WO2015180469A1 - 光开关和波分复用光系统 - Google Patents

光开关和波分复用光系统 Download PDF

Info

Publication number
WO2015180469A1
WO2015180469A1 PCT/CN2014/095613 CN2014095613W WO2015180469A1 WO 2015180469 A1 WO2015180469 A1 WO 2015180469A1 CN 2014095613 W CN2014095613 W CN 2014095613W WO 2015180469 A1 WO2015180469 A1 WO 2015180469A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
input
array
micromirror
port
Prior art date
Application number
PCT/CN2014/095613
Other languages
English (en)
French (fr)
Inventor
章春晖
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14892967.2A priority Critical patent/EP3139202A4/en
Publication of WO2015180469A1 publication Critical patent/WO2015180469A1/zh
Priority to US15/360,642 priority patent/US10031294B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3542Non-blocking switch, e.g. with multiple potential paths between multiple inputs and outputs, the establishment of one switching path not preventing the establishment of further switching paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/3556NxM switch, i.e. regular arrays of switches elements of matrix type constellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction

Definitions

  • the present invention relates to the field of optical communications, and more particularly to optical switches and wavelength division multiplexed optical systems in the field of communications.
  • the all-optical communication network is a high-speed broadband communication network built on Dense Wavelength Division Multiplexing (DWDM) technology.
  • the all-optical communication network is expanded by DWDM technology on the trunk line and used on the switching node.
  • Optical Add-Drop Multiplexer (“OADM”), Optical Cross-Connect (“OCC”) is implemented, and fiber-to-the-home is implemented through fiber access technology ( Fiber To The Home, referred to as "FTTH”).
  • OXC and OADM are the core components of the all-optical communication network.
  • OXC and OADM are the core components of the all-optical communication network.
  • OXC and OADM optical add-drop multiplexer
  • the OXC equipment of the switching node and the OADM equipment are higher and higher, and the OXC equipment of the switching node and the OADM equipment are The scale is also getting larger and larger, and the technology requires optical switches to have a larger scale and higher integration. The current optical switch cannot meet the throughput requirements of the switching nodes of the metropolitan area network and the backbone network.
  • the embodiments of the present invention provide an optical switch and a wavelength division multiplexing optical system, which can meet the requirements of the switching node for throughput capacity.
  • an optical switch comprising: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, An output collimator array and an output port array coupled to the output collimator array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • all the input micromirrors included in the input micromirror array are deflectable in two directions perpendicular to each other, and all the input micromirrors reflect the incident light of the same incident angle and output the reflected light. There is no common intersection of the maximum movable range on the plane of the output micromirror array, or
  • All of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the micromirror array at the output has a common intersection, and the area of the common intersection is smaller than The area of the reflective area of the output micromirror array.
  • the j-th input micromirror array in the input micromirror array includes an adjacent region of the input end, An input micromirror in an adjacent region of the input end is capable of reflecting the optical signal to an output micromirror in the kth output micromirror array, wherein the kth output micromirror array and the jth output
  • the end micromirror arrays are adjacent, j and k are natural numbers, and j and k are less than or equal to N.
  • the input port array includes a first input port that is included by the optical fiber and the output port array The first output port is coupled such that the optical signal input from a second input port included in the input port array can be output from any one of the second output ports included in the output port array.
  • the N is 6, and the i-th input micromirror array I i includes two input micromirror regions I i,1 and I i,2 ; the i-th output micromirror array O i comprises two output micromirror regions O i,1 and O i,2 ; wherein the input micromirror region I 1,2 Each of the input micromirrors can respectively reflect the optical signal to each output micromirror of the output micromirror region O 2,1 ; I adjacent to the input micromirror region I 1,2 Each of the input micromirrors in 2 , 1 is capable of reflecting the optical signal to each of the output terminals of the O 1 , 2 adjacent to the output micromirror region O 2 , 1 ; Each of the input mirror micromirrors of the mirror regions I 3 , 2 is capable of reflecting the optical signal to each of the output micromirror regions O 4,1 ; and the input micromir
  • the input micromirror regions I i, 1 and I i, 2 respectively include L/2 inputs
  • the micromirror, the output micromirror regions O i,1 and O i,2 respectively comprise L/2 output micromirrors, wherein L is an even number.
  • each of the input micromirror arrays comprises M Input micromirrors
  • each of the output micromirror arrays includes M output micromirrors, where M is a natural number.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the y th second micro mirror array pair corresponding xth input port I 2 y, x
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the input micromirror array and the output The micromirror array includes an input micromirror and an output micromirror respectively as a microelectromechanical system MEMS micromirror.
  • a wavelength division multiplexing optical system comprising an optical switch, m1 demultiplexers DEMUX and m2 multiplexers MUX, according to an embodiment of the invention
  • the optical switch includes: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, an output collimator array, and collimating with the output end Array of output ports connected to the array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • all the input micromirrors included in the input micromirror array are deflectable in two directions perpendicular to each other, and all the input micromirrors reflect the incident light of the same incident angle and output the reflected light. There is no common intersection of the maximum movable range on the plane of the output micromirror array, or
  • All of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the micromirror array at the output has a common intersection, and the area of the common intersection is smaller than The area of the reflective area of the output micromirror array;
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array comprises N output micromirror arrays, wherein the ith input micro of the N input micromirror arrays
  • the input micromirror array and the output micromirror array respectively comprise an input micromirror and an output micromirror as a MEMS micromirror;
  • the input port array includes N sets of input port sub-arrays
  • the input collimator array includes N input collimator sub-arrays
  • the output port array includes N sets of output port sub-arrays
  • the output collimator The array includes N output collimator sub-arrays, wherein each set of input port sub-arrays respectively corresponds to one input collimator sub-array and one input micromirror array, and each set of output port sub-arrays and one output respectively The end collimator sub-array corresponds to an output micromirror array;
  • Each set of input port sub-arrays includes M1 input ports, each set of output port sub-arrays includes M2 output ports, and the l1th input port of the i-th input port sub-array and the l1 of the wavelength division multiplexing WDM system
  • the demultiplexer DEMUX outputs the port connection of the i-th wavelength combined optical signal, and the l2th output port in the i-th output port sub-array and the l-th multiplexer MUX of the WDM system input the ith wavelength
  • the wavelength combining optical signal includes at least two wavelengths.
  • an optical switch comprising: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, and an output end collimation Array of arrays and an array of output ports coupled to the array of output collimators,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • the input micromirrors included in the input micromirror array are deflectable in two mutually perpendicular directions;
  • the input micromirror array comprises at least a first input micromirror array and a second input micromirror array
  • the output micromirror array includes at least a third output micromirror array and a fourth output micromirror array; the incident light is reflected by the first input micromirror array and is incident on the third output micromirror array In the reflective region; the incident light is reflected by the first input micromirror array and cannot be incident on the reflective region of the fourth output micromirror array; the incident light passes through the second input After the input micromirror array is reflected, it can be incident on the reflective area of the fourth output micromirror array.
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array further includes a fifth output micromirror array; the incident light passes through the first input After the end micromirror array is reflected, it can also be incident on the reflective area of the fifth output micromirror array, wherein the third output micromirror array and the fifth output micromirror array are adjacent micro mirror arrays.
  • the input port array includes a first input port that is included in the output port array through an optical fiber
  • the first output port is coupled such that the optical signal input from a second input port included in the input port array can be output from any one of the second output ports included in the output port array.
  • the input micromirror array comprises N input micromirror arrays, the N input micromirror arrays
  • the i-th input micromirror array comprises two input micromirror domains I i,1 and I i,2 ;
  • the output micromirror array comprises N output micromirror arrays, the N output micromirrors
  • the i-th output micromirror array in the array comprises two output micromirror domains O i,1 and O i,2 ; each input micromirror in the input micromirror domain I 1,2 can respectively The light signal is reflected to each of the output micromirror domains O 2,1 ; the micromirror of each of the I 2,1 adjacent to the input micromirror domain I 1,2 The optical signal can be respectively reflected to each of the output terminals of the O 1 , 2 adjacent to the output micromirror domain O 2 , 1 ; each input of the input micromirror
  • the input micromirror domains I i, 1 and I i, 2 respectively include L/2 inputs Micromirror
  • the output micromirror domains O i,1 and O i,2 respectively comprise L/2 output micromirrors, where L is an even number.
  • each of the input micromirror arrays comprises M Input micromirrors
  • each of the output micromirror arrays includes M output micromirrors, where M is a natural number.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the yth second micro mirror array pair corresponding to the xth input port I 2 y, x through the optical fiber
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the input micromirror array and the output end includes an input micromirror and an output micromirror respectively as a microelectromechanical system MEMS micromirror.
  • a wavelength division multiplexing optical system comprising an optical switch, a m1 demultiplexer DEMUX and m2 multiplexers MUX, according to an embodiment of the invention
  • the input port array includes N sets of input port sub-arrays, and the input collimator array Include N input collimator sub-arrays, the output port array comprising N sets of output port sub-arrays, the output collimator array comprising N output collimator sub-arrays, wherein each set of input port sub-arrays respectively Corresponding to an input collimator sub-array and an input micromirror array, each set of output port sub-arrays respectively corresponds to an output collimator sub-array and an output micro-mirror array;
  • Each set of input port sub-arrays includes M1 input ports, each set of output port sub-arrays includes M2 output ports, the l1th input port of the i-th input port sub-array and the l2 of the wavelength division multiplexing WDM system
  • the demultiplexer DEMUX outputs the port connection of the i-th wavelength combined optical signal, and the l2th output port in the i-th output port sub-array and the l-th multiplexer MUX of the WDM system input the ith wavelength
  • the optical switch includes: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, an output collimator array, and collimating with the output end Array of output ports connected to the array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • the input micromirror array comprises at least a first input micromirror array and a second input micromirror array
  • the output micromirror array includes at least a third output micromirror array and a fourth output micromirror array; the incident light is reflected by the first input micromirror array and is incident on the third output micromirror array In the reflective region, the incident light is reflected by the first input micromirror array and cannot be incident on the reflective region of the fourth output micromirror array; the incident light can be incident on the second input micromirror array. a fourth output end of the micromirror array in the reflective region;
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array comprises N output micromirror arrays, wherein the ith input micro of the N input micromirror arrays
  • the input micromirror array and the output micromirror array respectively comprise an input micromirror and an output micromirror as a MEMS micromirror of the microelectromechanical system.
  • the wavelength combining optical signal includes at least two wavelengths.
  • the optical switch and the wavelength division multiplexed optical system are designed to reflect the incident light of the same incident angle by the optical switch and the wavelength division multiplexed optical system.
  • the reflected light, the maximum movable range on the plane of the output micromirror array does not have a common intersection, or all the input micromirrors reflect the incident light of the same incident angle and then output the reflected light, at the output end of the micromirror
  • the maximum movable range on the plane of the array has a common intersection, and the area of the common intersection is smaller than the area of the reflective area of the output micromirror array, enabling a large-scale array, thereby meeting the throughput requirements of the switching node. .
  • FIG. 1 is a schematic block diagram of an optical switch in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of an input micromirror in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an input micromirror array and an output micromirror array in accordance with an embodiment of the present invention.
  • FIG 4 is another schematic block diagram of an optical switch in accordance with an embodiment of the present invention.
  • FIG. 5 is still another schematic block diagram of an optical switch in accordance with an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of an optical switch in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an input micromirror array and an output micromirror array in accordance with another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram showing a connection relationship between a first input port and a first output port according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an optical switch in accordance with still another embodiment of the present invention.
  • FIG. 10 is a diagram showing the connection relationship between ports of an optical switch according to still another embodiment of the present invention. Intentional block diagram.
  • FIG. 11 is a schematic block diagram of a wavelength division multiplexed optical system in accordance with an embodiment of the present invention.
  • PON Passive Optical Network
  • GPON Gigabit-capable Passive Optical Network
  • 10GPON 10G bit/S Ethernet Passive Optical Network
  • 10Gigabit-capable Passive Optical Network 10Gigabit-capable Passive Optical Network
  • XG PON 10Gigabit-capable Passive Optical Network
  • FIG. 1 shows a schematic block diagram of an optical switch 100 in accordance with an embodiment of the present invention.
  • the optical switch 100 includes an input port array 110, an input collimator array 120 connected to the input port array 110, an input micromirror array 130, an output micromirror array 140, and an output terminal. a direct array 150 and an output port array 160 coupled to the output collimator array 150,
  • the input collimator array 120 is configured to collimate and expand the optical signal input by the input port array 110, and inject the collimated and expanded optical signals into the input micromirror array 130. ;
  • the input micromirror array 130 is configured to reflect the optical signal output by the input collimator array 120 to the output micromirror array 140;
  • the output micromirror array 140 is configured to reflect the optical signal reflected by the input micromirror array 130 to the output collimator array 150;
  • the output collimator array 150 is configured to couple the optical signal reflected by the output micromirror array 140 to the output port array 160;
  • all the input micromirrors included in the input micromirror array 130 can be deflected in two directions perpendicular to each other, and all the input micromirrors reflect the incident light of the same incident angle and output the reflected light,
  • the maximum movable range on the plane of the output micromirror array 140 is not Have a common intersection, or
  • All of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the output micromirror array 140 has a common intersection, and the area of the common intersection Less than the area of the reflective area of the output micromirror array 140.
  • the input port array 110 can include one or more input ports, each of which can be an optical fiber that couples optical signals into the input collimator array 120, each of which can couple optical signals One or more input collimators in the input collimator array 120;
  • the output port array 160 can include one or more output ports, each of which can be used to collimate optical signals from the output Array 150 is coupled to the output fibers of other devices, each of which can couple optical signals from one or more output collimators in output collimator array 150 to other devices.
  • the number of input ports included in the input port array 110 may be equal to or different from the number of output ports included in the output port array 160, and the present invention is not limited thereto.
  • the light output from the fiber and collimator is typically approximated by a Gaussian beam.
  • the larger the beam waist radius of the Gaussian beam the smaller the divergence angle and the longer the distance traveled. Since the beam of the fiber, especially the single-mode fiber, has a small beam waist, in order to make the beam have a long distance of travel, the collimator can be used to convert the beam output from the fiber into a beam of large beam so that the beam can be in free space. The distance traveled farther.
  • the input optical signal enters the optical switch 100 through the input port array 110, and the input collimator array 120 is used for collimating and expanding the optical signal input by the input port array 110.
  • the optical signal of the small waist is transformed into a large beam of light signal to facilitate transmission of a greater distance in free space; the collimated and expanded optical signal is incident on the optical switch 100 by the input collimator array 120 The input micromirror array 130.
  • the input collimator array 120 includes one or more input collimators, and the input collimator array 120 includes the number of input collimators and the input port array 110.
  • the number of input ports included may or may not be equal.
  • the input collimator of the input collimator array 120 has a one-to-one correspondence with the input ports included in the input port array 110, that is, each input collimator corresponds to each An input port.
  • the output collimator array 150 is used to micro The optical signal reflected by mirror array 140 is coupled to the output port array 160.
  • the output collimator array 150 converts the optical signal reflected by the output micromirror array 140 into an optical signal of the beamlet waist to reduce the divergence angle, thereby facilitating coupling of the optical signal into the output port array 160.
  • the output collimator array 150 includes one or more output collimators, and the output collimator array 150 includes an output collimator and an output port array 160.
  • the number of output ports included may or may not be equal.
  • the output collimator of the output collimator array 150 has a one-to-one correspondence with the output ports included in the output port array 160, that is, each output collimator corresponds to each. An output port.
  • each of the input micromirrors included in the input micromirror array 130 can be deflected in two directions perpendicular to each other, so that the reflected light reflected by the incident light can be changed within a certain range.
  • the direction is such that the input optical signal can be reflected to the output micromirror array 140.
  • the input micromirror can include a lens and a frame for fixing the lens, wherein the lens can be deflected about a y-axis, the frame can be deflected about the x-axis, and the x-axis and the y-axis are perpendicular to each other.
  • the input micromirrors can be deflected in two directions perpendicular to each other, whereby the reflection direction of the reflected light outputted after the incident light is reflected can be changed within a certain range. It should be understood that the embodiment of the present invention is described by taking only the input micromirror shown in FIG. 2 as an example, but the present invention is not limited thereto.
  • each input micromirror included in the output micromirror array 140 can also be deflected in two directions perpendicular to each other, so that the reflected light reflected by the incident light can be changed within a certain range.
  • the input optical signal can be reflected to the output collimator array 150, but embodiments of the invention are not limited thereto.
  • each input micromirror included in the input micromirror array 130 has a corresponding relationship with each input collimator included in the input collimator array 120, for example, optionally, the input end
  • the micromirror has a one-to-one correspondence with the input collimator, that is, each input micromirror included in the input micromirror array 130 has a one-to-one correspondence with each input port included in the input port array 110; similarly,
  • Each output micromirror included in the output micromirror array 140 has a corresponding relationship with each output collimator included in the output collimator array 150, for example, optionally, the output micromirror and the output collimate
  • the devices have a one-to-one correspondence, that is, each output micromirror included in the output micromirror array 140 has a one-to-one correspondence with each output port included in the output port array 160.
  • the invention is not limited to this.
  • the input end micromirrors can be deflected in two directions perpendicular to each other, the reflected light outputted by the input end micromirror after reflecting the incident light has a plane on the output micromirror array 140 at the output end.
  • a certain movable range wherein all the input micromirrors reflect the incident light of the same incident angle and output the reflected light
  • the maximum movable range on the plane of the micro mirror array 140 at the output end has no common intersection. That is, on the plane of the output micromirror array 140, no region can be located within the maximum movable range of the reflected light output from all the input micromirrors.
  • full crossover means that an optical signal input from any one of the input ports can be output from any one of the output ports of the optical switch, that is, each input terminal of the input micromirror array.
  • the micromirrors are capable of reflecting incident light of the same incident angle to any of the output micromirrors in the output micromirror array.
  • all of the input end micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the micro mirror array 140 at the output end is also There may be a common intersection, but the area of the common intersection is smaller than the area of the reflective area of the output micromirror array 140.
  • the input micromirror array 130 includes input micromirrors 131 and 132, since the input micromirrors 131 and 132 can be deflected in two directions perpendicular to each other, thereby inputting the micromirrors 131 and 132.
  • the reflected light outputted after the incident light is reflected has a certain movable range on the plane of the output micromirror array 140, for example, as shown by S1 and S2 in FIG. 3, respectively. Where S3 is the intersection of S1 and S2.
  • all of the reflected light output from the input micromirror has no common intersection or the same intersection on the maximum movable range on the plane of the output micromirror array; or even There is a common intersection, the area of the common intersection being smaller than the area of the reflective area of the output micromirror array.
  • the optical switch is designed such that all the input end micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable on the plane of the micromirror array at the output end. There is no common intersection of the ranges, or all of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the output micromirror array has a common intersection, and the common The area of the intersection is smaller than the area of the reflective area of the output micromirror array, enabling a large-scale array to meet the throughput requirements of the switching node.
  • the input micromirror array 130 includes N input micromirror arrays
  • the input micromirror array 130 includes six input micromirror arrays, and each input micromirror array may include, for example, four input micromirrors; the output micromirror array 140 includes six An output micromirror array, each output micromirror array may also include, for example, four output micromirrors; wherein each input micromirror in the i-th input micromirror array is capable of reflecting the optical signal Up to any one of the four output micromirrors included in the i-th output micromirror array, as shown by the solid line and the dashed line in FIG.
  • a micro mirror array pair formed by any one of the input micromirror arrays and the corresponding output micromirror array has a full cross characteristic to the inside, that is, each of the micro mirror array pairs
  • Each of the input micromirrors can reflect the optical signal to any one of the micromirror array pairs, that is, all the input micromirrors of the micromirror array pair reflect the incident light of the same incident angle.
  • the output reflected light has a common intersection with the maximum movable range on the plane of the output micromirror in the pair of micromirror arrays, and the area of the common intersection is greater than or equal to the reflection area of all the output micromirrors area.
  • the input port array 110 may include N input port sub-arrays
  • the input collimator array 120 may include N input collimator sub-arrays
  • the output collimator array 150 may include N output collimation
  • the sub-array of the output port array 160 may also include N output port sub-arrays
  • the N input micromirror arrays have a one-to-one correspondence with the N input collimator sub-arrays and the N input port sub-arrays
  • the collimator sub-array and the N output port sub-arrays also have a one-to-one correspondence, but the embodiment of the present invention is not limited thereto.
  • the j-th input micromirror array in the input micromirror array 130 includes an input adjacent region, and an input in the adjacent region of the input end
  • the end micromirror is capable of reflecting the optical signal to an output micromirror in the kth output micromirror array, wherein the kth output micromirror array is adjacent to the jth output micromirror array, j and k is a natural number, and j and k are less than or equal to N.
  • one or more input micromirror arrays in the input micromirror array 130 have adjacent regions of the input end, and the input micromirrors in the adjacent regions of the input end can not only reflect the optical signals
  • Any one of the output micromirrors in the corresponding output micromirror array is also capable of reflecting the optical signal to an output micromirror in the output micromirror array adjacent to the corresponding output micromirror array.
  • the jth input micromirror array may be a specific one or more input micromirror arrays in the input micromirror array 130, or may be the input micromirror array 130. Any one of the input micromirror arrays, the embodiment of the invention is not limited thereto.
  • the j-th input micromirror array includes an input adjacent region adjacent to the kth input micromirror array, and the input adjacent region may be one of the jth input micromirror arrays included or Some or all of the reflection regions of the plurality of input micromirrors are not limited thereto.
  • the optical signal is first input to the input collimator array through the input port array, and the optical signal passing through the input collimator array reaches the input micromirror array, and the input micromirror array
  • the input micromirror corresponding to each input beam can deflect the beam to different micromirrors of the output micromirror array by deflecting different angles; the corresponding micromirror on the output micromirror array can be deflected by the corresponding micromirror Reflected to the corresponding output collimator array; the output collimator array then transforms the beam and couples to the corresponding output port array to complete the optical switch scheduling function.
  • the optical signal entering the optical switch from each of the input port and the input collimator can only be incident on one input micromirror corresponding thereto; similarly Each optical signal reflected from the output micromirror can only enter an output collimator corresponding to it and output from the corresponding output port.
  • an optical switch may include: N input port sub-arrays, N Output sub-array, N input collimator sub-arrays, N input micromirror arrays, N output micromirror arrays, and N output collimator subarrays, wherein N input micromirror arrays There is a one-to-one correspondence with the N input collimator sub-arrays and the N input port sub-arrays, and the N output micromirror arrays and the N output collimator sub-arrays and the N output port sub-arrays also have a A correspondence.
  • each input micromirror in the i-th input micromirror array is capable of reflecting the optical signal incident through the input collimator sub-array to the corresponding i-th output micromirror array.
  • Any one of the output micromirrors; similarly, any one of the output micromirrors of the i-th output micromirror array can deflect the reflected beam of the output micromirror to the corresponding i-th by deflecting different angles
  • the output is in a collimator sub-array for output from a corresponding output port of the corresponding i-th output port sub-array.
  • an optical signal entering from any one of the i-th input port sub-arrays can be output from any one of the i-th output port sub-arrays, as shown by the solid and dashed lines in FIG. And, for example, as shown by the solid line in FIG.
  • the input micromirror in the adjacent region of the input end can reflect the optical signal to the kth
  • the output micromirrors in the output micromirror array are outputted from the output port of the kth output port sub-array after passing through the kth output collimator sub-array.
  • the number of devices included in each sub-array is equal as an example, but the present invention is not limited thereto, and the number of devices included in each sub-array may also be unequal, for example, The number of input micromirrors included in the input micromirror array may not be equal to the number of output micromirrors included in the output micromirror array.
  • the optical switch is designed such that all the input end micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable on the plane of the micromirror array at the output end.
  • the range has no common intersection, or all input micromirrors have the same incidence
  • the reflected light output after the incident light of the angle is reflected has a common intersection with the maximum movable range on the plane of the micromirror array at the output end, and the area of the common intersection is smaller than the area of the reflective area of the output micromirror array.
  • a large-scale array can be realized, which can meet the switching node's throughput capacity requirements.
  • the input port array 110 includes a first input port connected to the first output port included in the output port array 160 through the optical fiber 170, such that the input port is The optical signal input by a second input port of the array 110 can be output from any one of the second output ports included in the output port array 160.
  • the optical signals can be fully crossed within the respective sub-array ranges, that is, the optical signals entering from each input port of one input port sub-array can be correspondingly
  • the output port is output in any one of the output ports; however, the optical signal cannot be fully crossed between the input ports and the output ports of the entire optical switch.
  • a portion of the input port can be connected to a portion of the output port through the optical fiber, and then an optical signal entering from a portion of the input port in the input port sub-array can be from an output port sub-array adjacent to the corresponding output port sub-array.
  • the output characteristics of the partial output ports enable the optical signal to be fully crossed between the input ports and the output ports of the optical switch, that is, the optical signals input from any one of the second input ports of the optical switch can be Any one of the second output ports of the optical switch outputs.
  • the first input port represents an input port of the input port array that is connected to the output port through the optical fiber; correspondingly, the first output port represents that the output port array is connected to the input port through the optical fiber.
  • An output port; the second input port represents an input port of the input port array that is not connected to the output port through the optical fiber, that is, an input port of the input port array other than the first input port; correspondingly, the second output port represents an output An output port in the port array that is not connected to the input port through the optical fiber, that is, an output port in the output port array other than the first output port.
  • the N is 6, and the i-th input micromirror array I i includes two input micromirror regions I i, 1 and I i, 2 ;
  • the i-th output micromirror array O i comprises two output micromirror regions O i,1 and O i,2 ; wherein each input micromirror of the input micromirror region I 1,2 can respectively Reflecting the optical signal to each output micromirror of the output micromirror region O 2,1 ; each input terminal of I 2,1 adjacent to the input micromirror region I 1,2
  • the mirrors are respectively capable of reflecting the optical signal to each of the output terminals of the O 1 , 2 adjacent to the output micromirror region O 2 , 1 ; each of the input micromirror regions I 3 , 2
  • the input micromirrors are respectively capable of reflecting the optical signal to each of the output micromirror regions O 4,1 ; and the I 4,1 adjacent to the input micromirror
  • each input micromirror of the input micromirror region I 1, 2 can reflect the optical signal to each of the output micromirror regions O 2,1 ; the micromirror region of the input end
  • Each input micromirror of I 2,1 , I 3,2 and I 4,1 is capable of reflecting the optical signal to the output micromirror regions O 1,2 , O 4,1 and O 3,2 respectively
  • Each of the output micromirrors; and the connection relationship between each of the first input ports and each of the first output ports is as shown in FIG.
  • the input port corresponding to the input micromirror regions I 1 , 2 , I 2 , 1 , I 3 , 2 and I 4, 1 is reserved for receiving external optical signal input.
  • a second input port; an output port corresponding to the output micromirror regions O 2,1 , O 1,2 , O 4,1 and O 3,2 is a reserved second output for outputting an optical signal to the outside port.
  • the input micromirror regions I 1,1 , I 2,2 , I 3,1 , I 4,2 , I 5,1 , I 5,2 , I 6,1 and I 6, 2 corresponding first input port and output micromirror area O 5,1 , O 5,2 , O 6,1 , O 6,2 , O 3,1 , O 4,2 , O 1 1 , the first output ports corresponding to O 2, 2 correspond one-to-one, and are connected by optical fibers.
  • the input port corresponding to the input micromirror region I 1,1 corresponds to the output port corresponding to the output micromirror region O 5,1 , and is connected by an optical fiber; for example, the input micromirror region I 3
  • the corresponding input port of the 1 corresponds to the output port corresponding to the output micromirror area O 6,1 , and is connected by an optical fiber.
  • the first input port includes micro-mirror regions I 1,1 , I 2,2 , I 3,1 , I 4,2 , I 5,1 , I 5,2 , I 6,1 with each input terminal.
  • Each input port corresponding to I 6, 2 similarly, the first output port includes micro-mirror regions O 5,1 , O 5,2 , O 6,1 , O 6,2 , O 3 with each output , 1 , O 4 , 2 , O 1 , 1 and O 2, 2 correspond to each output port.
  • an optical signal input from any one of the second input ports can be output from any one of the second output ports of the optical switch.
  • the path of the optical signal transmitted between each input port and each output port may be as shown in Table 1 below.
  • the symbol “ ⁇ ” indicates the path in which the optical signal is transmitted from the input micromirror to the output micromirror in space
  • the symbol “-” indicates the path in which the optical signal is transmitted in the optical fiber.
  • the optical signal can be input from the input port 1, the input port 2, the input port 3, and the input port 4, and respectively from the output port 1 Output port 2, output port 3, and output port 4; on the other hand, each input terminal of the input micromirror regions I 1,2 , I 2,1 , I 3,2 and I 4,1
  • the mirror can respectively reflect the optical signal to the output micromirror region O 2,1 , O 1,2 , O 4,1 and O 3,2 for each of the output micromirrors, and thus the optical signal can be input from the input port 1 Input port 2, input port 3, and input port 4 are input from output port 2, output port 1, output port 4, and output port 3, respectively.
  • the optical signal For optical signals input from other input ports and output from other output ports, the optical signal needs to be transmitted through 3 internal spatial path transmissions and 2 external optical path transmissions.
  • the input optical signal is deflected by the input micromirror, that is, transmitted through the internal spatial path, and can reach the output micromirror region O 3,1 ;
  • the optical signal is transmitted through an external optical fiber, that is, through an external optical fiber path, and can reach the input micromirror region I 5,1 ;
  • the optical signal is transmitted through the internal spatial path and can be reached from the input micromirror region I 5,1 .
  • the output micromirror region O 5,1 the optical signal is transmitted through the external fiber path to reach the input micromirror region I 1,1 ; thus, the optical signal is transmitted through the internal spatial path, and can be input from the input
  • the end micromirror region I 1,1 is transmitted to the output micromirror region O 1,2 and is output from the corresponding output port 1.
  • each of the second input ports may also correspond to other input micromirror regions, and each of the second output ports may also correspond to other output micromirror regions, as long as Input port 1 is adjacent to input port 2, and input port 3 is adjacent to input port 4; accordingly, output port 1 is adjacent to output port 2, and output port 3 is adjacent to output port 4.
  • the input micromirror regions I i,1 and I i,2 respectively comprise L/2 input micromirrors
  • the output micromirror regions O i,1 and O i 2 includes L/2 output micromirrors, respectively, where L is an even number.
  • the reflective area of the input micromirror region or the output micromirror region may be half of the reflective area of the entire input micromirror array or the output micromirror array, but the invention is not limited thereto.
  • the ratio of the reflection area of the input micromirror region or the output micromirror region to the reflection area of the entire input micromirror array or the output micromirror array may also be other values, such as 2/5, 1/3, and the like.
  • each of the input micromirror arrays comprises M input micromirrors
  • each of the output micromirror arrays comprises M output micromirrors, wherein M is a natural number. That is, the number of input micromirrors included in each input micromirror array is equal to the number of output micromirrors included in each output micromirror array.
  • the embodiments of the present invention are merely described by way of example, and the present invention is not limited thereto.
  • the number of input micromirrors included in the input micromirror array may be the same as the output of the corresponding output micromirror array.
  • the number of end micromirrors is equal, but the number of input micromirrors included in different input micromirror arrays may not be equal; for example, the number of input micromirrors included in each input micromirror array is different from that of each output micro
  • the mirror array includes an unequal number of output micromirrors.
  • the optical switch comprises six input micromirror arrays and corresponding six output micromirror arrays, assuming that each input micromirror array comprises two input micros Mirror, each output micromirror array comprises two output micromirrors, that is, each input micromirror region and each output micromirror region respectively comprise an input micromirror and an output micromirror. Therefore, as shown in FIG. 8, the optical switch includes four input ports, that is, input terminals respectively included with the input micromirror regions I 1 , 2 , I 2 , 1 , I 3 , 2 , and I 4, 1 . The corresponding input port of the mirror; the optical switch further comprises four output ports, that is, an output micromirror respectively included with the output micromirror regions O 2,1 , O 1,2 , O 4,1 and O 3,2 The corresponding output port.
  • a 4*4 optical switch can be formed by six 2*2 optical switches, and the total number of input ports or the total number of output ports of the optical switch is 12 (ie, 4*3). And if according to complete The non-blocking CLOS structure to form a 4*4 optical switch requires two 2*3 optical switches, three 2*2 optical switches, and two 3*2 optical switches, which are optical switches of the CLOS structure. The total number of input ports or the total number of output ports is 16 (ie 4*3). Therefore, the structure of the optical switch according to the embodiment of the present invention is superior to other topologies of pure mathematics, and the port utilization is higher, that is, the expansion of the optical switch can be realized with fewer ports.
  • each micromirror array including two micromirrors is described by taking each micromirror array including two micromirrors as an example. If each micromirror array includes M micromirrors, the embodiment of the present invention can form 2M* through the M*M optical switch. 2M optical switch, especially when M is relatively large, the structure of the optical switch is better than other topological structures of pure mathematics, and the port utilization is higher, that is, the port can be expanded by using fewer ports.
  • M is 320
  • the optical switch of 640*640 is formed by the optical switch of 320*320 as an example. If a completely non-blocking CLOS structure is used, 640 2*3 optical switches and 3 optical devices are needed.
  • the optical switch of 320*320 that is, the total number of input ports or the total number of output ports of the optical switch of the assembled CLOS structure is 640*4; and if the optical switch of the embodiment of the invention is used, the total number of input ports or output of the optical switch The total number of ports is 640*3. Therefore, the port utilization of the optical switch according to the embodiment of the present invention is higher; in addition, the optical switch constructed by the embodiment of the present invention can also have a completely non-blocking full-crossing characteristic, which can be used for a backbone network switching node or a data center. The scene of a large-scale optical switch.
  • the optical switch is designed such that all the input end micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable on the plane of the micromirror array at the output end. There is no common intersection of the ranges, or all of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the output micromirror array has a common intersection, and the common The area of the intersection is smaller than the area of the reflection area of the output micromirror array, and a large-scale array can be realized, thereby meeting the requirement of the switching node for the throughput capacity.
  • the optical switch of the embodiment of the invention also has a high port utilization. Rate, that is, the expansion of the optical switch can be realized by using fewer ports, so that it can be used in a scenario such as a backbone switching node or a data center that requires a large-scale optical switch.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the yth second micro mirror array pair corresponding to the xth input port I 2 y, x through the optical fiber
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the input micromirror array 130 includes N input micromirror arrays
  • the output micromirror array 140 includes N output micromirror arrays, wherein the N input micromirrors
  • Each input micromirror in the i-th input micromirror array in the array is capable of reflecting the optical signal to each output of the i-th output micromirror array in the N output micromirror arrays
  • connection relationship between the first micro mirror array pair, the second micro mirror array pair and the third micro mirror array pair port may be as shown in FIG. 10, wherein the input port and the output are
  • the connection between the ports or the connection between the output port and the input port can be realized by the external optical fiber 170, as shown by the solid line between the ports in FIG. 10, but the embodiment of the present invention is not limited thereto.
  • a large-scale non-blocking full-crossing optical switch can be constructed for use in a backbone network node or a data center.
  • the 3D-MEMS process level can make a 25*25 optical switch
  • a larger-scale partial cross optical switch can be made, including 25 sets of 13*25 full cross ports.
  • the group, the 25-group 25*13 full-cross port group, and the 25-group 25*25 full-cross port group can form a full-crossing optical switch with a size of 325*325 by the solution described in the embodiment of the present invention. Therefore, the scheme uses a partially crossed optical switch to construct a topology, which is more integrated and smaller in size than a separate small-scale optical switch to construct a topology.
  • the cross-scheduling time of the switching nodes is an important indicator in the WDM system.
  • the cross-scheduling time mainly depends on the switching time of the optical switch, and the switching time of the optical switch is related to the angle of the micro-mirror deflection during the switching process.
  • the large-scale non-blocking optical switch constructed by the embodiment of the invention only needs to realize full crossover within the micromirror array, and does not need to realize full crossover of all ports within the entire optical switch, thereby making the deflection angle of the micromirror equal to the same scale.
  • the full cross light switch is small and the switching time is faster. Therefore, the switching node constructed by the large-scale optical switch formed by the embodiment of the present invention has a short cross scheduling time.
  • the optical switch is designed such that all the input end micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable on the plane of the micromirror array at the output end. There is no common intersection of the ranges, or all of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the output micromirror array has a common intersection, and the common The area of the intersection is smaller than the area of the reflection area of the output micromirror array, and a large-scale array can be realized, thereby meeting the requirement of the switching node for the throughput capacity.
  • the optical switch according to the embodiment of the invention has more integration. High, small size and short switching time.
  • an embodiment of the present invention further provides a wavelength division multiplexing optical system, which includes an optical switch, m1 demultiplexers DEMUX, and an optical switch according to an embodiment of the present invention.
  • M2 multiplexer MUX M2 multiplexer MUX
  • the optical switch includes: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, an output collimator array, and collimating with the output end Array of output ports connected to the array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • all the input micromirrors included in the input micromirror array are deflectable in two directions perpendicular to each other, and all the input micromirrors reflect the incident light of the same incident angle and output the reflected light.
  • the maximum movable range on the plane where the output micromirror array is located does not have a common intersection, or the inverse of the output of all the input micromirrors for the incident light of the same incident angle.
  • the maximum movable range of the light, the plane of the micromirror array at the output has a common intersection, and the area of the common intersection is smaller than the area of the reflective area of the output micromirror array;
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array comprises N output micromirror arrays, wherein the ith input micro of the N input micromirror arrays
  • the input port array 110 includes N sets of input port sub-arrays
  • the input collimator array 120 includes N input collimator sub-arrays
  • the output port array 160 includes N sets of output port sub-arrays
  • the collimator array 150 includes N output collimator sub-arrays, wherein each set of input port sub-arrays respectively corresponds to an input collimator sub-array and an input micromirror array, each set of output port sub-arrays Corresponding to an output collimator sub-array and an output micromirror array, respectively;
  • Each set of input port sub-arrays includes M1 input ports, each set of output port sub-arrays includes M2 output ports, and the l1th input port of the i-th input port sub-array and the l1 of the wavelength division multiplexing WDM system
  • the demultiplexer DEMUX outputs a port connection of the i-th wavelength combined optical signal, and the l2th output port of the i-th output port sub-array and the l-th multiplexer MUX of the WDM system input the ith
  • the input micromirror array and the output micromirror array respectively comprise an input micromirror and an output micromirror as a microelectromechanical system MEMS micromirror.
  • the wavelength combined optical signal includes at least two wavelengths.
  • the wavelength division multiplexing optical system of the embodiment of the present invention is configured to design the optical switch included in the wavelength division multiplexing optical system to include at least a first input micromirror array, a second input micromirror array, and a third output end. a micromirror array and a fourth output micromirror array, wherein the incident light is reflected by the first input micromirror array and is incident on a reflective area of the third output micromirror array; the incident light passes through the first input After the end micromirror array is reflected, it cannot be incident on the reflective area of the fourth output micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array. In this way, a large-scale array can be realized, thereby meeting the requirements of the switching node for throughput capacity.
  • the number of DEMUX and MUX can also be different, for example, m1>m2, or m2>m1.
  • each set of output port sub-array includes an output port number of M, where M is greater than or equal to m. In particular, if there are local up and down waves, the number of ports M is greater than m.
  • any input port in each group can establish optical connection with any output port in the group, that is, the input and output ports in each group can achieve full cross-connection; in addition, some ports can also be scheduled to adjacent groups, and Part of the output port output of the adjacent group.
  • WDM light from m dimensions is separated into N different wavelengths via respective DEMUX.
  • ⁇ 1 of each dimension is respectively connected to the input port of the first group of input port sub-arrays as the first wavelength combined optical signal;
  • ⁇ 2 of each dimension is respectively connected to the input port of the second group of input port sub-arrays, as the first The two wavelengths combine optical signals; the remaining wavelengths of each dimension are sequentially connected to the input ports of each group of input port sub-arrays in such a manner that all ⁇ i from m dimensions are connected to the i-th input port of the optical switch Subarray.
  • each MUX input ⁇ 1 are respectively connected to the output ports of the first group of output port sub-arrays of the optical switch; the input ports of each MUX input ⁇ 2 are respectively connected to the output ports of the second group of output port sub-arrays of the optical switch; Similarly, the input port of the ith wavelength combining optical signal for each MUX input is connected to the output port of the ith group output port sub-array of the optical switch. Therefore, each single-wavelength light outputted from the optical switch output port to the same dimension is multiplexed into the optical fiber of the corresponding dimension by the MUX corresponding to each dimension, and transmitted to the next switching node. If there are redundant input and output ports in each set of input and output port sub-arrays, then these remaining input ports are used for local wavelength upload, and the remaining output ports are used for local wavelength download.
  • the WDM signal from dimension a When the wavelength ⁇ c from dimension a is going to dimension b, the WDM signal from dimension a first The DEMUX corresponding to the dimension a is demultiplexed into light of each single wavelength, and the light ⁇ c of the cth wavelength is sent to an input port of the c-group input port sub-array of the partial cross-optical switch; according to an embodiment of the present invention
  • the optical switch establishes an optical path connection between the c-th a-th input port and the c-th b-th output port, such that ⁇ c from dimension a is sent to the c-th output port sub-array corresponding to dimension b
  • An output port where a, b, and c are natural numbers, a and b are less than or equal to m, and c is less than or equal to N.
  • the MUX corresponding to the dimension b is multiplexed with the ⁇ c outputted by the optical switch and the other single-wavelength signals that need to go to the dimension b, and then outputted, thereby completing the wavelength scheduling, and the optical signal outputted after multiplexing is sent.
  • the corresponding single fiber is transmitted to the next switching node, so that the switching node completes the wavelength level scheduling between the dimensions.
  • ⁇ c is first sent to the optical switch for the uploading input port in the c-group input port sub-array of the optical switch, and then through the c-group input and output port. Between the two, the ⁇ c is sent to the output port of the c-group output port sub-array corresponding to the dimension a.
  • the MUX corresponding to the dimension a multiplexes ⁇ c and other single wavelength wavelengths going to the dimension a, and sends them into the optical fiber corresponding to the dimension a for transmission, thereby completing the uploading of the local wavelength.
  • the input wavelength ⁇ c can be sent to the output port reserved for download in the c-group output port sub-array through the scheduling between the c-group input and output ports, thereby completing Download local wavelengths.
  • the wavelength combined optical signal includes at least two wavelengths.
  • the wavelength combining optical signal includes two or more wavelengths.
  • the optical switch according to the embodiment of the present invention is not limited to performing scheduling of only one wavelength for each group of input and output ports.
  • two wavelength optical signals or multiple wavelength optical signals may be placed in the same group for scheduling.
  • the number of ports in each group of ports should be greater than or equal to 2m or N*m.
  • the wavelength combined optical signal may also include only one wavelength, and the present invention is not limited thereto.
  • only 2 ⁇ m is taken as an example, but the present invention is not limited thereto.
  • the value of m may also be 1.
  • the input micromirror array 130 and the output micromirror array 140 respectively include an input micromirror and an output micromirror as a MEMS micromirror.
  • the present invention is not limited thereto.
  • the input micromirror and the output micromirror according to an embodiment of the present invention may be a piezoelectric ceramic based micromirror or the like.
  • an exchange node that accommodates 80 waves of 8 dimensions and reserves 50% of up-and-down waves is taken as an example. If the node at this time uses the full-cross optical switch in the prior art as a switch, For the piece, you need a 960 ⁇ 960 optical switch. At present, the industry's largest optical switch is based on 3D-MEMS technology, but limited by the 3D-MEMS micromirror process, it is impossible to achieve 960 ⁇ 960 optical switch.
  • cross-optical switches have basically the same requirements for 3D-MEMS process and 12 ⁇ 12 3D-MEMS optical switches. Many devices in the industry have such a process.
  • the j-th input micromirror array in the input micromirror array includes an adjacent region of the input end, and the input micromirror in the adjacent region of the input end is capable of the light
  • the signal is reflected to the output micromirror in the kth output micromirror array, wherein the kth output micromirror array is adjacent to the jth output micromirror array, j and k are natural numbers, and j and k is less than or equal to N.
  • the input port array includes a first input port connected to the first output port included in the output port array through an optical fiber, so that a second input port input from the input port array is included.
  • the optical signal can be output from any one of the second output ports included in the output port array.
  • the N is 6, and the i-th input micromirror array I i includes two input micromirror regions I i,1 and I i,2 ; the ith output micro The mirror array O i comprises two output micromirror regions O i,1 and O i,2 ; wherein each input micromirror of the input micromirror region I 1,2 is capable of reflecting the optical signal to Each output micromirror of the output micromirror region O 2,1 ; each of the input micromirrors of I 2,1 adjacent to the input micromirror region I 1,2 can respectively be the light The signal is reflected to each of the output terminals of the O 1 , 2 adjacent to the output micromirror region O 2 , 1 ; each of the input micromirror regions I 3 , 2 can be respectively micromirror Reflecting the optical signal to each output micromirror in the output micromirror region O 4,1 ; each input terminal I 4 , 1 adjacent to the input micromirr
  • the input micromirror regions I i,1 and I i,2 respectively comprise L/2 input micromirrors
  • the output micromirror regions O i,1 and O i 2 includes L/2 output micromirrors, respectively, where L is an even number.
  • each of the input micromirror arrays includes M inputs. End micromirrors, and each of the output micromirror arrays includes M output micromirrors, where M is a natural number.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the yth second micro mirror array pair corresponding to the xth input port I 2 y, x through the optical fiber
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the wavelength division multiplexing optical system of the embodiment of the present invention by designing the optical switch included in the wavelength division multiplexing optical system, includes at least a first input micromirror array, a second input micromirror array, and a third output micro a mirror array and a fourth output micromirror array, wherein the incident light is reflected by the first input micromirror array and is incident on a reflective area of the third output micromirror array; the incident light passes through the first input end After the micromirror array is reflected, it cannot be incident on the reflective area of the fourth output micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array.
  • an embodiment of the present invention provides an optical switch, including: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, An output collimator array and an output port array coupled to the output collimator array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and the collimated and expanded optical signals are incident on the input micromirror array;
  • the input micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to the output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • the input micromirror array comprises at least a first input micromirror array and a second input micromirror array
  • the output micromirror array includes at least a third output micromirror array and a fourth output micromirror array; the incident light is reflected by the first input micromirror array and is incident on the third output micromirror array In the reflective region, the incident light is reflected by the first input micromirror array and cannot be incident on the reflective region of the fourth output micromirror array; the incident light can be incident on the second input micromirror array.
  • the fourth output is within the reflective area of the micromirror array.
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array comprises N output micromirror arrays, wherein the N input micromirrors
  • each input micromirror in the first input micromirror array is capable of reflecting incident light to each output micromirror in the third output micromirror array;
  • Each input micromirror in the two-input micromirror array is capable of reflecting incident light to each of the output micromirrors in the fourth output micromirror array; but each input in the first input micromirror array Neither the end micromirror can reflect incident light to any of the output micromirrors in the third output micromirror array.
  • the first input micromirror array is configured to reflect incident light incident on any one of the input end micromirrors into the third output micromirror array. Any of the output micromirrors and is not reflected to any of the output micromirrors in the fourth output micromirror array; similarly, the second input micromirror array is used to be incident on the subarray The incident light on any of the input micromirrors is reflected onto any of the output micromirrors in the fourth output micromirror array.
  • the optical switch of the embodiment of the present invention is designed to include at least a first input micromirror array, a second input micromirror array, a third output micromirror array, and a fourth output micromirror array.
  • the incident light is reflected by the first input micromirror array and can be incident on the reflective area of the third output micromirror array; the incident light cannot be incident on the fourth after being reflected by the first input micromirror array.
  • the output end is in the reflective area of the micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array, thereby enabling a large-scale array, thereby being able to satisfy The switching node's requirements for throughput capacity.
  • the output micromirror array further includes a fifth output micromirror array; the incident light is further incident on the fifth output end after being reflected by the first input micromirror array In the reflective area of the mirror array, wherein the third output micromirror array and the fifth output micromirror array are adjacent micro mirror arrays.
  • the output micromirror array may further include a fifth output micromirror array adjacent to the third output micromirror array
  • the input micromirror array may further include a six-input micromirror array, wherein the first input micromirror array corresponds to the third output micromirror array; the second input micromirror array corresponds to the fourth output micromirror array; and the fifth output micro
  • the mirror array corresponds to the sixth input micromirror array, that is, each input micromirror in the sixth input micromirror array is capable of reflecting incident light to each output end of the fifth output micromirror array.
  • a mirror wherein each input micromirror in the first input micromirror array is further capable of reflecting incident light to each of the output micromirrors in the fifth output micromirror array.
  • the first input micromirror array is configured to reflect incident light incident on any one of the input sub-mirrors into the third or fifth output micromirror array.
  • the third output micromirror array and the fifth output micromirror array are adjacent micromirror arrays.
  • the input port array includes a first input port connected to the first output port included in the output port array through an optical fiber, so that a second input port input from the input port array is included.
  • the optical signal can be included from the array of output ports A second output port output.
  • the first input port represents an input port of the input port array that is connected to the output port through the optical fiber; correspondingly, the first output port represents that the output port array is connected to the input port through the optical fiber.
  • An output port; the second input port represents an input port of the input port array that is not connected to the output port through the optical fiber, that is, an input port of the input port array other than the first input port; correspondingly, the second output port represents an output An output port in the port array that is not connected to the input port through the optical fiber, that is, an output port in the output port array other than the first output port.
  • the input micromirror array comprises N input micromirror arrays, and the ith input micromirror array in the N input micromirror arrays comprises two input micros Mirror fields I i,1 and I i,2 ;
  • the output micromirror array comprises N output micromirror arrays , the i-th output micromirror array of the N output micromirror arrays comprising two outputs Micro-mirror domains O i,1 and O i,2 ; each input micromirror in the input micromirror domain I 1,2 can respectively reflect the optical signal to the output micromirror domain O 2,1
  • Each of the output micromirrors; each input micromirror of I 2,1 adjacent to the input micromirror domain I 1,2 is capable of reflecting the optical signal to the micromirror domain O 2, 1 each of the adjacent O 1, 2 micro-mirrors; each of the input micro-mirror domains I 3 , 2 micro-mirrors can reflect the optical signal
  • the input micromirror domains I i,1 and I i,2 respectively comprise L/2 input micromirrors
  • the output micromirror domains O i,1 and O i 2 includes L/2 output micromirrors, respectively, where L is an even number.
  • each of the input micromirror arrays comprises M input micromirrors
  • each of the output micromirror arrays comprises M output micromirrors, wherein M is a natural number.
  • the optical switch of the embodiment of the present invention is designed to include at least a first input micromirror array, a second input micromirror array, a third output micromirror array, and a fourth output micromirror array.
  • the incident light is reflected by the first input micromirror array and can be incident on the reflective area of the third output micromirror array; the incident light cannot be incident on the fourth after being reflected by the first input micromirror array.
  • the output end is in the reflective area of the micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array, thereby enabling a large-scale array, thereby being able to satisfy
  • the optical switch of the embodiment of the present invention also has a higher port utilization ratio, that is, the optical switch can be extended by using fewer ports, so that it can be used for the backbone network switching node or data. A scene such as a center that requires a large-scale optical switch.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the yth second micro mirror array pair corresponding to the xth input port I 2 y, x through the optical fiber
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the input micromirror array and the output micromirror array respectively comprise an input micromirror and an output micromirror as a microelectromechanical system MEMS micromirror.
  • the cross-scheduling time of the switching nodes is an important indicator in the WDM system.
  • the cross-scheduling time mainly depends on the switching time of the optical switch, and the switching time of the optical switch is related to the angle of the micro-mirror deflection during the switching process.
  • the large-scale non-blocking optical switch constructed by the embodiment of the invention only needs to realize full crossover within the micromirror array, and does not need to realize full crossover of all ports within the entire optical switch, thereby making the deflection angle of the micromirror equal to the same scale.
  • the full cross light switch is small and the switching time is faster. Therefore, the switching node constructed by the large-scale optical switch formed by the embodiment of the present invention has a short cross scheduling time.
  • the optical switch of the embodiment of the present invention is designed to include at least a first input micromirror array, a second input micromirror array, a third output micromirror array, and a fourth output micromirror array.
  • the incident light is reflected by the first input micromirror array and can be incident on the reflective area of the third output micromirror array; the incident light cannot be incident on the fourth after being reflected by the first input micromirror array.
  • the output end is in the reflective area of the micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array, thereby enabling a large-scale array, thereby being able to satisfy
  • the switch node has a throughput capacity requirement; in addition, the optical switch according to the embodiment of the invention has the characteristics of higher integration, small size, and short switching time.
  • An embodiment of the present invention further provides a wavelength division multiplexing optical system including an optical switch, an m1 demultiplexer DEMUX, and m2 multiplexers MUX according to an embodiment of the present invention.
  • the input port array includes N sets of input port sub-arrays
  • the input collimator array includes N input collimator sub-arrays
  • the output port array includes N sets of output port sub-arrays
  • the output collimator The array includes N output collimator sub-arrays, wherein each set of input port sub-arrays respectively corresponds to one input collimator sub-array and one input micromirror array, and each set of output port sub-arrays and one output respectively The end collimator sub-array corresponds to an output micromirror array;
  • Each set of input port sub-arrays includes M1 input ports, each set of output port sub-arrays includes M2 output ports, the l1th input port of the i-th input port sub-array and the l2 of the wavelength division multiplexing WDM system
  • the optical switch includes: an input port array, an input collimator array connected to the input port array, an input micromirror array, an output micromirror array, an output collimator array, and collimating with the output end Array of output ports connected to the array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port array, and inject the collimated and expanded optical signal into the input micromirror array;
  • the input The end micromirror array is configured to reflect the optical signal output by the input collimator array to the output micromirror array;
  • the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to An output collimator array;
  • the output collimator array is configured to couple the optical signal reflected by the output micromirror array to the output port array;
  • the input micromirror array comprises at least a first input micromirror array and a second input micromirror array
  • the output micromirror array includes at least a third output micromirror array and a fourth output micromirror array; the incident light is reflected by the first input micromirror array and is incident on the third output micromirror array In the reflective region, the incident light is reflected by the first input micromirror array and cannot be incident on the reflective region of the fourth output micromirror array; the incident light can be incident on the second input micromirror array. a fourth output end of the micromirror array in the reflective region;
  • the input micromirror array comprises N input micromirror arrays
  • the output micromirror array comprises N output micromirror arrays, wherein the ith input micromirror arrays in the N input micromirror arrays
  • the input micromirror array and the output micromirror array respectively comprise an input micromirror and an output micromirror as a MEMS micromirror of the microelectromechanical system.
  • the number of DEMUX and MUX can also be different, for example, m1>m2, or m2>m1.
  • the wavelength combined optical signal includes at least two wavelengths.
  • the output micromirror array further includes a fifth output micromirror array; the incident light is further incident on the fifth output end after being reflected by the first input micromirror array In the reflective area of the mirror array, wherein the third output micromirror array and the fifth output micromirror array are adjacent micro mirror arrays.
  • the input port array includes a first input port connected to the first output port included in the output port array through an optical fiber, so that a second input port input from the input port array is included.
  • the optical signal can be output from any one of the second output ports included in the output port array.
  • the input micromirror array comprises N input micromirror arrays, and the ith input micromirror array in the N input micromirror arrays comprises two input micros Mirror fields I i,1 and I i,2 ;
  • the output micromirror array comprises N output micromirror arrays , the i-th output micromirror array of the N output micromirror arrays comprising two outputs Micro-mirror domains O i,1 and O i,2 ; each input micromirror in the input micromirror domain I 1,2 can respectively reflect the optical signal to the output micromirror domain O 2,1
  • Each of the output micromirrors; each input micromirror of I 2,1 adjacent to the input micromirror domain I 1,2 is capable of reflecting the optical signal to the micromirror domain O 2, 1 each of the adjacent O 1, 2 micro-mirrors; each of the input micro-mirror domains I 3 , 2 micro-mirrors can reflect the optical signal
  • the input micromirror domains I i,1 and I i,2 respectively comprise L/2 input micromirrors
  • the output micromirror domains O i,1 and O i 2 includes L/2 output micromirrors, respectively, where L is an even number.
  • each of the input micromirror arrays comprises M input micromirrors
  • each of the output micromirror arrays comprises M output micromirrors, wherein M is a natural number.
  • each of the first micromirror array pairs corresponds to S input ports in the input port array and 2S-1 output ports in the output port array
  • each of the second micro mirror array pairs and the input R input ports in the port array correspond to R output ports in the output port array
  • each of the third micro mirror array pairs and 2S-1 of the input port arrays and the output port S corresponding output ports in the array
  • the xth first micromirror array is connected to the corresponding yth output port O 1 x, y and the yth second micro mirror array pair corresponding to the xth input port I 2 y, x through the optical fiber
  • the xth third micro mirror array is connected to the corresponding yth input port I 3 x, y and the yth second micro mirror array pair corresponding xth output port O 2 y, x through an optical fiber;
  • the wavelength division multiplexed optical system may include an optical switch that may correspond to the optical switch 100 according to an embodiment of the present invention, and that the wavelength division multiplexed optical system includes some or all of the optical switches.
  • the characteristics, the structure, the function, and the like of the optical switch 100 in the embodiment of the present invention are the same or similar, and therefore will not be further described herein for brevity.
  • the wavelength division multiplexing optical system of the embodiment of the present invention is configured to design the optical switch of the wavelength division multiplexing optical system to include at least a first input micromirror array, a second input micromirror array, and a third output micro a mirror array and a fourth output micromirror array, wherein the incident light is reflected by the first input micromirror array and is incident on a reflective area of the third output micromirror array; the incident light passes through the first input end After the micromirror array is reflected, it cannot be incident on the reflective area of the fourth output micromirror array; and the incident light is reflected by the second input micromirror array and can be incident on the reflective area of the fourth output micromirror array.
  • an embodiment of the present invention further provides an optical switch array, where the optical switch array includes a plurality of optical switches according to an embodiment of the present invention, wherein the optical switch includes: an input port, and an input terminal connected to the input port a direct array, an input micromirror array, an output micromirror array, an output collimator array, and an output port connected to the output collimator array,
  • the input collimator array is configured to collimate and expand the optical signal input by the input port, and the collimated and expanded optical signal is incident on the input micromirror array; the input end a micro mirror array for reflecting the optical signal output by the input collimator array to the output micromirror Array; the output micromirror array is configured to reflect the optical signal reflected by the input micromirror array to the output collimator array; the output collimator array is configured to reflect the output micromirror array The optical signal is coupled to the output port;
  • all the input micromirrors included in the input micromirror array are deflectable in two directions perpendicular to each other, and all the input micromirrors reflect the incident light of the same incident angle and output the reflected light. There is no common intersection of the maximum movable range on the plane of the output micromirror array, or
  • All of the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the micromirror array at the output has a common intersection, and the area of the common intersection is smaller than The area of the reflective area of the output micromirror array.
  • the optical switch array of the embodiment of the present invention is designed such that the optical switch included in the optical switch array is configured to reflect the incident light of the same incident angle by all the input micromirrors, and the reflected light is output at the output end.
  • the maximum movable range on the plane has no common intersection, or all the input micromirrors reflect the incident light of the same incident angle and output the reflected light, and the maximum movable range on the plane of the output micromirror array has a common
  • the intersection of the common intersection and the area of the reflection area of the output micromirror array enables a large-scale array, thereby meeting the requirements of the switching node for throughput capacity.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种光开关和波分复用光系统,其中光开关(100)包括输入端口阵列(110)、输入端准直器阵列(120)、输入端微镜阵列(130)、输出端微镜阵列(140)、输出端准直器阵列(150)和输出端口阵列(160)。输入端微镜阵列(130)包括的所有的输入端微镜在相互垂直的两个方向上能够偏转。所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列(140)所在平面上的最大可移动范围没有共同的交集,或具有共同的交集且交集的面积小于输出端微镜阵列(140)的反射区域面积。该光开关和波分复用光系统能够实现大规模阵列,满足交换节点对吞吐容量的要求。

Description

光开关和波分复用光系统
本申请要求于2014年5月27日提交中国专利局、申请号为201410228121.1、发明名称为“光开关和波分复用光系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信领域,尤其涉及通信领域中的光开关和波分复用光系统。
背景技术
全光通信网是建立在密集波分复用(Dense Wavelength Division Multiplexing,简称为“DWDM”)技术上的高速宽带通信网,该全光通信网在干线上采用DWDM技术扩容,在交换节点上采用光分插复用器(Optical Add-Drop Multiplexer,简称为“OADM”)、光交叉连接器(Optical Cross-Connect,简称为“OXC”)来实现,并通过光纤接入技术实现光纤到户(Fiber To The Home,简称为“FTTH”)。OXC和OADM是全光通信网的核心器件,研制光交叉连接器(OXC)和光分插复用器(OADM)成为建设大容量通信干线网络十分迫切的任务。而OXC和OADM的核心是光开关和光开关阵列。
然而,随着波分复用(Wavelength Division Multiplexing,简称为“WDM”)光网络中的城域网和骨干网的交换节点的吞吐容量要求越来越高,交换节点的OXC设备和OADM设备的规模也越来越大,技术上要求光开关具有更大的规模和更高的集成度。目前的光开关不能满足城域网和骨干网的交换节点对吞吐容量的要求。
发明内容
有鉴于此,本发明实施例提供了一种光开关和波分复用光系统,能够满足交换节点对吞吐容量的要求。
第一方面,提供了一种光开关,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、 输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或
该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于该输出端微镜阵列的反射区域的面积。
结合第一方面,在第一方面的第一种可能的实现方式中,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该输入端微镜阵列中的第j个输入端微镜子阵列包括输入端相邻区域,该输入端相邻区域中的输入端微镜能够将该光信号反射到第k个输出端微镜子阵列中的输出端微镜,其中,该第k个输出端微镜子阵列与第j个输出端微镜子阵列相邻,j和k为自然数,且j和k小于或等于N。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该输入端口阵列包括的第一输入端口通过光纤与该输出端口阵列包括的第一输出端口连接,使得从该输入端口阵列包括的一个第二输入端口输入的该光信号能够从该输出端口阵列包括的任意一个第二输出端口输出。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实 现方式中,该N为6,第i个输入端微镜子阵列Ii包括两个输入端微镜区域Ii,1和Ii,2;第i个输出端微镜子阵列Oi包括两个输出端微镜区域Oi,1和Oi,2;其中,该输入端微镜区域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O2,1中的每个输出端微镜;与该输入端微镜区域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜区域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜区域I3,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O4,1中的每个输出端微镜;与该输入端微镜区域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与所述输出端微镜区域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,该输入端微镜区域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜区域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
结合第一方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,每个该输入端微镜子阵列包括M个输入端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
结合第一方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y 个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
结合第一方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
第二方面,提供了一种波分复用光系统,该波分复用系统包括根据本发明实施例的光开关,m1个解复用器DEMUX和m2个复用器MUX,
其中,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或
该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于该输出端微镜阵列的反射区域的面积;
其中,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N;
其中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜;
其中,该输入端口阵列包括N组输入端口子阵列,该输入端准直器阵列包括N个输入端准直器子阵列,该输出端口阵列包括N组输出端口子阵列,该输出端准直器阵列包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l1个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与该WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2。。
结合第二方面,在第二方面的第一种可能的实现方式中,该波长组合光信号至少包括两种波长。
第三方面,提供了一种光开关,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转;该输入端微镜阵列至少包括第一输入端微镜子阵列和第二输入端微镜子阵列;该输出端微镜阵列至少包括第三输出端微镜子阵列和第四输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;入射光经该第二输 入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内。
结合第三方面,在第三方面的第一种可能的实现方式中,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该输出端微镜阵列还包括第五输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后还能够入射在该第五输出端微镜子阵列的反射区域内,其中该第三输出端微镜子阵列和该第五输出端微镜子阵列为相邻的微镜阵列。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该输入端口阵列包括的第一输入端口通过光纤与该输出端口阵列包括的第一输出端口连接,使得从该输入端口阵列包括的一个第二输入端口输入的该光信号能够从该输出端口阵列包括的任意一个第二输出端口输出。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,该输入端微镜阵列包括N个输入端微镜子阵列,该N个输入端微镜子阵列中的第i个输入端微镜子阵列包括两个输入端微镜子域Ii,1和Ii,2;该输出端微镜阵列包括N个输出端微镜子阵列,该N个输出端微镜子阵列中的第i个输出端微镜子阵列包括两个输出端微镜子域Oi,1和Oi,2;该输入端微镜子域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O2,1中的每个输出端微镜;与该输入端微镜子域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜子域I3,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O4,1中的每个输出端微镜;与该输入端微镜子域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜子域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜子域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输 出端口通过光纤连接;其中N=6。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,该输入端微镜子域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜子域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
结合第三方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,每个该输入端微镜子阵列包括M个输入端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
结合第三方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第七种可能的实现方式中,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
结合第三方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第三方面的第八种可能的实现方式中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
第四方面,提供了一种波分复用光系统,该波分复用光系统包括根据本发明实施例的光开关,m1个解复用器DEMUX和m2个复用器MUX,
其中,该输入端口阵列包括N组输入端口子阵列,该输入端准直器阵列 包括N个输入端准直器子阵列,该输出端口阵列包括N组输出端口子阵列,该输出端准直器阵列包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l2个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与该WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2;
其中,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转;该输入端微镜阵列至少包括第一输入端微镜子阵列和第二输入端微镜子阵列;该输出端微镜阵列至少包括第三输出端微镜子阵列和第四输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内;
其中,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中, N为自然数,且N≥2,i=1,2,…,N;
其中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
结合第四方面,在第四方面的第一种可能的实现方式中,该波长组合光信号至少包括两种波长。
基于上述技术方案,本发明实施例的光开关和波分复用光系统,通过将光开关和波分复用光系统设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的光开关的示意性框图。
图2是根据本发明实施例的输入端微镜的示意性框图。
图3是根据本发明实施例的输入端微镜阵列和输出端微镜阵列的示意性框图。
图4是根据本发明实施例的光开关的另一示意性框图。
图5是根据本发明实施例的光开关的再一示意性框图。
图6是根据本发明另一实施例的光开关的示意性框图。
图7是根据本发明另一实施例的输入端微镜阵列和输出端微镜阵列的示意性框图。
图8是根据本发明另一实施例的第一输入端口与第一输出端口的连接关系的示意性框图。
图9是根据本发明再一实施例的光开关的示意性框图。
图10是根据本发明再一实施例的光开关的各端口之间的连接关系的示 意性框图。
图11是根据本发明实施例的波分复用光系统的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种光网络,包括无源光网络(Passive Optical Network,简称为“PON”),例如:吉比特无源光网络(Gigabit-capable Passive Optical Networks,简称为“GPON”)系统、10G以太网无源光网络(10G bit/S Ethernet Passive Optical Network,简称为“10GEPON”)和10G比特无源光网络(10-Gigabit-capable Passive Optical Network,简称为“XG PON”)等。此外,为了描述方便,下文中将以WDM系统为例进行说明,但本发明并不限于此。
图1示出了根据本发明实施例的光开关100的示意性框图。如图1所示,该光开关100包括:输入端口阵列110、与该输入端口阵列110连接的输入端准直器阵列120、输入端微镜阵列130、输出端微镜阵列140、输出端准直器阵列150以及与该输出端准直器阵列150连接的输出端口阵列160,
其中,该输入端准直器阵列120用于将该输入端口阵列110输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列130;
该输入端微镜阵列130用于将该输入端准直器阵列120输出的该光信号反射到该输出端微镜阵列140;
该输出端微镜阵列140用于将该输入端微镜阵列130反射的该光信号反射到该输出端准直器阵列150;
该输出端准直器阵列150用于将该输出端微镜阵列140反射的该光信号耦合到该输出端口阵列160;
其中,该输入端微镜阵列130包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列140所在平面上的最大可移动范围没 有共同的交集,或
该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列140所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于该输出端微镜阵列140的反射区域的面积。
具体而言,输入端口阵列110可以包括一个或多个输入端口,每个输入端口可以为将光信号耦合进输入端准直器阵列120的输入端光纤,每个输入端光纤可以将光信号耦合进输入端准直器阵列120中的一个或多个输入端准直器;类似地,输出端口阵列160可以包括一个或多个输出端口,每个输出端口可以为将光信号从输出端准直器阵列150耦合到其它器件的输出端光纤,每个输出端光纤可以将光信号从输出端准直器阵列150中的一个或多个输出端准直器耦合进其它器件。
应理解,在本发明实施例中,输入端口阵列110包括的输入端口的数量与输出端口阵列160包括的输出端口的数量可以相等,也可以不相等,本发明并不限于此。
应理解,在本发明实施例中,从光纤和准直器输出的光,一般以高斯光束来进行近似分析。高斯光束的束腰半径越大,则发散角越小,传播的距离越长。由于光纤特别是单模光纤输出的光束的束腰很小,为了使得光束具有较远的传播距离,可以用准直器将光纤输出的光束转换成大束腰的光束,这样光束才能在自由空间中传播较远的距离。
因而,在本发明实施例中,输入的光信号通过输入端口阵列110进入光开关100,该输入端准直器阵列120用于将输入端口阵列110输入的光信号进行准直和扩束,将小束腰的光信号变换成大束腰的光信号,以便于在自由空间中传输更远的距离;经过准直和扩束的光信号由该输入端准直器阵列120入射到光开关100的输入端微镜阵列130。
应理解,在本发明实施例中,该输入端准直器阵列120包括一个或多个输入端准直器,输入端准直器阵列120包括的输入端准直器的数量与输入端口阵列110包括的输入端口的数量可以相等,也可以不相等。优选地,在本发明实施例中,输入端准直器阵列120包括的输入端准直器与输入端口阵列110包括的输入端口具有一一对应的关系,即每个输入端准直器分别对应一个输入端口。
类似地,在本发明实施例中,输出端准直器阵列150用于将该输出端微 镜阵列140反射的该光信号耦合到该输出端口阵列160。例如,该输出端准直器阵列150将该输出端微镜阵列140反射的光信号变换成小束腰的光信号,以减小发散角,从而便于将光信号耦合进输出端口阵列160。
应理解,在本发明实施例中,该输出端准直器阵列150包括一个或多个输出端准直器,输出端准直器阵列150包括的输出端准直器的数量与输出端口阵列160包括的输出端口的数量可以相等,也可以不相等。优选地,在本发明实施例中,输出端准直器阵列150包括的输出端准直器与输出端口阵列160包括的输出端口具有一一对应的关系,即每个输出端准直器分别对应一个输出端口。
在本发明实施例中,输入端微镜阵列130包括的每个输入端微镜在相互垂直的两个方向上能够偏转,从而能够在一定范围内改变对入射光进行反射后输出的反射光反射方向,以能够将输入的光信号反射到输出端微镜阵列140。例如,如图2所示,输入端微镜可以包括镜片以及用于固定镜片的镜框,其中,该镜片可以绕y轴偏转,该镜框可以绕x轴偏转,且x轴与y轴相互垂直,从而使得该输入端微镜可以在相互垂直的两个方向上偏转,由此能够在一定范围内改变对入射光进行反射后输出的反射光的反射方向。应理解,本发明实施例仅以图2所示的输入端微镜为例进行说明,但本发明并不限于此。
类似地,输出端微镜阵列140包括的每个输入端微镜也可以在相互垂直的两个方向上能够偏转,从而能够在一定范围内改变对入射光进行反射后输出的反射光反射方向,以能够将输入的光信号反射到输出端准直器阵列150,但本发明实施例并不限于此。
在本发明实施例中,输入端微镜阵列130包括的每个输入端微镜与输入端准直器阵列120包括的每个输入端准直器具有对应关系,例如,可选地,输入端微镜与输入端准直器具有一一对应关系,即输入端微镜阵列130包括的每个输入端微镜与输入端口阵列110包括的每个输入端口具有一一对应的关系;类似地,输出端微镜阵列140包括的每个输出端微镜与输出端准直器阵列150包括的每个输出端准直器具有对应关系,例如,可选地,输出端微镜与输出端准直器具有一一对应关系,即输出端微镜阵列140包括的每个输出端微镜与输出端口阵列160包括的每个输出端口具有一一对应的关系。但本发明并不限于此。
在本发明实施例中,由于输入端微镜在相互垂直的两个方向上能够偏转,从而输入端微镜对入射光进行反射后输出的反射光在该输出端微镜阵列140所在平面上具有一定的可移动范围,其中,所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列140所在平面上的最大可移动范围没有共同的交集,即在该输出端微镜阵列140所在平面上,没有一个区域能够位于所有的输入端微镜输出的反射光的最大可移动范围内。这也意味着并不是所有的输入端微镜都能够将相同入射角度的入射光反射到输出端微镜阵列140中的任意一个输出端微镜,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
应理解,在本发明实施例中,“全交叉”指从任意一个输入端口输入的光信号,都能够从该光开关的任意一个输出端口输出,即输入端微镜阵列中的每个输入端微镜都能够将相同入射角度的入射光反射到输出端微镜阵列中的任意一个输出端微镜。
在本发明实施例中,可选地,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列140所在平面上的最大可移动范围也可以具有共同的交集,但该共同的交集的面积小于该输出端微镜阵列140的反射区域的面积。
这也意味着即使所有的输入端微镜都能够将相同入射角度的入射光反射到输出端微镜阵列140中的一些特定的输出端微镜,但并不是所有的输入端微镜都能够将相同入射角度的入射光反射到输出端微镜阵列140中的任意一个输出端微镜,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
例如,如图3所示,输入端微镜阵列130包括输入端微镜131和132,由于输入端微镜131和132在相互垂直的两个方向上能够偏转,从而输入端微镜131和132对入射光进行反射后输出的反射光在该输出端微镜阵列140所在平面上具有一定的可移动范围,例如分别如图3中的S1和S2所示。其中,S3为S1和S2的交集。
但应理解,对于本发明实施例中的光开关,所有的输入端微镜输出的反射光在输出端微镜阵列所在平面上的最大可移动范围上没有共同的交集或相同的交集;或即使具有共同的交集,该共同的交集的面积小于输出端微镜阵列的反射区域的面积。
因此,本发明实施例的光开关,通过将光开关设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
在本发明实施例中,可选地,如图4所示,该输入端微镜阵列130包括N个输入端微镜子阵列,该输出端微镜阵列140包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
具体地,例如如图4所示,输入端微镜阵列130包括6个输入端微镜子阵列,每个输入端微镜子阵列例如可以包括4个输入端微镜;输出端微镜阵列140包括6个输出端微镜子阵列,每个输出端微镜子阵列例如也可以包括4个输出端微镜;其中,第i个输入端微镜子阵列中的每个输入端微镜都能够将该光信号反射到第i个输出端微镜子阵列包括的四个输出端微镜中的任意一个输出端微镜,如图4中的实线和虚线所示。
即在本发明实施例中,对于任意一个输入端微镜子阵列与相应的输出端微镜子阵列形成的微镜子阵列对,该微镜子阵列对内部具有全交叉特性,即微镜子阵列对中的每个输入端微镜都能够将光信号反射到该微镜子阵列对中的任意一个输出端微镜,也即微镜子阵列对中的所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该微镜子阵列对中的输出端微镜所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积大于或等于所有的输出端微镜的反射区域的面积。
进一步地,输入端口阵列110可以包括N个输入端口子阵列,输入端准直器阵列120可以包括N个输入端准直器子阵列,输出端准直器阵列150可以包括N个输出端准直器子阵列,输出端口阵列160也可以包括N个输出端口子阵列,并且N个输入端微镜子阵列与N个输入端准直器子阵列和N个输入端口子阵列具有一一对应关系,N个输出端微镜子阵列与N个输出端 准直器子阵列和N个输出端口子阵列也具有一一对应关系,但本发明实施例并不限于此。
在本发明实施例中,可选地,如图5所示,该输入端微镜阵列130中的第j个输入端微镜子阵列包括输入端相邻区域,该输入端相邻区域中的输入端微镜能够将该光信号反射到第k个输出端微镜子阵列中的输出端微镜,其中,该第k个输出端微镜子阵列与第j个输出端微镜子阵列相邻,j和k为自然数,且j和k小于或等于N。
即在本发明实施例中,输入端微镜阵列130中的一个或多个输入端微镜子阵列具有输入端相邻区域,该输入端相邻区域中的输入端微镜不仅能够将光信号反射到相应的输出端微镜子阵列中的任意一个输出端微镜,还能够将光信号反射到与该相应的输出端微镜子阵列相邻的输出端微镜子阵列中的输出端微镜。
应理解,在本发明实施例中,第j个输入端微镜子阵列可以为输入端微镜阵列130中的特定的一个或多个输入端微镜子阵列,也可以为该输入端微镜阵列130中的任意一个输入端微镜子阵列,本发明实施例并不限于此。
还应理解,第j个输入端微镜子阵列包括的输入端相邻区域靠近第k个输入端微镜子阵列,并且该输入端相邻区域可以为第j个输入端微镜子阵列包括的一个或多个输入端微镜的部分或全部反射区域,本发明实施例并不限于此。
具体而言,在本发明实施例中,光信号首先经过输入端口阵列输入到输入端准直器阵列,经过输入端准直器阵列的光信号到达输入端微镜阵列,该输入端微镜阵列上对应每一个输入光束的输入端微镜通过偏转不同的角度,可以将光束反射到输出端微镜阵列的不同微镜上;输出端微镜阵列上的相应微镜通过偏转,可以再将光束反射到与之对应的输出端准直器阵列;该输出端准直器阵列再对光束进行变换后,耦合到对应的输出端口阵列,从而完成光开关的调度功能。
应理解,在根据本发明实施例的光开关中,从每个输入端口和输入端准直器进入光开关的光信号,只能入射到与之相对应的一个输入端微镜上;类似地,每个从输出端微镜反射出来的光信号也只能进入与之对应的一个输出端准直器,并从对应的输出端口输出。
例如,根据本发明实施例的光开关可以包括:N个输入端口子阵列、N 个输出端口子阵列、N个输入端准直器子阵列、N个输入端微镜子阵列、N个输出端微镜子阵列以及N个输出端准直器子阵列,其中N个输入端微镜子阵列与N个输入端准直器子阵列和N个输入端口子阵列具有一一对应关系,N个输出端微镜子阵列与N个输出端准直器子阵列和N个输出端口子阵列也具有一一对应关系。
在上述光开关中,第i个输入端微镜子阵列中的每个输入端微镜,都能够将经过输入端准直器子阵列入射的光信号反射到相应的第i个输出端微镜子阵列中的任意一个输出端微镜;类似地,第i个输出端微镜子阵列的任意一个输出端微镜通过偏转不同的角度,都可以将输出端微镜反射的光束反射至相应的第i个输出端准直器子阵列中,从而从相应的第i个输出端口子阵列的相应输出端口中输出。因而,从第i个输入端口子阵列中的任意一个输入端口进入的光信号都能够从第i个输出端口子阵列中的任意一个输出端口中输出,如图4中的实线和虚线所示,又例如,如图5中的实线所示。
进一步地,在上述光开关中,如果第k个输入端微镜子阵列与第j个输入端微镜子阵列相邻,或第k个输出端微镜子阵列与第j个输出端微镜子阵列相邻,那么在第j个输入端微镜子阵列中靠近第k个输入端微镜子阵列边缘处的输入端相邻区域,该输入端相邻区域中的输入端微镜能够将光信号反射到第k个输出端微镜子阵列中的输出端微镜,该光信号再经过第k个输出端准直器子阵列后,从第k个输出端口子阵列的输出端口中输出。因而,从第j个输入端口子阵列中的部分输入端口进入的光信号能够从第k个输出端口子阵列中的部分输出端口中输出,如图5中的虚线所示。
应理解,在本发明实施例中,仅以每个阵列包括的子阵列的数量相等为例进行说明,但本发明并不限于此,每个阵列包括的子阵列的数量也可以不相等,例如,输入端微镜子阵列和输出端微镜子阵列的数量可以不相等。还应理解,在本发明实施例中,仅以每个子阵列包括的器件的数量相等为例进行说明,但本发明并不限于此,每个子阵列包括的器件的数量也可以不相等,例如,输入端微镜子阵列包括的输入端微镜的数量与输出端微镜子阵列包括的输出端微镜的数量可以不相等。
因此,本发明实施例的光开关,通过将光开关设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射 角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
在本发明实施例中,可选地,如图6所示,该输入端口阵列110包括的第一输入端口通过光纤170与该输出端口阵列160包括的第一输出端口连接,使得从该输入端口阵列110包括的一个第二输入端口输入的该光信号能够从该输出端口阵列160包括的任意一个第二输出端口输出。
具体而言,对于本发明实施例的光开关,在各相应的子阵列范围内,光信号能够实现全交叉,即从一个输入端口子阵列中的每一个输入端口进入的光信号都能够从相应的输出端口子阵列中的任意一个输出端口中输出;但在整个光开关的各输入端口和输出端口之间,光信号不能够实现全交叉。为此,可以将部分输入端口通过光纤与部分输出端口连接,再利用从输入端口子阵列中的部分输入端口进入的光信号、能够从与相应输出端口子阵列相邻的输出端口子阵列中的部分输出端口中输出的特性,使得在整个光开关的各输入端口和输出端口之间,光信号能够实现全交叉,即从光开关的任意一个第二输入端口输入的光信号,都能够从该光开关的任意一个第二输出端口输出。
应理解,在本发明实施例中,第一输入端口表示输入端口阵列中与输出端口通过光纤相连接的输入端口;相应地,第一输出端口表示输出端口阵列中与输入端口通过光纤相连接的输出端口;第二输入端口表示输入端口阵列中未与输出端口通过光纤相连接的输入端口,即输入端口阵列中除该第一输入端口之外的输入端口;相应地,第二输出端口表示输出端口阵列中未与输入端口通过光纤相连接的输出端口,即输出端口阵列中除该第一输出端口之外的输出端口。
可选地,在本发明实施例中,如图7所示,该N为6,第i个输入端微镜子阵列Ii包括两个输入端微镜区域Ii,1和Ii,2;第i个输出端微镜子阵列Oi包括两个输出端微镜区域Oi,1和Oi,2;其中,该输入端微镜区域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O2,1中的每个输出端微镜;与该输入端微镜区域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜区域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜区域I3,2中的每个输入端微镜分别能够将该光信号反射到该输 出端微镜区域O4,1中的每个输出端微镜;与该输入端微镜区域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与所述输出端微镜区域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接。
具体而言,在本发明实施例中,从第i个输入端口子阵列中的任意一个输入端口进入的光信号都能够从第i个输出端口子阵列中的任意一个输出端口中输出,i为自然数且i=1,2,….,6。另外,该输入端微镜区域I1,2中的每个输入端微镜能够将光信号反射到输出端微镜区域O2,1中的每个输出端微镜;该输入端微镜区域I2,1、I3,2以及I4,1中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O1,2、O4,1以及O3,2中的每个输出端微镜;并且各第一输入端口与各第一输出端口的连接关系如图8所示。
应理解,如图8所示,与输入端微镜区域I1,2、I2,1、I3,2以及I4,1相对应的输入端口为保留的用于接收外部光信号输入的第二输入端口;与输出端微镜区域O2,1、O1,2、O4,1以及O3,2相对应的输出端口为保留的用于将光信号输出到外部的第二输出端口。
还应理解,如图8所示,输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相对应的第一输入端口分别与输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相对应的第一输出端口一一对应,并通过光纤连接。例如,输入端微镜区域I1,1相对应的输入端口与输出端微镜区域O5,1相对应的输出端口一一对应,并通过光纤连接;又例如,输入端微镜区域I3,1相对应的输入端口与输出端微镜区域O6,1相对应的输出端口一一对应,并通过光纤连接。还应理解,第一输入端口包括与各输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相对应的各输入端口;类似地,第一输出端口包括与各输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相对应的各输出端口。
由此,对于根据本发明实施例的光开关,从第二输入端口中的任意一个输入端口输入的光信号,都能够从该光开关的任意一个第二输出端口输出。具体地,光信号的在各输入端口和各输出端口之间传输的路径可以如下面的表1所示。
表1
Figure PCTCN2014095613-appb-000001
如表1所示,其中,符号“→”表示光信号从输入端微镜到输出端微镜在空间中传输的路径,符号“-”表示光信号在光纤中传输的路径。
其中,通过输入端微镜的偏转,由于子阵列内部能够实现光信号的全交叉,因而光信号可以从输入端口1、输入端口2、输入端口3和输入端口4输入,并分别从输出端口1、输出端口2、输出端口3和输出端口4输出;另一方面,由于输入端微镜区域I1,2、I2,1、I3,2以及I4,1中的每个输入端微镜分别能够将该光信号反射到输出端微镜区域O2,1、O1,2、O4,1以及O3,2中的每个输出端微镜,因而光信号可以从输入端口1、输入端口2、输入端口3和输入端口4输入,并分别从输出端口2、输出端口1、输出端口4和输出端口3输出。
对于光信号从其它输入端口输入并从其它输出端口输出的情况,则光信号需要经过3次内部的空间路径传输以及2次外部的光纤路径传输来实现。例如,对于光信号从输入端口3输入并从输出端口1输出的情况,输入的光信号经过输入端微镜偏转,即经过内部的空间路径传输,能够到达输出端微镜区域O3,1;该光信号再通过外部光纤即经过外部的光纤路径传输,能够到达输入端微镜区域I5,1;该光信号再经过内部的空间路径传输,能够从输入端微镜区域I5,1到达输出端微镜区域O5,1;该光信号再经过外部的光纤路径传输,能够到达输入端微镜区域I1,1;由此,该光信号再经过内部的空间路径传输,能够从输入端微镜区域I1,1传输到输出端微镜区域O1,2,并从相应的输出端口1输出。
应理解,本发明实施例的第二输入端口以及第二输出端口的设置仅以上 面的例子为例进行说明,但本发明并不限于此,例如各第二输入端口还可以与其它输入端微镜区域相应,各第二输出端口还可以与其它输出端微镜区域相应,只要输入端口1与输入端口2相邻,输入端口3与输入端口4相邻;相应地,输出端口1与输出端口2相邻,输出端口3与输出端口4相邻。
在本发明实施例中,可选地,该输入端微镜区域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜区域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
即在本发明实施例中,输入端微镜区域或输出端微镜区域的反射面积可以为整个输入端微镜子阵列或输出端微镜子阵列的反射面积的一半,但本发明并不限于此,输入端微镜区域或输出端微镜区域的反射面积与整个输入端微镜子阵列或输出端微镜子阵列的反射面积的比值还可以为其它值,例如2/5、1/3等。
在本发明实施例中,可选地,每个该输入端微镜子阵列包括M个输入端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。即每个输入端微镜子阵列包括的输入端微镜的数量与每个输出端微镜子阵列包括的输出端微镜的数量相等。
但应理解,本发明实施例仅以此为例进行说明,本发明并不限于此,例如,输入端微镜子阵列包括的输入端微镜的数量可以与相应的输出端微镜子阵列包括的输出端微镜的数量相等,但不同输入端微镜子阵列包括的输入端微镜的数量可以不相等;再例如,每个输入端微镜子阵列包括的输入端微镜的数量与每个输出端微镜子阵列包括的输出端微镜的数量不相等。
仍以图8所示的实施例为例进行说明,该光开关包括6个输入端微镜子阵列和相应的6个输出端微镜子阵列,假设每个输入端微镜子阵列包括两个输入端微镜,每个输出端微镜子阵列包括两个输出端微镜,即每个输入端微镜区域和每个输出端微镜区域分别包括一个输入端微镜和一个输出端微镜。因而,如图8所示,该光开关包括4个输入端口,即为与输入端微镜区域I1,2、I2,1、I3,2以及I4,1分别包括的输入端微镜相应的输入端口;该光开关还包括4个输出端口,即为与输出端微镜区域O2,1、O1,2、O4,1以及O3,2分别包括的输出端微镜相应的输出端口。
因此,本发明实施例可以通过6个2*2的光开关组建4*4的光开关,该光开关的输入端口总数或输出端口总数为12(即4*3)个。而如果根据完全 无阻塞CLOS结构来组建4*4的光开关,则需要2个2*3的光开关、3个2*2的光开关和2个3*2的光开关,这中CLOS结构的光开关的输入端口总数或输出端口总数为16(即4*3)个。因此,根据本发明实施例的光开关的结构优于纯数学的其他拓扑结构,并且端口利用率更高,即可以利用较少的端口来实现光开关的扩展。
应理解,上述例子以每个微镜子阵包括两个微镜为例进行说明,如果每个微镜子阵包括M个微镜,则本发明实施例可以通过M*M的光开关能够组建2M*2M的光开关,特别是在M比较大的时候,该光开关的结构优于纯数学的其他拓扑结构,并且端口利用率更高,即可以利用较少的端口来实现光开关的扩展。例如,当M为320时,即以通过320*320的光开关组建640*640的光开关为例进行说明,如果使用完全无阻塞CLOS结构,则需要640个2*3的光开关和3个320*320的光开关,即组建的CLOS结构的光开关的输入端口总数或输出端口总数为为640*4个;而如果采用本发明实施例的光开关,该光开关的输入端口总数或输出端口总数为为640*3个。因而,根据本发明实施例的光开关的端口利用率更高;此外,通过本发明实施例构建光开关也能够具有完全无阻塞的全交叉特性,可以用于骨干网交换节点或数据中心等需要大规模光开关的场景。
因此,本发明实施例的光开关,通过将光开关设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求;此外,本发明实施例的光开关还具有较高的端口利用率,即可以利用较少的端口来实现光开关的扩展,从而可以用于骨干网交换节点或数据中心等需要大规模光开关的场景。
在本发明实施例中,如图9和图10所示,可选地,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
应理解,在上述实施例中,该输入端微镜阵列130包括N个输入端微镜子阵列,该输出端微镜阵列140包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。即在上述实施例中,微镜子阵列对内部具有全交叉特性,即微镜子阵列对中的每个输入端微镜都能够将光信号反射到该微镜子阵列对中的任意一个输出端微镜。
还应理解,在本发明实施例中,第一微镜子阵列对、第二微镜子阵列对和第三微镜子阵列对之间的端口的连接关系可以如图10所示,其中输入端口与输出端口之间的连接或输出端口与输入端口之间的连接可以通过外部的光纤170实现,如图10中各端口之间的实线所示,但本发明实施例并不限于此。
根据本发明上述实施例,可以构建大规模的无阻塞全交叉光开关,应用于骨干网节点或数据中心。例如,假设3D-MEMS工艺水平可以制作一个25*25的光开关,那么利用本发明实施例的方案,可以做一个更大规模的局部交叉光开关,其中包括25组13*25的全交叉端口组、25组25*13的全交叉端口组和25组25*25的全交叉端口组,通过本发明实施例所描述的方案,可以组成规模为325*325的全交叉光开关。因此,本方案利用局部交叉的光开关来构建拓扑结构,与利用独立的小规模光开关构建拓扑结构相比较,集成度更高,体积更小。
还应理解,交换节点的交叉调度时间是WDM系统中的一项重要指标。在基于大规模光开关的交换节点中,交叉调度时间主要取决于光开关的切换时间,而光开关的切换时间与切换过程中微镜偏转的角度有关。本发明实施例构建的大规模无阻塞光开关,只需要微镜子阵列对内实现全交叉,不需要在整个光开关的范围内实现所有端口全交叉,由此使得微镜的偏转角度比同等规模的全交叉光开关小,从而切换时间更快。因此,本发明实施例组建的大规模光开关构建成的交换节点,交叉调度时间短。
因此,本发明实施例的光开关,通过将光开关设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求;另外,根据本发明实施例的光开关,还具有集成度更高、体积小和切换时间短的特点。
另一方面,如图11所示,本发明实施例还提供了一种波分复用光系统,该波分复用系统包括根据本发明实施例的光开关,m1个解复用器DEMUX和m2个复用器MUX,
其中,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反 射光、在该输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于该输出端微镜阵列的反射区域的面积;
其中,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N;
其中,该输入端口阵列110包括N组输入端口子阵列,该输入端准直器阵列120包括N个输入端准直器子阵列,该输出端口阵列160包括N组输出端口子阵列,该输出端准直器阵列150包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l1个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与所述WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2。
可选地,在本发明实施例中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
可选地,在本发明实施例中,该波长组合光信号至少包括两种波长。
因此,本发明实施例的波分复用光系统,通过将波分复用光系统包括的光开关设计成至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
应理解,在本发明实施例中,可选地,波分复用光系统包括的解复用器DEMUX和复用器MUX的数量相同,即m1=m2;但本发明实施例并不限于此,DEMUX与MUX的数量也可以不同,例如,m1>m2,或m2>m1。
应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、功能等,与如图1至图10所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
下面将以根据本发明实施例的光开关用于WDM系统中的交换节点为例进行详细说明,并假设m1=m2=m,且M1=M2=M。
具体地,以m个维度、N个波长的WDM系统交换节点为例,如图11所示。根据本发明实施例的光开关的输入端口阵列分为N组输入端口子阵列,每组输入端口子阵列包括的输入端口的数量为M;同样地,输出端口阵列可以分为N组输出端口子阵列,每组输出端口子阵列包括的输出端口的数量为M,其中M大于等于m。特别地,如果有本地上下波时,端口数量M大于m。分组后每组内的任意输入端口都可以与组内任意输出端口建立光路连接,即每组内的输入输出端口能实现全交叉连接;此外,一些端口还可以调度到相邻组,并从相邻组的部分输出端口输出。
来自m个维度的WDM光经由各个DEMUX分开成N个不同的波长。将每个维度的λ1分别连接到第一组输入端口子阵列的输入端口,作为第一个波长组合光信号;每个维度的λ2分别连接到第二组输入端口子阵列的输入端口,作为第二个波长组合光信号;各个维度的其余各波长均按照这样的方式依次与各组输入端口子阵列的输入端口相连,这样来自m个维度所有的λi都连接到了光开关的第i组输入端口子阵列。每个MUX输入λ1的输入口分别与光开关的第一组输出端口子阵列的输出端口相连;每个MUX输入λ2的输入口分别与光开关的第二组输出端口子阵列的输出端口相连;类似地,每个MUX输入第i个波长组合光信号的输入口与光开关的第i组输出端口子阵列的输出端口相连。因而,从光开关输出端口输出的去往同一个维度的各个单波长光,由对应各个维度的MUX复用到对应维度的光纤中,并传输到下一个交换节点。如果每组输入输出端口子阵列中还有多余的输入输出端口,那么将这些剩余的输入端口用于本地波长上载,剩余的输出端口用于本地波长下载。
当来自维度a的波长λc要去往维度b时,来自维度a的WDM信号先 经过与维度a对应的DEMUX解复用成各个单波长的光,将第c个波长的光λc送到局部交叉光开关的第c组输入端口子阵列的一个输入端口;根据本发明实施例的光开关建立第c组第a个输入端口与第c组第b个输出端口之间的光路连接,这样来自维度a的λc就被送到第c组输出端口子阵列中与维度b相对应的输出端口,其中,a、b、c为自然数,a和b小于或等于m,c小于或等于N。与维度b对应的MUX将经过光开关输出的λc和其他需要去往维度b的各个单波长信号复用到一起后输出,这样就完成了波长调度,复用后输出的光信号将被送入对应的单根光纤中,以传输到下一个交换节点,这样就在本交换节点完成了维度之间的波长级别的调度。
当本地的波长λc需要到维度a去时,先将λc由光开关的第c组输入端口子阵列中预留的用于上载的输入端口送入该光开关,再经由第c组输入输出端口之间的调度,将λc送到第c组输出端口子阵列中与维度a对应的输出端口。与维度a对应的MUX将λc和其他去往维度a的各个单波长波长复用到一起,送入与维度a对应的光纤中进行传输,从而完成本地波长的上载。
当维度b中的λc需要下载时,则可以通过第c组输入输出端口之间的调度,将输入波长λc送到第c组输出端口子阵列中预留的用于下载的输出端口,从而完成本地波长的下载。
应理解,在本发明实施例中,可选地,该波长组合光信号至少包括两种波长。例如,该波长组合光信号包括两种或多种波长。具体地,根据本发明实施例的光开关,不限于每组输入输出端口只完成一个波长的调度,例如,也可以将2个波长光信号或多个波长光信号放到同一组中进行调度,此时每组端口中的端口数应该大于等于2m或N*m。还应理解,在本发明实施例中,该波长组合光信号也可以仅包括一种波长,本发明并不限于此。还应理解,在本发明实施例中,仅以2≤m为例进行说明,但本发明并不限于此,例如,m取值也可以为1。
在本发明实施例中,可选地,该输入端微镜阵列130和该输出端微镜阵列140分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。但本发明并不限于此,例如,根据本发明实施例的输入端微镜和输出端微镜为也可以为基于压电陶瓷的微镜等。
在本发明实施例中,以容纳8个维度80波,并要预留50%上下波的交换节点为例,此时的节点如果使用现有技术中的全交叉光开关作为交换器 件,则需要960×960的光开关。目前业界最大规模的光开关基于3D-MEMS技术制成,但受限于3D-MEMS的微镜工艺,无法实现960×960的光开关。
然而,采用根据本发明实施例的局部交叉光开关结构来制作这种960*960的光开关,那么每组全交叉端口内有12个输入端口和12个输出端口即可满足要求,这样的局部交叉光开关对3D-MEMS工艺要求和12×12的3D-MEMS光开关要求基本相当,业界有多家器件商都具备这种工艺。
在本发明实施例中,可选地,该输入端微镜阵列中的第j个输入端微镜子阵列包括输入端相邻区域,该输入端相邻区域中的输入端微镜能够将该光信号反射到第k个输出端微镜子阵列中的输出端微镜,其中,该第k个输出端微镜子阵列与第j个输出端微镜子阵列相邻,j和k为自然数,且j和k小于或等于N。
在本发明实施例中,可选地,该输入端口阵列包括的第一输入端口通过光纤与该输出端口阵列包括的第一输出端口连接,使得从该输入端口阵列包括的一个第二输入端口输入的该光信号能够从该输出端口阵列包括的任意一个第二输出端口输出。
在本发明实施例中,可选地,该N为6,第i个输入端微镜子阵列Ii包括两个输入端微镜区域Ii,1和Ii,2;第i个输出端微镜子阵列Oi包括两个输出端微镜区域Oi,1和Oi,2;其中,该输入端微镜区域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O2,1中的每个输出端微镜;与该输入端微镜区域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜区域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜区域I3,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜区域O4,1中的每个输出端微镜;与该输入端微镜区域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与所述输出端微镜区域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接。
在本发明实施例中,可选地,该输入端微镜区域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜区域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
在本发明实施例中,可选地,每个该输入端微镜子阵列包括M个输入 端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
在本发明实施例中,可选地,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
因此,本发明实施例的波分复用光系统,通过将波分复用光系统包括的光开关设计至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
再一方面,本发明实施例提供了一种光开关,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;
该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;
该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;
该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转;该输入端微镜阵列至少包括第一输入端微镜子阵列和第二输入端微镜子阵列;该输出端微镜阵列至少包括第三输出端微镜子阵列和第四输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内。
在本发明实施例中,可选地,该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
具体而言,在本发明实施例中,第一输入端微镜子阵列中的每个输入端微镜都能够将入射光反射到第三输出端微镜子阵列中的每个输出端微镜;第二输入端微镜子阵列中的每个输入端微镜都能够将入射光反射到第四输出端微镜子阵列中的每个输出端微镜;但第一输入端微镜子阵列中的每个输入端微镜都不能够将入射光反射到第三输出端微镜子阵列中的任意一个输出端微镜。
即,在本发明实施例中,可选地,该第一输入端微镜子阵列用于将入射到本子阵列中任意一个输入端微镜上的入射光反射到该第三输出端微镜子阵列中的任意一个输出端微镜上,且不反射到该第四输出端微镜子阵列中的任何一个输出端微镜上;类似地,该第二输入端微镜子阵列用于将入射到本子阵列中任意一个输入端微镜上的入射光反射到该第四输出端微镜子阵列中的任意一个输出端微镜上。
还应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、 功能等,与如图1至4所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
因此,本发明实施例的光开关,通过将光开关设计成至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
在本发明实施例中,可选地,该输出端微镜阵列还包括第五输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后还能够入射在该第五输出端微镜子阵列的反射区域内,其中该第三输出端微镜子阵列和该第五输出端微镜子阵列为相邻的微镜阵列。
应理解,在本发明实施例中,例如,该输出端微镜阵列还可以包括与第三输出端微镜子阵列相邻的第五输出端微镜子阵列,该输入端微镜阵列还可以包括第六输入端微镜子阵列,其中,第一输入端微镜子阵列与第三输出端微镜子阵列相对应;第二输入端微镜子阵列与第四输出端微镜子阵列相对应;第五输出端微镜子阵列与第六输入端微镜子阵列相对应,即第六输入端微镜子阵列中的每个输入端微镜都能够将入射光反射到第五输出端微镜子阵列中的每个输出端微镜,其中,第一输入端微镜子阵列中的每个输入端微镜还都能够将入射光反射到第五输出端微镜子阵列中的每个输出端微镜。
即在本发明实施例中,该第一输入端微镜子阵列用于将入射到本子阵列中任意一个输入端微镜上的入射光反射到所述第三或第五输出端微镜子阵列中的任意一个输出端微镜上,其该第三输出端微镜子阵列和该第五输出端微镜子阵列为相邻的微镜阵列。
还应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、功能等,与如图5所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
在本发明实施例中,可选地,该输入端口阵列包括的第一输入端口通过光纤与该输出端口阵列包括的第一输出端口连接,使得从该输入端口阵列包括的一个第二输入端口输入的该光信号能够从该输出端口阵列包括的任意 一个第二输出端口输出。
应理解,在本发明实施例中,第一输入端口表示输入端口阵列中与输出端口通过光纤相连接的输入端口;相应地,第一输出端口表示输出端口阵列中与输入端口通过光纤相连接的输出端口;第二输入端口表示输入端口阵列中未与输出端口通过光纤相连接的输入端口,即输入端口阵列中除该第一输入端口之外的输入端口;相应地,第二输出端口表示输出端口阵列中未与输入端口通过光纤相连接的输出端口,即输出端口阵列中除该第一输出端口之外的输出端口。
还应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、功能等,与如图6所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
在本发明实施例中,可选地,该输入端微镜阵列包括N个输入端微镜子阵列,该N个输入端微镜子阵列中的第i个输入端微镜子阵列包括两个输入端微镜子域Ii,1和Ii,2;该输出端微镜阵列包括N个输出端微镜子阵列,该N个输出端微镜子阵列中的第i个输出端微镜子阵列包括两个输出端微镜子域Oi,1和Oi,2;该输入端微镜子域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O2,1中的每个输出端微镜;与该输入端微镜子域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜子域I3,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O4,1中的每个输出端微镜;与该输入端微镜子域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜子域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜子域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接;其中N=6。
还应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、功能等,与如图7和8所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
在本发明实施例中,可选地,该输入端微镜子域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜子域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
在本发明实施例中,可选地,每个该输入端微镜子阵列包括M个输入端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
因此,本发明实施例的光开关,通过将光开关设计成至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求;此外,本发明实施例的光开关还具有较高的端口利用率,即可以利用较少的端口来实现光开关的扩展,从而可以用于骨干网交换节点或数据中心等需要大规模光开关的场景。
在本发明实施例中,可选地,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
在本发明实施例中,可选地,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
还应理解,根据本发明实施例的光开关的部分或全部器件的特性、结构、 功能等,与如图9和10所示的本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
还应理解,交换节点的交叉调度时间是WDM系统中的一项重要指标。在基于大规模光开关的交换节点中,交叉调度时间主要取决于光开关的切换时间,而光开关的切换时间与切换过程中微镜偏转的角度有关。本发明实施例构建的大规模无阻塞光开关,只需要微镜子阵列对内实现全交叉,不需要在整个光开关的范围内实现所有端口全交叉,由此使得微镜的偏转角度比同等规模的全交叉光开关小,从而切换时间更快。因此,本发明实施例组建的大规模光开关构建成的交换节点,交叉调度时间短。
因此,本发明实施例的光开关,通过将光开关设计成至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求;另外,根据本发明实施例的光开关,还具有集成度更高、体积小和切换时间短的特点。
本发明实施例还提供了一种波分复用光系统,该波分复用光系统包括根据本发明实施例的光开关,m1个解复用器DEMUX和m2个复用器MUX,
其中,该输入端口阵列包括N组输入端口子阵列,该输入端准直器阵列包括N个输入端准直器子阵列,该输出端口阵列包括N组输出端口子阵列,该输出端准直器阵列包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l2个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与该WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和 l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2;
其中,该光开关包括:输入端口阵列、与该输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口阵列,
其中,该输入端准直器阵列用于将该输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口阵列;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转;该输入端微镜阵列至少包括第一输入端微镜子阵列和第二输入端微镜子阵列;该输出端微镜阵列至少包括第三输出端微镜子阵列和第四输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内;
该输入端微镜阵列包括N个输入端微镜子阵列,该输出端微镜阵列包括N个输出端微镜子阵列,其中,该N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将该光信号反射到该N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N;
其中,该输入端微镜阵列和该输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
应理解,在本发明实施例中,可选地,波分复用光系统包括的解复用器DEMUX和复用器MUX的数量相同,即m1=m2;但本发明实施例并不限于此,DEMUX与MUX的数量也可以不同,例如,m1>m2,或m2>m1。
还应理解,根据本发明实施例的波分复用光系统的部分或全部器件的特性、结构、功能等,与如图11所示的本发明实施例中的波分复用光系统的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
在本发明实施例中,可选地,该波长组合光信号至少包括两种波长。
在本发明实施例中,可选地,该输出端微镜阵列还包括第五输出端微镜子阵列;入射光经该第一输入端微镜子阵列反射后还能够入射在该第五输出端微镜子阵列的反射区域内,其中该第三输出端微镜子阵列和该第五输出端微镜子阵列为相邻的微镜阵列。
在本发明实施例中,可选地,该输入端口阵列包括的第一输入端口通过光纤与该输出端口阵列包括的第一输出端口连接,使得从该输入端口阵列包括的一个第二输入端口输入的该光信号能够从该输出端口阵列包括的任意一个第二输出端口输出。
在本发明实施例中,可选地,该输入端微镜阵列包括N个输入端微镜子阵列,该N个输入端微镜子阵列中的第i个输入端微镜子阵列包括两个输入端微镜子域Ii,1和Ii,2;该输出端微镜阵列包括N个输出端微镜子阵列,该N个输出端微镜子阵列中的第i个输出端微镜子阵列包括两个输出端微镜子域Oi,1和Oi,2;该输入端微镜子域I1,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O2,1中的每个输出端微镜;与该输入端微镜子域I1,2相邻的I2,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O2,1相邻的O1,2中的每个输出端微镜;该输入端微镜子域I3,2中的每个输入端微镜分别能够将该光信号反射到该输出端微镜子域O4,1中的每个输出端微镜;与该输入端微镜子域I3,2相邻的I4,1中的每个输入端微镜分别能够将该光信号反射到与该输出端微镜子域O4,1相邻的O3,2中的每个输出端微镜;其中,该输入端微镜子域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与该输出端微镜子域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接;其中N=6。
在本发明实施例中,可选地,该输入端微镜子域Ii,1和Ii,2分别包括L/2个输入端微镜,该输出端微镜子域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
在本发明实施例中,可选地,每个该输入端微镜子阵列包括M个输入端微镜,并且每个该输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
在本发明实施例中,可选地,包括M个输入端微镜的该第i个输入端微镜子阵列与包括M个输出端微镜的该第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个该微镜子阵列对包括:R个第一微镜子阵列对、2S-1 个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
其中,每个该第一微镜子阵列对与该输入端口阵列中的S个输入端口和该输出端口阵列中的2S-1个输出端口相对应,每个该第二微镜子阵列对与该输入端口阵列中的R个输入端口和该输出端口阵列中的R个该输出端口相对应,每个该第三微镜子阵列对与该输入端口阵列中的2S-1个该输入端口和该输出端口阵列中的S个该输出端口相对应;
其中,第x个该第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个该第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个该第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个该第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
还应理解,根据本发明实施例的波分复用光系统包括的光开关可对应于根据本发明实施例的光开关100,并且该波分复用光系统包括的光开关的部分或全部器件的特性、结构、功能等,与本发明实施例中的光开关100的相应器件的特性、结构、功能相同或相似,因而为了简洁,在此不再赘述。
因此,本发明实施例的波分复用光系统,通过将波分复用光系统的光开关设计成至少包括第一输入端微镜子阵列、第二输入端微镜子阵列、第三输出端微镜子阵列和第四输出端微镜子阵列,其中,入射光经该第一输入端微镜子阵列反射后能够入射在该第三输出端微镜子阵列的反射区域内;入射光经该第一输入端微镜子阵列反射后不能入射在该第四输出端微镜子阵列的反射区域内;并且入射光经该第二输入端微镜子阵列反射后能够入射在该第四输出端微镜子阵列的反射区域内,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
此外,本发明实施例还提供了一种光开关阵列,该光开关阵列包括多个根据本发明实施例的光开关,其中,该光开关包括:输入端口、与该输入端口连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与该输出端准直器阵列连接的输出端口,
其中,该输入端准直器阵列用于将该输入端口输入的光信号进行准直和扩束,并将经过准直和扩束的该光信号入射到该输入端微镜阵列;该输入端微镜阵列用于将该输入端准直器阵列输出的该光信号反射到该输出端微镜 阵列;该输出端微镜阵列用于将该输入端微镜阵列反射的该光信号反射到该输出端准直器阵列;该输出端准直器阵列用于将该输出端微镜阵列反射的该光信号耦合到该输出端口;
其中,该输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或
该所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在该输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于该输出端微镜阵列的反射区域的面积。
因此,本发明实施例的光开关阵列,通过将光开关阵列包括的光开关设计成所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且该共同的交集的面积小于输出端微镜阵列的反射区域的面积,能够实现大规模的阵列,从而能够满足交换节点对吞吐容量的要求。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围 之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种光开关,其特征在于,包括:
    输入端口阵列、与所述输入端口阵列连接的输入端准直器阵列、输入端微镜阵列、输出端微镜阵列、输出端准直器阵列以及与所述输出端准直器阵列连接的输出端口阵列,
    其中,所述输入端准直器阵列用于将所述输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的所述光信号入射到所述输入端微镜阵列;
    所述输入端微镜阵列用于将所述输入端准直器阵列输出的所述光信号反射到所述输出端微镜阵列;
    所述输出端微镜阵列用于将所述输入端微镜阵列反射的所述光信号反射到所述输出端准直器阵列;
    所述输出端准直器阵列用于将所述输出端微镜阵列反射的所述光信号耦合到所述输出端口阵列;
    其中,所述输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转,所述所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在所述输出端微镜阵列所在平面上的最大可移动范围没有共同的交集,或
    所述所有的输入端微镜对相同入射角度的入射光进行反射后输出的反射光、在所述输出端微镜阵列所在平面上的最大可移动范围具有共同的交集,并且所述共同的交集的面积小于所述输出端微镜阵列的反射区域的面积。
  2. 根据权利要求1所述的光开关,其特征在于,所述输入端微镜阵列包括N个输入端微镜子阵列,所述输出端微镜阵列包括N个输出端微镜子阵列,其中,所述N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将所述光信号反射到所述N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
  3. 根据权利要求2所述的光开关,其特征在于,所述输入端微镜阵列中的第j个输入端微镜子阵列包括输入端相邻区域,所述输入端相邻区域中的输入端微镜能够将所述光信号反射到第k个输出端微镜子阵列中的输出端 微镜,其中,所述第k个输出端微镜子阵列与第j个输出端微镜子阵列相邻,j和k为自然数,且j和k小于或等于N。
  4. 根据权利要求2或3所述的光开关,其特征在于,所述输入端口阵列包括的第一输入端口通过光纤与所述输出端口阵列包括的第一输出端口连接,使得从所述输入端口阵列包括的一个第二输入端口输入的所述光信号能够从所述输出端口阵列包括的任意一个第二输出端口输出。
  5. 根据权利要求4所述的光开关,其特征在于,所述N为6,第i个输入端微镜子阵列Ii包括两个输入端微镜区域Ii,1和Ii,2;第i个输出端微镜子阵列Oi包括两个输出端微镜区域Oi,1和Oi,2;其中,所述输入端微镜区域I1,2中的每个输入端微镜分别能够将所述光信号反射到所述输出端微镜区域O2,1中的每个输出端微镜;与所述输入端微镜区域I1,2相邻的I2,1中的每个输入端微镜分别能够将所述光信号反射到与所述输出端微镜区域O2,1相邻的O1,2中的每个输出端微镜;所述输入端微镜区域I3,2中的每个输入端微镜分别能够将所述光信号反射到所述输出端微镜区域O4,1中的每个输出端微镜;与所述输入端微镜区域I3,2相邻的I4,1中的每个输入端微镜分别能够将所述光信号反射到与所述输出端微镜区域O4,1相邻的O3,2中的每个输出端微镜;其中,所述输入端微镜区域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与所述输出端微镜区域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接。
  6. 根据权利要求5所述的光开关,其特征在于,所述输入端微镜区域Ii,1和Ii,2分别包括L/2个输入端微镜,所述输出端微镜区域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
  7. 根据权利要求2至5中任一项所述的光开关,其特征在于,每个所述输入端微镜子阵列包括M个输入端微镜,并且每个所述输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
  8. 根据权利要求2至4中任一项所述的光开关,其特征在于,包括M个输入端微镜的所述第i个输入端微镜子阵列与包括M个输出端微镜的所述第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个所述微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
    其中,每个所述第一微镜子阵列对与所述输入端口阵列中的S个输入端 口和所述输出端口阵列中的2S-1个输出端口相对应,每个所述第二微镜子阵列对与所述输入端口阵列中的R个输入端口和所述输出端口阵列中的R个所述输出端口相对应,每个所述第三微镜子阵列对与所述输入端口阵列中的2S-1个所述输入端口和所述输出端口阵列中的S个所述输出端口相对应;
    其中,第x个所述第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个所述第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个所述第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个所述第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
  9. 根据权利要求2至8中任一项所述的光开关,其特征在于,所述输入端微镜阵列和所述输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
  10. 一种波分复用光系统,其特征在于,包括如权利要求9所述的光开关,m1个解复用器DEMUX和m2个复用器MUX,
    其中,所述输入端口阵列包括N组输入端口子阵列,所述输入端准直器阵列包括N个输入端准直器子阵列,所述输出端口阵列包括N组输出端口子阵列,所述输出端准直器阵列包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
    其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l1个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与所述WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2。
  11. 根据权利要求10所述的波分复用光系统,其特征在于,所述波长组合光信号至少包括两种波长。
  12. 一种光开关,其特征在于,包括:
    输入端口阵列、与所述输入端口阵列连接的输入端准直器阵列、输入端 微镜阵列、输出端微镜阵列、输出端准直器阵列以及与所述输出端准直器阵列连接的输出端口阵列,
    其中,所述输入端准直器阵列用于将所述输入端口阵列输入的光信号进行准直和扩束,并将经过准直和扩束的所述光信号入射到所述输入端微镜阵列;
    所述输入端微镜阵列用于将所述输入端准直器阵列输出的所述光信号反射到所述输出端微镜阵列;
    所述输出端微镜阵列用于将所述输入端微镜阵列反射的所述光信号反射到所述输出端准直器阵列;
    所述输出端准直器阵列用于将所述输出端微镜阵列反射的所述光信号耦合到所述输出端口阵列;
    其中,所述输入端微镜阵列包括的所有的输入端微镜在相互垂直的两个方向上能够偏转;
    所述输入端微镜阵列至少包括第一输入端微镜子阵列和第二输入端微镜子阵列;所述输出端微镜阵列至少包括第三输出端微镜子阵列和第四输出端微镜子阵列;
    入射光经所述第一输入端微镜子阵列反射后能够入射在所述第三输出端微镜子阵列的反射区域内;入射光经所述第一输入端微镜子阵列反射后不能入射在所述第四输出端微镜子阵列的反射区域内;
    入射光经所述第二输入端微镜子阵列反射后能够入射在所述第四输出端微镜子阵列的反射区域内。
  13. 根据权利要求12所述的光开关,其特征在于,所述输入端微镜阵列包括N个输入端微镜子阵列,所述输出端微镜阵列包括N个输出端微镜子阵列,其中,所述N个输入端微镜子阵列中的第i个输入端微镜子阵列中的每个输入端微镜能够将所述光信号反射到所述N个输出端微镜子阵列中的第i个输出端微镜子阵列中的每个输出端微镜,其中,N为自然数,且N≥2,i=1,2,…,N。
  14. 根据权利要求13所述的光开关,其特征在于,所述输出端微镜阵列还包括第五输出端微镜子阵列;入射光经所述第一输入端微镜子阵列反射后还能够入射在所述第五输出端微镜子阵列的反射区域内,其中所述第三输出端微镜子阵列和所述第五输出端微镜子阵列为相邻的微镜阵列。
  15. 根据权利要求13或14所述的光开关,其特征在于,所述输入端口阵列包括的第一输入端口通过光纤与所述输出端口阵列包括的第一输出端口连接,使得从所述输入端口阵列包括的一个第二输入端口输入的所述光信号能够从所述输出端口阵列包括的任意一个第二输出端口输出。
  16. 根据权利要求15所述的光开关,其特征在于,所述输入端微镜阵列包括N个输入端微镜子阵列,所述N个输入端微镜子阵列中的第i个输入端微镜子阵列包括两个输入端微镜子域Ii,1和Ii,2;所述输出端微镜阵列包括N个输出端微镜子阵列,所述N个输出端微镜子阵列中的第i个输出端微镜子阵列包括两个输出端微镜子域Oi,1和Oi,2;所述输入端微镜子域I1,2中的每个输入端微镜分别能够将所述光信号反射到所述输出端微镜子域O2,1中的每个输出端微镜;与所述输入端微镜子域I1,2相邻的I2,1中的每个输入端微镜分别能够将所述光信号反射到与所述输出端微镜子域O2,1相邻的O1,2中的每个输出端微镜;所述输入端微镜子域I3,2中的每个输入端微镜分别能够将所述光信号反射到所述输出端微镜子域O4,1中的每个输出端微镜;与所述输入端微镜子域I3,2相邻的I4,1中的每个输入端微镜分别能够将所述光信号反射到与所述输出端微镜子域O4,1相邻的O3,2中的每个输出端微镜;其中,所述输入端微镜子域I1,1、I2,2、I3,1、I4,2、I5,1、I5,2、I6,1和I6,2相应的第一输入端口分别与所述输出端微镜子域O5,1、O5,2、O6,1、O6,2、O3,1、O4,2、O1,1和O2,2相应的第一输出端口通过光纤连接;其中N=6。
  17. 根据权利要求16所述的光开关,其特征在于,所述输入端微镜子域Ii,1和Ii,2分别包括L/2个输入端微镜,所述输出端微镜子域Oi,1和Oi,2分别包括L/2个输出端微镜,其中L为偶数。
  18. 根据权利要求13至16中任一项所述的光开关,其特征在于,每个所述输入端微镜子阵列包括M个输入端微镜,并且每个所述输出端微镜子阵列包括M个输出端微镜,其中M为自然数。
  19. 根据权利要求13至15中任一项所述的光开关,其特征在于,包括M个输入端微镜的所述第i个输入端微镜子阵列与包括M个输出端微镜的所述第i个输出端微镜子阵列形成第i个微镜子阵列对,其中,N个所述微镜子阵列对包括:R个第一微镜子阵列对、2S-1个第二微镜子阵列对和R个第三微镜子阵列对,R、S和M为自然数,且2R+2S-1=N;
    其中,每个所述第一微镜子阵列对与所述输入端口阵列中的S个输入端 口和所述输出端口阵列中的2S-1个输出端口相对应,每个所述第二微镜子阵列对与所述输入端口阵列中的R个输入端口和所述输出端口阵列中的R个所述输出端口相对应,每个所述第三微镜子阵列对与所述输入端口阵列中的2S-1个所述输入端口和所述输出端口阵列中的S个所述输出端口相对应;
    其中,第x个所述第一微镜子阵列对相应的第y个输出端口O1 x,y与第y个所述第二微镜子阵列对相应的第x个输入端口I2 y,x通过光纤连接;第x个所述第三微镜子阵列对相应的第y个输入端口I3 x,y与第y个所述第二微镜子阵列对相应的第x个输出端口O2 y,x通过光纤连接;x,y为自然数,且x=1,2,…,R,y=1,2,…,2S-1。
  20. 根据权利要求13至19中任一项所述的光开关,其特征在于,所述输入端微镜阵列和所述输出端微镜阵列分别包括的输入端微镜和输出端微镜为微机电系统MEMS微镜。
  21. 一种波分复用光系统,其特征在于,包括如权利要求20所述的光开关,m1个解复用器DEMUX和m2个复用器MUX,
    其中,所述输入端口阵列包括N组输入端口子阵列,所述输入端准直器阵列包括N个输入端准直器子阵列,所述输出端口阵列包括N组输出端口子阵列,所述输出端准直器阵列包括N个输出端准直器子阵列,其中,每组输入端口子阵列分别与一个输入端准直器子阵列和一个输入端微镜子阵列相对应,每组输出端口子阵列分别与一个输出端准直器子阵列和一个输出端微镜子阵列相对应;
    其中,每组输入端口子阵列包括M1个输入端口,每组输出端口子阵列包括M2个输出端口,第i组输入端口子阵列中的第l1个输入端口与波分复用WDM系统的第l2个解复用器DEMUX输出第i个波长组合光信号的端口连接,并且第i组输出端口子阵列中的第l2个输出端口与所述WDM系统的第l2个复用器MUX输入第i个波长组合光信号的端口连接,M1、M2、l1和l2为自然数,且l1=1,2,…,m1,l2=1,2,…,m2,其中2≤m1≤M1;2≤m2≤M2。
  22. 根据权利要求21所述的波分复用光系统,其特征在于,所述波长组合光信号至少包括两种波长。
PCT/CN2014/095613 2014-05-27 2014-12-30 光开关和波分复用光系统 WO2015180469A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14892967.2A EP3139202A4 (en) 2014-05-27 2014-12-30 Optical switch and wavelength division multiplexing optical system
US15/360,642 US10031294B2 (en) 2014-05-27 2016-11-23 Optical switch and wavelength division multiplexing optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410228121.1A CN105223657B (zh) 2014-05-27 2014-05-27 光开关和波分复用光系统
CN201410228121.1 2014-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/360,642 Continuation US10031294B2 (en) 2014-05-27 2016-11-23 Optical switch and wavelength division multiplexing optical system

Publications (1)

Publication Number Publication Date
WO2015180469A1 true WO2015180469A1 (zh) 2015-12-03

Family

ID=54698029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095613 WO2015180469A1 (zh) 2014-05-27 2014-12-30 光开关和波分复用光系统

Country Status (4)

Country Link
US (1) US10031294B2 (zh)
EP (1) EP3139202A4 (zh)
CN (1) CN105223657B (zh)
WO (1) WO2015180469A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170176688A1 (en) * 2015-12-17 2017-06-22 Hamid Mehrvar Network Switch With Augmented Input and Output Capabilities
CN106054322B (zh) * 2016-07-18 2019-04-16 贝耐特光学科技(昆山)有限公司 一种扩展波长选择开关端口数目的方法
CN109725413A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 微镜结构及微镜阵列芯片
CN111247472B (zh) * 2017-10-30 2022-02-25 华为技术有限公司 一种多级mems光开关单元和光交叉装置
CN109991728B (zh) * 2017-12-29 2021-01-05 华为技术有限公司 Mems芯片结构
CN110519663B (zh) * 2018-05-22 2020-11-27 华为技术有限公司 用于光开关的路径建立方法、装置及光开关
CN108828712B (zh) * 2018-06-11 2020-10-16 上海交通大学 基于光学相控阵的大规模集成光开关芯片
US20220343816A1 (en) * 2019-11-26 2022-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Supply of multi-layer extended reality images to a user
CN112558288B (zh) * 2020-11-23 2021-09-03 山东大学 一种基于压电驱动的时分复用多窗口叶片式快速机械光开关

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595221A (zh) * 2004-06-24 2005-03-16 北京邮电大学 采用洗牌Benes级间连接规则的二维微光电机械光开关及其方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
US20080137172A1 (en) * 2006-12-06 2008-06-12 Glimmerglass Networks, Inc. Array of graduated pre-tilted mems mirrors
CN101263408A (zh) * 2005-08-03 2008-09-10 卡佩拉光子学公司 Mems镜阵列的抖动幅度的自动调节方法
CN202282779U (zh) * 2011-10-27 2012-06-20 武汉光迅科技股份有限公司 一种光缆跳线装置
US20120236216A1 (en) * 2011-03-16 2012-09-20 Manish Sharma Wavelength Selective Switch
CN102696194A (zh) * 2011-07-22 2012-09-26 华为技术有限公司 可重构的光分插复用器及波长交叉连接器
CN103558668A (zh) * 2013-11-19 2014-02-05 武汉邮电科学研究院 波长选择开关和波长选择方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119540B2 (ja) * 1993-04-12 2000-12-25 松下電器産業株式会社 光タップ
US6253001B1 (en) * 2000-01-20 2001-06-26 Agilent Technologies, Inc. Optical switches using dual axis micromirrors
US6330102B1 (en) * 2000-03-24 2001-12-11 Onix Microsystems Apparatus and method for 2-dimensional steered-beam NxM optical switch using single-axis mirror arrays and relay optics
US6560384B1 (en) * 2000-06-01 2003-05-06 Calient Networks, Inc. Optical switch having mirrors arranged to accommodate freedom of movement
US6643425B1 (en) * 2000-08-17 2003-11-04 Calient Networks, Inc. Optical switch having switch mirror arrays controlled by scanning beams
US6470110B1 (en) * 2000-10-19 2002-10-22 Tellium, Inc. Monolithic integration of control elements and micro-mirror in an optical switch
US6731833B2 (en) * 2001-01-16 2004-05-04 T-Rex Enterprises Corp. Optical cross connect switch
US6766085B2 (en) * 2001-10-01 2004-07-20 Agilent Technologies, Inc. Precisely configuring optical fibers and other optical elements using an apertured wafer positioner
US6597825B1 (en) * 2001-10-30 2003-07-22 Calient Networks, Inc. Optical tap for an optical switch
US20030118274A1 (en) * 2001-12-21 2003-06-26 Tetsuya Nishi Optical cross-connect device and optical network
US7006721B2 (en) * 2002-04-17 2006-02-28 Hitachi, Ltd. Optical switch and beam direction module
US6917733B1 (en) * 2003-04-03 2005-07-12 Glimmerglass Networks, Inc. Three-dimensional optical switch with offset input-output ports
JP4680862B2 (ja) * 2006-10-11 2011-05-11 日本電信電話株式会社 光スイッチ
JP5475560B2 (ja) * 2009-06-26 2014-04-16 日本電信電話株式会社 光スイッチ
US9213142B2 (en) * 2013-11-21 2015-12-15 Huawei Technologies Co., Ltd. Device and method for micro-electro-mechanical-system photonic switch

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595221A (zh) * 2004-06-24 2005-03-16 北京邮电大学 采用洗牌Benes级间连接规则的二维微光电机械光开关及其方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
CN101263408A (zh) * 2005-08-03 2008-09-10 卡佩拉光子学公司 Mems镜阵列的抖动幅度的自动调节方法
US20080137172A1 (en) * 2006-12-06 2008-06-12 Glimmerglass Networks, Inc. Array of graduated pre-tilted mems mirrors
US20120236216A1 (en) * 2011-03-16 2012-09-20 Manish Sharma Wavelength Selective Switch
CN102696194A (zh) * 2011-07-22 2012-09-26 华为技术有限公司 可重构的光分插复用器及波长交叉连接器
CN202282779U (zh) * 2011-10-27 2012-06-20 武汉光迅科技股份有限公司 一种光缆跳线装置
CN103558668A (zh) * 2013-11-19 2014-02-05 武汉邮电科学研究院 波长选择开关和波长选择方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3139202A4 *

Also Published As

Publication number Publication date
CN105223657B (zh) 2018-07-03
CN105223657A (zh) 2016-01-06
US10031294B2 (en) 2018-07-24
US20170075074A1 (en) 2017-03-16
EP3139202A4 (en) 2017-05-24
EP3139202A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015180469A1 (zh) 光开关和波分复用光系统
JP6021492B2 (ja) 光クロスコネクト装置
JP6342894B2 (ja) 光クロスコネクト装置
US9521473B2 (en) Wavelength selective switch with increased frequency separation to avoid crosstalk
JP2014027562A5 (zh)
JP2006243734A (ja) 積層プレーナ導波回路を使用した波長選択スイッチおよび集積波長デマルチプレクサ
JP6533743B2 (ja) 光クロスコネクト装置
US10110313B2 (en) Optical switching apparatus, optical cross-connect node, and optical signal switching method
GB2582971A (en) Switch with a shuffle
CN108352921A (zh) 可重构光分插复用器
US20180035182A1 (en) Optical Cross-Connect Node And Optical Signal Switching Method
CN110426789B (zh) 一种波长选择开关
WO2020105526A1 (ja) 光通信ノード
Yuan et al. Fully integrated N× N MEMS wavelength selective switch with 100% colorless add-drop ports
JP6291434B2 (ja) 光クロスコネクト装置
WO2016002736A1 (ja) 光クロスコネクト装置
JP6387331B2 (ja) 波長選択切換装置
JP2011193145A (ja) 光リング間接続用光ノード装置
JP4680810B2 (ja) 光波長合分波装置
Ma et al. A novel 2D MEMS-based optical crossconnect with greatly reduced complexity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014892967

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892967

Country of ref document: EP