WO2015182020A1 - ブラシレスモータ駆動装置 - Google Patents

ブラシレスモータ駆動装置 Download PDF

Info

Publication number
WO2015182020A1
WO2015182020A1 PCT/JP2015/001178 JP2015001178W WO2015182020A1 WO 2015182020 A1 WO2015182020 A1 WO 2015182020A1 JP 2015001178 W JP2015001178 W JP 2015001178W WO 2015182020 A1 WO2015182020 A1 WO 2015182020A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
circuit
brushless motor
pulse
clock
Prior art date
Application number
PCT/JP2015/001178
Other languages
English (en)
French (fr)
Inventor
佐藤 大資
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580027713.XA priority Critical patent/CN106464175B/zh
Priority to EP15800076.0A priority patent/EP3136583B1/en
Priority to JP2016523104A priority patent/JP6089215B2/ja
Priority to US15/310,721 priority patent/US10199966B2/en
Publication of WO2015182020A1 publication Critical patent/WO2015182020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1604Error detection or correction of the data by redundancy in hardware where the fault affects the clock signals of a processing unit and the redundancy is at or within the level of clock signal generation hardware
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/04Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors by means of a separate brake
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to a brushless motor driving apparatus that drives and controls a brushless motor, and in particular, AD (analog-to-digital) conversion that may be a cause before a torque deviation occurs due to a variation in a part of a motor control circuit.
  • the present invention relates to a brushless motor driving device having a function of diagnosing a circuit and a current detection circuit and generating a correction value.
  • the cooling fan has the air volume required for the fan and the driving sound emitted in the vicinity depending on the air temperature and the temperature of the object to be cooled, and it is necessary to control it to satisfy it. is there. It is known that the variation in the air volume depends on the variation in the rotational speed of the motor attached to the impeller (impeller), and the driving sound depends on the rotational torque of the motor.
  • PWM pulse width modulation
  • the rotational position of the motor is estimated from the value of the current flowing through the coil of each phase. Further, the actual rotational speed is calculated from the amount of change in the rotational position per unit time.
  • the switching pulse width of the MOS-FET element provided in the inverter circuit for realizing the PWM drive is controlled according to the calculated actual rotational speed.
  • Patent Document 1 when the determination voltage is within a predetermined range, the current value detected by the current detection circuit cannot be accurately calculated due to an error of the AD conversion circuit, and a torque error occurs. It was. Further, in Patent Document 2, even if the rotation speed can be corrected by the error rate of the reference clock, the error of the AD conversion circuit cannot be detected.
  • a brushless motor driving device includes an inverter circuit that energizes and drives a winding of a brushless motor, a current detection circuit that detects a current value of the winding, a control unit that controls rotation of the brushless motor, a resistor, and a capacitor And an RC filter constructed.
  • the control unit generates a drive control unit that generates a signal for driving the inverter, a clock generation circuit that generates a clock pulse that is a reference of the operation cycle, and a pulse signal that changes in frequency based on the clock pulse, A pulse output circuit to be applied to the RC filter, an AD conversion circuit connected to the capacitor of the RC filter and the current detection circuit, and an AD conversion error calculation unit for calculating a conversion error of the AD conversion circuit are provided. Then, the AD conversion error calculation unit calculates the conversion error based on the difference between the output value of the AD conversion circuit having the capacitor voltage as an input and the AD (analog-digital data) conversion value calculated from the capacitor charging time. It is the structure to calculate.
  • the brushless motor driving apparatus of the present invention it is possible to calculate the conversion error of the AD conversion circuit, and to use this conversion error to determine whether the AD conversion circuit is abnormal or to correct the output value of the AD conversion circuit.
  • the software can be imported with high accuracy. For this reason, the current value detected by the current detection circuit can be calculated with high accuracy, and the rotation error and torque error can be reduced. Thereby, variation in the air volume and driving sound of the cooling fan can be reduced.
  • the AD conversion circuit generally has a smaller effective bit number and a worsening conversion characteristic as the frequency of the input analog signal increases.
  • the present invention calculates a conversion error of the AD converter circuit using a pulse signal whose frequency changes. That is, the present invention uses a pulse signal whose frequency changes in comparison with a static measurement method in which a DC voltage is applied to the input of the AD conversion circuit and a conversion error is calculated while changing the voltage. Therefore, it is possible to calculate a conversion error based on a conversion characteristic that matches the reality.
  • the cooling fan can be reduced in size and weight.
  • FIG. 1 is a block diagram showing a configuration of a brushless motor driving apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the waveform of the pulse signal Pls and the waveform of the capacitor voltage Vc of the brushless motor driving apparatus.
  • FIG. 3 is a block diagram showing a configuration example for calculating the clock error rate Ce in the brushless motor driving apparatus.
  • FIG. 4 is a block diagram showing the configuration of the brushless motor driving apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram for explaining interpolation of the correction table of the brushless motor driving apparatus.
  • FIG. 1 is a block diagram showing a configuration of a brushless motor driving apparatus 10 according to Embodiment 1 of the present invention.
  • FIG. 1 shows an example of a configuration in which a brushless motor 40 is connected to the brushless motor driving apparatus 10.
  • the brushless motor driving device 10 drives and controls the brushless motor 40 so as to perform a rotating operation in accordance with an external command.
  • the brushless motor 40 includes a stator including a coil 41 having a winding wound around a stator core, and a rotor that rotates around the shaft by energizing the coil 41.
  • the brushless motor 40 has a three-phase coil 41 having a U phase, a V phase, and a W phase, and the brushless motor driving device 10 uses a drive signal Drv in which each phase is pulse-width modulated (PWM).
  • PWM pulse-width modulated
  • the brushless motor drive device 10 includes a current detection circuit 15, an inverter circuit 14, a control unit 11, and an RC filter 26.
  • the brushless motor driving apparatus 10 receives, for example, a rotational speed / torque command Tsp, which is a signal for commanding the rotational speed and torque amount, as one of commands from an external host controller (not shown).
  • the brushless motor drive device 10 generates the drive signal Drv so that the rotation of the brushless motor 40 becomes a rotation speed or torque according to the rotation speed / torque command Tsp. Then, the brushless motor driving device 10 applies each of the generated driving signals Drv to each coil 41, and controls the rotation of the brushless motor 40 in this way.
  • the control unit 11 performs inverter circuit 14 based on the residual between the rotational speed / torque command Tsp and the actual rotational speed by PID (proportional, integral, differential) control.
  • PMW original signal Dp for switching driving is generated.
  • the inverter circuit 14 generates and outputs a drive signal Drv for energizing and driving the coils 41 of each phase by switching an internal switching element connected to the power source in accordance with the PMW original signal Dp.
  • the brushless motor driving device 10 is configured to drive and control the brushless motor 40 without a position sensor or the like.
  • the current detection circuit 15 is provided in order to detect the position of the rotating rotor without such a sensor.
  • the current detection circuit 15 is disposed in the vicinity of the wiring of the driving signal Drv of each phase, and detects the current value of each phase (U phase, V phase, W phase) flowing through the coil 41 wound around the stator core of the brushless motor 40. .
  • the current detection circuit 15 supplies each voltage to the control unit 11 as an analog voltage Det corresponding to each detected current value.
  • the control unit 11 includes an AD (Analog-Digital) conversion circuit.
  • the control unit 11 performs AD conversion on the voltage Det and uses the output data of the AD conversion to rotate the rotor. The position and rotation speed are calculated.
  • the present embodiment is characterized in that it has a function of judging abnormality such as the current detection circuit 15 and the AD conversion circuit. That is, in order to determine these abnormalities, in the present embodiment, the brushless motor driving apparatus 10 is provided with an RC filter 26 composed of a resistor (R) and a capacitor (C).
  • control unit 11 drives and controls the brushless motor 40 so that the brushless motor 40 performs a desired rotation operation, so that the rotation control unit 12, the drive waveform generation unit 13, the first, second, and third AD conversion circuits 221, 222, and 223 (hereinafter, collectively referred to simply as AD conversion circuit 22), motor position calculation unit 18, and actual rotation speed calculation unit 17 are provided.
  • AD conversion circuit 22 the first, second, and third AD conversion circuits 221, 222, and 223
  • motor position calculation unit 18 motor position calculation unit 18
  • actual rotation speed calculation unit 17 are provided.
  • These units constitute a drive control unit that generates a PWM original signal Dp for driving the inverter circuit 14, and the generated PWM original signal Dp is supplied to the inverter circuit 14.
  • control unit 11 includes a clock generation circuit 23 that generates a clock pulse Clk serving as the clock signal, and a timer circuit 24 that generates various timing signals based on the clock pulse Clk. I have.
  • control unit 11 determines the abnormality of each AD conversion circuit 22 and the current detection circuit 15, and outputs a pulse output circuit 25, an AD conversion circuit diagnosis unit 19, an AD conversion error calculation unit 20, and a current detection circuit. And a diagnosis unit 21.
  • each of the AD conversion circuits 22 converts the analog voltage input to each of the channels ch1 and ch2 into digital signals Dig1, Dig2, and Dig3 that indicate the voltage values as digital values. Convert and output.
  • a voltage Det corresponding to the current value detected by the current detection circuit 15 is supplied to the channel ch1.
  • a voltage DetU which is a voltage Det corresponding to the U-phase current value, is supplied to the channel ch1, and a digital signal Dig1 indicating a digital value corresponding to the voltage DetU is output.
  • a voltage DetV which is a voltage Det corresponding to the V-phase current value
  • a digital signal Dig2 indicating a digital value corresponding to the voltage DetV
  • a voltage DetW that is a voltage Det corresponding to the current value of the W phase is supplied to the channel ch1
  • a digital signal Dig3 indicating a digital value corresponding to the voltage DetW is output.
  • a capacitor voltage Vc as a determination voltage used for determining abnormality is supplied from the RC filter 26 to the channel ch2 of each AD conversion circuit 22 in common. .
  • the digital signals Dig 1 to 3 output from the respective AD conversion circuits 22 are supplied to the motor position calculation unit 18.
  • the motor position calculation unit 18 calculates the rotor position of the brushless motor 40 from the digital signals Dig1 to Dig3 indicating the current value of each phase. That is, in the present embodiment, the motor position calculation unit 18 detects the rotational position of the rotor based on the current value detected in each phase.
  • the motor position calculation unit 18 outputs a rotor position signal Pd indicating the calculated rotor position to the actual rotation speed calculation unit 17 and the drive waveform generation unit 13.
  • a timer count number Cnt indicating a predetermined time width is notified to the actual rotation speed calculation unit 17 from the timer position signal Pd.
  • the actual rotational speed calculation unit 17 uses the timer count number Cnt and the rotor position signal Pd to calculate the actual rotational speed indicating the actual rotational speed from the amount of change in the rotor position in a predetermined time width.
  • the actual rotation speed calculation unit 17 outputs the actual rotation speed to the rotation control unit 12 as an actual rotation speed signal Vd.
  • the rotation control unit 12 performs calculation processing (PID processing) such as proportional-integral differentiation on the deviation that is the difference between the rotation speed / torque command Tsp and the actual rotation speed signal Vd, and according to the result of this calculation processing.
  • the drive waveform duty signal Dd is generated and output.
  • the drive waveform generator 13 generates a PMW original signal Dp for controlling the switching element of the inverter circuit 14 from the drive waveform duty signal Dd and the rotor position signal Pd, and outputs the PMW original signal Dp to the inverter circuit 14.
  • the actual rotation speed signal Vd indicating the actual rotation speed of the rotor is generated based on the current value detected by the current detection circuit 15, and is also commanded to control the rotation speed.
  • the rotational speed / torque command Tsp indicating the commanded speed is notified.
  • the brushless motor driving device 10 forms a speed control loop that performs feedback control so that the rotational speed of the rotor follows the command speed based on the actual rotational speed signal Vd and the rotational speed / torque command Tsp.
  • the brushless motor driving apparatus 10 controls the rotation of the brushless motor 40 by continuously executing the series of loops as described above.
  • control unit 11 includes a clock generation circuit 23 and a timer circuit 24 in order to execute such a series of loop processing by digital processing and to generate the sampling timing of the AD conversion circuit 22.
  • the clock generation circuit 23 generates a periodic clock pulse Clk that serves as a reference for the operation cycle, and distributes it to each digital processing circuit as a reference clock for the control unit 11.
  • the timer circuit 24 operates using the reference clock pulse Clk, and outputs trigger signals Trg1 and Trg3 as sampling signals to the AD conversion circuit 22 at a predetermined timing. Further, the timer circuit 24 outputs trigger signals Trg2 and Trg4 to the pulse output circuit 25.
  • the timer circuit 24 includes a counter that counts clock pulses Clk.
  • the timer circuit 24 outputs a pulse signal indicating timing according to a predetermined count number as the trigger signals Trg1 to 4 and the timer count number Cnt by the counter.
  • the cycle of the clock pulse Clk is 0.1 ⁇ S (that is, the frequency is 10 MHz).
  • the count number for the High period of a certain pulse is 200
  • the count number for the Low period of the pulse is 800.
  • the timer circuit 24 outputs a periodic pulse signal of 10 KHz in which the High period is 20 ⁇ S and the Low period is 80 ⁇ S.
  • the AD conversion circuit 22 uses the timing at which such a pulse signal rises from Low to High, or the opposite timing, as the sampling timing.
  • a pulse signal is a signal composed of a high level and a low level, and the high level is a level near the voltage of the positive power supply Vcc, a low level. Is described as a level near the voltage of the ground serving as a negative power source.
  • Each of the AD conversion circuits 22 reads the capacitor voltage (voltage at the intermediate connection point P) Vc of the RC filter 26 at the timing indicated by the trigger signals Trg1 and Trg3.
  • the trigger signal Trg1 indicates a timing at which the capacitor 28 is sufficiently discharged and the capacitor voltage Vc becomes the lowest (hereinafter, this timing is appropriately referred to as timing C1).
  • the trigger signal Trg3 indicates the timing at which the capacitor 28 is sufficiently charged and the capacitor voltage Vc becomes the highest during the measurement period (hereinafter, this timing is appropriately referred to as timing C2).
  • the timer circuit 24 outputs trigger signals Trg2 and Trg4 to the pulse output circuit 25.
  • the AD conversion circuit 22 reads the lowest capacitor voltage Vc at the timing of the trigger signal Trg1, and charges the capacitor 28 at the timing of the trigger signal Trg2 immediately after the trigger signal Trg1. Is started. Then, the AD conversion circuit 22 reads the highest capacitor voltage Vc in the measurement period at the timing of the trigger signal Trg3, and discharge of the capacitor 28 is started at the timing of the trigger signal Trg4 immediately after the trigger signal Trg3.
  • the pulse output circuit 25 switches the signal level Low and High of the pulse signal Pls to be output, thereby changing the predetermined duty ratio and cycle.
  • the pulse signal Pls is generated and output to the RC filter 26.
  • the present embodiment is characterized in that the pulse signal Pls whose frequency is sequentially lowered is supplied to the RC filter 26 while the duty ratio is constant for each measurement period in which the capacitor voltage Vc is read.
  • the AD conversion circuit diagnosis unit 19, the AD conversion error calculation unit 20, and the current detection circuit diagnosis unit 21 use the measurement result of the capacitor voltage Vc at the measurement timing of the trigger signals Trg1 and Trg3 as described above to use the AD conversion circuit 22 In addition, abnormality diagnosis of the current detection circuit 15 is performed. If the diagnosis result is abnormal, an error stop signal Err is output to the rotation control unit 12 to stop the rotation operation of the brushless motor 40.
  • the AD conversion error calculation unit 20 calculates the capacitor charging time Tc using the clock error rate Ce recorded in the memory 31.
  • FIG. 2 shows the waveform (upper side) of the pulse signal Pls applied to the RC filter 26 from the pulse output circuit 25 in the brushless motor driving apparatus 10, the waveform (lower side) of the capacitor voltage Vc, and the reading timing of the AD conversion circuit 22. Show.
  • measurement periods for abnormality diagnosis are sequentially provided, such as a first measurement period M1, a second measurement period M2, a third measurement period M3, and an nth measurement period Mn.
  • a first measurement period M1 a second measurement period M2, a third measurement period M3, and an nth measurement period Mn.
  • the time width of each period Tt is set to the period time width Tt1 to Ttn
  • the High period Th of the pulse signal Pls in each measurement period is the High period.
  • the widths Th1 to Thn are shown. That is, for example, in the first measurement period M1, the period time width Tt1, and the period Th in which the pulse signal Pls is High has the High period width Th1.
  • Trigger signals Trg2 and Trg4 are supplied from the timer circuit 24 to the pulse output circuit 25 in order to generate such a pulse signal Pls. As shown in the upper side of FIG. 2, the pulse output circuit 25 switches from Low to High at the timing of the trigger signal Trg2, and outputs a pulse signal Pls that switches from High to Low at the timing of the trigger signal Trg4.
  • the timer circuit 24 outputs each trigger signal Trg2 so that a period from a certain trigger signal Trg2 to the next trigger signal Trg2 becomes longer every cycle Tt.
  • the pulse output circuit 25 outputs the pulse signal Pls in which the cycle time widths Tt1 to Ttn of the respective cycles Tt increase in order as shown in FIG.
  • the timer circuit 24 outputs each trigger signal Trg4 so that a period Th from a certain trigger signal Trg2 to the trigger signal Trg4 in the cycle Tt also increases for each cycle Tt so as to have a predetermined duty ratio. To do.
  • the pulse output circuit 25 outputs the pulse signal Pls having a constant duty ratio in each cycle and equal to each other as described above.
  • such a pulse signal Pls is applied to the RC filter 26 in order to perform abnormality diagnosis of the AD conversion circuit 22 and the current detection circuit 15.
  • the capacitor 28 repeats charging and discharging, so that the capacitor voltage Vc has a waveform as shown on the lower side of FIG. That is, when the waveform of the pulse signal Pls output from the pulse output circuit 25 is within a predetermined duty ratio and frequency range, the capacitor voltage Vc at the intermediate connection point P of the RC filter 26 has a sawtooth shape having a predetermined peak voltage. It becomes the waveform.
  • the interval between the timings C1 and C2 at which the AD conversion circuit 22 reads the capacitor voltage is increased.
  • the duty ratio of the pulse signal Pls applied to the RC filter 26 can be fixed, and the frequency can be lowered for each pulse of the pulse signal Pls.
  • the timer circuit 24 has a counter that counts the clock pulse Clk, and the trigger signals Trg1 to 4 are generated using this counter. Further, a specific example will be given in which the predetermined duty ratio is 20% and the cycle Tt of the pulse signal Pls increases in order to double and the frequency decreases.
  • the timer circuit 24 operates using the counter as follows, for example. First, in the first measurement period M1, the timer circuit 24 starts counting of the counter so that the count value is incremented from “0” at the timing of the trigger signal Trg2. The timer circuit 24 outputs the trigger signal Trg4 when the count value reaches “99”. Further, the count value of the timer circuit 24 is incremented, and when the count value reaches “499”, the next trigger signal Trg2 is output, and the first measurement period M1 ends. Thereby, in the first measurement period M1, the pulse signal Pls output from the pulse output circuit 25 has a time width Th1 of the High period Th with respect to a cycle time width Tt1 of “500” times one clock period. This is “100” times one clock cycle.
  • the timing indicated by the trigger signals Trg1 and Trg3 that are the sampling timing of the AD conversion circuit 22 may be as follows, for example. That is, first, the trigger signal Trg4 may be output immediately after the trigger signal Trg3 as described above. Thus, the trigger signal Trg3 may be output immediately before the trigger signal Trg4 corresponding to the count value “99”, that is, when the count value becomes “98”. As described above, the trigger signal Trg2 may be output immediately after the trigger signal Trg1. Thus, the trigger signal Trg1 may be output immediately before the trigger signal Trg2 corresponding to the count value “499”, that is, when the count value “498” is reached.
  • the second measurement period M2 the following may be performed so that the cycle Tt is twice as long as the measurement period M1.
  • the count is once reset, and the count of the counter is restarted so as to increment from the count value “0”.
  • the timer circuit 24 outputs the trigger signal Trg4 when the count value reaches “199”. Further, the count value of the timer circuit 24 is incremented, and when the count value reaches “999”, the next trigger signal Trg2 is output, and the measurement period M2 ends.
  • the pulse signal Pls output from the pulse output circuit 25 has a period time width Tt2 of “1000” clocks, while the time width Th2 of the High period Th is “clock”. 200 ".
  • the duty ratio is 20% as in the measurement period M1.
  • the trigger signal Trg3 may be output when the count value “198” is reached, and the trigger signal Trg1 may be output when the count value “998” is reached.
  • the above processing is performed for each measurement period, so that the pulse signal Pls whose frequency is sequentially decreased is applied to the RC filter 26 while the duty ratio is constant.
  • the charging time of the capacitor 28 increases for each pulse, and the peak voltage value of the capacitor voltage Vc increases to V1, V2, and V3.
  • the peak voltage value becomes saturated at Vcmax.
  • the AD conversion circuit 22 reads the lowest capacitor voltage Vc at timing C1, and also has the highest capacitor voltage Vc at which the peak voltage values increase to V1, V2, and V3 at timing C2 for each measurement period. Reading.
  • the AD conversion circuit diagnosis unit 19 uses the values of the digital signals Dig1 to Dig3 (hereinafter collectively referred to simply as output values Dig) that are AD output signals of the AD conversion circuit 22 at the timing C1, so that the AD conversion circuit 22 Determine if it is normal.
  • the AD conversion circuit 22 inputs an analog signal whose input voltage of the analog input is an upper / lower limit voltage range from the lower limit voltage Vmin to the upper limit voltage Vmax, and changes from the lower limit output value as a digital value corresponding to the lower limit voltage Vmin to the upper limit voltage Vmax.
  • the output value Dig in the upper and lower limit output value range up to the upper limit output value as the corresponding digital value is output.
  • an input voltage having a lower limit voltage Vmin of 0V is “0”
  • an upper limit voltage Vmax is an input voltage of 1V.
  • the channel ch2 of the AD conversion circuit 22 receives the minimum value Vcmin of the capacitor voltage Vc as the lower limit voltage Vmin and the maximum value Vcmax of the capacitor voltage Vc as the upper limit voltage Vmax.
  • the AD conversion circuit diagnosis unit 19 determines an abnormality of the conversion function of the output value Dig with respect to the lower limit voltage Vmin on the input side with respect to the AD conversion circuit 22.
  • the lower limit voltage Vmin a voltage at which the capacitor 28 at the timing C1 is sufficiently discharged and the capacitor voltage Vc becomes the lowest, that is, the minimum value Vcmin is used.
  • the AD conversion circuit diagnosis unit 19 determines that the AD conversion circuit 22 is abnormal. If the AD conversion circuit diagnosis unit 19 determines that there is an abnormality, it outputs an error stop signal Err to the rotation control unit 12 to stop the rotation operation of the brushless motor 40.
  • the AD conversion circuit diagnosis unit 19 determines that the AD conversion circuit 22 is abnormal if the output value Dig is “7”, and outputs If the value is “4”, it is determined that there is no abnormality.
  • the AD conversion error calculation unit 20 calculates an error from a standard value in AD conversion using the output value Dig of the AD conversion circuit 22 at timing C2, and uses this error to determine whether the AD conversion circuit 22 is normal. Determine. That is, the AD conversion error calculation unit 20 determines an abnormality in the conversion function of the output value Dig with respect to the input voltage Vin on the input side in the AD conversion circuit 22 based on the calculated error.
  • an 8-bit AD conversion circuit 22 that performs linear conversion has a conversion specification in which an output value Dig is “0” to “255” with respect to an input voltage of 0 to 1 V.
  • the standard specification is such that an output value Dig of “128” is output.
  • the measurement result is “127” for an input voltage of 0.5 V, for example.
  • the difference between the standard case and the measurement result is used as a conversion error.
  • the difference “1” between “128” in the standard case and “127” in the measurement result is the conversion error.
  • the AD conversion error calculation unit 20 calculates such a conversion error. Further, the AD conversion error calculation unit 20 uses such a conversion error and determines that it is abnormal when the conversion error is large.
  • the capacitor voltage Vc obtained by charging the capacitor 28 at the timing C2 for a predetermined time is used as the input voltage Vin. That is, as shown in the lower side of FIG. 2, the peak voltage value of the capacitor voltage Vc changes to V1, V2, and V3 for each measurement period.
  • the AD conversion error calculation unit 20 determines whether the conversion function of the AD conversion circuit 22 is abnormal based on the output value Dig for each input voltage Vin that changes in this way.
  • the AD conversion error calculation unit 20 determines that the AD conversion circuit 22 is abnormal when the output value Dig deviates from a predetermined normal determination range for a certain input voltage Vin. If the AD conversion error calculation unit 20 determines that there is an abnormality, it outputs an error stop signal Err to the rotation control unit 12 to stop the rotation operation of the brushless motor 40.
  • the AD conversion error calculation unit 20 calculates a conversion error based on the difference between the actual output value Dig of the AD conversion circuit 22 and the theoretical value Ac with respect to the input voltage Vin at this time. In the present embodiment, the AD conversion error calculation unit 20 further determines whether or not this error has deviated from a predetermined normal determination range. Hereinafter, such a conversion error will be described as an offset Ados.
  • the theoretical value Ac for the input voltage Vin 0.5 V is the value “128”
  • the actual output value Dig is the value “127”
  • the offset Ados is the value “1”.
  • Conversion error is calculated. More specifically, first, the input voltage Vin using the capacitor voltage Vc in each measurement period as an input is obtained using the time width of the High period Th in the pulse signal Pls. In brief, the High period Th is obtained from the cycle of the clock pulse Clk and the clock count. That is, the AD conversion error calculation unit 20 calculates the conversion error based on the difference between the actual output value Dig and the calculated AD conversion value after the predetermined number of cycles of the clock pulse Clk has elapsed.
  • the clock generation circuit 23 is not a crystal oscillator with high frequency accuracy but, for example, a low-frequency RC oscillator with low frequency accuracy. For this reason, in order to obtain the High period Th, a clock error rate Ce for correcting the variation in the period of the clock pulse Clk is introduced.
  • the charging time Tc between C1 and C2 is calculated from the clock error rate Ce and the pulse set value using (Equation 1).
  • the charging time Tc becomes the high period Th.
  • Cy is the number of reference clock cycles for the high period Th of the pulse signal Pls applied to the RC filter 26. That is, for example, the counter of the timer circuit 24 is a count number for counting the clock pulse Clk from the trigger signal Trg2 to the trigger signal Trg4.
  • Bt is the cycle of the clock pulse Clk.
  • Ce is the clock error rate Ce, and is the ratio of the designed period Bt to the actual period Bt ′ in the period of the clock pulse Clk.
  • the design cycle Bt of the clock pulse Clk generated by the clock generation circuit 23 is 0.1 ⁇ S, but the actual cycle Bt ′ of the clock pulse Clk is 0.101 ⁇ S due to variations in circuit accuracy.
  • the clock pulse Clk is counted by “100” by the counter.
  • the clock error rate Ce for example, the actual cycle of the clock generation circuit 23 is measured at the manufacturing stage of the brushless motor driving apparatus 10, and the deviation from the accurate cycle is stored in the memory 31 or the like as the clock error rate Ce. That's fine.
  • the clock error rate Ce for example, in a configuration in which a command such as a rotational speed / torque command Tsp from an external host controller or the like is performed by serial communication or the like, the clock error rate Ce is obtained as follows. May be. That is, first, the period of pulses used for this serial communication is set to be accurate.
  • the clock error rate Ce can be calculated by comparing the frequency of the pulse of the command signal input from the host controller with the frequency of the reference clock output from the clock generation circuit 23. Specifically, it refers to the ratio between the actual number of cycles of the reference clock in one cycle of the pulse of the command signal and the theoretical number of cycles of the reference clock in one cycle of the pulse.
  • the rotation speed / torque command Tsp or a periodically input communication cycle may be used as the command signal input from the host unit.
  • FIG. 3 is a block diagram showing a configuration example for calculating the clock error rate Ce using the signal input from the host controller as described above.
  • FIG. 3 shows only a main part for calculating the clock error rate Ce, and shows an example in which the host controller 100 and the brushless motor driving apparatus 10 have a communication function for transmitting and receiving command signals and the like.
  • the host controller 100 operates with a clock signal generated by a crystal oscillator 101 with high frequency accuracy
  • the control unit 11 is a clock that is an RC oscillator with low frequency accuracy configured by a resistor R1 and a capacitor C1.
  • An example is shown in which the generation circuit 23 operates by generating a clock pulse Clk.
  • control unit 11 measures the clock error rate Ce using the communication unit 51 that communicates with the host controller 100 and the communication pulse signal Pcs such as a command signal received from the host controller 100 via the communication unit 51. And a clock error rate measuring unit 52 for performing the above-described operation.
  • the clock error rate measuring unit 52 calculates the clock error rate Ce from the period Tcs of one cycle of the communication pulse signal Pcs and the cycle of the clock pulse Clk output from the clock generation circuit 23. That is, the clock error rate measuring unit 52 measures the count number Ncp of the clock pulse Clk in the period Tcs.
  • the clock error rate measuring unit 52 calculates the ratio Ncs / Ncp between the actual number of cycles Ncp of the reference clock and the theoretical number of cycles Ncs of the reference clock in one cycle of the communication pulse signal Pcs as the clock error rate Ce. ing.
  • an AD terminal voltage (theoretical value) Vca that is an input to the AD conversion circuit 22 is calculated by (Expression 2) from the charging time Tc to the capacitor 28 and the capacitor voltage expression with respect to the pulse waveform of the RC filter 26.
  • R is the resistance value of the resistor 27 of the RC filter 26
  • C is the capacitance of the capacitor 28 of the RC filter 26.
  • Acmax is the maximum output value of the AD conversion circuit 22
  • Vcmax is the maximum input voltage of the AD conversion circuit 22.
  • the AD conversion error calculation unit 20 determines that the corresponding AD conversion circuit 22 is abnormal when the offset Ado calculated above deviates from a predetermined normal determination range. For example, when the predetermined normal determination range of the offset Ados is ⁇ 5 to +5, if the AD conversion value (theoretical value) Ac is “17” and the AD conversion value (actual measurement) Dig is “10”, the offset Ados is “7”. Therefore, since it is outside the normal determination range, it is determined that the AD conversion circuit 22 is abnormal. If the AD conversion value (theoretical value) Ac is “17” and the AD conversion value (actual measurement) Dig is “13”, the offset Ados is “4”, and since it does not deviate from the normal determination range, it is not determined to be abnormal.
  • the current detection circuit diagnosis unit 21 uses the output value Dig of the AD conversion circuit 22 that has read the output of the current detection circuit 15 at the timing when the brushless motor 40 stops rotating, and the current detection circuit 15 is abnormal. Judging whether there is. That is, when the value of the output value Dig deviates from a predetermined normal determination range, it is determined that the current detection circuit 15 is abnormal. More specifically, the current detection value at the time of stopping rotation should be zero, and in accordance with this, for example, the normality determination is set to the range “0 to 9”. In this case, when the output value Dig of the AD conversion circuit 22 is “10”, it is determined that the current detection circuit is abnormal.
  • control unit 11 may be configured to perform processing based on a processing procedure such as a program. That is, for example, functions such as the motor position calculation unit 18, the actual rotation speed calculation unit 17, the rotation control unit 12, and the drive waveform generation unit 13 are used as programs for executing the rotation control processing method, or the AD conversion circuit diagnosis unit 19, The functions of the AD conversion error calculation unit 20 and the current detection circuit diagnosis unit 21 are stored in a memory or the like as a program for executing a diagnosis processing method.
  • a method for calculating the conversion error of the AD conversion error calculation unit 20 a method for generating a correction value for the AD conversion circuit based on the conversion error, and the like are stored in a memory or the like.
  • the present embodiment can also be realized by configuring the microcomputer (microcomputer) to execute these programs.
  • the control unit 11 including the clock generation circuit 23 for generating the microcomputer reference clock and the AD conversion circuit 22 may be configured as a one-chip LSI (Large Scale Integrated Circuit). It is.
  • the microcomputer generates a pulse signal Pls whose frequency changes based on the clock pulse Clk, applies it to the RC filter 26, and outputs the output value of the AD conversion circuit 22 using the voltage of the capacitor 28 as input, and charging of the capacitor 28. It is possible to realize a conversion error calculation method for an AD conversion circuit that calculates a conversion error based on a difference from an AD conversion value calculated from time. Further, by generating a correction value for the AD conversion circuit based on the conversion error by the microcomputer, a method for generating the correction value for the AD conversion circuit can be realized.
  • FIG. 4 is a block diagram showing the configuration of the brushless motor drive device 60 according to Embodiment 2 of the present invention.
  • FIG. 4 also shows an example of a configuration in which the brushless motor 40 is connected to the brushless motor driving device 60.
  • the brushless motor driving device 60 drives and controls the brushless motor 40 so as to perform a rotating operation in accordance with an external command.
  • control unit 61 further includes a correction table generation unit 32 and a correction table 33 in addition to the configuration of the control unit 11 in the first embodiment.
  • Other configurations are the same as those in the first embodiment, and detailed description thereof is omitted.
  • the AD conversion error calculation unit 20 is a conversion error from a standard value in AD conversion using each output value Dig obtained by changing the input voltage Vin of the AD conversion circuit 22.
  • the offset Ados is calculated. In the present embodiment, these offsets Ados are used to correct the digital signals Dig1 to Dig3 that are output values Dig.
  • the correction table 33 is arranged on the input side of the motor position calculation unit 18 in the present embodiment. That is, the correction table 33 corrects the digital signals Dig 1 to 3 supplied from the AD conversion circuits 22 with the correction values stored in the table and outputs the correction values to the motor position calculation unit 18.
  • the correction table generation unit 32 generates the correction table 33 by storing the offset Ado sequentially calculated by the AD conversion error calculation unit 20 in the correction table 33.
  • the AD conversion circuit diagnosis unit 19 sets the output value Dig to the zero point offset Zof. Is supplied to the correction table generation unit 32. Then, the correction table generation unit 32 stores the zero point offset Zof as correction data in the correction table 33. For example, when the normal determination range for the lower limit voltage Vmin is “0” to “5”, the AD conversion circuit diagnosis unit 19 determines that the AD conversion circuit 22 is abnormal if the output value Dig is “7”. Further, if the output value is “4”, the AD conversion circuit diagnosis unit 19 determines that there is no abnormality, and in this case, the correction table generation unit 32 stores the zero point offset Zof as “4” in the correction table 33. To do.
  • the correction table 33 is generated separately for each of the first to third AD conversion circuits 22, and stores the offset Ado for the output value Dig in the entire range. If the offset Ados for some output values Dig is not stored, it is possible to interpolate with a spline curve or the like as shown in FIG.
  • the correction table 33 generated as described above is arranged on the output side of each AD conversion circuit 22 as shown in FIG. 4 and used for correcting the detection voltage of the current detection circuit 15 and the like. For example, by correcting the AD conversion value (actually measured value) of the output of the current detection circuit 15 by the offset, the motor position calculation unit 18 can calculate an accurate rotor position. As a result, the actual rotation speed calculation unit 17 can calculate an accurate actual rotation speed, so that the rotation control unit 12 can perform accurate speed control and torque control.
  • control unit 11 has been described with reference to a configuration example including a functional block such as a digital circuit.
  • a method for calculating the conversion error of the AD conversion error calculation unit 20 a method for generating a correction value for the AD conversion circuit based on the conversion error, and the like are stored in a memory or the like.
  • the present embodiment can also be realized by configuring the microcomputer (microcomputer) to execute these programs.
  • the control unit 11 including the clock generation circuit 23 for generating the microcomputer reference clock and the AD conversion circuit 22 may be configured as a one-chip LSI (Large Scale Integrated Circuit). It is.
  • the microcomputer generates a pulse signal Pls whose frequency changes based on the clock pulse Clk, applies it to the RC filter 26, and outputs the output value of the AD conversion circuit 22 using the voltage of the capacitor 28 as input, and charging of the capacitor 28. It is possible to realize a conversion error calculation method for an AD conversion circuit that calculates a conversion error based on a difference from an AD conversion value calculated from time. Further, by generating a correction value for the AD conversion circuit based on the conversion error by the microcomputer, a method for generating the correction value for the AD conversion circuit can be realized.
  • the protection function (high temperature) by these sensors can be calculated. , High-pressure abnormality) can be reduced.
  • the cooling fan can be reduced in size and weight.
  • the brushless motor driving method and driving device enable highly accurate speed control and torque control with a simple configuration.
  • the motor driving method and motor driving device of the present invention are particularly suitable for cooling fans and blowers that require high efficiency and low noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本発明のブラシレスモータ駆動装置は、ブラシレスモータの巻線を通電駆動するインバータ回路と、巻線の電流値を検出する電流検出回路と、ブラシレスモータを回転制御するための制御部と、抵抗とキャパシタとを含み構成されたRCフィルタとを含む。また、制御部は、インバータを駆動するための信号を生成する駆動制御部と、動作周期の基準となるクロックパルスを発生するクロック発生回路と、周波数が変化するパルス信号をクロックパルスに基づいて生成し、RCフィルタに印加するパルス出力回路と、RCフィルタのキャパシタおよび電流検出回路に接続されたAD変換回路と、AD変換回路の変換誤差を算出するAD変換誤差算出部とを備える。そして、AD変換誤差算出部は、キャパシタの電圧を入力としたAD変換回路の出力値と、キャパシタの充電時間から算出したAD変換値との差分に基づき変換誤差を算出する。

Description

ブラシレスモータ駆動装置
 本発明は、ブラシレスモータを駆動制御するブラシレスモータ駆動装置に関し、特に、モータ制御回路の一部のバラツキにより、指令に対するトルクのズレが発生する前に、その原因となり得るAD(アナログ-デジタル)変換回路や電流検出回路を診断し、補正値を生成する機能を備えたブラシレスモータ駆動装置に関する。
 昨今、一般的に使われている冷蔵庫用などの冷却ファンには、その寿命や省エネルギー化の要求からブラシレスモータが使用されている。そして、冷却ファンには、その時々の気温や冷却対象の温度に応じて、ファンに必要とされる風量や、周辺付近に発する駆動音が定められており、それを満足するよう制御する必要がある。風量のバラツキは、インペラー(羽根車)に取り付けられているモータの回転速度のバラツキに依存し、駆動音はモータの回転トルクに依存することが知られている。
 ところで、パルス幅変調(Pulse Width Modulation、以下、適宜、「PWM」と記す)駆動で制御されるセンサレスの3相ブラシレスモータの場合、従来、例えば、次のようなブラシレスモータ駆動装置で制御される。まず、その駆動装置では、各相のコイルに流れる電流値から、モータの回転位置を推定する。さらに、単位時間当たりの回転位置の変化量から実回転速度を算出する。そして、その駆動装置において、算出された実回転速度に従い、PWM駆動を実現するインバータ回路内に備え付けられたMOS-FET素子のスイッチングパルス幅が制御される。
 そのため、コイルの電流値を検出する電流検出回路や、電流検出回路の出力をマイコン(マイクロコンピュータ)に取り込むためのAD変換回路、および、単位時間を生成するためのクロック発生回路に誤差がある場合、算出される実回転速度およびトルクにも同様の誤差が発生し、目標値からのズレが発生する。
 このクロック発生回路やAD変換回路の異常誤差を判定する方法として、従来、例えば、クロックパルスに基づいて生成した所定時間間隔のパルス電圧をRCフィルタに入力し、所定のクロックサイクル数における判定用の電圧が、所定の範囲を逸脱する場合にクロック発生回路またはAD変換回路の異常と判定するものが提案されている(例えば、特許文献1参照)。
 また、他の従来例として、上位ユニットから入力されるPWM信号(指令信号)の周期に基づいて、マイコンを動作させる基準クロックの誤差率を算出し、回転速度を補正する方法が提案されている(例えば、特許文献2参照)。
 しかし、特許文献1では、判定用の電圧が所定の範囲内にある場合、AD変換回路の誤差により、電流検出回路で検出した電流値を正確に算出することができず、トルク誤差が発生していた。また、特許文献2では基準クロックの誤差率によって回転速度を補正できても、AD変換回路の誤差を検出することができなかった。
特開平8-230651号公報 特開2013-46488号公報
 本発明のブラシレスモータ駆動装置は、ブラシレスモータの巻線を通電駆動するインバータ回路と、巻線の電流値を検出する電流検出回路と、ブラシレスモータを回転制御するための制御部と、抵抗とキャパシタとを含み構成されたRCフィルタとを含む。制御部は、インバータを駆動するための信号を生成する駆動制御部と、動作周期の基準となるクロックパルスを発生するクロック発生回路と、周波数が変化するパルス信号をクロックパルスに基づいて生成し、RCフィルタに印加するパルス出力回路と、RCフィルタのキャパシタおよび電流検出回路に接続されたAD変換回路と、AD変換回路の変換誤差を算出するAD変換誤差算出部とを備えている。そして、AD変換誤差算出部は、キャパシタの電圧を入力としたAD変換回路の出力値と、キャパシタの充電時間から算出したAD(アナログ-デジタルデータ)の変換値との差分に基づき、変換誤差を算出する構成である。
 本発明のブラシレスモータ駆動装置によれば、AD変換回路の変換誤差を算出でき、この変換誤差を利用して、AD変換回路の異常を判定したり、AD変換回路の出力値を補正したりしソフトウェアへ高精度に取込むことができるようになる。このため、電流検出回路で検出した電流値を高精度に算出でき、回転誤差やトルク誤差を低減することができる。これにより、冷却ファンの風量や駆動音のバラツキを低減することができる。
 特に、AD変換回路は、一般的に入力アナログ信号の周波数が高くなるほど有効ビット数が小さくなり、変換特性も悪化していくことが知られている。このようなAD変換回路の特性に対し、本発明は、周波数が変化するパルス信号を利用してAD変換回路の変換誤差を算出している。すなわち、AD変換回路の入力に直流電圧を印加し、その電圧を変えながら変換誤差を算出するようなスタティックな測定手法にくらべて、本発明では、周波数が変化するパルス信号を利用しているため、現実に即した変換特性に基づく変換誤差を算出できる。よって、本発明によれば、RCフィルタにパルス信号を印加するという簡易な構成でありながら、上述のように、高精度よく、AD変換回路の異常を判定したりAD変換回路の出力値を補正したりできる。
 以上により、本発明によれば、これらの回転誤差やトルク誤差に対する余裕を確保するために大きなモータや回路基板を搭載する必要がなくなり、冷却ファンの小型化、軽量化を図ることができる。
図1は、本発明の実施の形態1におけるブラシレスモータ駆動装置の構成を示すブロック図である。 図2は、同ブラシレスモータ駆動装置のパルス信号Plsの波形とキャパシタ電圧Vcの波形を示す図である。 図3は、同ブラシレスモータ駆動装置において、クロック誤差率Ceを算出する構成例を示すブロック図である。 図4は、本発明の実施の形態2におけるブラシレスモータ駆動装置の構成を示すブロック図である。 図5は、同ブラシレスモータ駆動装置の補正テーブルの補間を説明する図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるブラシレスモータ駆動装置10の構成を示すブロック図である。図1では、本ブラシレスモータ駆動装置10にブラシレスモータ40を接続した構成の一例を示している。このような構成により、ブラシレスモータ駆動装置10は、外部からの指令に従った回転動作をするようにブラシレスモータ40を駆動制御する。
 ブラシレスモータ40は、巻線をステータコアに巻回したコイル41を備えるステータと、コイル41を通電駆動することで、シャフトを中心に回転するロータとを備えている。本実施の形態では、ブラシレスモータ40がU相、V相、W相とする3相のコイル41を有し、ブラシレスモータ駆動装置10が各相をパルス幅変調(PWM)された駆動信号Drvで回転駆動する一例を挙げて説明する。
 図1に示すように、ブラシレスモータ駆動装置10は、電流検出回路15と、インバータ回路14と、制御部11と、RCフィルタ26と、を含む。
 ブラシレスモータ駆動装置10には、例えば、外部の上位コントローラ(図示せず)などからの指令の1つとして、回転速度やトルク量を指令するための信号である回転速度/トルク指令Tspが入力される。ブラシレスモータ駆動装置10は、ブラシレスモータ40の回転が回転速度/トルク指令Tspに応じた回転速度やトルクとなるように、駆動信号Drvを生成する。そして、ブラシレスモータ駆動装置10は、生成したそれぞれの駆動信号Drvを各コイル41に印加し、このようにして、ブラシレスモータ40を回転制御する。
 ブラシレスモータ駆動装置10をこのように動作させるために、制御部11は、PID(比例、積分、微分)制御により回転速度/トルク指令Tspと実際の回転速度との残差に基づき、インバータ回路14をスイッチング駆動するためのPMW原信号Dpを生成する。そして、インバータ回路14は、PMW原信号Dpに応じて、電源に接続された内部のスイッチング素子をスイッチングすることで、各相のコイル41を通電駆動する駆動信号Drvを生成して出力する。
 また、本実施の形態では、位置センサなどを設けないセンサレスによって、ブラシレスモータ駆動装置10がブラシレスモータ40を駆動制御するような構成としている。本実施の形態では、このようなセンサレスで、回転するロータの位置を検出するために、電流検出回路15を設けている。
 電流検出回路15は、各相の駆動信号Drvの配線近辺に配置され、ブラシレスモータ40のステータコアに巻かれたコイル41に流れる各相(U相、V相、W相)の電流値を検出する。そして、電流検出回路15は、検出したそれぞれの電流値に対応するアナログの電圧Detとして、それぞれ制御部11に供給している。また、詳細については以下で説明するが、制御部11は、AD(Analog-Digital)変換回路を備えており、この電圧DetをAD変換し、AD変換の出力データを利用して、ロータの回転位置や回転速度を算出している。
 さらに、本実施の形態では、電流検出回路15やAD変換回路などの異常を判定する機能を備えていることを特徴としている。すなわち、これらの異常を判定するため、本実施の形態では、ブラシレスモータ駆動装置10に、抵抗器(R)とキャパシタ(C)とで構成されたRCフィルタ26を設けている。
 次に、ブラシレスモータ駆動装置10の各部において、さらに詳細な構成について説明する。
 まず、制御部11は、ブラシレスモータ40が所望の回転動作をするようにブラシレスモータ40を駆動制御するため、回転制御部12と、駆動波形生成部13と、第1、第2および第3のAD変換回路221、222および223(以降、総称して単にAD変換回路22と呼ぶ場合がある)と、モータ位置算出部18と、実回転速度算出部17とを備えている。そして、これら各部によって、インバータ回路14を駆動するためのPWM原信号Dpを生成する駆動制御部が構成され、生成したPWM原信号Dpがインバータ回路14に供給される。
 さらに、制御部11は、デジタル処理を行うために、そのクロック信号となるクロックパルスClkを生成するクロック発生回路23と、クロックパルスClkに基づき各種のタイミング信号を生成するためのタイマ回路24とを備えている。
 そして、制御部11は、各AD変換回路22および電流検出回路15の異常を判定するために、パルス出力回路25と、AD変換回路診断部19と、AD変換誤差算出部20と、電流検出回路診断部21とを備えている。
 このように構成された制御部11において、AD変換回路22のそれぞれは、各チャンネルch1、ch2に入力されたアナログの電圧に対し、その電圧値をデジタル値で示すデジタル信号Dig1、Dig2、Dig3に変換して出力する。チャンネルch1には、電流検出回路15が検出した電流値に対応する電圧Detが供給されている。第1のAD変換回路221では、U相の電流値に対応する電圧Detである電圧DetUがチャンネルch1に供給され、電圧DetUに対応したデジタル値を示すデジタル信号Dig1が出力される。第2のAD変換回路222では、V相の電流値に対応する電圧Detである電圧DetVがチャンネルch1に供給され、電圧DetVに対応したデジタル値を示すデジタル信号Dig2が出力される。第3のAD変換回路223では、W相の電流値に対応する電圧Detである電圧DetWがチャンネルch1に供給され、電圧DetWに対応したデジタル値を示すデジタル信号Dig3が出力される。また、詳細については以下で説明するが、各AD変換回路22のチャンネルch2には共通に、RCフィルタ26から、異常判定をするために利用する判定用電圧としてのキャパシタ電圧Vcが供給されている。
 それぞれのAD変換回路22から出力されたデジタル信号Dig1~3は、モータ位置算出部18に供給される。モータ位置算出部18は、各相の電流値を示すデジタル信号Dig1~3からブラシレスモータ40のロータ位置を算出する。すなわち、本実施の形態では、各相で検出した電流値に基づいて、モータ位置算出部18がロータの回転位置を検出している。モータ位置算出部18は、このように算出したロータ位置を示すロータ位置信号Pdを、実回転速度算出部17および駆動波形生成部13へと出力する。
 実回転速度算出部17には、ロータ位置信号Pdに加えて、タイマ回路24から、所定の時間幅を示すタイマカウント数Cntが通知される。実回転速度算出部17は、このタイマカウント数Cntとロータ位置信号Pdとを用いて、所定の時間幅におけるロータ位置の変化量から、実際の回転速度を示す実回転速度を算出している。実回転速度算出部17は、実回転速度を実回転速度信号Vdとして回転制御部12へ出力する。
 回転制御部12は、回転速度/トルク指令Tspと実回転速度信号Vdとの差である偏差に対して、例えば比例積分微分などの演算処理(PID処理)を行い、この演算処理の結果に応じた駆動波形デューティ信号Ddを生成して出力する。駆動波形生成部13は、駆動波形デューティ信号Ddとロータ位置信号Pdから、インバータ回路14のスイッチング素子を制御するためのPMW原信号Dpを生成し、インバータ回路14へと出力する。
 このように、本実施の形態では、電流検出回路15が検出した電流値に基づいて、ロータの実回転速度を示す実回転速度信号Vdが生成され、また、回転速度を制御するために指令された指令速度を示す回転速度/トルク指令Tspが通知される。そして、ブラシレスモータ駆動装置10によって、実回転速度信号Vdと回転速度/トルク指令Tspとに基づき、ロータの回転速度が指令速度に追従するようにフィードバック制御する速度制御ループが構成されている。ブラシレスモータ駆動装置10は、以上のような一連のループを連続的に実行することにより、ブラシレスモータ40を回転制御する。
 また、このような一連のループ処理をデジタル処理によって実行したり、AD変換回路22のサンプリングタイミングを生成したりするため、制御部11は、クロック発生回路23とタイマ回路24とを備えている。クロック発生回路23は、動作周期の基準となる周期的なクロックパルスClkを生成し、制御部11の基準クロックとして各デジタル処理回路などに分配している。タイマ回路24は、基準のクロックパルスClkを用いて動作し、所定のタイミングで、AD変換回路22へサンプリング信号としてのトリガ信号Trg1、Trg3を出力する。さらに、タイマ回路24は、パルス出力回路25へトリガ信号Trg2、Trg4を出力している。
 タイマ回路24の具体的な構成例として、タイマ回路24は、クロックパルスClkをカウントするカウンタを有している。そして、タイマ回路24は、このカウンタによって、予め定めているカウント数に応じたタイミングを示すパルス信号を、トリガ信号Trg1~4やタイマカウント数Cntとして出力している。
 より具体的な例として、例えば、クロックパルスClkの周期は0.1μS(すなわち、周波数では10MHz)とする。そして、タイマ回路24において、あるパルスのHigh期間とするカウント数を200とし、パルスのLow(ロー)期間のカウント数を800とする。これにより、タイマ回路24から、High(ハイ)期間が20μS、Low期間が80μSとなる10KHzの周期的なパルス信号を出力することになる。また、例えばAD変換回路22は、このようなパルス信号のLowからHighへと立ち上がるタイミングや、その逆の立ち下がるタイミングをサンプリングのタイミングとして利用する。例えば、上記10KHzのパルス信号の立ち上がりをAD変換回路22のサンプリングタイミングとすると、AD変換回路22は、100μS毎にデジタル信号Digを出力する。なお、以下、デジタル処理における一般的な表現と同様に、パルス信号とは、HighのレベルとLowのレベルとで構成された信号であり、Highレベルは正電源Vccの電圧近辺のレベル、Lowレベルは負側電源となるグランドの電圧近辺のレベルとして説明する。
 次に、各AD変換回路22と電流検出回路15との異常を判定するための詳細な構成について説明する。
 これらの異常を判定するために、ブラシレスモータ駆動装置10に設けたRCフィルタ26は、抵抗27とキャパシタ28とが直列に接続され、構成されている。その抵抗27の一方には、制御部11のパルス出力回路25が出力する異常判定用のパルス信号Plsが接続されている。そして、そのキャパシタ28の一方は、グランド29に接続されている。さらに、抵抗27とキャパシタ28との中間接続点Pは、異常判定用であるキャパシタ電圧Vcとして、第1~3のAD変換回路22のチャンネルch2に接続されている。
 AD変換回路22のそれぞれは、トリガ信号Trg1、Trg3が示すタイミングで、RCフィルタ26のキャパシタ電圧(中間接続点Pの電圧)Vcを読み込む。ここで、詳細については以下で説明するが、トリガ信号Trg1は、キャパシタ28が十分に放電してキャパシタ電圧Vcが最も低くなったタイミング(以下、適宜、このタイミングをタイミングC1と呼ぶ)を示すとする。そして、トリガ信号Trg3は、キャパシタ28が十分に充電されてキャパシタ電圧Vcが、その測定期間において最も高くなったタイミング(以下、適宜、このタイミングをタイミングC2と呼ぶ)を示すとする。また、キャパシタ電圧Vcの読込み完了後、タイマ回路24は、パルス出力回路25へトリガ信号Trg2、Trg4を出力する。
 すなわち、本実施の形態では、AD変換回路22が、トリガ信号Trg1のタイミングで、最も低いキャパシタ電圧Vcを読み込むとともに、このトリガ信号Trg1の直後となるトリガ信号Trg2のタイミングで、キャパシタ28への充電が開始される。そして、AD変換回路22が、トリガ信号Trg3のタイミングで、その測定期間における最も高いキャパシタ電圧Vcを読み込むとともに、このトリガ信号Trg3の直後となるトリガ信号Trg4のタイミングで、キャパシタ28の放電が開始される。
 また、このような充放電を行うため、トリガ信号Trg2、Trg4を入力した時、パルス出力回路25は、出力するパルス信号Plsの信号レベルのLowとHighを切り替えることにより、所定のデューティ比および周期のパルス信号Plsを生成し、RCフィルタ26へ出力する。特に、本実施の形態では、キャパシタ電圧Vcを読み込む測定期間ごとに、デューティ比は一定としながら周波数が順次に低くなるようなパルス信号PlsをRCフィルタ26に供給することを特徴としている。
 AD変換回路診断部19、AD変換誤差算出部20および電流検出回路診断部21は、上述したようなトリガ信号Trg1、Trg3の測定タイミングでのキャパシタ電圧Vcの測定結果を用いて、AD変換回路22および電流検出回路15の異常診断を行う。そして、診断結果が異常の場合、エラー停止信号Errが回転制御部12へ出力され、ブラシレスモータ40の回転動作を停止させる。
 また、詳細は後述するが、AD変換誤差算出部20は、メモリ31に記録したクロック誤差率Ceを用いて、キャパシタ充電時間Tcを算出する。
 図2は、ブラシレスモータ駆動装置10におけるパルス出力回路25からRCフィルタ26へ印加されるパルス信号Plsの波形(上側)とキャパシタ電圧Vcの波形(下側)、およびAD変換回路22の読込みタイミングを示している。
 図2では、第1回目の測定期間M1、第2回目の測定期間M2、第3回目の測定期間M3、第n回目の測定期間Mnというように、順次、異常診断のための測定期間を設けた一例を示している。そして、各測定期間M1~Mnに対応させて、それぞれの周期Ttの時間幅については、周期時間幅Tt1~Ttnとし、各測定期間におけるパルス信号PlsのそれぞれのHighの期間Thについては、High期間幅Th1~Thnで示している。すなわち、例えば、第1回目の測定期間M1では、周期時間幅Tt1で、そのうちパルス信号PlsがHighとなる期間ThはHigh期間幅Th1である。
 ここで、上述したように、本実施の形態でのパルス出力回路25は、所定のデューティ比で周波数が低くなるようなパルス信号Plsを出力する。すなわち、本実施の形態では、1つの周期Ttの時間幅に対するHigh期間Thの時間幅で定義されるデューティ比を、パルス信号Plsの測定期間M1~Mnにおいて、Th1/Tt1=Th2/Tt2=Th3/Tt3=Thn/Ttn=一定としている。また、図2から明らかなように、パルス信号Plsの測定期間M1~Mnにおいて、順に1周期Ttの時間幅が大きくなる(周波数としては低くなる)、すなわち、Tt1<Tt2<Tt3<Ttnとしている。
 このようなパルス信号Plsを生成するため、パルス出力回路25には、タイマ回路24からトリガ信号Trg2、Trg4が供給される。パルス出力回路25は、図2の上側に示すように、トリガ信号Trg2のタイミングでLowからHighへ切り替わり、トリガ信号Trg4のタイミングでHighからLowへ切り替わるパルス信号Plsを出力する。
 そして、タイマ回路24は、あるトリガ信号Trg2から次のトリガ信号Trg2までの期間が周期Ttごとに大きくなるように、それぞれのトリガ信号Trg2を出力する。これによって、パルス出力回路25は、上述したように、図2の上側に示すような各周期Ttの周期時間幅Tt1~Ttnが順に大きくなるパルス信号Plsを出力する。
 さらに、タイマ回路24は、所定のデューティ比となるように、あるトリガ信号Trg2からその周期Ttでのトリガ信号Trg4までの期間Thも周期Ttごとに大きくなるように、それぞれのトリガ信号Trg4を出力する。これによって、パルス出力回路25は、上述のようにそれぞれの周期におけるデューティ比が一定でそれぞれ等しくなるパルス信号Plsを出力する。
 本実施の形態では、AD変換回路22および電流検出回路15の異常診断を行うため、このようなパルス信号PlsをRCフィルタ26に印加している。このパルス信号Plsの印加により、キャパシタ28が充電と放電を繰り返すため、キャパシタ電圧Vcは、図2の下側に示すような波形となる。すなわち、パルス出力回路25から出力されるパルス信号Plsの波形が所定のデューティ比および周波数範囲内にある場合、RCフィルタ26の中間接続点Pのキャパシタ電圧Vcは、所定のピーク電圧を持つノコギリ状の波形となる。
 ここで、タイマ回路24からのトリガ信号Trg1とTrg3の出力間隔を徐々に増加させることにより、AD変換回路22がコンデンサ電圧を読込むタイミングC1とC2の間隔を増加させるようにする。これにより、RCフィルタ26に印加されるパルス信号Plsのデューティ比を固定とするとともに、パルス信号Plsの1パルス毎に周波数を低下させることができる。
 このような処理について、さらに具体的な一例を次に説明する。ここでは、タイマ回路24がクロックパルスClkをカウントするカウンタを有し、このカウンタを利用してトリガ信号Trg1~4を生成する例を挙げて説明する。また、所定のデューティ比として20%で、パルス信号Plsの周期Ttが順に2倍となるように増加して周波数が低くなる具体例を挙げる。
 タイマ回路24は、このようなカウンタを利用して、例えば、次のように動作する。まず、第1回目の測定期間M1として、タイマ回路24は、トリガ信号Trg2のタイミングで、カウント値が「0」からインクリメントしていくようにカウンタのカウントをスタートさせる。そして、タイマ回路24は、カウント値が「99」となった時点でトリガ信号Trg4を出力する。さらに、タイマ回路24のカウント値はインクリメントされ、カウント値が「499」となった時点で、次のトリガ信号Trg2を出力し、第1回目の測定期間M1を終える。これにより、第1回目の測定期間M1において、パルス出力回路25から出力されるパルス信号Plsは、周期時間幅Tt1がクロック1周期の「500」倍に対して、High期間Thの時間幅Th1がクロック1周期の「100」倍となる。例えば、クロック1周期を0.1μS(すなわち、周波数では10MHz)とすると、周期時間幅Tt1=50μS(クロック「500」個分)、High期間幅Th1=10μS(クロック「100」個分)であり、デューティ比は、10μS/50μS=20%となる。
 また、このような第1回目の測定期間M1において、AD変換回路22のサンプリングタイミングとなるトリガ信号Trg1、Trg3が示すタイミングに関しては、例えば、次のようにすればよい。すなわち、まず、上述のようにトリガ信号Trg3の直後にトリガ信号Trg4が出力されればよい。これより、カウント値「99」に対応するトリガ信号Trg4の直前、すなわちカウント値「98」なった時点で、トリガ信号Trg3を出力すればよい。そして、上述のようにトリガ信号Trg1の直後にトリガ信号Trg2が出力されればよい。これより、カウント値「499」に対応するトリガ信号Trg2の直前、すなわちカウント値「498」なった時点で、トリガ信号Trg1を出力すればよい。
 次に、第2回目の測定期間M2として、周期Ttが測定期間M1に比べて2倍となるように、次のようにすればよい。まず、カウントを一旦リセットし、カウント値「0」からインクリメントしていくようにカウンタのカウントを再スタートさせる。そして、タイマ回路24は、カウント値が「199」となった時点でトリガ信号Trg4を出力する。さらに、タイマ回路24のカウント値はインクリメントされ、カウント値が「999」となった時点で、次のトリガ信号Trg2を出力し、測定期間M2を終える。これにより、第1回目の測定期間M1において、パルス出力回路25から出力されるパルス信号Plsは、周期時間幅Tt2がクロック「1000」個分に対して、High期間Thの時間幅Th2がクロック「200」個分となる。そして、デューティ比に関しては、測定期間M1と同様に20%となる。また、測定期間M1と同様の理由より、カウント値「198」なった時点でトリガ信号Trg3を出力し、カウント値「998」なった時点でトリガ信号Trg1を出力すればよい。
 本実施の形態では、以上のような処理を、測定期間ごとに行うことによって、デューティ比は一定としながら周波数が順次に低くなるようなパルス信号PlsをRCフィルタ26に印加している。そして、キャパシタ28の充電時間が1パルス毎に増加し、キャパシタ電圧Vcのピーク電圧値はV1、V2、V3と増加する。そして、RCフィルタ26に印加されるパルス信号Plsが所定の周波数以下に到達すると、ピーク電圧値はVcmaxで飽和状態となる。AD変換回路22は、タイミングC1において、最も低いキャパシタ電圧Vcを読み込むとともに、測定期間ごとのタイミングC2において、このようにピーク電圧値がV1、V2、V3と増加するような最も高いキャパシタ電圧Vcも読み込んでいる。
 次に、AD変換回路診断部19、AD変換誤差算出部20および電流検出回路診断部21の一連の処理について詳細に説明する。
 まず、AD変換回路診断部19の処理について説明する。AD変換回路診断部19は、タイミングC1におけるAD変換回路22のAD出力信号であるデジタル信号Dig1~3の値(以降、総称して単に出力値Digと呼ぶ)を用いて、AD変換回路22が正常かどうかを判定する。
 AD変換回路22は、アナログ入力の入力電圧が下限電圧Vminから上限電圧Vmaxまでの上下限電圧範囲のアナログ信号を入力し、下限電圧Vminに対応するデジタル値としての下限出力値から上限電圧Vmaxに対応するデジタル値としての上限出力値までの上下限出力値範囲の出力値Digを出力する。具体的な例として、通常の直線的に変換する8ビットのAD変換回路22であれば、例えば下限電圧Vminが0Vの入力電圧に対しては「0」、上限電圧Vmaxが1Vの入力電圧に対しては「255」、中間の0.5Vの入力電圧に対しては「128」の出力値Digを出力するように構成されている。なお、以下、AD変換回路22のチャンネルch2には、下限電圧Vminとしてキャパシタ電圧Vcの最小値Vcmin、上限電圧Vmaxとしてキャパシタ電圧Vcの最大値Vcmaxを入力するものとして説明する。
 このようなAD変換回路22に対して、AD変換回路診断部19は、AD変換回路22に対して、入力側の下限電圧Vminに対する出力値Digの変換機能の異常を判定している。また、本実施の形態では、この下限電圧Vminとして、タイミングC1におけるキャパシタ28が十分に放電してキャパシタ電圧Vcが最も低くなった電圧、すなわち最小値Vcminを利用している。このような構成において、出力値Digが、下限電圧Vminに対する所定の正常判定範囲を逸脱した場合は、AD変換回路診断部19は、そのAD変換回路22の異常と判定する。そして、AD変換回路診断部19は、異常と判定すると、エラー停止信号Errを回転制御部12へ出力し、ブラシレスモータ40の回転動作を停止させる。
 例えば、下限電圧Vminに対する正常判定範囲が「0」~「5」である場合、AD変換回路診断部19は、出力値Digが「7」であればAD変換回路22の異常と判定し、出力値が「4」であれば異常ではないと判定する。
 次に、AD変換誤差算出部20の処理について説明する。AD変換誤差算出部20は、タイミングC2におけるAD変換回路22の出力値Digを用いて、AD変換における標準の値からの誤差を算出し、この誤差を利用してAD変換回路22が正常かどうかを判定する。すなわち、AD変換誤差算出部20は、AD変換回路22における入力側の入力電圧Vinに対する出力値Digの変換機能の異常を、算出した誤差に基づき判定している。
 このようなAD変換誤差算出部20の動作について、概略的には次のように動作する。ここで、具体的な例として、直線的に変換する8ビットのAD変換回路22であって、入力電圧0~1Vに対して出力値Digの値が「0」~「255」の変換仕様の場合、中間の0.5Vの入力電圧に対しては、標準であれば「128」の出力値Digを出力する仕様とする。ところが、実際にはAD変換回路22にバラツキがあるため、例えば、0.5Vの入力電圧に対して測定結果が「127」を出力したとする。本実施の形態では、出力値Digにおいて、このような標準の場合と測定結果との差を変換誤差としている。よって、ここでの例の場合、標準の場合の「128」と測定結果の「127」の差「1」が変換誤差である。AD変換誤差算出部20は、このような変換誤差を算出している。そして、さらに、AD変換誤差算出部20は、このような変換誤差を利用して、変換誤差が大きい場合に異常と判定している。
 また、本実施の形態では、この入力電圧Vinとして、タイミングC2におけるキャパシタ28を所定の時間だけ充電したキャパシタ電圧Vcを利用している。すなわち、図2の下側に示すように、キャパシタ電圧Vcのピーク電圧値は、測定期間ごとにV1、V2、V3と変化する。AD変換誤差算出部20は、このように変化するそれぞれの入力電圧Vinに対する出力値Digに基づき、AD変換回路22の変換機能の異常を判定している。AD変換誤差算出部20は、出力値Digが、ある入力電圧Vinに対する所定の正常判定範囲を逸脱した場合は、そのAD変換回路22の異常と判定する。そして、AD変換誤差算出部20は、異常と判定すると、エラー停止信号Errを回転制御部12へ出力し、ブラシレスモータ40の回転動作を停止させる。
 次に、AD変換誤差算出部20が行うAD変換における変換誤差の算出について詳細に説明する。AD変換誤差算出部20は、AD変換回路22の実際の出力値Digと、このときの入力電圧Vinに対する理論値Acとの差分に基づき、変換誤差を算出している。そして、本実施の形態では、さらに、AD変換誤差算出部20は、この誤差が所定の正常判定範囲を逸脱したかどうかを判定している。また、以下、このような変換誤差をオフセットAdosとして説明する。上述の直線変換の8ビットのAD変換回路22の例の場合、入力電圧Vin=0.5Vに対する理論値Acが値「128」であり、実際の出力値Digが値「127」であり、オフセットAdosが値「1」である。
 本実施の形態では、このオフセットAdosを導出するため、キャパシタ電圧Vcを入力としたAD変換回路22の実際の出力値Digと、キャパシタ28の充電時間から算出したAD変換値との差分に基づき、変換誤差を算出している。より具体的には、まず、パルス信号PlsにおけるHigh期間Thの時間幅を利用して、各測定期間におけるキャパシタ電圧Vcを入力とした入力電圧Vinを求めている。簡単には、High期間Thは、クロックパルスClkの周期とクロックのカウント数とから求めている。すなわち、AD変換誤差算出部20は、クロックパルスClkの所定サイクル数経過後において、上記のような実際の出力値Digと算出したAD変換値との差分に基づき、変換誤差を算出している。
 ここで、本実施の形態では、クロック発生回路23を、周波数精度の高い水晶発振器ではなく、例えば、周波数精度は低いが安価なRC発振器で実現するような構成を想定している。このため、High期間Thを求めるために、クロックパルスClkの周期のバラツキを補正するクロック誤差率Ceを導入している。
 このように、まず、クロック誤差率Ceとパルス設定値とから、(式1)を用いて、C1-C2間の充電時間Tcを算出する。ここで、パルス信号PlsのHigh期間Thでキャパシタ28を充電するため、充電時間Tcは、High期間Thとなる。
Figure JPOXMLDOC01-appb-M000001
 ただし、Cyは、RCフィルタ26へ印加するパルス信号PlsのHigh期間Thに対する基準クロックサイクル数である。すなわち、例えば、タイマ回路24のカウンタが、トリガ信号Trg2からトリガ信号Trg4までクロックパルスClkをカウントするカウント数である。Btは、クロックパルスClkの周期である。Ceは、クロック誤差率Ceであり、クロックパルスClkの周期において、設計上の周期Btと実際の周期Bt’との比である。
 具体的な例として、まず、クロック発生回路23で生成するクロックパルスClkの設計上の周期Btは0.1μSであるが、回路精度のバラツキにより実際のクロックパルスClkの周期Bt’が0.101μSとなったとする。この例のような場合、クロック誤差率Ceは、Ce=Bt’/Bt=0.101/0.1となる。また、例えば、パルス信号PlsのHigh期間Thを生成するため、カウンタによってクロックパルスClkを「100」カウントするとする。この場合、基準クロックサイクル数Cyは、カウント数「100」となり、その結果、充電時間Tcは、Tc=Cy×Bt×Ce=100×0.1μS×(0.101/0.1)=10.1μSとなる。
 クロック誤差率Ceについては、例えば、ブラシレスモータ駆動装置10の製造段階でクロック発生回路23の実際の周期を測定し、正確な周期からのずれをクロック誤差率Ceとしてメモリ31などに記憶させておけばよい。
 また、クロック誤差率Ceに関して、例えば、外部の上位コントローラなどからの回転速度/トルク指令Tspのような指令を、シリアル通信などで行うような構成の場合、次のようにクロック誤差率Ceを求めても良い。すなわち、まず、このシリアル通信に利用するパルスの周期を精度よいものとしておく。そして、上位コントローラから入力される指令信号のパルスの周波数と、クロック発生回路23から出力される基準クロックの周波数との比較によりクロック誤差率Ceを算出するように構成することも可能である。具体的には、指令信号のパルスの1周期における基準クロックの実サイクル数と、パルスの1周期における基準クロックの理論サイクル数との比率をいう。なお上位ユニットから入力される指令信号としては回転速度/トルク指令Tspまたは定期的に入力される通信周期を利用すればよい。
 図3は、このように、上位コントローラから入力される信号を利用して、クロック誤差率Ceを算出する構成例を示すブロック図である。図3では、クロック誤差率Ceを算出するための要部のみを示しており、上位コントローラ100とブラシレスモータ駆動装置10とが指令信号などを送受信する通信機能を有した一例を示している。図3において、上位コントローラ100は、周波数精度の高い水晶発振子101で生成したクロック信号で動作する一方、制御部11では、抵抗R1とキャパシタC1で構成された周波数精度の低いRC発振器であるクロック発生回路23でクロックパルスClk生成して動作する一例を示している。また、制御部11は、上位コントローラ100と通信を行う通信部51と、通信部51を介して上位コントローラ100から受け取った指令信号などの通信用パルス信号Pcsを利用してクロック誤差率Ceを測定するクロック誤差率測定部52とを備えている。クロック誤差率測定部52は、通信用パルス信号Pcsの1周期の期間Tcsとクロック発生回路23から出力されるクロックパルスClkの周期とからクロック誤差率Ceを算出する。すなわち、クロック誤差率測定部52は、期間TcsにおけるクロックパルスClkのカウント数Ncpを測定する。また、通信用パルス信号Pcsの1周期の期間Tcsにおける上位コントローラ100側のクロックのカウント数をNcsとすると、上位コントローラ100は周波数精度が高いため、期間Tcsにおける基準クロックの理論サイクル数もNcsとなる。これより、クロック誤差率測定部52は、通信用パルス信号Pcsの1周期における基準クロックの実サイクル数Ncpと、基準クロックの理論サイクル数Ncsとの比率Ncs/Ncpをクロック誤差率Ceとして算出している。
 次に、キャパシタ28への充電時間Tcと、RCフィルタ26のパルス波形に対するキャパシタ電圧式から、AD変換回路22の入力となるAD端子電圧(理論値)Vcaを(式2)で算出する。
Figure JPOXMLDOC01-appb-M000002
 ただし、RはRCフィルタ26の抵抗27の抵抗値、CはRCフィルタ26のキャパシタ28の静電容量である。
 次に、(式3)を用いて、このAD端子電圧Vcaに対する、AD変換回路22の変換誤差がない場合のAD変換値(理論値)Acを算出する。
Figure JPOXMLDOC01-appb-M000003
 ただし、AcmaxはAD変換回路22の出力最大値、VcmaxはAD変換回路22の入力最大電圧である。
 次に、(式4)から、AD変換値(理論値)Acと、実際にAD変換回路22から出力されたAD変換値(実測)Digとの差分を算出し、オフセットAdosとする。
Figure JPOXMLDOC01-appb-M000004
 AD変換誤差算出部20は、上記で算出されたオフセットAdosが所定の正常判定範囲を逸脱した場合は、該当するAD変換回路22の異常と判定する。例えば、オフセットAdosの所定の正常判定範囲が-5~+5である場合、AD変換値(理論値)Acが「17」、AD変換値(実測)Digが「10」ならオフセットAdosは「7」となり、正常判定範囲を逸脱しているので、AD変換回路22の異常と判定する。AD変換値(理論値)Acが「17」、AD変換値(実測)Digが「13」ならオフセットAdosが「4」となり、正常判定範囲を逸脱していないので、異常とは判定しない。
 次に、電流検出回路診断部21の処理について説明する。電流検出回路診断部21は、ブラシレスモータ40が回転動作を停止しているタイミングに、電流検出回路15の出力を読み込んだAD変換回路22の出力値Digを用いて、電流検出回路15が異常であるかどうかを判定している。すなわち、出力値Digの値が所定の正常判定範囲を逸脱した場合は、電流検出回路15の異常と判定する。より具体的には、回転停止時の電流検出値はゼロとなるべきであり、これに合わせて、例えば、正常判定を範囲「0~9」とする。この場合であれば、AD変換回路22の出力値Digが「10」の場合は、電流検出回路の異常と判定する。
 以上のような一連の処理を、RCフィルタ26に印加される1パルス毎に実施する。また、このパルス信号Plsは、前述の通り、周波数が1パルス毎に低下するため、キャパシタ28への充電時間が1パルス毎に増加し、AD変換回路22の最小から最大まで全範囲の出力値Digに対して、異常を判定することができる。
 なお、以上、制御部11はデジタル回路などによる機能ブロックを含む構成例を挙げて説明したが、例えば、プログラムのような処理手順に基づく処理で行うような構成であってもよい。すなわち、例えば、モータ位置算出部18、実回転速度算出部17、回転制御部12および駆動波形生成部13などの機能を、回転制御処理方法を実行するプログラムとしたり、AD変換回路診断部19、AD変換誤差算出部20および電流検出回路診断部21の機能を、診断処理の方法を実行するプログラムとしたりしてメモリなどに記憶させる。あるいは、AD変換誤差算出部20の変換誤差を算出する方法や、変換誤差に基づきAD変換回路の補正値を生成する方法などをメモリなどに記憶させる。そして、マイコン(マイクロコンピュータ)がそれらのプログラムを実行するような構成とすることによっても、本実施の形態を実現できる。また、マイコンの機能とともに、マイコンの基準クロックを生成するクロック発生回路23やAD変換回路22も含めた制御部11を1チィップのLSI(大規模集積回路)とするような構成とすることも可能である。
 例えば、マイコンによって、周波数が変化するパルス信号PlsをクロックパルスClkに基づいて生成し、RCフィルタ26に印加し、キャパシタ28の電圧を入力としたAD変換回路22の出力値と、キャパシタ28の充電時間から算出したAD変換値との差分に基づき変換誤差を算出するような、AD変換回路の変換誤差の算出方法が実現できる。また、マイコンによって、変換誤差に基づきAD変換回路の補正値を生成することによって、AD変換回路の補正値の生成方法が実現できる。
 (実施の形態2)
 図4は、本発明の実施の形態2におけるブラシレスモータ駆動装置60の構成を示すブロック図である。図4でも、本ブラシレスモータ駆動装置60にブラシレスモータ40を接続した構成の一例を示している。このような構成により、実施の形態1と同様に、ブラシレスモータ駆動装置60は、外部からの指令に従った回転動作をするようにブラシレスモータ40を駆動制御する。
 実施の形態1との比較において、本実施の形態では、制御部61が、実施の形態1での制御部11の構成に加えて、補正テーブル生成部32および補正テーブル33をさらに備えている。なお、それ以外の構成については、実施の形態1と同じであり、詳細な説明は省略する。
 実施の形態1で説明したように、AD変換誤差算出部20は、AD変換回路22の入力電圧Vinを変更したそれぞれの出力値Digを用いて、AD変換における標準の値からの変換誤差であるオフセットAdosを算出している。本実施の形態では、これらのオフセットAdosを利用して、出力値Digであるデジタル信号Dig1~3の補正を行う構成としている。
 このような補正を行うため、本実施の形態では、補正テーブル33をモータ位置算出部18の入力側に配置している。すなわち、補正テーブル33は、各AD変換回路22から供給されるデジタル信号Dig1~3に対して、テーブルに格納した補正値によって補正し、モータ位置算出部18へと出力している。また、補正テーブル生成部32は、AD変換誤差算出部20で順次算出されるオフセットAdosを補正テーブル33に格納することによって、補正テーブル33を生成している。
 より具体的には、まず、AD変換回路診断部19は、キャパシタ電圧Vcの最小値Vcminに対する出力値Digが正常判定範囲内であって、異常でない場合は、この出力値Digをゼロ点オフセットZofとして、補正テーブル生成部32に供給する。そして、補正テーブル生成部32は、補正用データとしてのゼロ点オフセットZofを補正テーブル33へ格納する。例えば、下限電圧Vminに対する正常判定範囲が「0」~「5」である場合、AD変換回路診断部19は、出力値Digが「7」であればAD変換回路22の異常と判定する。また、AD変換回路診断部19は、出力値が「4」であれば異常ではないと判定し、この場合、補正テーブル生成部32が、ゼロ点オフセットZofを「4」として補正テーブル33に格納する。
 次に、AD変換誤差算出部20は、算出されたオフセットAdosが所定の正常判定範囲を逸脱しない場合は、オフセットAdosを補正テーブル生成部32に供給する。そして、補正テーブル生成部32は、出力値Digと、それに対応させてオフセットAdosとを、補正テーブル33に格納する。例えば、オフセットAdosの所定の正常判定範囲が-5~+5である場合、AD変換値(理論値)Acが「17」、AD変換値(実測)Digが「13」ならオフセットAdosが「4」となり、正常判定範囲を逸脱していないので、補正テーブル生成部32は、出力値Dig=「13」に対するオフセットAdosを「4」として、補正テーブル33へ格納する。
 補正テーブル33は、第1~第3ADの変換回路22に対して、それぞれ別個に生成され、全範囲の出力値Digに対するオフセットAdosを格納している。もし、一部の出力値Digに対するオフセットAdosが格納されていない場合は、図5のように、スプライン曲線などにより補間することも可能である。
 以上のように生成した補正テーブル33は、図4に示すように各AD変換回路22の出力側に配置し、電流検出回路15の検出電圧の補正などに用いる。例えば、電流検出回路15の出力のAD変換値(実測値)をオフセット分だけ補正することで、モータ位置算出部18で正確なロータ位置を算出できる。そして、その結果、実回転速度算出部17で正確な実回転速度を算出できるので、回転制御部12で的確な速度制御やトルク制御が可能となる。
 なお、実施の形態1および実施の形態2において、制御部11はデジタル回路などによる機能ブロックを含む構成例を挙げて説明したが、例えば、プログラムのような処理手順に基づく処理で行うような構成であってもよい。すなわち、例えば、モータ位置算出部18、実回転速度算出部17、回転制御部12および駆動波形生成部13などの機能を、回転制御処理方法を実行するプログラムとしたり、AD変換回路診断部19、AD変換誤差算出部20および電流検出回路診断部21の機能を、診断処理の方法を実行するプログラムとしたりしてメモリなどに記憶させる。あるいは、AD変換誤差算出部20の変換誤差を算出する方法や、変換誤差に基づきAD変換回路の補正値を生成する方法などをメモリなどに記憶させる。そして、マイコン(マイクロコンピュータ)がそれらのプログラムを実行するような構成とすることによっても、本実施の形態を実現できる。また、マイコンの機能とともに、マイコンの基準クロックを生成するクロック発生回路23やAD変換回路22も含めた制御部11を1チィップのLSI(大規模集積回路)とするような構成とすることも可能である。
 例えば、マイコンによって、周波数が変化するパルス信号PlsをクロックパルスClkに基づいて生成し、RCフィルタ26に印加し、キャパシタ28の電圧を入力としたAD変換回路22の出力値と、キャパシタ28の充電時間から算出したAD変換値との差分に基づき変換誤差を算出するような、AD変換回路の変換誤差の算出方法が実現できる。また、マイコンによって、変換誤差に基づきAD変換回路の補正値を生成することによって、AD変換回路の補正値の生成方法が実現できる。
 また、電流検出回路15の出力だけでなく、温度センサや油圧センサなどAD変換回路22に入力される全てのセンサ検出値も、高精度に算出できるようになるため、これらセンサによる保護機能(高温、高圧異常)の検出バラツキを低減することができる。
 また、RCフィルタ26へのパルス周波数が、1パルス毎に増加するため、モータ制御回路から発生する電磁ノイズの周波数が分散し、ピーク値が低下する。これにより、EMC(Electro-Magnetic Compatibility)対策部品を削減することができる。
 また、多数あるAD変換回路毎に複雑な診断用回路を追加する必要がないため、ピン数が少ない小型マイコンと安価な回路構成とで容易に実現でき、回路のコストを抑制することができる。
 以上により、これらの回転誤差やトルク誤差に対する余裕を確保するために大きなモータや回路基板を搭載する必要がなくなり、冷却ファンの小型化・軽量化を図ることができる。
 本発明のブラシレスモータ駆動方法および駆動装置は、簡単な構成で高精度な速度制御およびトルク制御が可能となる。本発明のモータ駆動方法およびモータ駆動装置は、特に高効率、低騒音が要求される冷却ファンやブロアに好適である。
 10,60  ブラシレスモータ駆動装置
 11,61  制御部
 12  回転制御部
 13  駆動波形生成部
 14  インバータ回路
 15  電流検出回路
 17  実回転速度算出部
 18  モータ位置算出部
 19  AD変換回路診断部
 20  AD変換誤差算出部
 21  電流検出回路診断部
 22,221,222,223  AD変換回路
 23  クロック発生回路
 24  タイマ回路
 25  パルス出力回路
 26  RCフィルタ
 27  抵抗
 28  キャパシタ
 29  グランド
 31  メモリ
 32  補正テーブル生成部
 33  補正テーブル
 40  ブラシレスモータ
 41  コイル
 51  通信部
 52  クロック誤差率測定部
 100  上位コントローラ

Claims (8)

  1. ブラシレスモータを駆動制御するブラシレスモータ駆動装置であって、
    前記ブラシレスモータの巻線を通電駆動するインバータ回路と、
    前記巻線の電流値を検出する電流検出回路と、
    前記ブラシレスモータを回転制御するための制御部と、
    抵抗とキャパシタとを含み構成されたRCフィルタとを含み、
    前記制御部は、
    前記インバータを駆動するための信号を生成する駆動制御部と、
    動作周期の基準となるクロックパルスを発生するクロック発生回路と、
    周波数が変化するパルス信号を、前記クロックパルスに基づいて生成し、前記RCフィルタに印加するパルス出力回路と、
    前記RCフィルタの前記キャパシタおよび前記電流検出回路に接続されたAD変換回路と、
    前記AD変換回路の変換誤差を算出するAD変換誤差算出部とを備え、
    前記AD変換誤差算出部は、
    前記キャパシタの電圧を入力とした前記AD変換回路の出力値と、前記キャパシタの充電時間から算出したAD変換値との差分に基づき、前記変換誤差を算出することを特徴とするブラシレスモータ駆動装置。
  2. 前記パルス出力回路は、前記RCフィルタへ1パルス毎に周波数が変化するパルス信号を出力し、
    前記AD変換誤差算出部は、前記クロックパルスの所定サイクル数経過後の前記差分に基づき、前記変換誤差を算出することを特徴とする請求項1に記載のブラシレスモータ駆動装置。
  3. 前記パルス出力回路が前記RCフィルタへ出力する前記パルス信号は、Highレベル期間が、パルス毎に変化するカウント数だけ前記クロックパルスをカウントしたパルス幅であり、
    前記AD変換誤差算出部は、前記パルス信号のHighレベル期間によって前記キャパシタに充電される充電時間を算出し、この充電時間から前記AD変換回路の入力電圧を推定し、前記AD変換値を算出することを特徴とする請求項2に記載のブラシレスモータ駆動装置。
  4. 前記AD変換誤差算出部は、外部から指令として入力される通信のための通信用パルス信号の周期と、前記クロックパルスの周期とからクロック誤差率を算出し、前記クロック誤差率で補正して、前記充電時間を算出することを特徴とする請求項3に記載のブラシレスモータ駆動装置。
  5. 前記AD変換回路の出力値を補正する補正テーブルと、
    前記補正テーブルを生成する補正テーブル生成部とをさらに備え、
    前記補正テーブル生成部は、前記AD変換誤差算出部が算出した前記変換誤差を補正値として、補正テーブルを生成することを特徴とする請求項1に記載のブラシレスモータ駆動装置。
  6. 前記AD変換回路の異常の有無を診断するAD変換回路診断部をさらに備え、
    前記AD変換回路診断部は、前記RCフィルタへ印加する前記パルス信号がLowの状態であって、前記RCフィルタのキャパシタ電圧を入力とした前記AD変換回路の出力値が所定の範囲から逸脱している場合は、前記AD変換回路の異常と判定することを特徴とする請求項1に記載のブラシレスモータ駆動装置。
  7. 前記AD変換誤差算出部は、前記RCフィルタへ印加する前記パルス信号がHighの状態であって、算出した前記変換誤差が所定の範囲から逸脱している場合は、前記AD変換回路の異常と判定することを特徴とする請求項1に記載のブラシレスモータ駆動装置。
  8. 前記電流検出回路の異常の有無を診断する電流検出回路診断部をさらに備え、
    前記電流検出回路診断部は、前記ブラシレスモータの回転動作を停止中であって、前記電流検出回路の出力値を入力としたAD変換回路の出力値が所定の範囲から逸脱している場合は、電流検出回路の異常と判定することを特徴とする請求項1に記載のブラシレスモータ駆動装置。
PCT/JP2015/001178 2014-05-28 2015-03-05 ブラシレスモータ駆動装置 WO2015182020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580027713.XA CN106464175B (zh) 2014-05-28 2015-03-05 无刷电动机驱动装置
EP15800076.0A EP3136583B1 (en) 2014-05-28 2015-03-05 Brushless motor drive device
JP2016523104A JP6089215B2 (ja) 2014-05-28 2015-03-05 ブラシレスモータ駆動装置
US15/310,721 US10199966B2 (en) 2014-05-28 2015-03-05 Brushless motor drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109795 2014-05-28
JP2014109795 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182020A1 true WO2015182020A1 (ja) 2015-12-03

Family

ID=54698385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001178 WO2015182020A1 (ja) 2014-05-28 2015-03-05 ブラシレスモータ駆動装置

Country Status (5)

Country Link
US (1) US10199966B2 (ja)
EP (1) EP3136583B1 (ja)
JP (1) JP6089215B2 (ja)
CN (1) CN106464175B (ja)
WO (1) WO2015182020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097255A (ja) * 2017-11-20 2019-06-20 キヤノン株式会社 モータ制御装置、シート搬送装置及び画像形成装置置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186758A1 (ja) * 2018-03-28 2019-10-03 新電元工業株式会社 駆動装置、駆動方法、駆動プログラムおよび電動車両
JPWO2020149002A1 (ja) * 2019-01-18 2021-11-25 パナソニックIpマネジメント株式会社 モータ制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863447A (ja) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd Ad変換器内蔵マイクロコンピュータ
JP2005218275A (ja) * 2004-02-02 2005-08-11 Daikin Ind Ltd モータのコイル温度検出装置
WO2012066800A1 (ja) * 2010-11-15 2012-05-24 株式会社 東芝 電流検出装置及びモータ制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836447A (ja) 1994-07-22 1996-02-06 Hitachi Ltd ペン入力型情報処理装置
JPH08230651A (ja) * 1995-02-25 1996-09-10 Mazda Motor Corp 車両の制御装置
US5694014A (en) * 1995-08-22 1997-12-02 Honeywell Inc. Active hand controller redundancy and architecture
US5990656A (en) * 1998-11-06 1999-11-23 Quantum Corporation Frequency detector
JP2000269812A (ja) * 1999-01-13 2000-09-29 Nec Corp A/d変換装置
JP2004343878A (ja) * 2003-05-15 2004-12-02 Nissan Motor Co Ltd 電動機の制御装置
JP2005016958A (ja) * 2003-06-23 2005-01-20 Fanuc Ltd モータ駆動装置
JP4779793B2 (ja) * 2006-05-01 2011-09-28 株式会社デンソー Ad変換装置及び電子制御装置
JP4950824B2 (ja) * 2007-09-28 2012-06-13 株式会社東芝 回転機の制御装置、制御システムおよび制御方法
JP4683088B2 (ja) * 2008-07-31 2011-05-11 ソニー株式会社 位相同期回路並びに記録再生装置および電子機器
CN101499753B (zh) * 2009-03-10 2011-08-10 常州合泰微特电机有限公司 基于永磁无刷直流电机的无刷伺服控制系统和驱动装置
JP5824660B2 (ja) * 2010-07-12 2015-11-25 パナソニックIpマネジメント株式会社 位相ずれ検出装置、モータ駆動装置、およびブラシレスモータ、並びに位相ずれ検出方法
JP5413424B2 (ja) 2011-08-24 2014-02-12 パナソニック株式会社 モータ駆動装置およびブラシレスモータ
KR101288196B1 (ko) * 2011-09-09 2013-07-19 삼성전기주식회사 초기 보정 기능을 갖는 모터 구동 장치 및 방법
JP5351304B2 (ja) * 2012-04-19 2013-11-27 ファナック株式会社 Δς変調型ad変換器を有するモータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863447A (ja) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd Ad変換器内蔵マイクロコンピュータ
JP2005218275A (ja) * 2004-02-02 2005-08-11 Daikin Ind Ltd モータのコイル温度検出装置
WO2012066800A1 (ja) * 2010-11-15 2012-05-24 株式会社 東芝 電流検出装置及びモータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136583A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097255A (ja) * 2017-11-20 2019-06-20 キヤノン株式会社 モータ制御装置、シート搬送装置及び画像形成装置置
JP2021192589A (ja) * 2017-11-20 2021-12-16 キヤノン株式会社 モータ制御装置及び画像形成装置
JP7210672B2 (ja) 2017-11-20 2023-01-23 キヤノン株式会社 モータ制御装置及び画像形成装置

Also Published As

Publication number Publication date
CN106464175A (zh) 2017-02-22
CN106464175B (zh) 2018-03-13
EP3136583B1 (en) 2019-05-08
US10199966B2 (en) 2019-02-05
EP3136583A1 (en) 2017-03-01
JPWO2015182020A1 (ja) 2017-04-20
JP6089215B2 (ja) 2017-03-08
US20170077852A1 (en) 2017-03-16
EP3136583A4 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5413424B2 (ja) モータ駆動装置およびブラシレスモータ
JP4530726B2 (ja) スイッチトリラクタンス駆動装置の回転子位置検出
JP2008219954A (ja) 同期モータ駆動装置および方法
JP2005168287A (ja) 負荷の下で動作するモータの効率を最適化する方法及び装置
JP6089215B2 (ja) ブラシレスモータ駆動装置
US20170054391A1 (en) System and Method for Motor Control Using Position Sensors
US8421390B2 (en) Fan motor control device
JP5094674B2 (ja) モーター制御装置及びその方法
JP2010119220A (ja) モータ駆動制御装置
JP6586639B2 (ja) モータ調整システム
JP6051415B2 (ja) ブラシレスモータ制御装置およびその診断処理方法
US11722087B2 (en) PWM signal measurement device, motor drive control device, PWM signal measurement method, and motor drive control method
JP6544141B2 (ja) モータ駆動装置
JP6623621B2 (ja) モータ駆動装置
JP6117663B2 (ja) モータ駆動制御装置及びモータ駆動制御装置の制御方法
JP5668939B2 (ja) モーター制御回路、モーター駆動装置及びモーター制御方法
JP5967662B2 (ja) モータ制御のための逆起電力検出
JP3696785B2 (ja) モータ制御装置
US10651769B2 (en) Motor drive control device and motor drive control method
JP2013102567A (ja) モータ制御装置
JP7276453B2 (ja) 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法
WO2016084295A1 (ja) モータ駆動装置
JP2004019461A (ja) 圧縮機用電動機の制御装置
WO2016084294A1 (ja) モータ駆動装置
WO2017085820A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523104

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15310721

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015800076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE