WO2015180314A1 - 内嵌式触摸屏及显示装置 - Google Patents
内嵌式触摸屏及显示装置 Download PDFInfo
- Publication number
- WO2015180314A1 WO2015180314A1 PCT/CN2014/087005 CN2014087005W WO2015180314A1 WO 2015180314 A1 WO2015180314 A1 WO 2015180314A1 CN 2014087005 W CN2014087005 W CN 2014087005W WO 2015180314 A1 WO2015180314 A1 WO 2015180314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitance
- self
- touch
- touch panel
- substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04164—Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0448—Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
Definitions
- Embodiments of the present invention relate to an in-cell touch panel and display device.
- the Touch Screen Panel has gradually spread throughout people's lives.
- the touch screen can be divided into an Add-on Mode Touch Panel, an On-Cell Touch Panel, and an In-Cell Touch Panel.
- the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
- the external touch screen has high manufacturing cost, low light transmittance, and mode.
- the group is thicker.
- the in-cell touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the thickness of the whole module, and can greatly reduce the manufacturing cost of the touch screen, and is highly valued by the major panel manufacturers.
- At least one embodiment of the present invention provides an in-cell touch panel and a display device for implementing an in-cell touch panel with high touch precision, low cost, high production efficiency, and high transmittance.
- At least one embodiment of the present invention provides an in-cell touch panel including: a first substrate and a second substrate disposed opposite to each other, a common electrode layer disposed on a side of the first substrate facing the second substrate, and a touch detection chip; wherein the common electrode layer includes a plurality of independent self-capacitance electrodes, and a plurality of wires connecting the self-capacitance electrodes to the touch detection chip; the touch detection The chip is configured to load a common electrode signal to the respective capacitor electrodes during the display period, and determine the touch position by detecting a change in the capacitance value of each of the self-capacitance electrodes during the touch period.
- At least one embodiment of the present invention provides a display device including the in-cell touch panel described above.
- FIG. 1 is a schematic diagram of a capacitance generated between a touch driving electrode and a touch sensing electrode
- FIG. 2 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
- FIG. 3 is a schematic top plan view of an in-cell touch panel according to an embodiment of the present invention.
- FIGS. 4a and 4b are schematic diagrams showing driving timings of an in-cell touch panel according to an embodiment of the present invention.
- FIG. 5 is a second schematic top view of an in-cell touch panel according to an embodiment of the present disclosure.
- FIG. 6 is a schematic top view of the in-cell touch panel according to an embodiment of the present invention.
- FIG. 7a and 7b are schematic structural views showing the opposite sides of adjacent self-capacitance electrodes in the in-cell touch panel provided as fold lines, respectively.
- each film layer in the drawings do not reflect the true scale, and are merely intended to illustrate the present invention.
- a capacitive in-cell (In-cell) touch screen is additionally provided with a touch driving electrode and a touch sensing electrode on a thin film field effect transistor (TFT) array substrate, that is, two layers are formed on the surface of the TFT array substrate.
- TFT thin film field effect transistor
- the strip-shaped ITO electrodes intersecting each other, the two layers of ITO (Indium Tin Oxides) electrodes are respectively used as touch driving electrodes and touch sensing electrodes of the touch screen, as shown in FIG.
- the coupling between the electrode Tx and the longitudinally disposed touch sensing electrode Rx generates a mutual capacitance C m (Mutual Capacitance).
- the touch detection device detects the position of the touched point of the finger by detecting the amount of change in the current corresponding to the capacitance C m before and after the finger touches.
- two mutual capacitances C m are formed between the laterally disposed touch driving electrodes Tx and the longitudinally disposed touch sensing electrodes Rx, and one is an effective projection capacitance for realizing the touch function (with an arrow in FIG. 1)
- the curve is the projected capacitance).
- the operation will change the projected capacitance value; the other is the correct capacitance for the touch function (the straight line with the arrow is the positive capacitance), and the finger touches the screen.
- the positive capacitance value does not change.
- the human body capacitance is only coupled with the projection capacitance in the mutual capacitance, and the positive capacitance formed at the opposite side between the touch driving electrode and the touch sensing electrode reduces the signal to noise ratio of the touch screen. , affecting the accuracy of touch sensing in the in-line touch screen.
- the capacitive in-cell touch panel requires two new layers to be added to the existing TFT array substrate. Therefore, a new process needs to be added in the fabrication of the TFT array substrate, which increases the production cost and is not conducive to improving production efficiency.
- the following in-cell touch panel provided by at least one embodiment of the present invention is more suitable for a twisted nematic (TN) type liquid crystal display.
- TN twisted nematic
- An in-cell touch panel provided by the embodiment of the present invention, as shown in FIG. 2, includes: an opposite first substrate 01 and a second substrate 02 disposed on a side of the first substrate 01 facing the second substrate 02 The common electrode layer 03 and the touch detection chip 04.
- the common electrode layer 03 is divided into a plurality of mutually independent self-capacitance electrodes 05, and a plurality of wires 06 connecting the self-capacitance electrodes 05 to the touch detection chip 04; that is, the common electrode layer 03 A plurality of independent self-capacitance electrodes 05 are included.
- the touch detection chip (IC) 04 is configured to apply a common electrode signal to the respective capacitor electrodes 05 during the display period, and determine the touch position by detecting a change in the capacitance value of the respective capacitor electrodes 05 during the touch period.
- the touch detection chip 04 is disposed on the second substrate, but the present invention is not limited thereto, and may be provided on the first substrate 01 or connected to the second substrate 02 or the like through a flexible circuit board or the like.
- a plurality of self-capacitance electrodes 05 disposed in the same layer and independent of each other are disposed on the first substrate 01 of the touch panel by using the principle of self-capacitance.
- the capacitance of the respective capacitor electrode 05 is a fixed value, and when the human body touches the screen, the capacitance of the corresponding self-capacitance electrode 05 is changed to a fixed value superimposed body capacitance.
- the touch detection chip 04 can determine the touch position by detecting the change of the capacitance value of each capacitor electrode during the touch time period.
- the capacitance of the human body can only act on the projection capacitance in the mutual capacitance.
- the touch change caused by the human body touching the screen will be relatively large, so the signal noise of the touch can be effectively improved. Than, thus improving the accuracy of touch sensing.
- the touch detection chip 04 can The driving signal is applied to the respective capacitor electrodes 05 during the touch period, and the feedback signals of the respective capacitor electrodes 05 are received.
- the change in the capacitance value caused by the self-capacitance electrode 05 being touched increases the RC delay of the feedback signal. Therefore, by determining the delay of the feedback signal RC of the respective capacitor electrodes 05, it is determined whether the self-capacitance electrode 05 is touched, thereby locating the touch position.
- the touch detection chip 04 can also confirm the change of the capacitance value of the respective capacitor electrodes 05 to determine the touch position by other means such as detecting the amount of charge change, which will not be described herein.
- the touch screen multiplexing common electrode layer 03 provided by the embodiment of the present invention is used as the self-capacitance electrode 05, and the common electrode layer 03 pattern of the TN mode is changed to form a plurality of independent self-capacitance electrodes 05 and self-capacitance electrodes.
- 05 is connected to the wire 06 of the touch detection chip 04.
- the two-layered new film layer needs to be added to the array substrate when the touch function is implemented by using the mutual capacitance principle.
- the touch screen provided by the embodiment of the present invention does not need to add an additional film layer, and only needs to be common to the original whole layer.
- the electrode layer 03 performs a patterning process to form a pattern of the corresponding self-capacitance electrode 05 and the wire 06, which saves production cost and improves production efficiency.
- the touch screen multiplexing common electrode layer 03 provided by the embodiment of the present invention is used as the self-capacitance electrode 05, a touch-time and display-stage driving method can be adopted.
- the display driving chip and the touch detection chip can also be integrated into one chip, thereby further reducing the production cost.
- the time of displaying each frame (V-sync) of the touch screen is divided into a display time period (Display) and a touch time period (Touch), and the driving timing chart is shown.
- the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
- the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
- a gate scan signal is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gate n in the touch screen, and a gray scale signal is applied to the data signal line Data, and the respective capacitor electrodes Cx1 ... Cx n
- the connected touch detection chip respectively applies a common electrode signal to the respective capacitance electrodes Cx1 . . . Cx n to realize a liquid crystal display function.
- the touch detection chip connected to the respective capacitor electrodes Cx1 . . . Cx n simultaneously applies driving signals to the respective capacitor electrodes Cx1 . . . Cx n while receiving the respective capacitor electrodes.
- the touch detection chip connected to the respective capacitor electrodes Cx1 ... Cx n sequentially applies driving signals to the respective capacitor electrodes Cx1 ... Cxn to respectively receive respective capacitors.
- Feedback signals for electrodes Cx1...Cx n This is not limited, and the touch function is implemented by analyzing the feedback signal to determine whether a touch occurs.
- the density of the touch screen is usually on the order of millimeters. Therefore, the density and the occupied area of the respective capacitor electrodes 05 can be selected according to the required touch density to ensure the required touch density.
- the respective capacitor electrodes 05 are designed to be 5 mm*. Square electrode of about 5mm.
- the density of the display screen is usually on the order of micrometers. Therefore, generally one self-capacitance electrode 05 corresponds to a plurality of pixel units in the display screen.
- the common electrode layer 03 disposed on the first substrate 01 can be divided into a plurality of self-capacitance electrodes 05 and corresponding wires 06.
- the dividing line generally avoids the displayed opening area and is disposed in the graphic area of the black matrix layer.
- the touch panel provided by at least one embodiment of the present invention may further include: disposed on a side of the first substrate 01 facing the second substrate 02, or disposed on a side of the second substrate 02 facing the first substrate 01. Black matrix layer 07.
- the orthogonal projection between the adjacent two self-capacitance electrodes 05 on the second substrate 02 is located in the region of the pattern of the black matrix layer 07.
- the pattern of each of the wires 06 on the second substrate 02 is located in the region of the pattern of the black matrix layer 07.
- each self-capacitance electrode 05 can be connected to the touch detection chip 04 through a separate lead line.
- Each of the lead wires includes, for example, a wire 06 connecting the self-capacitance electrode 05 to the frame of the touch screen, and a peripheral wire disposed at the frame for connecting the self-capacitance electrode 05 to the terminal 08 of the touch detection chip. 09, that is, the peripheral trace 09 is electrically connected to the terminal 08 of the touch detection chip 04.
- the peripheral trace 09 and the terminal 08 of the touch detection chip 04 are generally disposed at the frame of the side of the second substrate 02 facing the first substrate 01; then, the self-capacitance electrode 05 needs to be connected to the first through the wire 06 After the frame of the in-cell touch panel is connected, the frame glue is electrically connected to the corresponding peripheral trace 09.
- each self-capacitance electrode 05 since the number of self-capacitance electrodes 05 is very large, the corresponding lead-out lines are also very large, and the area occupied by each self-capacitance electrode 05 is 5 mm*5 mm, for example, a 5-inch liquid crystal display. It is necessary to have 264 self-capacitance electrodes 05. If each self-capacitance electrode 05 is designed to be smaller, there will be more self-capacitance electrodes 05, and then more lead wires need to be provided.
- the pattern of the black matrix layer 07 needs to cover all the wires 06, so that the covered wire 06 is covered.
- the black matrix layer 07 has a large number of patterns, thereby affecting the aperture ratio of the pixel unit.
- the number of the outer wires 09 connected to the wires 06 in one-to-one correspondence at the frame is also increased, which may cause the frame of the touch screen to expand, which is disadvantageous for the narrow frame design.
- each of the wires 06 is electrically connected to two self-capacitance electrodes 05 which are spaced apart from each other, and each wire 06 The respective capacitive electrodes 05 that are electrically connected do not coincide with each other.
- a corresponding peripheral trace 09 is connected to the touch detection chip 04 for touch position detection.
- the adjacent self-capacitance electrodes 05 are connected to the frame through different wires 06, so when the human body touches the screen, the touch detection The chip 04 can determine the touch position by judging the change of the capacitance value of the adjacent self-capacitance electrode 05 connecting the different wires 06, thereby avoiding misjudgment and realizing the accuracy of the touch sensing. Taking the connection relationship of the self-capacitance electrode 05 shown in FIG.
- the self-capacitance electrode 05 since the self-capacitance electrode 05 is not connected through the same wire 06 in the x direction, the position in the x direction can be accurately determined; the self-capacitance electrode 05 in the y direction In the case where two or two are connected, it is necessary to judge the position in the y direction by the signal change on the different wires 06. For example, when the finger touches the position A, it can be seen that the signal changes on the wire d, and the touches may occur at both the A and B positions, but the signal on the wire a changes, and the signal on the wire b does not change, only in A. The location has touched.
- the wire 06 is connected to the self-capacitance electrode 05 one by one, or the wire 06 is connected to the two self-capacitance electrodes 05.
- the direction of extension of each wire 06 can be set to be the same.
- the shape of the border of the touch screen is a rectangle.
- the extending direction of each of the wires 06 may be set to coincide with the short side direction of the frame, that is, as shown in FIG. 6.
- Each of the wires 06 connects the self-capacitance electrode 05 to the long side of the frame along the short side direction of the frame, so that the number of wires 06 at the gap between the adjacent two columns of self-capacitance electrodes 05 can be reduced, thereby reducing the number of wires 06
- the area, thereby reducing the pattern area of the black matrix layer 07 covering the wire 06, increases the aperture ratio of the pixel unit.
- the border of the touch screen generally has four sides.
- the respective capacitor electrodes 05 can be connected to the nearest side through the corresponding wires 06 on the basis that the wires 06 do not cross each other, so that the number of wires 06 between the respective capacitor electrodes 05 can be reduced as much as possible, thereby overall
- the pattern area of the black matrix layer 07 is lowered to ensure the aperture ratio of the larger pixel unit.
- the human body capacitance acts on the self-capacitance of the respective capacitor electrodes 05 by direct coupling
- the capacitance value of the capacitor electrode 05 has a large amount of change, and the amount of change in the capacitance value of the self-capacitance electrode 05 adjacent to the self-capacitance electrode 05 below the touch position is very small.
- the touch coordinates in the area where the self-capacitance electrode 05 is located cannot be determined.
- the opposite sides of the adjacent two self-capacitance electrodes 05 may be disposed as a fold line to increase the position below the touch position.
- the amount of change in the capacitance value of the self-capacitance electrode 05 adjacent to the self-capacitance electrode 05 may be disposed as a fold line to increase the position below the touch position.
- the overall shape of the respective capacitor electrodes 05 may be set in one or a combination of the following two ways:
- the sides of the adjacent two self-capacitance electrodes 05 which are opposite to each other, may be arranged in a stepped structure, and the two stepped structures have the same shape and match each other, as shown in FIG. 7a, and FIG. 7a shows 2 * 2 self-capacitor electrodes 05;
- the sides of the adjacent two self-capacitance electrodes 05 which are opposite to each other, may be arranged in a concave-convex structure, and the two concave-convex structures have the same shape and match each other, as shown in FIG. 7b, and FIG. 7b shows 2 * 2 self-capacitance electrodes 05.
- At least one embodiment of the present invention further provides a display device, including the above-mentioned embedded touch screen provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigation Any product or part that has a display function.
- a display device including the above-mentioned embedded touch screen provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigation Any product or part that has a display function.
- the display device reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
- a plurality of self-capacitance electrodes disposed in the same layer and independent of each other are disposed on the first substrate of the touch screen by using the principle of self-capacitance.
- the capacitance of the respective capacitor electrodes is a fixed value.
- the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance.
- the touch detection chip can determine the touch position by detecting a change in the capacitance value of each capacitor electrode during the touch period.
- the human body capacitance can act on all self-capacitance, it can only act on mutual capacitance relative to the human body capacitance.
- the projection capacitance, the touch change caused by the human body touching the screen will be relatively large, so the signal-to-noise ratio of the touch can be effectively improved, thereby improving the accuracy of the touch sensing.
- the touch screen provided in at least one embodiment of the present invention may change the common electrode layer pattern in the TN mode to form a plurality of layers.
- the independent self-capacitance electrodes and the wires connecting the self-capacitance electrodes to the touch detection chip do not need to add an additional film layer, which saves production cost and improves production efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Input By Displaying (AREA)
Abstract
一种内嵌式触摸屏及显示装置,利用自电容的原理,在触摸屏内设置多个同层设置且相互独立的自电容电极(05),触控侦测芯片(04)通过检测各自电容电极(05)的电容值变化可以判断出触控位置。该内嵌式触摸屏,相对于人体电容仅作用于互电容中的投射电容,能有效提高触控的信噪比,从而提高触控感应的准确性。
Description
本发明的实施例涉及一种内嵌式触摸屏及显示装置。
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add-on Mode Touch Panel)、覆盖表面式触摸屏(On-Cell Touch Panel)、以及内嵌式触摸屏(In-Cell Touch Panel)。外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏,外挂式触摸屏制作成本较高、光透过率较低、模组较厚。内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家重视。
发明内容
本发明至少一实施例提供了一种内嵌式触摸屏及显示装置,用以实现触控精度较高、成本较低、生产效率较高且透过率较高的内嵌式触摸屏。
本发明至少一实施例提供一种内嵌式触摸屏,包括:相对而置的第一基板和第二基板,设置于所述第一基板面向所述第二基板的一侧的公共电极层,以及触控侦测芯片;其中,所述公共电极层包括多个相互独立的自电容电极,以及将所述自电容电极连接至所述触控侦测芯片的多条导线;所述触控侦测芯片用于在显示时间段对各自电容电极加载公共电极信号,在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置。
本发明至少一实施例提供一种显示装置,包括上述所述的内嵌式触摸屏。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,
而非对本发明的限制。
图1为一种触控驱动电极和触控感应电极之间产生的电容示意图;
图2为本发明实施例提供的内嵌式触摸屏的结构示意图;
图3为本发明实施例提供的内嵌式触摸屏的俯视示意图之一;
图4a和图4b分别为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图5为本发明实施例提供的内嵌式触摸屏的俯视示意图之二;
图6为本发明实施例提供的内嵌式触摸屏的俯视示意图之三;
图7a和图7b分别为本发明实施例提供的内嵌式触摸屏中相邻的自电容电极相对的侧边设置为折线的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
电容式内嵌(In-cell)触摸屏是在薄膜场效应晶体管(Thin Film Transistor,TFT)阵列基板上另外增加触控驱动电极和触控感应电极,即在TFT阵列基板的表面制作两层相互异面相交的条状ITO电极,这两层ITO(Indium Tin Oxides,铟锡金属氧化物)电极分别作为触摸屏的触控驱动电极和触控感应电极,如图1所示,横向设置的触控驱动电极Tx和纵向设置的触控感应电极Rx之间耦合产生互电容Cm(Mutual Capacitance)。当手指触碰屏幕时,手指的触碰会改变互电容Cm的值,触摸检测装置通过检测手指触碰前后电容Cm对应的电流的改变量,从而检测出手指触摸点的位置。
图1所示,在横向设置的触控驱动电极Tx和纵向设置的触控感应电极Rx之间会形成两种互电容Cm,一种是实现触摸功能有效的投射电容(图1中带箭头的曲线为投射电容),当手指触碰屏幕时,该操作会改变投射电容
值;另一种是对实现触摸功能无效的正对电容(带箭头的直线为正对电容),手指触碰屏幕时,正对电容值不会发生变化。
上述电容式内嵌触摸屏的结构中,人体电容仅与互电容中的投射电容发生耦合作用,触控驱动电极与触控感应电极在正对面处形成的正对电容会使触摸屏的信噪比降低,影响了内嵌式触摸屏中触控感应的准确性。并且,这种电容式内嵌触摸屏需要在现有的TFT阵列基板上增加两层新的膜层,因此在制作TFT阵列基板时需要增加新的工艺,使生产成本增加,不利于提高生产效率。
本发明的至少一实施例提供的下述内嵌式触摸屏较为适用于扭转向列(Twisted Nematic,TN)型液晶显示屏。
本发明实施例提供的一种内嵌式触摸屏,如图2所示,包括:相对而置的第一基板01和第二基板02,设置于第一基板01面向第二基板02的一侧的公共电极层03,以及触控侦测芯片04。
如图3所示,公共电极层03被分割成多个相互独立的自电容电极05,以及将自电容电极05连接至触控侦测芯片04的多条导线06;也即,公共电极层03包括多个相互独立的自电容电极05。
触控侦测芯片(IC)04用于在显示时间段对各自电容电极05加载公共电极信号,在触控时间段通过检测各自电容电极05的电容值变化以判断触控位置。在图2中,触控侦测芯片04设置在第二基板之上,但是本发明不限于此,也可以设置第一基板01上,或者通过柔性电路板等连接至第二基板02等。
本发明至少一实施例提供的上述内嵌式触摸屏,利用自电容的原理,在触摸屏的第一基板01设置多个同层设置且相互独立的自电容电极05。当人体未触碰屏幕时,各自电容电极05所承受的电容为一固定值,而当人体触碰屏幕时,对应的自电容电极05所承受的电容则改变为固定值叠加人体电容。触控侦测芯片04在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中的投射电容,由人体碰触屏幕所引起的触控变化量会比较大,因此能有效提高触控的信噪比,从而提高触控感应的准确性。
为了能有效检测出各自电容电极05的电容值变化,触控侦测芯片04可
以在触控时间段向各自电容电极05施加驱动信号,并接受各自电容电极05的反馈信号,由自电容电极05被触摸引起的电容值变化会增加反馈信号的RC延时。因此,通过判断各自电容电极05的反馈信号RC延时即可确定自电容电极05是否被触摸,从而定位触控位置。当然,触控侦测芯片04还可以通过诸如检测电荷变化量的其他方式,确认各自电容电极05的电容值变化以判断触控位置,在此不做赘述。
进一步地,本发明实施例提供的上述触摸屏复用公共电极层03作为自电容电极05,将TN模式的公共电极层03图形进行变更,形成多个相互独立的自电容电极05以及将自电容电极05连接至触控侦测芯片04的导线06。相对于采用互电容原理实现触控功能时需要在阵列基板内增加两层新的膜层,本发明实施例提供的触摸屏不需要增加额外的膜层,仅需要对原有的整层设置的公共电极层03进行构图工艺形成对应的自电容电极05和导线06的图形,节省了生产成本,提高了生产效率。
由于本发明实施例提供的上述触摸屏复用公共电极层03作为自电容电极05,因此可以采用触控和显示阶段分时驱动的方式。在一个具体实施例中,还可以将显示驱动芯片和触控侦测芯片整合为一个芯片,进一步降低生产成本。
例如,如图4a和图4b所示的驱动时序图中,将触摸屏显示每一帧(V-sync)的时间分成显示时间段(Display)和触控时间段(Touch),而且该驱动时序图中触摸屏的显示一帧的时间为16.7ms,选取其中5ms作为触控时间段,其他的11.7ms作为显示时间段。当然也可以根据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。在显示时间段(Display),对触摸屏中的每条栅极信号线Gate1,Gate2……Gate n依次施加栅扫描信号,对数据信号线Data施加灰阶信号,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n分别施加公共电极信号,以实现液晶显示功能。在触控时间段(Touch),如图4a所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n同时施加驱动信号,同时接收各自电容电极Cx1……Cx n的反馈信号;也可以如图4b所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cxn依次施加驱动信号,分别接收各自电容电极Cx1……Cx n的反馈信号,在
此不做限定,通过对反馈信号的分析判断是否发生触控,以实现触控功能。
一般地,触摸屏的密度通常在毫米级,因此,可以根据所需的触控密度选择各自电容电极05的密度和所占面积以保证所需的触控密度,通常各自电容电极05设计为5mm*5mm左右的方形电极。而显示屏的密度通常在微米级,因此,一般一个自电容电极05会对应显示屏中的多个像素单元。
并且,本发明至少一实施例提供的上述内嵌式触摸屏,可将整层设置在第一基板01上的公共电极层03分割成多个自电容电极05和对应的导线06。为了不影响正常的显示功能,在对公共电极层03进行分割时,分割线一般都会避开显示的开口区域,设置在黑矩阵层的图形区域。
如图2所示,本发明至少一实施例提供的上述触摸屏还可以包括:设置于第一基板01面向第二基板02的一侧,或设置于第二基板02面向第一基板01的一侧的黑矩阵层07。
相邻的两个自电容电极05之间的分割间隙在第二基板02的正投影均位于黑矩阵层07的图形所在区域内。
例如,各导线06的图形在第二基板02的正投影均位于黑矩阵层07的图形所在区域内。
在采用自电容原理设计触摸屏时,如图3所示,例如一般每一个自电容电极05可通过单独的引出线与触控侦测芯片04连接。每条引出线例如包括:将自电容电极05连接至触摸屏的边框处的导线06,以及设置在边框处用于将自电容电极05导通至触控侦测芯片的接线端子08的外围走线09,即,外围走线09与触控侦测芯片04的接线端子08电性连接。例如,外围走线09和触控侦测芯片04的接线端子08一般设置于第二基板02面向第一基板01的一侧的边框处;那么,自电容电极05就需要通过导线06先连接至内嵌式触摸屏的边框处后,通过边框胶与对应的外围走线09电性连接。
在一个具体实施例中,由于自电容电极05的数量非常多,对应的引出线也会非常多,以每个自电容电极05的所占面积为5mm*5mm为例,5寸的液晶显示屏就需要264个自电容电极05,若将每个自电容电极05设计得更小一些,则会有更多的自电容电极05,那么需要设置更多的引出线。由于引出线中的导线06和自电容电极05都设置在公共电极层03,且为了不影响正常显示,黑矩阵层07的图形需要覆盖所有的导线06,这样就会使覆盖导线06
的黑矩阵层07的图形偏多,从而影响像素单元的开口率。另外,由于导线06数量偏多,也会引起设置在边框处的与导线06一一对应连接的外围走线09数量偏多,这会造成触摸屏的边框扩大,不利于窄边框设计。
为了解决上述问题,在本发明至少一实施例提供的上述触摸屏中,如图5所示,将各条导线06与相互间隔设置的两个自电容电极05电性相连,且与各条导线06电性相连的各自电容电极05之间互不重合。将每间隔设置的两个自电容电极05通过一条导线06连接至触摸屏的边框处后,通过一条对应的外围走线09连接至触控侦测芯片04进行触控位置检测。这样,相对于如图3所示的自电容电极05与导线06一一对应相连的连接方式,导线06数量会减少一半;此外,随着导线06数量的减少,与之对应的外围走线09数量也随之减少,这也有利于触摸屏窄边框的设计。
并且,由于是将间隔设置的两个自电容电极05通过一条导线06连接,相邻的自电容电极05通过不同的导线06连接至边框处,因此,当人体触碰屏幕时,触控侦测芯片04可以通过判断相邻的连接不同导线06的自电容电极05的电容值变化来确定触控位置,避免误判,实现触控感应的准确性。以图5所示的自电容电极05的连接关系为例,由于在x方向自电容电极05没有通过同一条导线06连接,因此可以准确判断出x方向的位置;在y方向的自电容电极05出现两两相连的情况,因此,需要通过不同导线06上的信号变化来判断y方向位置。例如当手指触摸位置A时,通过导线d上的信号变化可知,A和B位置均有可能发生触控,但是通过导线a上的信号发生变化,导线b上的信号无变化可知,仅在A位置发生了触控。
不论是导线06与自电容电极05一一对应连接,还是导线06与两个自电容电极05对应连接,在设计各导线06的延伸方向时,可以将各导线06的延伸方向设置为相同。一般地,触摸屏的边框形状为长方形,进一步地,为了优化导线所占面积,可以将各条导线06的延伸方向设置为与边框的短边方向一致,即如图6所示。各条导线06沿着边框的短边方向将自电容电极05连接至边框的长边,这样可以通过减少在相邻两列自电容电极05间隙处的导线06数量的方式,减少导线06所占面积,从而降低覆盖导线06的黑矩阵层07的图形面积,提高像素单元的开口率。
为了保证像素单元具有较大的开口率,触摸屏的边框一般具有四个侧边,
可以将各自电容电极05,在导线06互不交叉的基础上,通过对应的导线06连接至距离最近的侧边,这样可以尽可能的减少各自电容电极05之间的导线06数量,从而总体上降低黑矩阵层07的图形面积,保证较大的像素单元的开口率。
进一步地,在本发明至少一实施例提供的内嵌式触摸屏中,由于人体电容通过直接耦合的方式作用于各自电容电极05的自电容,因此人体触碰屏幕时,仅在触摸位置下方的自电容电极05的电容值有较大的变化量,与触摸位置下方的自电容电极05相邻的自电容电极05的电容值变化量非常小。这样,在触摸屏上滑动时,不能确定自电容电极05所在区域内的触控坐标。为解决此问题,在本发明的另一个实施例提供的上述内嵌式触摸屏中,可以将相邻的两个自电容电极05相对的侧边均设置为折线,以便增大位于触摸位置下方的自电容电极05相邻的自电容电极05的电容值变化量。
例如,可以采用如下两种方式之一或组合的方式设置各自电容电极05的整体形状:
1、可以将相邻的两个自电容电极05相对的为折线的侧边均设置为阶梯状结构,两阶梯状结构形状一致且相互匹配,如图7a所示,图7a中示出了2*2个自电容电极05;
2、可以将相邻的两个自电容电极05相对的为折线的侧边均设置为凹凸状结构,两凹凸状结构形状一致且相互匹配,如图7b所示,图7b中示出了2*2个自电容电极05。
本发明至少一实施例还提供了一种显示装置,包括本发明实施例提供的上述内嵌式触摸屏,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
本发明至少一实施例提供的内嵌式触摸屏及显示装置,利用自电容的原理,在触摸屏的第一基板上设置多个同层设置且相互独立的自电容电极。当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,对应的自电容电极所承受的电容为固定值叠加人体电容。触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中
的投射电容,由人体碰触屏幕所引起的触控变化量会比较大,因此能有效提高触控的信噪比,从而提高触控感应的准确性。
并且,相对于采用互电容原理实现触控功能时需要在阵列基板内增加两层新的膜层,本发明至少一实施例提供的触摸屏可以是将TN模式的公共电极层图形进行变更,形成多个相互独立的自电容电极以及将自电容电极连接至触控侦测芯片的导线,不需要增加额外的膜层,节省了生产成本,提高了生产效率。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年5月30日递交的中国专利申请第201410239900.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
Claims (10)
- 一种内嵌式触摸屏,包括:相对而置的第一基板和第二基板,设置于所述第一基板面向所述第二基板的一侧的公共电极层,以及触控侦测芯片;其中,所述公共电极层包括多个相互独立的自电容电极,以及将所述自电容电极连接至所述触控侦测芯片的多条导线;所述触控侦测芯片用于在显示时间段对各自电容电极加载公共电极信号,在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置。
- 如权利要求1所述的内嵌式触摸屏,还包括:设置于所述第一基板面向所述第二基板的一侧,或设置于所述第二基板面向所述第一基板的一侧的黑矩阵层;其中,相邻的两个所述自电容电极之间的分割间隙在所述第二基板的正投影均位于所述黑矩阵层的图形所在区域内;各所述导线的图形在所述第二基板的正投影均位于所述黑矩阵层的图形所在区域内。
- 如权利要求1或2所述的内嵌式触摸屏,其中,各条所述导线与相互间隔设置的两个自电容电极电性相连,且与各条导线电性相连的各自电容电极之间互不重合。
- 如权利要求1-3任一项所述的内嵌式触摸屏,还包括:与所述触控侦测芯片的接线端子电性连接的外围走线;所述外围走线和所述触控侦测芯片的接线端子设置于所述第二基板面向所述第一基板的一侧的边框处;其中,所述自电容电极通过所述导线连接至所述内嵌式触摸屏的边框处后,通过边框胶与对应的外围走线电性连接。
- 如权利要求4所述的内嵌式触摸屏,其中,所述内嵌式触摸屏的边框形状为长方形,各条所述导线沿着所述边框的短边方向将所述自电容电极连接至所述边框的长边。
- 如权利要求4所述的内嵌式触摸屏,其中,所述内嵌式触摸屏的边框具有四个侧边,各所述自电容电极在所述导线互不交叉的基础上通过对应的所述导线连接至距离最近的侧边。
- 如权利要求1-6任一项所述的内嵌式触摸屏,其中,相邻的两个所述自电容电极相对的侧边均为折线。
- 如权利要求7所述的内嵌式触摸屏,其中,相邻的两个自电容电极相对的为折线的侧边均具有阶梯状结构,两阶梯状结构形状一致且相互匹配。
- 如权利要求7所述的内嵌式触摸屏,其中,相邻的两个自电容电极相对的为折线的侧边均具有凹凸状结构,两凹凸状结构形状一致且相互匹配。
- 一种显示装置,包括如权利要求1-9任一项所述的内嵌式触摸屏。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14861120.5A EP3153952B1 (en) | 2014-05-30 | 2014-09-20 | In-cell touch screen and display device |
US14/443,594 US10067614B2 (en) | 2014-05-30 | 2014-09-20 | In-cell touch panel and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410239900.1 | 2014-05-30 | ||
CN201410239900.1A CN104020907B (zh) | 2014-05-30 | 2014-05-30 | 一种内嵌式触摸屏及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015180314A1 true WO2015180314A1 (zh) | 2015-12-03 |
Family
ID=51437694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/087005 WO2015180314A1 (zh) | 2014-05-30 | 2014-09-20 | 内嵌式触摸屏及显示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10067614B2 (zh) |
EP (1) | EP3153952B1 (zh) |
CN (1) | CN104020907B (zh) |
WO (1) | WO2015180314A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103970392B (zh) | 2014-04-18 | 2019-10-01 | 京东方科技集团股份有限公司 | 一种触摸屏及显示装置 |
CN104020891A (zh) | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020907B (zh) * | 2014-05-30 | 2017-02-15 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104035640B (zh) | 2014-05-30 | 2017-10-27 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104298409B (zh) * | 2014-09-16 | 2017-05-03 | 京东方科技集团股份有限公司 | 触摸屏和显示装置 |
CN104267862B (zh) | 2014-09-19 | 2017-05-03 | 京东方科技集团股份有限公司 | 一种触摸屏、其触控定位方法及显示装置 |
CN104503649A (zh) * | 2015-01-14 | 2015-04-08 | 京东方科技集团股份有限公司 | 自容式触控面板、驱动方法和触控显示装置 |
CN104793819B (zh) * | 2015-03-31 | 2017-11-14 | 深圳市华星光电技术有限公司 | 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器 |
CN104699314B (zh) | 2015-04-01 | 2018-11-27 | 上海天马微电子有限公司 | 一种触控显示面板和显示装置 |
CN105159486A (zh) | 2015-07-14 | 2015-12-16 | 京东方科技集团股份有限公司 | Ads阵列基板及其制作方法、显示器件 |
CN105093736A (zh) * | 2015-07-14 | 2015-11-25 | 京东方科技集团股份有限公司 | Ips阵列基板及其制作方法、显示器件 |
DE102017203994A1 (de) * | 2016-03-11 | 2017-09-14 | Advanced Sensor Technology Limited | Vorrichtung und Verfahren zur kapazitiven Abbildung unter Verwendung von Zeilen- und Spaltenelektroden |
CN109976567B (zh) | 2018-03-26 | 2020-08-04 | 京东方科技集团股份有限公司 | 触控面板及其驱动方法、触控装置 |
WO2020073273A1 (zh) * | 2018-10-11 | 2020-04-16 | 深圳柔显系统技术有限公司 | 触控面板及触控装置 |
CN109901751B (zh) * | 2019-03-21 | 2024-04-19 | 深圳曦华科技有限公司 | Pmoled触摸显示面板、触摸检测电路、显示装置及电子设备 |
CN111625127A (zh) * | 2020-05-11 | 2020-09-04 | 武汉华星光电半导体显示技术有限公司 | 触控装置及触控基板 |
CN112162654A (zh) * | 2020-09-24 | 2021-01-01 | 武汉华星光电半导体显示技术有限公司 | 触控显示屏及其显示装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279245A (zh) * | 2013-06-06 | 2013-09-04 | 敦泰科技有限公司 | 触控显示装置 |
CN103383612A (zh) * | 2012-05-02 | 2013-11-06 | 香港商灿芯半导体有限公司 | 自身电容型触控装置与其操作方法 |
CN103677454A (zh) * | 2012-09-04 | 2014-03-26 | 晨星软件研发(深圳)有限公司 | 自容式触控面板 |
TW201413558A (zh) * | 2013-10-22 | 2014-04-01 | Focaltech Systems Ltd | 用於觸控面板的自電容變化檢測方法及自電容感測裝置 |
CN103793120A (zh) * | 2014-01-28 | 2014-05-14 | 北京京东方光电科技有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020906A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏、以及显示装置 |
CN104020912A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 |
CN104020907A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4816668B2 (ja) * | 2008-03-28 | 2011-11-16 | ソニー株式会社 | タッチセンサ付き表示装置 |
US8217913B2 (en) | 2009-02-02 | 2012-07-10 | Apple Inc. | Integrated touch screen |
US7995041B2 (en) | 2009-02-02 | 2011-08-09 | Apple Inc. | Integrated touch screen |
US20100214247A1 (en) | 2009-02-20 | 2010-08-26 | Acrosense Technology Co., Ltd. | Capacitive Touch Panel |
JP5140018B2 (ja) | 2009-02-24 | 2013-02-06 | 株式会社ジャパンディスプレイイースト | 入力機能付き液晶表示装置 |
CN104331183B (zh) * | 2009-10-09 | 2017-12-15 | 禾瑞亚科技股份有限公司 | 二维度双差值感测资讯分析的方法与装置 |
US9274654B2 (en) * | 2009-10-27 | 2016-03-01 | Perceptive Pixel, Inc. | Projected capacitive touch sensing |
TWI512575B (zh) * | 2009-11-09 | 2015-12-11 | Sitronix Technology Corp | Single layer touch sensing device |
US8901944B2 (en) | 2010-01-15 | 2014-12-02 | Cypress Semiconductor Corporation | Lattice structure for capacitance sensing electrodes |
CN102314248A (zh) | 2010-06-29 | 2012-01-11 | 瀚宇彩晶股份有限公司 | 触控面板及其像素阵列 |
KR20120017587A (ko) * | 2010-08-19 | 2012-02-29 | 삼성모바일디스플레이주식회사 | 터치스크린패널 일체형 액정표시장치 |
EP2492784B1 (en) | 2011-02-25 | 2021-02-24 | LG Display Co., Ltd. | Touch sensor integrated display device |
KR101457743B1 (ko) | 2011-02-25 | 2014-11-04 | 엘지디스플레이 주식회사 | 터치 센서 일체형 표시장치 |
US9513753B2 (en) * | 2011-12-19 | 2016-12-06 | Sharp Kabushiki Kaisha | Touch-sensor-embedded display panel, display device provided therewith, and method for driving touch-sensor-embedded display panel |
KR101466556B1 (ko) | 2012-03-29 | 2014-11-28 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 제조방법 |
CN103472961B (zh) * | 2012-06-06 | 2016-12-14 | 群康科技(深圳)有限公司 | 电容式触控面板及具有该电容式触控面板的电子装置 |
JP6050728B2 (ja) * | 2012-07-24 | 2016-12-21 | 株式会社ジャパンディスプレイ | タッチセンサ付き液晶表示装置、及び電子機器 |
JP5971708B2 (ja) * | 2012-08-27 | 2016-08-17 | 株式会社ジャパンディスプレイ | タッチパネル内蔵型表示装置 |
CN102841718B (zh) | 2012-08-31 | 2016-04-06 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN202854779U (zh) | 2012-10-15 | 2013-04-03 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN102955635B (zh) | 2012-10-15 | 2015-11-11 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN102937852B (zh) | 2012-10-19 | 2015-08-05 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏、其驱动方法及显示装置 |
CN202887154U (zh) | 2012-11-02 | 2013-04-17 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN102955637B (zh) | 2012-11-02 | 2015-09-09 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏、其驱动方法及显示装置 |
TWI471782B (zh) | 2012-11-14 | 2015-02-01 | Orise Technology Co Ltd | 內嵌式多點觸控液晶顯示面板系統 |
KR101318448B1 (ko) | 2012-12-11 | 2013-10-16 | 엘지디스플레이 주식회사 | 터치센서 일체형 표시장치 및 그 제조방법 |
CN202976049U (zh) | 2012-12-13 | 2013-06-05 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN103293785B (zh) | 2012-12-24 | 2016-05-18 | 上海天马微电子有限公司 | Tn型液晶显示装置及其触控方法 |
JP6131071B2 (ja) * | 2013-03-14 | 2017-05-17 | 株式会社ジャパンディスプレイ | タッチパネル内蔵型表示装置 |
CN103257769B (zh) | 2013-03-25 | 2016-01-27 | 合肥京东方光电科技有限公司 | 一种电容内嵌式触摸屏和显示装置 |
CN103186307B (zh) | 2013-03-26 | 2015-10-14 | 合肥京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN103226424A (zh) * | 2013-04-17 | 2013-07-31 | 敦泰科技有限公司 | 电容式触控设备检测方法和装置以及电容式触控设备 |
CN203376696U (zh) | 2013-06-06 | 2014-01-01 | 敦泰科技有限公司 | 触控显示装置 |
US9152283B2 (en) * | 2013-06-27 | 2015-10-06 | Synaptics Incorporated | Full in-cell sensor |
CN103425347B (zh) * | 2013-08-02 | 2018-01-02 | 敦泰电子有限公司 | 触控显示装置 |
CN103472613A (zh) | 2013-09-13 | 2013-12-25 | 敦泰科技有限公司 | 电容式触摸显示装置 |
US20150091842A1 (en) | 2013-09-30 | 2015-04-02 | Synaptics Incorporated | Matrix sensor for image touch sensing |
TWI512566B (zh) * | 2013-10-02 | 2015-12-11 | Novatek Microelectronics Corp | 觸控偵測裝置及觸控偵測方法 |
CN203606816U (zh) * | 2013-11-22 | 2014-05-21 | 敦泰科技有限公司 | 能够减少引出线的单层互电容触碰输入装置 |
CN103698927B (zh) * | 2013-12-31 | 2017-05-10 | 敦泰电子有限公司 | 触摸显示装置、驱动电路及驱动方法 |
US9164640B2 (en) * | 2014-02-28 | 2015-10-20 | Cypress Semiconductor Corporation | Barrier electrode driven by an excitation signal |
EP2937767A1 (en) | 2014-03-27 | 2015-10-28 | LG Display Co., Ltd. | Touch panel, display device and method of driving the same |
CN104020893B (zh) | 2014-05-30 | 2017-01-04 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020910B (zh) | 2014-05-30 | 2017-12-15 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104035640B (zh) | 2014-05-30 | 2017-10-27 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020909B (zh) | 2014-05-30 | 2017-06-30 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020891A (zh) | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
-
2014
- 2014-05-30 CN CN201410239900.1A patent/CN104020907B/zh active Active
- 2014-09-20 EP EP14861120.5A patent/EP3153952B1/en active Active
- 2014-09-20 WO PCT/CN2014/087005 patent/WO2015180314A1/zh active Application Filing
- 2014-09-20 US US14/443,594 patent/US10067614B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103383612A (zh) * | 2012-05-02 | 2013-11-06 | 香港商灿芯半导体有限公司 | 自身电容型触控装置与其操作方法 |
CN103677454A (zh) * | 2012-09-04 | 2014-03-26 | 晨星软件研发(深圳)有限公司 | 自容式触控面板 |
CN103279245A (zh) * | 2013-06-06 | 2013-09-04 | 敦泰科技有限公司 | 触控显示装置 |
TW201413558A (zh) * | 2013-10-22 | 2014-04-01 | Focaltech Systems Ltd | 用於觸控面板的自電容變化檢測方法及自電容感測裝置 |
CN103793120A (zh) * | 2014-01-28 | 2014-05-14 | 北京京东方光电科技有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020906A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏、以及显示装置 |
CN104020912A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 |
CN104020907A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160048233A1 (en) | 2016-02-18 |
CN104020907B (zh) | 2017-02-15 |
EP3153952A1 (en) | 2017-04-12 |
EP3153952A4 (en) | 2018-01-24 |
EP3153952B1 (en) | 2019-12-18 |
US10067614B2 (en) | 2018-09-04 |
CN104020907A (zh) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015180314A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180335A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180356A1 (zh) | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 | |
WO2015180318A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180321A1 (zh) | 内嵌式触摸屏及显示装置 | |
US10108063B2 (en) | In-cell touch liquid crystal panel and array substrate thereof | |
US9703415B2 (en) | Touch panel, touch positioning method thereof and display device | |
WO2015113380A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180313A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015158083A1 (zh) | 触摸屏及显示装置 | |
WO2015180322A1 (zh) | 内嵌式触摸屏以及显示装置 | |
WO2015180274A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180315A1 (zh) | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 | |
WO2015180303A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180316A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180355A1 (zh) | 内嵌式触摸屏的驱动方法、驱动装置及显示装置 | |
US9830028B2 (en) | In-cell touch panel with self-capacitive electrodes and display device | |
US9811208B2 (en) | Touch screen and method of determining a touch position | |
US20160306457A1 (en) | In-cell touch screen, touch detection method thereof and display device | |
EP3252575B1 (en) | Touch panel, display apparatus, and touch driving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2014861120 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14443594 Country of ref document: US Ref document number: 2014861120 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14861120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |