm of salt in alkali.
  • sulfonic acid resin-based resin layer has a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin in a mass ratio of 100:3, and a perfluorocarboxylic acid resin and a perfluorosulfonic acid in a resin layer mainly composed of a perfluorosulfonic acid resin.
  • the resin mass ratio was 100:2.5, wherein the resin layer mainly composed of a perfluorosulfonic acid resin was 150 ⁇ m, and the thickness of the resin layer mainly composed of a perfluorosulfonic acid resin was 7 ⁇ m. Then, the porous reinforcing material polytetrafluoroethylene non-woven fabric is immersed in a mixed solvent of trifluorotrichloroethane and propanol in an ultrasonic processor for 1 hour, wherein the non-woven fabric has a thickness of 10 ⁇ m and a porosity of 50%.
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is subjected to an overpressure treatment at a temperature of 100 ° C under a pressure of 20 tons at a speed of 10 m/min using an overpressure press. After the overpressure treatment, the perfluoro ion exchange membrane precursor was immersed in a mixed aqueous solution containing 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes, and converted into a perfluoride ion having ion exchange function.
  • Exchange membrane
  • the perfluoro ion exchange resin microparticles are a mixture of a perfluorosulfonic acid carboxylic acid copolymer resin micro and a perfluorosulfonic acid resin microparticle; wherein: the perfluorosulfonic acid resin microparticles account for 65% by mass of the mixture.
  • the dispersion is adhered to both sides of the perfluoro ion exchange membrane obtained in the step (2), and the surface layer has a thickness of about 400 nm, and is dried to form a finished product.
  • the prepared ion exchange membrane is subjected to an electrolysis test of an aqueous solution of sodium chloride in an electrolytic cell, and a 300 g/L aqueous solution of sodium chloride is supplied to the anode chamber, and water is supplied to the cathode chamber to ensure that the concentration of sodium chloride discharged from the anode chamber is 200g / L, the concentration of sodium hydroxide discharged from the cathode chamber is 32%; the test temperature is 90 ° C, the current density is 7.5 kA / m 2 , after 23 days of electrolysis experiments, the average cell pressure is 2.75V, the average current efficiency It is 99.7%.
  • the sheet resistance of the obtained film was measured to 1.2 ⁇ - 2 according to the standard SJ/T 10171.5 method, and the abrasion loss of the film obtained by ASTM standard D 1044-99 was 2.7 mg.
  • the purity of the electrolysis products was determined to be 99.8% purity of chlorine gas, 99.8% purity of hydrogen, and 4 ppm of salt in alkali.
  • the sulfonic acid resin-based resin layer has a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin in a mass ratio of 100:5, and a perfluorocarboxylic acid resin and a perfluorosulfonic acid in a resin layer mainly composed of a perfluorosulfonic acid resin.
  • the resin mass ratio is 100:4, wherein the perfluorosulfonic acid resin-based resin layer has a thickness of 75 ⁇ m, and the perfluorosulfonic acid resin The main resin layer has a thickness of 18 ⁇ m.
  • the porous reinforcing material polytetrafluoroethylene non-woven fabric is immersed in a mixed solvent of trifluorotrichloroethane and methanol in an ultrasonic processor for 1.5 hours, wherein the nonwoven fabric has a thickness of 50 ⁇ m and a porosity of 65%.
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is subjected to an overpressure treatment at a temperature of 200 Torr at a temperature of 40 Torr at a speed of 10 m/min. After the treatment, the perfluoro ion exchange membrane precursor was immersed in a mixed aqueous solution containing 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes, and converted into a perfluorinated ion exchange membrane having ion exchange function. .
  • the perfluoro ion exchange resin microparticles are a mixture of perfluorocarboxylic acid resin microparticles and perfluorosulfonic acid resin microparticles; the perfluorosulfonic acid resin microparticles comprise 80% by mass of the mixture.
  • the dispersion is adhered to both sides of the perfluoro ion exchange membrane obtained in the step (2) by a spraying method, and the surface layer has a thickness of about 700 nm, and is dried to form a finished product.
  • the prepared ion exchange membrane is subjected to an electrolysis test of an aqueous solution of sodium chloride in an electrolytic cell, and a 300 g/L aqueous solution of sodium chloride is supplied to the anode chamber, and water is supplied to the cathode chamber to ensure that the concentration of sodium chloride discharged from the anode chamber is 200g / L, the concentration of sodium hydroxide discharged from the cathode chamber is 30%; the test temperature is 90 ° C, the current density is 6.5kA / m 2 , after 23 days of electrolysis experiments, the average cell pressure is 2.71V, the average current efficiency It is 99.8%.
  • the sheet resistance of the obtained film was measured to 1.3 ⁇ ⁇ 2 according to the standard SJ/T 10171.5 method, and the abrasion loss of the film obtained by ASTM standard D 1044-99 was 2.8 mg.
  • the purity of the electrolysis products is determined to be 99.8% purity of chlorine gas, 100% purity of hydrogen, and 4 ppm of salt in alkali.
  • the porous reinforcing material polytetrafluoroethylene non-woven fabric is immersed in a mixed solvent of trifluorotrichloroethane and acetone in an ultrasonic processor for 1 hour, wherein the nonwoven fabric has a thickness of 10 ⁇ m and a porosity of 85%. After drying, it is compounded with the perfluoro ion exchange resin base film, and a porous reinforcing material is introduced between the film forming rolls, and the porous reinforcing material is pressed into the film body under the action of the pressure between the rolls to form a perfluoro ion exchange film. body.
  • the perfluoro ion exchange membrane precursor prepared in the step (1) is subjected to an overpressure treatment at a temperature of 10 Torr at a temperature of 10 Torr at a speed of 1 m/min. After the treatment, the perfluoro ion exchange membrane precursor was immersed in a mixed aqueous solution containing 15 wt% dimethyl sulfoxide and 20 wt% NaOH at 85 ° C for 80 minutes, and converted into a perfluorinated ion exchange membrane having ion exchange function. .
  • the perfluoro ion exchange resin microparticles are a mixture of perfluorocarboxylic acid resin microparticles, perfluorosulfonic acid carboxylic acid copolymer resin microparticles and perfluorosulfonic acid resin microparticles; perfluorosulfonic acid resin microparticles account for a percentage by mass 85% of the mixture.
  • the dispersion is adhered to both sides of the perfluoro ion exchange membrane obtained in the step (2), and the surface layer has a thickness of about 1 ⁇ m, and is dried to form a finished product.
  • the prepared ion exchange membrane is subjected to an electrolysis test of an aqueous solution of sodium chloride in an electrolytic cell, and a 300 g/L aqueous solution of sodium chloride is supplied to the anode chamber, and water is supplied to the cathode chamber to ensure that the concentration of sodium chloride discharged from the anode chamber is 200g / L, the concentration of sodium hydroxide discharged from the cathode chamber is 34%; the test temperature is 90 ° C, the current density is 5.5kA / m 2 , after 23 days of electrolysis experiments, the average cell pressure is 2.70V, the average current efficiency It is 99.8%.
  • the sheet resistance of the obtained film was 1.1 Q, cm- 2 according to the standard SJ/T 10171.5 method, and the abrasion loss of the film obtained by ASTM standard D 1044-99 was 2.8 mg.
  • the purity of the electrolytic products was determined to be 99.8% purity of chlorine gas, 99.8% purity of hydrogen, and 3 ppm of salt in alkali.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明属于离子膜技术领域,具体涉及一种用于氯碱工业的离子传导膜及其制备方法。由全氟离子交换树脂基膜、多孔增强材料和全氟离子交换树脂微颗粒表面层组成。全氟离子交换树脂微颗粒为全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒中的一种或两种与全氟磺酸树脂微颗粒的混合物;其中:全氟磺酸树脂微颗粒的质量百分比占混合物的95%-50%。本发明表面层具有良好的相容性和粘接性,在离子传导膜的整个寿命期间保持良好的脱气效果。用于氯碱工业可以稳定高效地处理宽范围浓度的碱金属氯化物溶液,适合在新型高电流密度条件下的零极距电解槽中运行,具有十分优异的产品纯度指标。本发明还提供其制备方法,工艺简单合理,易于工业化生产。

Description

说 明 书
用于氯碱工业的离子传导膜及其制备方法 技术领域
本发明属于离子膜技术领域, 具体涉及一种用于氯碱工业的离子传导膜及其制备方法。 背景技术
近年来, 在离子膜法氯碱生产中, 为实现在高电流密度、 低槽电压、 与碱液浓度高的条 件下进行电解, 以达到提高生产率与降低电耗的目的, 其关键在于缩短离子膜与电极间的距 离, 以降低其槽电压, 使窄极距型的离子膜电解工艺达到实用化。 随着技术的不断进步, 零 极距电解槽已得到广泛应用, 但当电极间的距离减少到小于 2mm时, 由于膜与阴极紧贴, 而 使膜面上粘附的氢气泡难于释放, 故在面向阴极的膜面上积聚了大量的氢气泡。 气泡阻碍了 电流通道, 使膜的有效电解面积减少, 导致膜面上电流分布不均, 局部极化作用明显增加。 由此, 反而使膜电阻与槽电压急剧增大, 其电解电耗显著升高。
为克服气泡效应所带来的缺点, 使粘附的氢气泡从亲水性小的膜面上快速释放出去, 开 发了离子膜表面亲水涂层的改性方法。 在膜表面覆盖一种气体和液体都能渗透的多孔型、 无 电催化活性的非电极涂层后, 使膜面亲水性明显增加, 抗起泡能力显著提高。 亲水涂层改性 后的离子膜, 可以与电极紧贴, 极大降低槽电压, 目前被广泛应用于零极距型离子膜电解工 艺。 亲水涂层改性工艺需要由无机物组分与特种粘结剂混配后, 通过电解沉积法、 粒子埋入 法等覆盖在离子膜表面, 专利 CA2446448和 CA2444585对涂层工艺进行了具体介绍; 此种 改性方法虽然效果显著, 但工艺相对复杂。 此外, 由于离子膜在电解运行过程中会经历碱液 流的不断冲刷和湍流造成的不断震荡, 附着在离子膜表面的亲水涂层会逐渐脱落, 防起泡功 能逐渐降低至无效。
专利 US 4502931提到将离子膜表面采用离子刻蚀的方法进行表面粗糙化改性,但该方法 不仅不易大面积实施,且抗起泡能力不高,当极间距离减少到一定程度时,其槽压仍大于 3.5V , 且电流效率低于 90%。
因此, 开发一种新型的用于氯碱工业的离子传导膜, 其表面具有长期有效的亲水脱气功 能, 且能够在最先进的电解槽及电解工艺过程中持续提供良好的抗起泡效果、 降低槽电压、 提高电流效率, 并能降低电耗, 具有非常重要的意义。
发明内容
针对现有技术的不足, 本发明的目的是提供一种用于氯碱工业的离子传导膜, 用于氯碱 工业可以稳定高效地处理宽范围浓度的碱金属氯化物溶液, 适合在新型高电流密度条件下的 零极距电解槽中运行, 具有十分优异的产品纯度指标; 本发明还提供其制备方法, 工艺简单 合理, 易于工业化生产。
本发明所述的用于氯碱工业的离子传导膜, 由全氟离子交换树脂基膜、 多孔增强材料和 全氟离子交换树脂微颗粒表面层组成。
其中: 所述的全氟离子交换树脂基膜是由以全氟磺酸树脂为主的树脂层和以全氟羧酸树 脂为主的树脂层组成, 以全氟磺酸树脂为主的树脂层厚度为 30-300微米, 优选 50-150微米, 以全氟磺酸树脂为主的树脂层膜内固定离子含量较少, 且对氢氧根的排斥力较弱, 厚度不宜 过薄; 以全氟羧酸树脂为主的树脂层厚度为 2-30微米, 优选 7-18微米, 以全氟羧酸树脂为 主的树脂层膜电阻较大, 厚度不宜过大。
以全氟磺酸树脂为主的树脂层是以质量比为 100:0.1-100: 10 的全氟磺酸树脂和全氟羧酸 树脂共混或共聚而成; 其质量比优选为 100:0.5-100:5。 全氟羧酸树脂在以全氟磺酸树脂为主 的树脂层中的少量存在却能起到关键的过渡作用, 使得膜中的水和离子的透过梯度减弱, 对 离子膜的通量稳定性起到关键作用, 同时可防止不同膜层间的剥离。
以全氟羧酸树脂为主的树脂层是以质量比为 100:0.1-100:10 的全氟羧酸树脂和全氟磺酸 树脂共混或共聚而成, 优选 100:0.5-100:5。 全氟磺酸树脂在以全氟羧酸树脂为主的树脂层中 的少量存在也能起到上段所述的关键过渡作用。
全氟磺酸树脂的交换容量为 0.8-1.5毫摩尔 /克, 优选 0.9-1.1毫摩尔 /克; 全氟羧酸树脂的 交换容量为 0.8-1.2毫摩尔 /克, 优选 0.85-1.0毫摩尔 /克。 两种树脂的交换容量要相匹配, 差 值不宜太大。
全氟离子交换树脂微颗粒表面层厚度为 20纳米 -100微米之间, 优选 50纳米 -1微米。 全氟离子交换树脂微颗粒为全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒中的一 种或两种与全氟磺酸树脂微颗粒的混合物; 其中: 全氟磺酸树脂微颗粒的质量百分比占混合 物的 95%-50%, 由于全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒的亲水性与全氟磺 酸树脂微颗粒不同, 适量引入可优化颗粒在膜表面的堆积形态, 降低同类颗粒的团聚比率。 全氟离子交换树脂微颗粒表面层为全氟离子交换树脂微颗粒, 该微颗粒是由树脂粒料在低温 破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的。 颗粒具备不规则的表观形貌, 对 于表层起泡的脱附具有优异的效果。 微颗粒粒径范围为 20纳米 -10微米之间, 优选 50-300纳 米。 粒径过低时, 颗粒容易团聚, 堵塞离子通道; 粒径过高时, 在膜表面形成的微粒凸起过 于明显, 容易在外力刮擦下脱离。 全氟离子交换树脂微颗粒的离子交换容量介于 0.01-1.5毫 摩尔 /克, 优选 0.3-1.0毫摩尔 /克。 离子交换容量过高时, 在水醇溶液中会有一定的溶胀度, 从而破坏破碎微颗粒自有的不规则形貌, 且会体积膨大, 严重降低孔隙率, 阻塞离子通道, 且不易破碎; 离子交换容量过低又会一定程度影响膜的离子透过性。
多孔增强材料为聚四氟乙烯无纺布, 纤维交界处是搭接或融合在一起, 多孔增强材料厚 度介于 1-200微米之间, 优选 10-50微米; 以提高机械强度, 采用现有技术制备即可。 所述 的聚四氟乙烯无纺布孔隙率介于 20-99%之间, 优选 50-85%。 孔隙率如果过低, 否则会导致 槽压升高。
本发明所述的用于氯碱工业的离子传导膜, 包括以下制备步骤:
( 1 )通过螺杆式挤出机共挤出的方式熔融流延成全氟离子交换树脂基膜, 再将多孔增强 材料浸泡在氟碳类溶剂中超声处理 1-2小时, 取出干燥后再与全氟离子交换树脂基膜进行复 合, 在膜成型压辊间引入多孔增强材料, 在辊间压力的作用下将多孔增强材料压入全氟离子 交换树脂基膜中, 从而获得全氟离子交换膜前体。
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体转化为具有离子交换功能的全氟离子交 换膜。
(3 ) 将水和乙醇按照 1 : 1重量比配成混合液, 加入全氟离子交换树脂微颗粒, 在球磨机 中均一化处理, 形成全氟离子交换树脂微颗粒分散液。
(4)将(3 ) 中的全氟离子交换树脂微颗粒分散液附着在步骤 (2 ) 得到的全氟离子交换 膜表面, 经干燥后形成成品。
其中: 步骤 (1 ) 将多孔增强材料浸泡在氟碳类溶剂中超声处理 1-2小时, 取出干燥后再 与全氟离子交换树脂基膜进行复合。 由于对聚四氟乙烯无纺布的浸润是十分困难的, 若不经 过处理直接与基膜进行复合, 树脂基体无法完全填满无纺布的空隙, 从而形成膜体内部的不 密实空间, 不仅容易沉积杂质, 还能形成空间阻隔, 增加阻力。 多孔增强材料在氟碳类溶剂 中浸泡 1-2小时之后, 树脂基体的浸润十分容易, 二者能够形成良好、 紧密的结合, 不仅增 加了力学强度, 且由于无纺布开孔率高, 对膜体阻力的影响微乎其微。
步骤(1 )所述的氟碳类溶剂选自: 三氟三氯乙垸(F— 113 ) 或者三氟三氯乙垸与其它溶 剂混合; 其它溶剂为无水乙醇、 丙醇、 甲醇、 丙酮、 二氯甲垸或表面活性剂水溶液中的一种 或几种。 表面活性剂选自市购的阴离子型、 阳离子型、 两性型或非离子型表面活性剂即可。
步骤 (2) 为将步骤 (1 ) 中制得的全氟离子交换膜前体在 10-200Ό的温度下, 于 20-100 吨的压力下, 以 1-50米 /分的速度使用超压机进行超压处理, 超压处理后, 将全氟离子交换膜 前体浸渍于 15 wt %二甲基亚砜和 20 wt% NaOH的混合水溶液中, 转化为具有离子交换功能 的全氟离子交换膜。 其中: 超压处理进一步增加了无纺布与基膜的结合密实度, 同时超压处 理还一定程度上改善了无纺布和基膜的物理结构形态, 无纺布的微纤化和基膜的热压致结晶 结构细致化, 会有效提高离子传递效果。
步骤(3 ) 中全氟离子交换树脂微颗粒是由树脂粒料在低温破碎装置中一次粉碎后, 再在 深冷装置中进行研磨得到的。 得到的全氟离子交换树脂微颗粒具备不规则的表观形貌, 对于 表层起泡的脱附具有优异的效果。
步骤 (4) 将全氟离子交换树脂微颗粒分散液附着在步骤 (2) 得到的全氟离子交换膜表 面, 附着方式很多种, 包括: 喷涂、 刷涂、 辊涂、 浸渍、 转印、 旋涂等方法, 优选喷涂、 辊 涂。 工艺操作均按现有技术即可。
综上所述, 本发明具有以下优点:
( 1 )本发明用全氟离子交换树脂微颗粒表面层替代了现有产品中的无机氧化物涂层, 由 于全氟离子交换树脂微颗粒与基膜材质化学结构相同, 具有良好的相容性和粘接性, 因此可 以保证在用于氯碱工业的离子传导膜的整个寿命期间保持良好的脱气效果, 且脱气效果远优 于无机氧化物涂层。
( 2)全氟离子交换树脂微颗粒表面层为全氟离子交换树脂微颗粒, 全氟离子交换树脂微 颗粒为全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒中的一种或两种与全氟磺酸树脂 微颗粒的混合物; 由于全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒的亲水性与全氟 磺酸树脂微颗粒不同, 适量引入可优化颗粒在膜表面的堆积形态, 降低同类颗粒的团聚比率。
(3 )全氟离子交换树脂微颗粒表面层具有离子交换功能, 有益于离子传导膜槽电压和面 电阻的降低。
(4) 聚四氟乙烯无纺布经过溶剂处理后与基膜复合, 并采用了超压工艺, 在获得优异 的电化学性能和力学性能的同时, 大大提高了离子传导膜的抗杂质性能。
( 5 )本发明提供的是一种用于电解氯化钠 /氯化钾制备氯气和氢氧化钠 /氢氧化钾的离子 传导膜, 聚四氟乙烯无纺布的引入提高了产品的纯度, 电解得到的氯气纯度 99.5%、 氢气 纯度 99.9%、 碱中含盐 5ppm。
(6)本发明离子传导膜适合于 30-35%浓度碱的电解, 而现有技术中离子传导膜一般只 适合于 30-32%浓度碱的电解。
(7) 本发明所述的离子传导膜用于氯碱工业可以稳定高效地处理宽范围浓度的碱金属 氯化物溶液,适合在新型高电流密度条件下的零极距电解槽中运行,在提高产品纯度的同时, 槽电压显著降低, 在高于 5.5KA/m2的电流密度下, 槽压低于 2.75V。 ( 8) 本发明还提供其制备方法, 工艺简单合理, 易于工业化生产。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例 1
( 1 ) 选取 IEC=1.05mmol/g的全氟磺酸树脂和 IEC=1.0mmol/g的全氟羧酸树脂通过共挤 出流延的方式复合成全氟离子交换树脂基膜, 在以全氟磺酸树脂为主的树脂层中全氟磺酸树 脂和全氟羧酸树脂质量比为 100:1,在以全氟磺酸树脂为主的树脂层中全氟羧酸树脂和全氟磺 酸树脂质量比为 100:1 , 其中以全氟磺酸树脂为主的树脂层厚度为 120微米, 以全氟磺酸树脂 为主的树脂层厚度为 10微米。再将多孔增强材料聚四氟乙烯无纺布浸泡在超声处理器中的三 氟三氯乙烷溶剂中处理 1.5小时, 其中无纺布厚度为 40微米, 孔隙率为 75%, 取出干燥后再 与全氟离子交换树脂基膜进行复合, 在膜成型压辊间引入多孔增强材料, 在辊间压力的作用 下将多孔增强材料压入膜体当中, 从而形成全氟离子交换膜前体。
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体在 180Ό的温度下, 于 80吨的压力下, 以 40米 /分的速度使用超压机进行超压处理,超压处理后,将全氟离子交换膜前体浸没于 85°C 下含有 15 wt %二甲基亚砜和 20 wt % NaOH的混合水溶液中 80分钟, 转化为具备离子交换 功能的全氟离子交换膜。
( 3 ) 将水和乙醇按照 1 :1 的重量比配成混合液, 加入 IEC=0.85mmol/g、 平均粒径为 60 纳米、 具有不规则多面体形貌的全氟离子交换树脂微颗粒 (全氟离子交换树脂微颗粒是由树 脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的) , 在球磨机中均一 化处理, 形成含量为 15wt%的分散液; 其中: 全氟离子交换树脂微颗粒为全氟羧酸树脂微颗 粒与全氟磺酸树脂微颗粒的混合物; 全氟磺酸树脂微颗粒的质量百分比占混合物的 50%。
(4) 采用喷涂的方法, 将分散液附着在步骤 (2) 得到的全氟离子交换膜两侧表面, 表 面层厚度为 200纳米, 经千燥后形成成品。
性能测试- 将制备得到的离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将 300g/L的氯化钠 水溶液供给阳极室, 将水供给阴极室, 保证从阳极室排出的氯化钠浓度为 200g/L, 从阴极室 排出的氢氧化钠浓度为 34%; 测试温度为 90°C, 电流密度为 7.5kA/m2, 经过 23天的电解实 验, 平均槽压为 2.74V, 平均电流效率为 99.4%。
之后, 向供给氯化钠水溶液中加入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进 行 40天的电解实验, 平均槽压稳定在 2.75V, 平均电流效率为 99.4%。 按照标准 SJ/T 10171.5方法测试所得膜的面电阻为 1.1Ω·αη·2,采用 ASTM标准 D 1044-99 测试所得膜的磨耗损失为 2.7mg。
按照标准的电解产品检测标准, 检测电解产品纯度分别为, 氯气纯度 99.4%, 氢气纯度 99.8%, 碱中含盐 4ppm。
比较例 1
釆用与实施例 1相同的方法制备具备离子交换功能的离子交换膜, 之后按照同样的方法 制备分散液, 所不同的是, 将分散液中的全氟离子交换树脂微颗粒替换为平均粒径为 60纳米 无机氧化物颗粒, 在球磨机中均一化处理, 形成含量为 15wt%的分散液。 采用与实施例 1同 样的操作得到两侧附着有无机氧化物涂层的离子交换膜。
在与实施例 1相同的条件下进行氯化钠溶液的电解测试, 经过 23天的电解实验, 平均槽 压为 2.91V, 平均电流效率为 96.1%, 面电阻为 2.4 Ω·∞— 2, 膜的磨耗损失为 l lmg。
比较例 2
采用与实施例 1相同的方法制备具备离子交换功能的离子交换膜, 所不同的是, 多孔增 强材料在与全氟离子交换树脂基膜进行复合之前未采用氟碳溶剂浸泡处理, 且之后也未用超 压机超压处理。 按照同样的方法制备全氟离子交换树脂破碎微颗粒分散液, 在球磨机中均一 化处理, 形成含量为 15wt%的分散液。 采用与实施例 1同样的操作得到离子交换膜成品。
在与实施例 1相同的条件下进行氯化钠溶液的电解测试, 经过 23天的电解实验, 平均槽 压为 2.84V, 平均电流效率为 99.1%, 面电阻为 1.7 Ω·αη— 2。 之后, 向供给氯化钠水溶液中加 入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进行 40天的电解实验, 平均槽压稳定在 2.94V, 平均电流效率为 97.4%。 检测产品纯度分别为, 氯气纯度 98.5%, 氢气纯度 98.6%, 碱中含盐 16ppm。
实施例 2
( 1 ) 选取 IEC=l . lmmol/g的全氟磺酸树脂和 IEC=0.95mmol/g的全氟羧酸树脂通过共挤 出流延的方式复合成全氟离子交换树脂基膜, 在以全氟磺酸树脂为主的树脂层中全氟磺酸树 脂和全氟羧酸树脂质量比为 100:0.5, 在以全氟磺酸树脂为主的树脂层中全氟羧酸树脂和全氟 磺酸树脂质量比为 100:0.5, 其中以全氟磺酸树脂为主的树脂层厚度为 100微米, 以全氟磺酸 树脂为主的树脂层厚度为 15微米。再将多孔增强材料聚四氟乙烯无纺布浸泡在超声处理器中 的三氟三氯乙烷与无水乙醇混合溶剂中处理 1 小时, 其中无纺布厚度为 30微米, 孔隙率为 65%, 取出干燥后再与全氟离子交换树脂基膜进行复合, 在膜成型压辊间引入多孔增强材料, 在辊间压力的作用下将多孔增强材料压入膜体当中, 从而形成全氟离子交换膜前体。 (2 ) 将步骤 (1 ) 中制得的全氟离子交换膜前体在 160°C的温度下, 于 100吨的压力下, 以 40米 /分的速度使用超压机进行超压处理,超压处理后,将全氟离子交换膜前体浸没于 85°C 下含有 15 wt %二甲基亚砜和 20 wt % NaOH的混合水溶液中 80分钟, 转化为具备离子交换 功能的全氟离子交换膜。
(3 ) 将水和乙醇按照 1 : 1的重量比配成混合液, 加入 IEC=1.0mmol/g、 平均粒径为 50 纳米、 具有不规则多面体形貌的全氟离子交换树脂微颗粒 (全氟离子交换树脂微颗粒是由树 脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的) , 在球磨机中均一 化处理, 形成含量为 15wt%的分散液。 其中, 全氟离子交换树脂微颗粒为全氟羧酸树脂微颗 粒、 全氟磺酸羧酸共聚树脂微颗粒与全氟磺酸树脂微颗粒的混合物; 全氟磺酸树脂微颗粒的 质量百分比占混合物的 75%。
(4 ) 采用辊涂的方法, 将分散液附着在步骤 (2 ) 得到的全氟离子交换膜两侧表面, 表 面层厚度约为 50纳米, 经干燥后形成成品。
性能测试:
将制备得到的离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将 300g/L的氯化钠 水溶液供给阳极室, 将水供给阴极室, 保证从阳极室排出的氯化钠浓度为 200g/L, 从阴极室 排出的氢氧化钠浓度为 35%; 测试温度为 90°C, 电流密度为 6.5kA/m2, 经过 23天的电解实 验, 平均槽压为 2.73V, 平均电流效率为 99.6%。
之后, 向供给氯化钠水溶液中加入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进 行 40天的电解实验, 平均槽压稳定在 2.73V, 平均电流效率为 99.7%。
按照标准 SJ/T 10171.5方法测试所得膜的面电阻为 Ι .Ο Ω πι·2,采用 ASTM标准 D 1044-99 测试所得膜的磨耗损失为 2.8mg。
按照标准的电解产品检测标准, 检测电解产品纯度分别为, 氯气纯度 99.5%, 氢气纯度 99.9%, 碱中含盐 3ppm。
实施例 3
( 1 )选取 IEC=1.0mmol/g的全氟磺酸树脂和 IEC=0.9mmol/g的全氟羧酸树脂通过共挤出 流延的方式复合成全氟离子交换树脂基膜, 在以全氟磺酸树脂为主的树脂层中全氟磺酸树脂 和全氟羧酸树脂质量比为 100:3,在以全氟磺酸树脂为主的树脂层中全氟羧酸树脂和全氟磺酸 树脂质量比为 100:2.5, 其中以全氟磺酸树脂为主的树脂层厚度为 150微米, 以全氟磺酸树脂 为主的树脂层厚度为 7微米。 再将多孔增强材料聚四氟乙烯无纺布浸泡在超声处理器中的三 氟三氯乙垸与丙醇混合溶剂中处理 1小时, 其中无纺布厚度为 10微米, 孔隙率为 50%, 取出 干燥后再与全氟离子交换树脂基膜进行复合, 在膜成型压辊间引入多孔增强材料, 在辊间压 力的作用下将多孔增强材料压入膜体当中, 从而形成全氟离子交换膜前体。
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体在 100°C的温度下, 于 20吨的压力下, 以 10米 /分的速度使用超压机进行超压处理,超压处理后,将全氟离子交换膜前体浸没于 85°C 下含有 15 wt %二甲基亚砜和 20 wt % NaOH的混合水溶液中 80分钟, 转化为具备离子交换 功能的全氟离子交换膜。
(3 ) 将水和乙醇按照 1 :1的重量比配成混合液, 加入 IEC=0.8mmol/g、 平均粒径为 100 纳米、 具有不规则多面体形貌的全氟离子交换树脂微颗粒 (全氟离子交换树脂微颗粒是由树 脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的) , 在球磨机中均一 化处理, 形成含量为 15wt%的分散液。 其中, 全氟离子交换树脂微颗粒为全氟磺酸羧酸共聚 树脂微与全氟磺酸树脂微颗粒的混合物; 其中: 全氟磺酸树脂微颗粒的质量百分比占混合物 的 65%。
(4) 采用刷涂的方法, 将分散液附着在步骤 (2) 得到的全氟离子交换膜两侧表面, 表 面层厚度约为 400纳米, 经干燥后形成成品。
性能测试:
将制备得到的离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将 300g/L的氯化钠 水溶液供给阳极室, 将水供给阴极室, 保证从阳极室排出的氯化钠浓度为 200g/L, 从阴极室 排出的氢氧化钠浓度为 32%; 测试温度为 90°C, 电流密度为 7.5kA/m2, 经过 23天的电解实 验, 平均槽压为 2.75V, 平均电流效率为 99.7%。
之后, 向供给氯化钠水溶液中加入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进 行 40天的电解实验, 平均槽压稳定在 2.75V, 平均电流效率为 99.7%。
按照标准 SJ/T 10171.5方法测试所得膜的面电阻为 1.2 Ω·αη— 2,采用 ASTM标准 D 1044-99 测试所得膜的磨耗损失为 2.7mg。
按照标准的电解产品检测标准, 检测电解产品纯度分别为, 氯气纯度 99.8%, 氢气纯度 99.8%, 碱中含盐 4ppm。
实施例 4
( 1 ) 选取 IEC=0.9mmol/g的全氟磺酸树脂和 IEC=0.85mmol/g的全氟羧酸树脂通过共挤 出流延的方式复合成全氟离子交换树脂基膜, 在以全氟磺酸树脂为主的树脂层中全氟磺酸树 脂和全氟羧酸树脂质量比为 100:5,在以全氟磺酸树脂为主的树脂层中全氟羧酸树脂和全氟磺 酸树脂质量比为 100:4, 其中以全氟磺酸树脂为主的树脂层厚度为 75微米, 以全氟磺酸树脂 为主的树脂层厚度为 18微米。再将多孔增强材料聚四氟乙烯无纺布浸泡在超声处理器中的三 氟三氯乙烷与甲醇混合溶剂中处理 1.5小时, 其中无纺布厚度为 50微米, 孔隙率为 65%, 取 出干燥后再与全氟离子交换树脂基膜进行复合, 在膜成型压辊间引入多孔增强材料, 在辊间 压力的作用下将多孔增强材料压入膜体当中, 从而形成全氟离子交换膜前体。
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体在 200Ό的温度下, 于 40吨的压力下, 以 10米 /分的速度使用超压机进行超压处理,超压处理后,将全氟离子交换膜前体浸没于 85 °C 下含有 15 wt %二甲基亚砜和 20 wt % NaOH的混合水溶液中 80分钟, 转化为具备离子交换 功能的全氟离子交换膜。
(3 ) 将水和乙醇按照 1 :1 的重量比配成混合液, 加入 IEC=0.5mmol/g、 平均粒径为 200 纳米、 具有不规则多面体形貌的全氟离子交换树脂微颗粒 (全氟离子交换树脂微颗粒是由树 脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的) , 在球磨机中均一 化处理, 形成含量为 15wt%的分散液。 其中: 全氟离子交换树脂微颗粒为全氟羧酸树脂微颗 粒与全氟磺酸树脂微颗粒的混合物; 全氟磺酸树脂微颗粒的质量百分比占混合物的 80%。
(4) 采用喷涂的方法, 将分散液附着在步骤 (2) 得到的全氟离子交换膜两侧表面, 表 面层厚度约为 700纳米, 经干燥后形成成品。
性能测试:
将制备得到的离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将 300g/L的氯化钠 水溶液供给阳极室, 将水供给阴极室, 保证从阳极室排出的氯化钠浓度为 200g/L, 从阴极室 排出的氢氧化钠浓度为 30%; 测试温度为 90°C, 电流密度为 6.5kA/m2, 经过 23天的电解实 验, 平均槽压为 2.71V, 平均电流效率为 99.8%。
之后, 向供给氯化钠水溶液中加入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进 行 40天的电解实验, 平均槽压稳定在 2.71V, 平均电流效率为 99.8%。
按照标准 SJ/T 10171.5方法测试所得膜的面电阻为 1.3 Ω ΙΒ·2,采用 ASTM标准 D 1044-99 测试所得膜的磨耗损失为 2.8mg。
按照标准的电解产品检测标准, 检测电解产品纯度分别为, 氯气纯度 99.8%, 氢气纯度 100%, 碱中含盐 4ppm。
实施例 5
( 1 )选取 IEC=0.95mmol/g的全氟磺酸树脂和 IEC=0.85mmol/g的全氟羧酸树脂通过共挤 出流延的方式复合成全氟离子交换树脂基膜, 在以全氟磺酸树脂为主的树脂层中全氟磺酸树 脂和全氟羧酸树脂质量比为 100:3,在以全氟磺酸树脂为主的树脂层中全氟羧酸树脂和全氟磺 酸树脂质量比为 100:5, 其中以全氟磺酸树脂为主的树脂层厚度为 50微米, 以全氟磺酸树脂 为主的树脂层厚度为 10微米。再将多孔增强材料聚四氟乙烯无纺布浸泡在超声处理器中的三 氟三氯乙烷与丙酮混合溶剂中处理 1小时, 其中无纺布厚度为 10微米, 孔隙率为 85%, 取出 干燥后再与全氟离子交换树脂基膜进行复合, 在膜成型压辊间引入多孔增强材料, 在辊间压 力的作用下将多孔增强材料压入膜体当中, 从而形成全氟离子交换膜前体。
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体在 10Ό的温度下, 于 60吨的压力下, 以 1米 /分的速度使用超压机进行超压处理, 超压处理后, 将全氟离子交换膜前体浸没于 85°C 下含有 15 wt %二甲基亚砜和 20 wt % NaOH的混合水溶液中 80分钟, 转化为具备离子交换 功能的全氟离子交换膜。
( 3 ) 将水和乙醇按照 1 :1 的重量比配成混合液, 加入 IEC=0.3mmol/g、 平均粒径为 300 纳米、 具有不规则多面体形貌的全氟离子交换树脂微颗粒 (全氟离子交换树脂微颗粒是由树 脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置中进行研磨得到的) , 在球磨机中均一 化处理, 形成含量为 15wt%的分散液。 其中, 全氟离子交换树脂微颗粒为全氟羧酸树脂微颗 粒、 全氟磺酸羧酸共聚树脂微颗粒与全氟磺酸树脂微颗粒的混合物; 全氟磺酸树脂微颗粒的 质量百分比占混合物的 85%。
(4) 采用喷涂的方法, 将分散液附着在步骤 (2) 得到的全氟离子交换膜两侧表面, 表 面层厚度约为 1微米, 经干燥后形成成品。
性能测试:
将制备得到的离子交换膜在电解槽内进行氯化钠水溶液的电解测试,将 300g/L的氯化钠 水溶液供给阳极室, 将水供给阴极室, 保证从阳极室排出的氯化钠浓度为 200g/L, 从阴极室 排出的氢氧化钠浓度为 34%; 测试温度为 90°C, 电流密度为 5.5kA/m2, 经过 23天的电解实 验, 平均槽压为 2.70V, 平均电流效率为 99.8%。
之后, 向供给氯化钠水溶液中加入无机物 Ca、 Mg杂质 15ppb, 在上述相同的条件下进 行 40天的电解实验, 平均槽压稳定在 2.71V, 平均电流效率为 99.8%。
按照标准 SJ/T 10171.5方法测试所得膜的面电阻为 1.1 Q,cm—2,采用 ASTM标准 D 1044-99 测试所得膜的磨耗损失为 2.8mg。
按照标准的电解产品检测标准, 检测电解产品纯度分别为, 氯气纯度 99.8%, 氢气纯度 99.8%, 碱中含盐 3ppm。

Claims

权 利 要 求 书
1、 一种用于氯碱工业的离子传导膜, 其特征在于: 由全氟离子交换树脂基膜、 多孔增强 材料和全氟离子交换树脂微颗粒表面层组成。
2、 根据权利要求 1所述的用于氯碱工业的离子传导膜, 其特征在于: 所述的全氟离子交 换树脂基膜是由以全氟磺酸树脂为主的树脂层和以全氟羧酸树脂为主的树脂层组成, 以全氟 磺酸树脂为主的树脂层厚度为 30-300微米, 以全氟羧酸树脂为主的树脂层厚度为 2-30微米。
3、 根据权利要求 2所述的用于氯碱工业的离子传导膜, 其特征在于: 以全氟磺酸树脂为 主的树脂层是以质量比为 100:0.1-100: 10的全氟磺酸树脂和全氟羧酸树脂共混或共聚而成;以 全氟羧酸树脂为主的树脂层是以质量比为 100:0.1-100: 10 的全氟羧酸树脂和全氟磺酸树脂共 混或共聚而成。
4、根据权利要求 3所述的用于氯碱工业的离子传导膜, 其特征在于: 全氟磺酸树脂的交 换容量为 0.8-1.5毫摩尔 /克, 全氟羧酸树脂的交换容量为 0.8-1.2毫摩尔 /克。
5、根据权利要求 1所述的用于氯碱工业的离子传导膜, 其特征在于: 全氟离子交换树脂 微颗粒表面层厚度为 20纳米 -100微米之间,全氟离子交换树脂微颗粒表面层为全氟离子交换 树脂微颗粒, 微颗粒粒径范围为 20纳米 -10微米之间, 全氟离子交换树脂微颗粒的离子交换 容量介于 0.01 -1.5亳摩尔 /克。
6、 根据权利要求 1所述的用于氯碱工业的离子传导膜, 其特征在于: 全氟离子交换树脂 微颗粒为全氟羧酸树脂微颗粒或全氟磺酸羧酸共聚树脂微颗粒中的一种或两种与全氟磺酸树 脂微颗粒的混合物; 其中: 全氟磺酸树脂微颗粒的质量百分比占混合物的 95%-50%。
7、根据权利要求 1所述的用于氯碱工业的离子传导膜, 其特征在于: 多孔增强材料为聚 四氟乙烯无纺布, 纤维交界处是搭接或融合在一起, 多孔增强材料厚度介于 1-200微米之间; 聚四氟乙烯无纺布孔隙率介于 20-99%之间。
8、 一种权利要求 1-7任一所述的用于氯碱工业的离子传导膜的制备方法, 其特征在于: 包括以下步骤:
( 1 )通过螺杆式挤出机共挤出的方式熔融流延成全氟离子交换树脂基膜, 再将多孔增强 材料浸泡在氟碳类溶剂中, 超声处理 1-2小时, 取出干燥后再与全氟离子交换树脂基膜进行 复合, 在膜成型压辊间引入多孔增强材料, 在辊间压力的作用下将多孔增强材料压入全氟离 子交换树脂基膜中, 从而获得全氟离子交换膜前体;
(2) 将步骤 (1 ) 中制得的全氟离子交换膜前体转化为具有离子交换功能的全氟离子交 换膜; (3 )将水和乙醇按照 1 :1重量比配成混合液, 加入全氟离子交换树脂微颗粒, 在球磨机 中均一化处理, 形成全氟离子交换树脂微颗粒分散液;
(4)将 (3 ) 中的全氟离子交换树脂微颗粒分散液附着在步骤(2) 得到的全氟离子交换 膜表面, 经干燥后形成成品。
9、根据权利要求 8所述的用于氯碱工业的离子传导膜的制备方法,其特征在于:步骤(2) 为将步骤 (1 ) 中制得的全氟离子交换膜前体在 10-200°C的温度下, 于 20-100吨的压力下, 以 1-50 米 /分的速度使用超压机进行超压处理, 超压处理后, 将全氟离子交换膜前体浸渍于 15 wt %二甲基亚砜和 20 wt% NaOH的混合水溶液中, 转化为具有离子交换功能的全氟离子 交换膜。
10、 根据权利要求 8所述的用于氯碱工业的离子传导膜的制备方法, 其特征在于: 步骤 ( 3 )中全氟离子交换树脂微颗粒是由树脂粒料在低温破碎装置中一次粉碎后, 再在深冷装置 中进行研磨得到的。
PCT/CN2014/000653 2014-06-06 2014-07-07 用于氯碱工业的离子传导膜及其制备方法 WO2015184569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/314,927 US20170198404A1 (en) 2014-06-06 2014-07-07 Ion-conducting membrane used in chlor-alkali industry and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410251263.XA CN104018182B (zh) 2014-06-06 用于氯碱工业的离子传导膜及其制备方法
CN201410251263.X 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015184569A1 true WO2015184569A1 (zh) 2015-12-10

Family

ID=51435166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000653 WO2015184569A1 (zh) 2014-06-06 2014-07-07 用于氯碱工业的离子传导膜及其制备方法

Country Status (2)

Country Link
US (1) US20170198404A1 (zh)
WO (1) WO2015184569A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109358A (zh) * 1984-11-30 1986-08-27 旭硝子株式会社 电解用多层隔膜
JPH04297591A (ja) * 1991-03-27 1992-10-21 Asahi Chem Ind Co Ltd アルカリ金属塩化物電解用イオン交換膜
CA2444585A1 (en) * 2002-10-09 2004-04-09 Ballard Power Systems Inc. Method and apparatus for the continuous coating of an ion-exchange membrane
CA2446448A1 (en) * 2002-10-31 2004-04-30 Ballard Power Systems Inc. Method and apparatus for coating an ion-exchange membrane with a catalyst layer
CN101773788A (zh) * 2009-12-07 2010-07-14 山东东岳高分子材料有限公司 带牺牲纤维网布增强的含氟离子交换膜
CN102978654A (zh) * 2012-12-14 2013-03-20 山东东岳高分子材料有限公司 氯碱工业用低电阻高强度离子交换膜及其制备方法
CN103556179A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 碳纳米管改性的高电流密度全氟离子交换膜及其制备方法
CN103993329A (zh) * 2014-06-06 2014-08-20 山东东岳高分子材料有限公司 离子传导膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109358A (zh) * 1984-11-30 1986-08-27 旭硝子株式会社 电解用多层隔膜
JPH04297591A (ja) * 1991-03-27 1992-10-21 Asahi Chem Ind Co Ltd アルカリ金属塩化物電解用イオン交換膜
CA2444585A1 (en) * 2002-10-09 2004-04-09 Ballard Power Systems Inc. Method and apparatus for the continuous coating of an ion-exchange membrane
CA2446448A1 (en) * 2002-10-31 2004-04-30 Ballard Power Systems Inc. Method and apparatus for coating an ion-exchange membrane with a catalyst layer
CN101773788A (zh) * 2009-12-07 2010-07-14 山东东岳高分子材料有限公司 带牺牲纤维网布增强的含氟离子交换膜
CN102978654A (zh) * 2012-12-14 2013-03-20 山东东岳高分子材料有限公司 氯碱工业用低电阻高强度离子交换膜及其制备方法
CN103556179A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 碳纳米管改性的高电流密度全氟离子交换膜及其制备方法
CN103993329A (zh) * 2014-06-06 2014-08-20 山东东岳高分子材料有限公司 离子传导膜及其制备方法

Also Published As

Publication number Publication date
CN104018182A (zh) 2014-09-03
US20170198404A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015184571A1 (zh) 离子传导膜及其制备方法
WO2015184568A1 (zh) 新型离子传导膜及其制备方法
WO2015184572A1 (zh) 用于氯碱工业的新型离子传导膜及其制备方法
WO2015184570A1 (zh) 零极距离子交换膜及其制备方法
JP2015117417A (ja) アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
CN111188065A (zh) 用于氯化物电解的增强全氟磺酸离子交换膜及其制备方法
CN111074295B (zh) 氯碱工业用新型低阻离子传导膜及其制备方法
CN111188050B (zh) 碱金属氯化物电解用超薄全氟磺酸离子交换膜及其制备方法
CN111188060B (zh) 增强低阻氯碱电解槽隔膜及其制备方法
WO2015184569A1 (zh) 用于氯碱工业的离子传导膜及其制备方法
CN111118541B (zh) 超薄低阻氯碱全氟离子交换膜及其制备方法
CN111074297A (zh) 用于氯碱工业的电解槽隔膜及其制备方法
CN111041524A (zh) 超薄低阻氯碱电解槽隔膜及其制备方法
CN111188063B (zh) 新型低阻氯碱工业用离子传导膜及其制备方法
CN111188059B (zh) 氯碱工业用新型超薄低阻离子传导膜及其制备方法
CN104592540A (zh) 一种多层溶液流延全氟磺酸-羧酸复合膜的制备方法
CN111188061A (zh) 全氟磺酸离子交换膜及其制备方法
CN104018182B (zh) 用于氯碱工业的离子传导膜及其制备方法
CN112430831B (zh) 适用于零极距电解槽的离子交换膜及其制备方法
CN111074299B (zh) 用于碱金属氯化物电解的超薄全氟磺酸离子交换膜及其制备方法
CN112481657B (zh) 具有杂质耐受性的碱金属氯化物电解用含氟离子交换膜
JPS63310985A (ja) 水酸化アルカリの製造方法
JPS6040515B2 (ja) イオン交換膜電解槽
CN111188051A (zh) 新型超薄低阻氯碱工业用离子传导膜及其制备方法
JPH0254791A (ja) 水酸化アルカリの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893852

Country of ref document: EP

Kind code of ref document: A1