WO2015180355A1 - 内嵌式触摸屏的驱动方法、驱动装置及显示装置 - Google Patents

内嵌式触摸屏的驱动方法、驱动装置及显示装置 Download PDF

Info

Publication number
WO2015180355A1
WO2015180355A1 PCT/CN2014/087944 CN2014087944W WO2015180355A1 WO 2015180355 A1 WO2015180355 A1 WO 2015180355A1 CN 2014087944 W CN2014087944 W CN 2014087944W WO 2015180355 A1 WO2015180355 A1 WO 2015180355A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
self
electrode
electrodes
capacitance
Prior art date
Application number
PCT/CN2014/087944
Other languages
English (en)
French (fr)
Inventor
王海生
董学
刘英明
丁小梁
杨盛际
赵卫杰
刘红娟
任涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/649,280 priority Critical patent/US9746973B2/en
Priority to EP14864996.5A priority patent/EP3153954B1/en
Publication of WO2015180355A1 publication Critical patent/WO2015180355A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving

Definitions

  • At least one embodiment of the present invention is directed to a driving method, a driving device, and a display device of an in-cell touch panel.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel according to the composition structure.
  • the external touch screen is a touch-sensitive liquid crystal display formed by separately separating the touch screen from the liquid crystal display (LCD), and the external touch screen has high production cost and low light transmittance. Shortcomings such as thicker modules.
  • the touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the thickness of the whole module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by various panel manufacturers.
  • the in-cell touch panel utilizes the principle of mutual capacitance or self-capacitance to detect the touch position of the finger.
  • a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other can be disposed in the touch screen.
  • the capacitance of the respective capacitor electrodes is a fixed value; when the human body touches the screen, the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance, and the touch detection chip is in contact
  • the control time period can determine the touch position by detecting the change in the capacitance value of each capacitor electrode.
  • the touch capacitance generated by the self-capacitance principle can only be used by the human body to touch the screen.
  • the touch screen is made by the principle of capacitance, so the touch screen relative to the mutual capacitance can effectively improve the signal-to-noise ratio of the touch, thereby improving the accuracy of the touch sensing.
  • At least one embodiment of the present invention provides a driving method, a driving device, and a display device for an in-cell touch panel for improving touch precision of a touch panel using self-capacitance technology.
  • At least one embodiment of the present invention provides a driving method of an in-cell touch panel, including: After the touch detection period is applied to the self-capacitance electrodes connected to the wires in the touch screen by the wires, the touch detection signals are respectively received through the wires. The touch sensing signal fed back through the self-capacitance electrode is determined according to the difference between the touch sensing signal and the touch detection signal and the position of the self-capacitance electrode connected to each wire.
  • the area in which the touch is generated in the touch screen; the self-capacitance electrode connected to one of the wires in the touch-sensing area is used as the first touch electrode, and the self-capacitance electrode adjacent to the first touch electrode is used as the first Applying a touch scan signal to the first touch electrode, and receiving a touch sensing signal coupled to the touch scan signal via the second touch electrode; or the second touch
  • the control electrode loads the touch scan signal, and receives the touch sensing signal coupled by the touch scan signal through the first touch electrode; according to the difference between the touch sensing signal and the touch scan signal And the touch electrode and the first electrode of the second touch position, the touch position is determined in the region of the touch occurs.
  • At least one embodiment of the present invention further provides a driving device for an in-cell touch panel, comprising: a touch detection chip, configured to respectively perform a touch time period on a time when the touch screen displays each frame Applying a touch detection signal to the self-capacitance electrode connected to the wire in the touch screen, and receiving, by the wire, the touch sensing signal fed back by the self-capacitance electrode through the wire, according to the same Determining a touch-sensitive area in the touch screen by determining a difference between the touch sensing signal and the touch detection signal transmitted in the wire and the position of the self-capacitance electrode connected to each wire;
  • the self-capacitance electrode connected to one wire in the controlled area is used as the first touch electrode, and the self-capacitance electrode adjacent to the first touch electrode is used as the second touch electrode; loading the first touch electrode Touching the scan signal, and receiving the touch sensing signal coupled by the touch scan signal through the second touch electrode; or loading the touch scan signal on the second touch electrode, and receiving the a
  • a display device includes the above-described driving device for an in-cell touch panel provided by an embodiment of the present invention.
  • FIG. 1 is a schematic view showing a connection relationship between a self-capacitance electrode and a wire
  • FIG. 2 is a flowchart of a driving method of an in-cell touch panel according to an embodiment of the present invention
  • 3a and 3b are schematic diagrams showing driving timings of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 4 is a signal waveform diagram of a driving method using a self-capacitance according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a transmission electric field between a first touch electrode and a second touch electrode forming mutual capacitance according to an embodiment of the present disclosure
  • 6a-6d are top plan views of respective capacitive electrodes of an inline touch screen pressed by a finger.
  • the inventor of the present application has noticed that when the touch screen is designed by the self-capacitance principle, in order to connect the self-capacitance electrode and the touch detection chip, as shown in FIG. 1 , a one-to-one connection with the self-capacitance electrode is generally arranged in the display area.
  • the number of wires, the number of wires and the number of self-capacitance electrodes are the same. In the specific implementation, since the number of self-capacitance electrodes is very large, the corresponding wires are also very large.
  • each self-capacitance electrode As 5mm*5mm as an example, a 5-inch LCD screen requires 264 self-capacitance electrodes; if each self-capacitance electrode is designed to be smaller, there will be more Self-capacitor electrodes, then you need to set more wires.
  • the wire and the self-capacitance electrode are generally disposed in the same layer, and more wires cause the touch blind area to be larger.
  • the touch dead zone refers to the area where the traces are concentrated in the touch screen.
  • the signal in the touch dead zone is relatively turbulent, so it is called a touch dead zone, that is, the touch performance in the area cannot be guaranteed.
  • a driving method of the in-cell touch panel provided by at least one embodiment of the present invention, as shown in FIG. 2, may include the following steps S201 to S205.
  • the time at which the touch screen displays each frame can be divided into a display time period and a touch time period.
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • a gate scan signal is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gate n in the touch screen, and a gray scale signal is applied to the data signal line Data to realize a liquid crystal display function.
  • the correspondence between the wire and the self-capacitance electrode may be one-to-one or one-to-many; that is, one wire may be combined with one
  • the self-capacitance electrode is electrically connected, and it is also possible that one wire is electrically connected to the adjacent at least two self-capacitance electrodes.
  • the self-capacitance electrodes Cx1 . . . Cx n connected to the wires in the touch screen are respectively connected through the wires.
  • the touch detection signals are sequentially applied, and the feedback touch sensing signals of the respective capacitive electrodes Cx1 . . . Cx n are sequentially received.
  • the self-capacitance electrodes Cx1 connected to the wires in the touch screen are respectively connected by wires.
  • the Cx n applies the touch detection signal at the same time, and receives the feedback touch sensing signals of the respective capacitance electrodes Cx1 . . . Cx n , which are not limited herein.
  • S202 Determine an area where touch is generated in the touch screen according to a difference between the touch sensing signal and the touch detection signal and a position of the self-capacitance electrode connected to each wire. As shown in FIG. 4, since the touch sensing signal generated by the touch has a certain difference from the waveform of the touch sensing signal without the touch, the touch can be determined according to the difference. Control the position of the respective capacitive electrodes of the sensing signal.
  • the self-capacitance electrode of the touch-sensing signal that is generated by the touch-sensing is composed of a self-capacitance electrode, and the self-capacitance driving method cannot accurately determine which position in the region is touched. Therefore, the above can only be adopted first.
  • the driving mode of the self-capacitance of steps S201 and S202 determines the approximate position at which the touch occurs in the touch screen.
  • the self-capacitance electrode connected to one wire in the touch-sensing region is used as the first touch electrode, and the self-capacitance electrode adjacent to the first touch electrode is used as the second touch electrode.
  • S204 loading a touch scan signal on the first touch electrode, and receiving a touch sensing signal coupled by the touch scan signal through the second touch electrode; or loading the touch scan signal on the second touch electrode, and receiving the touch Controlling the scanning signal through the touch sensing signal coupled by the first touch electrode.
  • S205 Determine a touch position in the area where the touch occurs according to the difference between the touch sensing signal and the touch scan signal and the positions of the first touch electrode and the second touch electrode.
  • the principle that the finger blocks the projected electric field differs according to the position of the finger, that is, The projection electric field is denser at the A position where the finger is pressed, so that the projected electric field is blocked by a large amount; the projected electric field is sparse at the B position where the finger is pressed, so that the projected electric field is blocked.
  • the embodiment of the invention can accurately determine the precise position of the touch in the area where the touch occurs, thereby improving the detection precision of the touch.
  • the self-capacitance electrode connected to one wire in the touch-sensing region is used as the first touch electrode, and the self-capacitance electrode adjacent to the first touch electrode is used as the second touch.
  • the selection rules of the electrodes can be divided into the following cases.
  • the first embodiment in a specific implementation, whether the wire is connected to the plurality of self-capacitance electrodes or to a self-capacitance electrode, when the respective capacitance electrodes in the region where the touch is determined are respectively connected to the two wires,
  • a self-capacitance electrode that can be connected to any one of the wires serves as a first touch electrode, and a respective capacitor electrode connected to the other of the wires serves as a second touch electrode.
  • the two self-capacitance electrodes 20 adjacent to each other are connected to a wire 10 as an example.
  • the finger presses four wires connected to the wire 4 and the wire 5.
  • the four self-capacitance electrodes connected to the wires 4 and 5 form a touch-sensing region by driving the self-capacitance; and the two capacitors are connected by the mutual capacitance driving method.
  • Self-capacitance electrode as the first touch electrode, two connected to the wire 5
  • the self-capacitance electrode is used as the second touch electrode, and the touch scan signal is applied to the first touch electrode to detect the touch sensing signal coupled by the second touch electrode, and the touch sensing signal can be accurately determined.
  • the precise coordinates of the finger press position in the horizontal direction is used as the second touch electrode, and the touch scan signal is applied to the first touch electrode to detect the touch sensing signal coupled by the second touch electrode, and the touch sensing signal can be accurately determined. The precise coordinates of the finger press position in the horizontal direction.
  • the self-capacitance electrode in the region where the touch is generated is determined to be horizontally arranged
  • the other column of the self-capacitance electrode as the first touch electrode is included.
  • the self-capacitance electrode also serves as the first touch electrode
  • the other self-capacitance electrodes in the column of the self-capacitance electrode of the second touch electrode are also used as the second touch electrode.
  • two self-capacitance electrodes connected to the wire 1 and two self-capacitance electrodes connected to the wire 7 can also be used as the first touch electrode
  • two self-capacitance electrodes connected to the wire 2 can be used.
  • the two self-capacitance electrodes connected to the wire 8 are also used as the second touch electrodes, and the touch scan signals are respectively applied to the first touch electrodes of the first touch electrodes, and the touch sensing signals coupled by the other second touch electrodes are detected. Through the analysis of each touch sensing signal, the precise coordinates of the finger pressing position in the horizontal direction can be accurately determined.
  • the two self-capacitance electrodes 20 adjacent to each other are connected to a single wire 10 as an example.
  • the finger is pressed on the wire 4 and the wire 5 are connected.
  • the self-capacitance electrodes it is possible to judge that the four self-capacitance electrodes connected to the wires 4 and 5 are composed of the touch-sensitive regions by the self-capacitance driving method; and the mutual capacitance driving method is used to connect the wires 4
  • Two self-capacitance electrodes are used as the first touch electrodes, and two self-capacitance electrodes connected to the wires 5 are used as the second touch electrodes, and a touch scan signal is applied to the first touch electrodes to detect the second touch electrode coupling.
  • the touch sensing signal can accurately determine the precise coordinates of the finger pressing position in the vertical direction through the analysis of the touch sensing signal.
  • the self-capacitance electrodes as the first touch electrodes may be further The capacitor electrode also serves as the first touch electrode, and the other self-capacitance electrode in the row of the self-capacitance electrode as the second touch electrode is also used as the second touch electrode.
  • the self-capacitance electrodes connected to the wire 1 and two self-capacitance electrodes connected to the wire 7 can also be used as the first touch electrode, and two self-capacitance electrodes connected to the wire 2 can be used.
  • the two self-capacitance electrodes connected to the wire 8 are also used as the second touch electrodes, and the touch scan signals are respectively applied to the first touch electrodes of the first row, and the touch sensing signals coupled by the other touch electrodes are detected. Through the analysis of each touch sensing signal, the precise coordinates of the finger pressing position in the vertical direction can be accurately determined.
  • the first touch electrode and the second touch power are selected.
  • the self-capacitance electrode connected to any one of the wires may be used as the first touch electrode to interact with the first touch.
  • the other self-capacitance electrodes adjacent to the electrodes serve as the second touch electrodes, that is, as shown in FIG. 6a and FIG. 6b, after the two self-capacitance electrodes connected to the wires 5 are used as the first touch electrodes, the two wires connected to the wires 6 are connected.
  • a self-capacitance electrode is used as the second touch electrode.
  • the second embodiment is: when the wires in the touch screen are electrically connected to the adjacent at least two self-capacitance electrodes, and the respective capacitor electrodes electrically connected to the wires are not coincident with each other.
  • the touch-sensing area determined by the driving method of the self-capacitor includes at least two self-capacitance electrodes. At this time, if the respective capacitive electrodes in the area where the touch occurs are connected to only one wire, the finger pressing is indicated. The area is only in the area where the respective capacitor electrodes of one wire are connected. In this case, the arrangement of the respective capacitor electrodes connected to the wires can be referred to, and the appropriate adjacent electrodes are selected as the second touch electrodes for better determination. The specific pressing position of the finger.
  • the self-capacitance electrode laterally adjacent to the first touch electrode may be used as the second touch electrode.
  • the two adjacent self-capacitance electrodes 20 are connected to one of the wires 10, and the fingers are pressed between the two self-capacitance electrodes connected by the wires 5.
  • the connection of the wires 5 can be judged by the self-capacitance driving method.
  • the two self-capacitance electrodes constitute a touch-sensing region; and the mutual capacitance driving method is adopted, and two self-capacitance electrodes connected to the wires 5 are used as the first touch electrodes, and two wires connected to the wires 4 or 6 are connected.
  • the self-capacitance electrode serves as the second touch electrode, and applies a touch scan signal to the first touch electrode to detect the touch sensing signal coupled by the second touch electrode; and the finger sensing signal can accurately determine the finger The precise coordinates of the pressed position in the horizontal direction.
  • a self-capacitance electrode that is longitudinally adjacent to the first touch electrode may be used as the second touch electrode.
  • the two adjacent self-capacitance electrodes 20 are connected to one of the wires 10, and the fingers are pressed between the two self-capacitance electrodes connected by the wires 5.
  • the connection of the wires 5 can be judged by the self-capacitance driving method.
  • the two self-capacitance electrodes constitute a touch-sensing region; and the mutual capacitance driving method is adopted, and two self-capacitance electrodes connected to the wires 5 are used as the first touch electrodes, and two wires connected to the wires 4 or 6 are connected.
  • the self-capacitance electrode serves as the second touch electrode, and applies a touch scan signal to the first touch electrode to detect the touch sensing signal coupled by the second touch electrode; and the finger sensing signal can accurately determine the finger The precise coordinates of the pressed position in the vertical direction.
  • the self-capacitance electrode as the first touch electrode may be in the column.
  • the other self-capacitance electrodes are also used as the first touch electrodes, and the other self-capacitance electrodes in the column of the self-capacitance electrodes of the second touch electrodes are also used as the second touch electrodes.
  • two self-capacitance electrodes connected to the wire 1 and two self-capacitance electrodes connected to the wire 7 can also be used as the second touch electrode, and two self-capacitance electrodes connected to the wire 2 can be used.
  • the two self-capacitance electrodes connected to the wire 8 also serve as the first touch electrodes, respectively applying a touch scan signal to the first row of touch electrodes, and detecting the touch sensing signals coupled by the other column of the second touch electrodes. Through the analysis of each touch sensing signal, the precise coordinates of the finger pressing position in the horizontal direction can be accurately determined.
  • the other line of the self-capacitance electrode as the first touch electrode is The self-capacitance electrode also serves as the first touch electrode, and the other self-capacitance electrode in the row of the self-capacitance electrode as the second touch electrode is also used as the second touch electrode.
  • two self-capacitance electrodes connected to the wire 1 and two self-capacitance electrodes connected to the wire 7 can also be used as the second touch electrode, and two self-capacitance electrodes connected to the wire 2 can be used.
  • the two self-capacitance electrodes connected to the wire 8 are also used as the first touch electrodes, and the touch scan signals are respectively applied to the first touch electrodes of one row, and the touch sensing signals coupled by the other touch electrodes are detected. Through the analysis of each touch sensing signal, the precise coordinates of the finger pressing position in the vertical direction can be accurately determined.
  • At least one embodiment of the present invention further provides a driving device for an in-cell touch panel. Since the principle of solving the problem is similar to the driving method of the in-line touch panel described above, the implementation of the device is implemented. See the implementation of the method, and the repetition will not be repeated.
  • the driving device of the in-cell touch panel provided by the embodiment of the present invention includes: a touch detection chip 30, as shown in FIGS. 6a to 6d, a touch period for displaying the time of each frame on the touch screen.
  • a touch detection chip 30 As shown in FIGS. 6a to 6d, a touch period for displaying the time of each frame on the touch screen.
  • the difference between the touch detection signal and the position of the self-capacitance electrode connected to each wire determines the area where the touch occurs in the touch screen; and the self-capacitance electrode connected to a wire in the touch-generating area is used as the first touch An electrode, the self-capacitance electrode adjacent to the first touch electrode is used as the second touch electrode; the touch scan signal is loaded on the first touch electrode, and the contact of the touch scan signal through the second touch electrode is received.
  • the touch position is determined in the area where the touch occurs.
  • the touch detection chip can be used to connect the respective capacitor electrodes in the region where the touch is generated to the two wires respectively.
  • a self-capacitance electrode connected to any one of the wires serves as a first touch electrode, and a respective capacitive electrode connected to the other of the wires serves as a second touch electrode.
  • each of the wires in the touch screen can be electrically connected to the adjacent at least two self-capacitance electrodes, and each of the wires is electrically connected to each other.
  • the capacitor electrodes do not coincide with each other.
  • the driving detection chip can be used to connect the respective capacitor electrodes in a region where the touch is determined to be connected to a wire, and the self-capacitance electrode in the touched region is laterally arranged to be lateral to the first touch electrode.
  • the adjacent self-capacitance electrodes are used as the second touch electrodes; when the respective capacitor electrodes in the region where the touch is determined are connected to one of the wires, and the self-capacitance electrodes in the region where the touch occurs are arranged in the longitudinal direction, A self-capacitance electrode that is vertically adjacent to the touch electrode serves as a second touch electrode.
  • the driving detection chip is further configured to be used as the first touch when the self-capacitance electrode in the region where the touch is determined is laterally arranged.
  • the other self-capacitance electrodes in the column of the self-capacitance electrode of the control electrode also serve as the first touch electrode
  • the other self-capacitance electrodes in the column of the self-capacitance electrode of the second touch electrode are also used as the second touch electrode;
  • the other self-capacitance electrodes which are the rows of the self-capacitance electrodes of the first touch electrodes also serve as the first touch electrodes, and will serve as the second touch electrodes.
  • the other self-capacitance electrodes in the row of the self-capacitance electrode also serve as the second touch electrode.
  • the touch detection chip can be used to sequentially apply a touch detection signal to the self-capacitance electrode connected to the wire in the touch screen through the wire; or The touch detection signal is simultaneously applied to the self-capacitance electrode connected to the wire in the touch screen through the wire.
  • At least one embodiment of the present invention further provides a display device including the above-described driving device of the in-cell touch panel provided by the embodiment of the present invention.
  • the display device can be: mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc. Any product or part that has a display function.
  • the display device reference may be made to the embodiment of the driving device of the in-cell touch panel described above, and the repeated description is omitted.
  • the embodiments of the present invention may be implemented by hardware, or may be implemented by means of software plus a necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (such as a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including A number of instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the driving method, the driving device and the display device of the above-mentioned in-cell touch panel provided by the embodiment of the present invention use the time-division driving to first apply the touch detection to the respective capacitive electrodes by using the self-capacitance detection principle during the touch time period. After the signal is received, the respective capacitive electrodes are fed back to the touch sensing signal, and according to the change of the received touch sensing signal relative to the touch detection signal, a region where at least one self-capacitance electrode may be touched is determined, that is, First, the approximate position of the touch in the touch screen is determined by the self-capacitance driving method.
  • the driving method can accurately determine the accuracy of the touch in the area where the touch occurs, because the difference in the position of the touch causes the number of projection electric fields between the first touch electrode and the second touch electrode to be different. Position, which improves the detection accuracy of the touch.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种内嵌式触摸屏的驱动方法、驱动装置及显示装置,该驱动方法包括:在触控时间段,对各自电容电极(20)加载触控侦测信号后,接收反馈触控感测信号,根据触控感测信号相对于触控侦测信号的变化,确定出包括至少一个自电容电极(20)的可能发生触控的区域。然后,将发生触控的区域中至少部分自电容电极(20)作为第一触控电极(21),将与第一触控电极(21)相邻的自电容电极(20)作为第二触控电极(22),通过第一触控电极(21)和第二触控电极(22)之间的投射电场的数量不同的原理,确定出触控的精确位置。该驱动方法可提高触控的侦测精度。

Description

内嵌式触摸屏的驱动方法、驱动装置及显示装置 技术领域
本发明的至少一个实施例涉及一种内嵌式触摸屏的驱动方法、驱动装置及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel)、覆盖表面式触摸屏(On Cell Touch Panel)以及内嵌式触摸屏(In Cell Touch Panel)。外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起形成的具有触摸功能的液晶显示屏,外挂式触摸屏存在制作成本较高、光透过率较低、模组较厚等缺点。触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家青睐。
目前,内嵌式触摸屏是利用互电容或自电容的原理实现检测手指触摸位置。利用自电容的原理可以在触摸屏中设置多个同层设置且相互绝缘的自电容电极。当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值;当人体触碰屏幕时,对应的自电容电极所承受的电容为固定值叠加人体电容,触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中的投射电容的方式,利用自电容原理制作出的触摸屏由人体碰触屏幕所引起的触控变化量大于利用互电容原理制作出的触摸屏,因此相对于互电容的触摸屏能有效提高触控的信噪比,从而提高触控感应的准确性。
发明内容
本发明的至少一个实施例提供了一种内嵌式触摸屏的驱动方法、驱动装置及显示装置,用以提高采用自电容技术的触摸屏的触控精度。
本发明的至少一个实施例提供的一种内嵌式触摸屏的驱动方法,包括: 在触摸屏显示每一帧的时间的触控时间段,通过导线分别对所述触摸屏中与所述导线连接的自电容电极施加触控侦测信号后,通过所述导线分别接收所述触控侦测信号经过所述自电容电极后反馈的触控感测信号,根据所述触控感测信号和所述触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在所述触摸屏中发生触控的区域;以所述发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与所述第一触控电极相邻的自电容电极作为第二触控电极;对所述第一触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第二触控电极耦合出的触控感应信号;或对所述第二触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第一触控电极耦合出的触控感应信号;根据所述触控感应信号和所述触控扫描信号的差异以及所述第一触控电极和所述第二触控电极的位置,在所述发生触控的区域内确定触控位置。
本发明的至少一个实施例还提供了一种内嵌式触摸屏的驱动装置,其包括:触控侦测芯片,用于在触摸屏显示每一帧的时间的触控时间段,通过导线分别对所述触摸屏中与所述导线连接的自电容电极施加触控侦测信号,并通过所述导线分别接收所述触控侦测信号经过所述自电容电极后反馈的触控感测信号,根据同一导线中传输的所述触控感测信号和所述触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在所述触摸屏中发生触控的区域;以所述发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与所述第一触控电极相邻的自电容电极作为第二触控电极;对所述第一触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第二触控电极耦合出的触控感应信号;或对所述第二触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第一触控电极耦合出的触控感应信号;根据所述触控感应信号和所述触控扫描信号的差异以及所述第一触控电极和所述第二触控电极的位置,在所述发生触控的区域内确定触控位置。
本发明的至少一个实施例提供的一种显示装置,包括本发明实施例提供的上述内嵌式触摸屏的驱动装置。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种自电容电极与导线之间的连接关系示意图;
图2为本发明实施例提供的内嵌式触摸屏的驱动方法的流程图;
图3a和图3b分别为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图4为本发明实施例提供的采用自电容的驱动方式的信号波形图;
图5为本发明实施例提供的形成互电容的第一触控电极和第二触控电极之间的透射电场示意图;
图6a-图6d分别为手指按压在内嵌式触摸屏的各自电容电极的俯视示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的发明人注意到,在采用自电容原理设计触摸屏时,为了将自电容电极与触控侦测芯片连接,如图1所示,一般会在显示区域设置与自电容电极一一对应连接的导线,导线的数量和自电容电极的数量相同。在具体实施时,由于自电容电极的数量非常多,对应的导线也会非常多。以每个自电容电极的所占面积为5mm*5mm为例,5寸的液晶显示屏就需要264个自电容电极;若将每个自电容电极设计的更小一些,则会有更多的自电容电极,那么需要设置更多的导线。由于在设计时,为了简化膜层数量,一般将导线和自电容电极同层设置,较多的导线会造成触控盲区偏大,触控盲区是指触控屏中走线集中的区域,在这个触控盲区内的信号相对比较紊乱,故此称为触控盲区,也就是在该区域内的触控性能无法保证。因此,需要控制触摸屏中自电容电极和导线总体的数量,这导致无法将自电容电极的尺寸做得更小,从而较大尺寸的自电容电极会制约触控侦测的精度,即无法准确判断出触控 在触摸屏中的准确位置。因此,人们希望实现在不增加自电容电极的分布密度的情况下,提高触控侦测的精度。
下面结合附图,对本发明实施例提供的内嵌式触摸屏的驱动方法、驱动装置及显示装置的具体实施方式进行详细地说明。
本发明的至少一个实施例提供的一种内嵌式触摸屏的驱动方法,如图2所示,可以包括以下步骤S201至S205。
S201、在触摸屏显示每一帧的时间的触控时间段,通过导线分别对触摸屏中与导线连接的自电容电极施加触控侦测信号后,通过导线分别接收触控侦测信号经过自电容电极后反馈的触控感测信号。
一般地,触摸屏显示每一帧(V-sync)的时间可以分成显示时间段和触控时间段。例如图3a和图3b所示的驱动时序图中触摸屏的显示一帧的时间为16.7ms,选取其中5ms作为触控时间段,其他的11.7ms作为显示时间段。当然也可以根据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。在显示时间段,对触摸屏中的每条栅极信号线Gate1,Gate2……Gate n依次施加栅扫描信号,对数据信号线Data施加灰阶信号,实现液晶显示功能。
在具体实施时,本发明实施例提供的上述驱动方法驱动的内嵌式触摸屏中,导线和自电容电极的对应关系有可能是一对一,也有可能是一对多;即一条导线可能和一个自电容电极电性连接,也有可能一条导线与相邻的至少两个自电容电极电性连接。
例如,在触控时间段,如图3b所示,在向各自电容电极Cx1……Cx n施加触控侦测信号时,通过导线分别对触摸屏中与导线连接的自电容电极Cx1……Cx n依次施加触控侦测信号,依次接收各自电容电极Cx1……Cx n的反馈触控感测信号;也可以如图3a所示,通过导线分别对触摸屏中与导线连接的自电容电极Cx1……Cx n同时施加触控侦测信号,同时接收各自电容电极Cx1……Cx n的反馈触控感测信号,在此不做限定。
S202、根据触控感测信号和触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在触摸屏中发生触控的区域。如图4所示,由于发生触控的触控感测信号相对于未发生触控的触控感测信号的波形存在一定的差异,因此,根据该差异可以确定出反馈该发生触控的触控感测信号的各自电容电极的位置。
同时,由于可能存在手指同时按压在两个自电容电极的情况,或者两个自电容电极同时通过一条导线传输信号的情况,或者设置的自电容电极所占面积较大,因此,可能由多个反馈发生触控的触控感测信号的自电容电极组成发生触控的区域,利用自电容的驱动方式无法准确判断具体是该区域中具体哪个位置发生了触控,因此,只能先通过上述步骤S201和S202的自电容的驱动方式确定出触摸屏中发生触控的大概位置。
S203、以发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与第一触控电极相邻的自电容电极作为第二触控电极。
S204、对第一触控电极加载触控扫描信号,并接收触控扫描信号经过第二触控电极耦合出的触控感应信号;或对第二触控电极加载触控扫描信号,并接收触控扫描信号经过第一触控电极耦合出的触控感应信号。
S205、根据触控感应信号和触控扫描信号的差异以及第一触控电极和第二触控电极的位置,在发生触控的区域内确定触控位置。例如,如图5所示,根据在第一触控电极21和第二触控电极22之间的投射电场的密度不同,手指遮挡投射电场的多少根据手指所在位置的不同而不同的原理,即手指按压在的A位置投射电场较密,因此遮挡的投射电场较多;手指按压在的B位置投射电场较疏,因此遮挡的投射电场较少。本发明实施例可以在发生触控的区域内准确确定出触控的精确位置,从而提高了触控的侦测精度。
在本发明实施例提供的上述步骤S203以发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与第一触控电极相邻的自电容电极作为第二触控电极的选取规则可以分为以下几种情况。
第一种实施方式:在具体实施时,不管是导线与多个自电容电极连接还是与一个自电容电极连接,在确定出发生触控的区域中的各自电容电极分别与两条导线连接时,都可以与其中任一条导线连接的自电容电极作为第一触控电极,以与其中另一条导线连接的各自电容电极作为第二触控电极。
例如,如图6a所示,以横向相邻的两个自电容电极20与一条导线10连接为例进行说明,从图6a中可以看出,手指按压在导线4和导线5连接的四个自电容电极之间,通过自电容的驱动方式已经可以判断出导线4和导线5连接的四个自电容电极形成发生触控的区域;再采用互电容的驱动方式,将与导线4连接的两个自电容电极作为第一触控电极,将与导线5连接的两 个自电容电极作为第二触控电极,对第一触控电极施加触控扫描信号,侦测第二触控电极耦合出的触控感应信号,通过触控感应信号的分析,可以准确确定出手指按压位置在水平方向的精确坐标。
并且,在一个实施例中,为了提高触控识别的准确性,在确定出发生触控的区域中的自电容电极为横向排列时,将作为第一触控电极的自电容电极所在列的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在列的其他自电容电极也做为第二触控电极。例如,如图6a所示,可以将与导线1连接的两个自电容电极和与导线7连接的两个自电容电极也作为第一触控电极,将与导线2连接的两个自电容电极和与导线8连接的两个自电容电极也作为第二触控电极,分别对一列第一触控电极施加触控扫描信号,侦测另一列第二触控电极耦合出的触控感应信号,通过对各触控感应信号的分析,可以准确确定出手指按压位置在水平方向的精确坐标。
或者,例如,如图6b所示,以纵向相邻的两个自电容电极20与一条导线10连接为例进行说明,从图6b中可以看出,手指按压在导线4和导线5连接的四个自电容电极之间,通过自电容的驱动方式已经可以判断出导线4和导线5连接的四个自电容电极组成发生触控的区域;再采用互电容的驱动方式,将与导线4连接的两个自电容电极作为第一触控电极,将与导线5连接的两个自电容电极作为第二触控电极,对第一触控电极施加触控扫描信号,侦测第二触控电极耦合出的触控感应信号,通过触控感应信号的分析,可以准确确定出手指按压位置在竖直方向的精确坐标。
在一个实施例中,为了提高触控识别的准确性,在确定出发生触控的区域中的自电容电极为纵向排列时,可以将作为第一触控电极的自电容电极所在行的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在行的其他自电容电极也做为第二触控电极。例如,如图6b所示,可以将与导线1连接的两个自电容电极和与导线7连接的两个自电容电极也作为第一触控电极,将与导线2连接的两个自电容电极和与导线8连接的两个自电容电极也作为第二触控电极,分别对一行第一触控电极施加触控扫描信号,侦测另一行第二触控电极耦合出的触控感应信号,通过对各触控感应信号的分析,可以准确确定出手指按压位置在竖直方向的精确坐标。
需要说明的是,除采用第一种实施方式选择第一触控电极和第二触控电 极,也可以在确定出发生触控的区域中的各自电容电极分别与两条导线连接时,可以将与其中任一条导线连接的自电容电极作为第一触控电极,以与第一触控电极相邻的其他自电容电极作为第二触控电极,即如图6a和图6b所示,将与导线5连接的两个自电容电极作为第一触控电极后,与导线6连接的两个自电容电极作为第二触控电极。
第二种实施方式:在具体实施时,当触摸屏中的各条导线与相邻的至少两个自电容电极电性相连,且与各条导线电性相连的各自电容电极之间互不重合时,通过自电容的驱动方式确定出的发生触控的区域中包括至少两个自电容电极,此时,若在发生触控的区域中的各自电容电极仅与一条导线连接时,说明手指按压的区域仅在一条导线连接的各自电容电极所在区域内,这时,可以参考与该条导线连接的各自电容电极的排列方式,选取合适的相邻电极作为第二触控电极,以便更好地确定出手指具体的按压位置。
例如,在发生触控的区域中的自电容电极为横向排列时,可以以与第一触控电极横向相邻的自电容电极作为第二触控电极。如图6c所示,横向相邻的两个自电容电极20与一条导线10连接,手指按压在导线5连接的两个自电容电极之间,通过自电容的驱动方式已经可以判断出导线5连接的两个自电容电极组成发生触控的区域;再采用互电容的驱动方式,将与导线5连接的两个自电容电极作为第一触控电极,将与导线4或导线6连接的两个自电容电极作为第二触控电极,对第一触控电极施加触控扫描信号,侦测第二触控电极耦合出的触控感应信号;通过触控感应信号的分析,可以准确确定出手指按压位置在水平方向的精确坐标。
例如,在发生触控的区域中的自电容电极为纵向排列时,可以以与第一触控电极纵向相邻的自电容电极作为第二触控电极。如图6d所示,纵向相邻的两个自电容电极20与一条导线10连接,手指按压在导线5连接的两个自电容电极之间,通过自电容的驱动方式已经可以判断出导线5连接的两个自电容电极组成发生触控的区域;再采用互电容的驱动方式,将与导线5连接的两个自电容电极作为第一触控电极,将与导线4或导线6连接的两个自电容电极作为第二触控电极,对第一触控电极施加触控扫描信号,侦测第二触控电极耦合出的触控感应信号;通过触控感应信号的分析,可以准确确定出手指按压位置在竖直方向的精确坐标。
并且,在一个实施例中,为了提高触控识别的准确性,可以在确定出发生触控的区域中的自电容电极为横向排列时,将作为第一触控电极的自电容电极所在列的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在列的其他自电容电极也做为第二触控电极。例如,如图6c所示,可以将与导线1连接的两个自电容电极和与导线7连接的两个自电容电极也作为第二触控电极,将与导线2连接的两个自电容电极和与导线8连接的两个自电容电极也作为第一触控电极,分别对一列第一触控电极施加触控扫描信号,侦测另一列第二触控电极耦合出的触控感应信号,通过对各触控感应信号的分析,可以准确确定出手指按压位置在水平方向的精确坐标。
或者,在一个实施例中,为了提高触控识别的准确性,在确定出发生触控的区域中的自电容电极为纵向排列时,将作为第一触控电极的自电容电极所在行的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在行的其他自电容电极也做为第二触控电极。例如,如图6d所示,可以将与导线1连接的两个自电容电极和与导线7连接的两个自电容电极也作为第二触控电极,将与导线2连接的两个自电容电极和与导线8连接的两个自电容电极也作为第一触控电极,分别对一行第一触控电极施加触控扫描信号,侦测另一行第二触控电极耦合出的触控感应信号,通过对各触控感应信号的分析,可以准确确定出手指按压位置在竖直方向的精确坐标。
基于同一发明构思,本发明的至少一个实施例还提供了一种内嵌式触摸屏的驱动装置,由于该装置解决问题的原理与前述一种内嵌式触摸屏的驱动方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
例如,本发明实施例提供的一种内嵌式触摸屏的驱动装置,包括:触控侦测芯片30,如图6a至6d所示,用于在触摸屏显示每一帧的时间的触控时间段,通过导线分别对触摸屏中与导线连接的自电容电极施加触控侦测信号后,通过导线分别接收触控侦测信号经过自电容电极后反馈的触控感测信号,根据触控感测信号和触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在触摸屏中发生触控的区域;以发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与第一触控电极相邻的自电容电极作为第二触控电极;对第一触控电极加载触控扫描信号,并接收触控扫描信号经过第二触控电极耦合出的触控感应信号;或对第二触控电极加载触控扫描 信号,并接收触控扫描信号经过第一触控电极耦合出的触控感应信号;根据触控感应信号和触控扫描信号的差异以及第一触控电极和第二触控电极的位置,在发生触控的区域内确定触控位置。
例如,在本发明实施例提供的内嵌式触摸屏的驱动装置中,触控侦测芯片,可以用于在确定出发生触控的区域中的各自电容电极分别与两条导线连接时,以与其中任一条导线连接的自电容电极作为第一触控电极,以与其中另一条导线连接的各自电容电极作为第二触控电极。
例如,在本发明实施例提供的上述内嵌式触摸屏的驱动装置中,触摸屏中的各条导线可以与相邻的至少两个自电容电极电性相连,且与各条导线电性相连的各自电容电极之间互不重合。
驱动侦测芯片,可以用于在确定出发生触控的区域中的各自电容电极与一条导线连接,且发生触控的区域中的自电容电极为横向排列时,以与第一触控电极横向相邻的自电容电极作为第二触控电极;在确定出发生触控的区域中的各自电容电极与一条导线连接,且发生触控的区域中的自电容电极为纵向排列时,以与第一触控电极纵向相邻的自电容电极作为第二触控电极。
例如,在本发明实施例提供的上述内嵌式触摸屏的驱动装置中,驱动侦测芯片,还用于在确定出发生触控的区域中的自电容电极为横向排列时,将作为第一触控电极的自电容电极所在列的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在列的其他自电容电极也做为第二触控电极;在确定出发生触控的区域中的自电容电极为纵向排列时,将作为第一触控电极的自电容电极所在行的其他自电容电极也作为第一触控电极,将作为第二触控电极的自电容电极所在行的其他自电容电极也做为第二触控电极。
例如,在本发明实施例提供的上述内嵌式触摸屏的驱动装置中,触控侦测芯片,可以用于通过导线分别对触摸屏中与导线连接的自电容电极依次施加触控侦测信号;或,通过导线分别对触摸屏中与导线连接的自电容电极同时施加触控侦测信号。
基于同一发明构思,本发明的至少一个实施例还提供了一种显示装置,其包括本发明实施例提供的上述内嵌式触摸屏的驱动装置。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等 任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的驱动装置的实施例,重复之处不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(例如CD-ROM、U盘、移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个示例性实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本发明实施例提供的上述内嵌式触摸屏的驱动方法、驱动装置及显示装置,利用分时驱动,在触控时间段,先采用自电容技术的侦测原理对各自电容电极加载触控侦测信号后,接收各自电容电极反馈触控感测信号,根据接收到的触控感测信号相对于触控侦测信号的变化,确定出包括至少一个自电容电极的可能发生触控的区域,即先通过自电容的驱动方式确定出触摸屏中发生触控的大概位置。然后,利用互电容技术,将发生触控的区域中的至少部分自电容电极作为第一触控电极,将与第一触控电极相邻的自电容电极作为第二触控电极,利用互电容的驱动方式,通过触控所在位置的不同导致遮挡第一触控电极和第二触控电极之间的投射电场的数量不同的原理,可以在发生触控的区域内准确确定出触控的精确位置,从而提高了触控的侦测精度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2014年5月30日递交的中国专利申请第201410240412.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims (11)

  1. 一种内嵌式触摸屏的驱动方法,包括:
    在触摸屏显示每一帧的时间的触控时间段,通过导线分别对所述触摸屏中与所述导线连接的自电容电极施加触控侦测信号后,通过所述导线分别接收所述触控侦测信号经过所述自电容电极后反馈的触控感测信号,根据所述触控感测信号和所述触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在所述触摸屏中发生触控的区域;
    以所述发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与所述第一触控电极相邻的自电容电极作为第二触控电极;对所述第一触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第二触控电极耦合出的触控感应信号;或对所述第二触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第一触控电极耦合出的触控感应信号;根据所述触控感应信号和所述触控扫描信号的差异以及所述第一触控电极和所述第二触控电极的位置,在所述发生触控的区域内确定触控位置。
  2. 如权利要求1所述的方法,其中,
    在确定所述发生触控的区域中的各自电容电极分别与两条导线连接时,以与其中任一条导线连接的自电容电极作为第一触控电极,以与其中另一条导线连接的各自电容电极作为第二触控电极。
  3. 如权利要求1所述的方法,其中,所述触摸屏中的各条导线与相邻的至少两个自电容电极电性相连,且与各条导线电性相连的各自电容电极之间互不重合;
    以所述发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与所述第一触控电极相邻的自电容电极作为第二触控电极,包括:
    在确定出所述发生触控的区域中的各自电容电极与一条导线连接,且所述发生触控的区域中的自电容电极为横向排列时,以与所述第一触控电极横向相邻的自电容电极作为第二触控电极;
    在确定出所述发生触控的区域中的各自电容电极与一条导线连接,且所述发生触控的区域中的自电容电极为纵向排列时,以与所述第一触控电极纵向相邻的自电容电极作为第二触控电极。
  4. 如权利要求2或3所述的方法,还包括:
    在确定出所述发生触控的区域中的自电容电极为横向排列时,将作为所述第一触控电极的自电容电极所在列的其他自电容电极也作为第一触控电极,将作为所述第二触控电极的自电容电极所在列的其他自电容电极也做为第二触控电极;
    在确定出所述发生触控的区域中的自电容电极为纵向排列时,将作为所述第一触控电极的自电容电极所在行的其他自电容电极也作为第一触控电极,将作为所述第二触控电极的自电容电极所在行的其他自电容电极也做为第二触控电极。
  5. 如权利要求1-4任一项所述的方法,其中,
    通过导线分别对所述触摸屏中与所述导线连接的自电容电极依次施加触控侦测信号;或,
    通过导线分别对所述触摸屏中与所述导线连接的自电容电极同时施加触控侦测信号。
  6. 一种内嵌式触摸屏的驱动装置,包括:
    触控侦测芯片,用于在触摸屏显示每一帧的时间的触控时间段,通过导线分别对所述触摸屏中与所述导线连接的自电容电极施加触控侦测信号后,通过所述导线分别接收所述触控侦测信号经过所述自电容电极后反馈的触控感测信号,根据所述触控感测信号和所述触控侦测信号的差异以及与各导线连接的自电容电极的位置,确定在所述触摸屏中发生触控的区域;以所述发生触控的区域中与一条导线连接的自电容电极作为第一触控电极,以与所述第一触控电极相邻的自电容电极作为第二触控电极;对所述第一触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第二触控电极耦合出的触控感应信号;或对所述第二触控电极加载触控扫描信号,并接收所述触控扫描信号经过所述第一触控电极耦合出的触控感应信号;根据所述触控感应信号和所述触控扫描信号的差异以及所述第一触控电极和所述第二触控电极的位置,在所述发生触控的区域内确定触控位置。
  7. 如权利要求6所述的驱动装置,其中,所述触控侦测芯片,用于在确定出所述发生触控的区域中的各自电容电极分别与两条导线连接时,以与其中任一条导线连接的自电容电极作为第一触控电极,以与其中另一条导线连 接的各自电容电极作为第二触控电极。
  8. 如权利要求6所述的驱动装置,其中,所述触摸屏中的各条导线与相邻的至少两个自电容电极电性相连,且与各条导线电性相连的各自电容电极之间互不重合;
    所述驱动侦测芯片,用于在确定出所述发生触控的区域中的各自电容电极与一条导线连接,且所述发生触控的区域中的自电容电极为横向排列时,以与所述第一触控电极横向相邻的自电容电极作为第二触控电极;在确定出所述发生触控的区域中的各自电容电极与一条导线连接,且所述发生触控的区域中的自电容电极为纵向排列时,以与所述第一触控电极纵向相邻的自电容电极作为第二触控电极。
  9. 如权利要求7或8所述的驱动装置,其中,所述驱动侦测芯片,还用于在确定出所述发生触控的区域中的自电容电极为横向排列时,将作为所述第一触控电极的自电容电极所在列的其他自电容电极也作为第一触控电极,将作为所述第二触控电极的自电容电极所在列的其他自电容电极也做为第二触控电极;在确定出所述发生触控的区域中的自电容电极为纵向排列时,将作为所述第一触控电极的自电容电极所在行的其他自电容电极也作为第一触控电极,将作为所述第二触控电极的自电容电极所在行的其他自电容电极也做为第二触控电极。
  10. 如权利要求6-9任一项所述的驱动装置,其中,所述触控侦测芯片,用于通过导线分别对所述触摸屏中与所述导线连接的自电容电极依次施加触控侦测信号;或,用于通过导线分别对所述触摸屏中与所述导线连接的自电容电极同时施加触控侦测信号。
  11. 一种显示装置,包括如权利要求6-10任一项所述的内嵌式触摸屏的驱动装置。
PCT/CN2014/087944 2014-05-30 2014-09-30 内嵌式触摸屏的驱动方法、驱动装置及显示装置 WO2015180355A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/649,280 US9746973B2 (en) 2014-05-30 2014-09-30 Method for driving in-cell touch panel, drive device and display device
EP14864996.5A EP3153954B1 (en) 2014-05-30 2014-09-30 Embedded touchscreen drive method, drive device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410240412.2A CN104020908B (zh) 2014-05-30 2014-05-30 一种内嵌式触摸屏的驱动方法、装置及显示装置
CN201410240412.2 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015180355A1 true WO2015180355A1 (zh) 2015-12-03

Family

ID=51437695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087944 WO2015180355A1 (zh) 2014-05-30 2014-09-30 内嵌式触摸屏的驱动方法、驱动装置及显示装置

Country Status (4)

Country Link
US (1) US9746973B2 (zh)
EP (1) EP3153954B1 (zh)
CN (1) CN104020908B (zh)
WO (1) WO2015180355A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174676A1 (en) 2008-01-04 2009-07-09 Apple Inc. Motion component dominance factors for motion locking of touch sensor data
US8922521B2 (en) 2009-02-02 2014-12-30 Apple Inc. Switching circuitry for touch sensitive display
US8593410B2 (en) 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
US9329723B2 (en) 2012-04-16 2016-05-03 Apple Inc. Reconstruction of original touch image from differential touch image
US9886141B2 (en) 2013-08-16 2018-02-06 Apple Inc. Mutual and self capacitance touch measurements in touch panel
WO2015178920A1 (en) 2014-05-22 2015-11-26 Onamp Research Llc Panel bootstrapping architectures for in-cell self-capacitance
CN104020908B (zh) * 2014-05-30 2017-03-01 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置
US10289251B2 (en) 2014-06-27 2019-05-14 Apple Inc. Reducing floating ground effects in pixelated self-capacitance touch screens
US9880655B2 (en) 2014-09-02 2018-01-30 Apple Inc. Method of disambiguating water from a finger touch on a touch sensor panel
CN104267862B (zh) * 2014-09-19 2017-05-03 京东方科技集团股份有限公司 一种触摸屏、其触控定位方法及显示装置
US10705658B2 (en) 2014-09-22 2020-07-07 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
CN107077262B (zh) 2014-10-27 2020-11-10 苹果公司 像素化自电容水排斥
CN104503643B (zh) * 2014-12-25 2017-10-10 上海天马微电子有限公司 一种触控结构、触控检测方法及触摸显示装置
WO2016126525A1 (en) 2015-02-02 2016-08-11 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10488992B2 (en) 2015-03-10 2019-11-26 Apple Inc. Multi-chip touch architecture for scalability
TWI575490B (zh) * 2015-07-02 2017-03-21 群創光電股份有限公司 內嵌式觸控顯示面板及其驅動方法
CN105183253B (zh) 2015-08-13 2018-12-18 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法、显示装置
CN105117063A (zh) * 2015-08-31 2015-12-02 联想(北京)有限公司 一种信息处理方法及电子设备
US10365773B2 (en) 2015-09-30 2019-07-30 Apple Inc. Flexible scan plan using coarse mutual capacitance and fully-guarded measurements
CN105786263B (zh) * 2016-05-13 2018-09-11 京东方科技集团股份有限公司 一种内嵌式触摸屏及其驱动方法、显示装置
AU2017208277B2 (en) 2016-09-06 2018-12-20 Apple Inc. Back of cover touch sensors
US10642418B2 (en) 2017-04-20 2020-05-05 Apple Inc. Finger tracking in wet environment
KR102325034B1 (ko) * 2017-06-02 2021-11-10 엘지디스플레이 주식회사 터치 디스플레이 장치 및 터치 디스플레이 장치의 구동 방법
CN107863076B (zh) * 2017-11-15 2020-07-31 信利光电股份有限公司 一种笔段式液晶显示器驱动电路及驱动方法
EP3770733A4 (en) * 2018-03-23 2021-11-24 Shenzhen Royole Technologies Co., Ltd TOUCH DISPLAY AND TOUCH DISPLAY CONTROL PROCESS
US10845902B2 (en) * 2018-03-30 2020-11-24 Sharp Kabushiki Kaisha Touch sensor for display
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel
CN113204295A (zh) * 2021-05-28 2021-08-03 合肥维信诺科技有限公司 电容式触控面板及其控制方法、电子设备
CN114115613B (zh) * 2021-10-28 2023-12-15 广州国显科技有限公司 一种触控屏、触控定位方法及显示装置
US11726610B1 (en) * 2022-07-20 2023-08-15 Novatek Microelectronics Corp. Control method for controller of interface device with multiple sensing functions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN101887336A (zh) * 2010-07-15 2010-11-17 汉王科技股份有限公司 多点触控装置及对其进行多点触控检测的方法
CN102023768A (zh) * 2009-09-09 2011-04-20 比亚迪股份有限公司 触摸点定位方法、系统及显示终端
CN102147685A (zh) * 2010-02-08 2011-08-10 鸿发积体电路科技股份有限公司 电容式触控面板检测装置及其方法
CN103076939A (zh) * 2013-02-05 2013-05-01 旭曜科技股份有限公司 利用自电容与互电容感应交替扫瞄以去除触控噪声的方法
CN104020908A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069405B2 (en) * 2009-07-28 2015-06-30 Cypress Semiconductor Corporation Dynamic mode switching for fast touch response
US9372579B2 (en) * 2009-10-27 2016-06-21 Atmel Corporation Touchscreen electrode arrangement
US8933907B2 (en) * 2010-04-30 2015-01-13 Microchip Technology Incorporated Capacitive touch system using both self and mutual capacitance
TWM441878U (en) * 2012-03-13 2012-11-21 Inv Element Inc Embedded touch display panel structure
TWI464642B (zh) * 2012-04-27 2014-12-11 Orise Technology Co Ltd 內嵌式多點觸控液晶顯示面板系統
CN103383612B (zh) * 2012-05-02 2016-05-18 嘉善凯诺电子有限公司 自身电容型触控装置与其操作方法
KR101981529B1 (ko) 2012-05-25 2019-05-24 엘지디스플레이 주식회사 터치 센싱 장치와 그 구동 방법
JP2013242699A (ja) * 2012-05-21 2013-12-05 Renesas Electronics Corp 半導体装置
KR101607694B1 (ko) * 2012-06-21 2016-03-30 엘지디스플레이 주식회사 영상표시장치 및 터치 드라이버
US20140008203A1 (en) * 2012-07-05 2014-01-09 Cambridge Touch Technologies, Ltd. Pressure sensing display device
US9477352B2 (en) * 2012-08-10 2016-10-25 Eastman Kodak Company Making display device with pixel-aligned micro-wire electrode
CN102937852B (zh) * 2012-10-19 2015-08-05 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103149748B (zh) * 2013-01-18 2016-05-25 敦泰科技有限公司 一种具有触控功能的液晶显示屏及其制作方法和电子设备
CN103186304B (zh) 2013-01-21 2016-01-27 敦泰科技有限公司 实现多点触摸识别的单层自电容触摸屏及其数据处理方法
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023768A (zh) * 2009-09-09 2011-04-20 比亚迪股份有限公司 触摸点定位方法、系统及显示终端
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN102147685A (zh) * 2010-02-08 2011-08-10 鸿发积体电路科技股份有限公司 电容式触控面板检测装置及其方法
CN101887336A (zh) * 2010-07-15 2010-11-17 汉王科技股份有限公司 多点触控装置及对其进行多点触控检测的方法
CN103076939A (zh) * 2013-02-05 2013-05-01 旭曜科技股份有限公司 利用自电容与互电容感应交替扫瞄以去除触控噪声的方法
CN104020908A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153954A4 *

Also Published As

Publication number Publication date
CN104020908B (zh) 2017-03-01
US20160266676A1 (en) 2016-09-15
EP3153954B1 (en) 2022-07-27
EP3153954A1 (en) 2017-04-12
CN104020908A (zh) 2014-09-03
EP3153954A4 (en) 2017-12-13
US9746973B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2015180355A1 (zh) 内嵌式触摸屏的驱动方法、驱动装置及显示装置
US9703415B2 (en) Touch panel, touch positioning method thereof and display device
WO2015180314A1 (zh) 内嵌式触摸屏及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US9519361B2 (en) Active stylus
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
US9626055B2 (en) In-cell touch screen, touch detection method thereof and display device
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
US10345962B2 (en) Touch panel with non-uniform touch node layout
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置
WO2015113380A1 (zh) 内嵌式触摸屏及显示装置
US9569045B2 (en) Stylus tilt and orientation estimation from touch sensor panel images
WO2015158083A1 (zh) 触摸屏及显示装置
US9811208B2 (en) Touch screen and method of determining a touch position
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
EP3252575B1 (en) Touch panel, display apparatus, and touch driving method
US20150029134A1 (en) Driving and sensing method for single-layer mutual capacitive multi-touch screen
KR102008780B1 (ko) 표시장치 및 그 구동방법
CN103455195A (zh) 触控屏幕装置
US20140085211A1 (en) Field shaping touch sensor
KR101338992B1 (ko) 액정표시장치의 터치패드 장치
US11836318B1 (en) Display flicker reduction
KR101977253B1 (ko) 터치 및 호버 센싱 시스템과 그 구동 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014864996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14649280

Country of ref document: US

Ref document number: 2014864996

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE