WO2015178419A1 - 成形装置及び成形方法 - Google Patents

成形装置及び成形方法 Download PDF

Info

Publication number
WO2015178419A1
WO2015178419A1 PCT/JP2015/064479 JP2015064479W WO2015178419A1 WO 2015178419 A1 WO2015178419 A1 WO 2015178419A1 JP 2015064479 W JP2015064479 W JP 2015064479W WO 2015178419 A1 WO2015178419 A1 WO 2015178419A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal pipe
cooling
mold
cooling medium
cooled
Prior art date
Application number
PCT/JP2015/064479
Other languages
English (en)
French (fr)
Inventor
正之 石塚
紀条 上野
雅之 雑賀
小松 隆
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201580025906.1A priority Critical patent/CN106457346B/zh
Priority to KR1020167034631A priority patent/KR101893930B1/ko
Priority to CA2949758A priority patent/CA2949758C/en
Priority to EP15795621.0A priority patent/EP3147043B1/en
Publication of WO2015178419A1 publication Critical patent/WO2015178419A1/ja
Priority to US15/355,283 priority patent/US10646912B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/039Means for controlling the clamping or opening of the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a forming apparatus and a forming method for forming a metal pipe.
  • the forming apparatus shown in Patent Document 1 includes an upper die and a lower die that are paired with each other, a holding portion that holds a metal pipe material between the upper die and the lower die, and a metal pipe material that is held by the holding portion. And a gas supply unit for supplying a gas therein.
  • the metal pipe material is expanded and molded into a shape corresponding to the shape of the mold. Can do.
  • the metal pipe is cooled and quenched by maintaining the state in which the metal pipe is in contact with the mold for a predetermined time.
  • the strength of the metal pipe is increased and the brittleness (toughness is decreased) due to the excessively high cooling rate. Therefore, it has been required to obtain a molded product having appropriate characteristics according to the application by controlling the strength and toughness according to the application of the molded product.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a molding apparatus and a molding method capable of obtaining a molded product having appropriate characteristics.
  • a forming apparatus is a forming apparatus for forming a metal pipe, and includes a heating unit that heats the metal pipe material, and a gas supply unit that supplies the gas into the heated metal pipe material to expand it.
  • a control unit, and the control unit controls the operation of the mold so that the mold is opened after the molding by the mold is completed, and controls the cooling unit so that the cooling medium is brought into contact with the metal pipe.
  • the metal pipe is cooled by the cooling medium.
  • the control unit controls the operation of the mold so that the mold is opened after the molding by the mold is completed, and the cooling unit is configured to contact the cooling medium with the metal pipe.
  • the metal pipe is cooled by the cooling medium.
  • the cooling rate can be reduced compared to cooling by bringing the mold into contact, and quenching that increases the toughness of the metal pipe is achieved. It becomes possible.
  • the strength and toughness of the molded product can be controlled according to the application, and a molded product having appropriate characteristics can be obtained.
  • the control unit controls the operation of the mold so as to maintain the state in which the mold and the metal pipe are in contact with each other for a predetermined time after the molding is completed.
  • the metal pipe may be cooled by the mold, and after cooling the metal pipe by the mold, the metal pipe may be cooled by the cooling medium.
  • control unit may cool the metal pipe with a mold until the metal pipe reaches a first temperature that is higher than the martensite transformation start temperature. .
  • first temperature which is the temperature just before the martensitic transformation start temperature.
  • control unit may adjust the hardenability of the metal pipe based on the timing of starting the cooling of the metal pipe by the cooling medium. This makes it possible to easily adjust the hardenability of the metal pipe.
  • the cooling unit may spray a cooling gas onto the metal pipe as a cooling medium.
  • gas As the cooling medium, it is easy to adjust the flow rate and the like, and hence it is possible to easily adjust the hardenability. Moreover, it can cool, without polluting a metal pipe.
  • the cooling unit may be constituted by a gas supply unit.
  • the gas supply part for expanding a metal pipe can be diverted as a cooling part, a shaping
  • molding apparatus can be made compact.
  • the cooling unit may spray a cooling gas on both the inner surface and the outer surface of the metal pipe. This makes it possible to remove the oxide layer attached to both the inner surface and the outer surface of the metal pipe, and to effectively improve the quality of the molded product.
  • a forming method is a forming method for forming a metal pipe, a heating step for heating a metal pipe material, and a gas supply step for supplying gas to expand the heated metal pipe material. And a molding process for molding the metal pipe by bringing the expanded metal pipe material into contact with the mold, and a cooling process for cooling the molded metal pipe with a cooling medium. In the cooling process, the molding by the mold is completed. Thereafter, the metal pipe is cooled by the cooling medium by opening the mold and bringing the cooling medium into contact with the metal pipe.
  • the mold operation is controlled so as to maintain the state where the mold and the metal pipe are in contact with each other for a predetermined time.
  • the metal pipe may be cooled by a mold, and after cooling the metal pipe by a mold, the metal pipe may be cooled by a cooling medium.
  • the metal pipe in the cooling step, may be cooled by the mold until the metal pipe reaches a first temperature that is higher than the martensite transformation start temperature. Good. As a result, the metal pipe can be quickly cooled by the mold until the first temperature, which is the temperature just before the martensitic transformation start temperature.
  • the hardenability of the metal pipe may be adjusted based on the timing of starting the cooling of the metal pipe with the cooling medium. This makes it possible to easily adjust the hardenability of the metal pipe.
  • the metal pipe in the cooling step, may be cooled by blowing a cooling gas as a cooling medium onto the metal pipe.
  • a cooling gas as a cooling medium
  • it is easy to adjust the flow rate and the like, and hence it is possible to easily adjust the hardenability.
  • it can cool, without polluting a metal pipe.
  • gas may be sprayed on both the inner surface and the outer surface of the metal pipe.
  • the metal pipe is uniformly cooled, and the occurrence of unevenness in the hardenability of the metal pipe can be suppressed.
  • gas in the cooling step, gas may be sprayed onto the metal pipe to remove the oxide layer attached to the surface of the metal pipe.
  • the oxide layer adhering to the surface of the metal material can be removed, and the oxide layer can be prevented from remaining on the surface of the molded product. For this reason, it can suppress that the external appearance and material strength of a molded product are influenced, and it becomes possible to improve the quality of a molded product.
  • a molded product having appropriate characteristics can be obtained.
  • FIG. 1 is a schematic configuration diagram of a molding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 1, and is a schematic cross-sectional view of a blow molding die.
  • 3A and 3B are diagrams showing a manufacturing process by a molding apparatus, wherein FIG. 3A is a view showing a state where a metal pipe material is set in a mold, and FIG. 3B is a state where the metal pipe material is held by an electrode.
  • FIG. FIG. 4 is a diagram showing a blow molding process by the molding apparatus and the subsequent flow. 5A and 5B are enlarged views of the periphery of the electrode, where FIG.
  • FIG. 5A is a view showing a state where the electrode holds the metal pipe material
  • FIG. 5B is a view showing a state where the blow mechanism is in contact with the electrode.
  • (C) is a front view of an electrode.
  • 6 (a) to 6 (c) are views showing a state when quenching is performed by a molding apparatus.
  • FIGS. 7A and 7B are graphs showing the relationship between time and temperature during quenching.
  • FIGS. 8A to 8C are diagrams showing a cooling process according to a modification.
  • FIGS. 9A to 9D are diagrams showing a cooling process according to a modification.
  • FIG. 10 is a diagram illustrating a cooling process according to a modification.
  • 11A to 11C are diagrams showing a cooling process according to a modification.
  • FIGS. 12A and 12B are diagrams showing a cooling process according to a modification.
  • FIGS. 13A and 13B are diagrams showing a cooling process according to a modification.
  • 14A and 14B are diagrams showing a cooling process according to a modification.
  • FIGS. 15A and 15B are diagrams showing a cooling process according to a modification.
  • FIGS. 16A and 16B are diagrams illustrating a cooling process according to a modification.
  • a molding apparatus 10 for molding a metal pipe includes a blow molding die (die) 13 including an upper die 12 and a lower die 11, and at least one of the upper die 12 and the lower die 11.
  • a slide 82 to be moved a drive unit 81 that generates a driving force for moving the slide 82, a pipe holding mechanism 30 that horizontally holds the metal pipe material 14 between the upper mold 12 and the lower mold 11, and
  • a cooling unit 90 for cooling the metal pipe 80, provided with are constituted by a cooling medium.
  • the control unit 70 closes the blow molding die 13 when the metal pipe material 14 is heated to the quenching temperature (AC3 transformation point temperature or higher) and injects high-pressure gas into the heated metal pipe material 14. Take control.
  • the formed pipe is referred to as a metal pipe 80 (see FIG. 2B), and the pipe in the middle of completion is referred to as a metal pipe material 14.
  • the lower mold 11 is fixed to a large base 15. Moreover, the lower mold
  • a cooling water passage 19 is formed in the lower mold 11 and includes a thermocouple 21 inserted from below at a substantially central position.
  • the thermocouple 21 is supported by a spring 22 so as to be movable up and down.
  • the pair of first and second electrodes 17 and 18 located on the lower mold 11 side also serves as a pipe holding mechanism 30 so that the metal pipe material 14 can be raised and lowered between the upper mold 12 and the lower mold 11. Can be supported horizontally.
  • the thermocouple 21 is merely an example of a temperature measuring means, and may be a non-contact temperature sensor such as a radiation thermometer or an optical thermometer. If a correlation between the energization time and the temperature can be obtained, the temperature measuring means can be omitted and configured sufficiently.
  • the upper mold 12 is a large steel block having a cavity (concave portion) 24 on the lower surface and a cooling water passage 25 built therein.
  • the upper mold 12 has an upper end fixed to the slide 82.
  • the slide 82 to which the upper mold 12 is fixed is suspended by the pressure cylinder 26 and guided by the guide cylinder 27 so as not to shake.
  • the drive unit 81 according to the present embodiment includes a servo motor 83 that generates a drive force for moving the slide 82.
  • the drive unit 81 is configured by a fluid supply unit that supplies a fluid that drives the pressurizing cylinder 26 (operating oil when a hydraulic cylinder is used as the pressurizing cylinder 26) to the pressurizing cylinder 26.
  • the control unit 70 can control the movement of the slide 82 by controlling the amount of fluid supplied to the pressurizing cylinder 26 by controlling the servo motor 83 of the driving unit 81.
  • the drive unit 81 is not limited to the one that applies a driving force to the slide 82 via the pressure cylinder 26 as described above.
  • the servo motor 83 is generated by mechanically connecting the drive unit to the slide 82.
  • the driving force to be applied may be applied to the slide 82 directly or indirectly.
  • the drive unit 81 may not include the servo motor 83.
  • the first is configured so that it can be moved up and down by an actuator (not shown).
  • An electrode 17 and a second electrode 18 are provided.
  • the lower surfaces of the first and second electrodes 17 and 18 are formed with semicircular arc-shaped grooves 17a and 18a corresponding to the upper outer peripheral surface of the metal pipe material 14 (see FIG. 5C).
  • the metal pipe material 14 can be fitted into the concave grooves 17a and 18a.
  • tapered concave surfaces 17b and 18b are formed on the front surfaces of the first and second electrodes 17 and 18 (surfaces on the outer side of the mold). Has been.
  • FIG. 2 is a schematic cross section of the blow molding die 13 as viewed from the side. This is a cross-sectional view of the blow molding die 13 taken along the line II-II in FIG. 1, and shows the state of the die position during blow molding.
  • a rectangular recess 11 b is formed on the upper surface of the lower mold 11.
  • a rectangular recess 12 b is formed at a position facing the recess 11 b of the lower mold 11.
  • the metal pipe material 14 disposed in the main cavity portion MC expands to come into contact with the inner wall surface of the main cavity portion MC as shown in FIG.
  • the main cavity portion MC is formed into a shape (here, a rectangular cross section is rectangular).
  • the heating mechanism 50 includes a power source 51, a conducting wire 52 extending from the power source 51 and connected to the first electrode 17 and the second electrode 18, and a switch 53 interposed in the conducting wire 52.
  • the blow mechanism 60 includes a high-pressure gas source 61, an accumulator 62 that stores the high-pressure gas supplied from the high-pressure gas source 61, a first tube 63 that extends from the accumulator 62 to the cylinder unit 42, and the first tube 63.
  • a pressure control valve 64 and a switching valve 65 interposed between the second tube 67 and the second tube 67 extending from the accumulator 62 to the gas passage 46 formed in the seal member 44.
  • an on / off valve 68 and a check valve 69 A tapered surface 45 is formed so that the tip of the seal member 44 is tapered.
  • the tapered surface 45 is configured to have a shape that can be fitted and brought into contact with the tapered concave surfaces 17b and 18b of the first and second electrodes (see FIG. 5).
  • the seal member 44 is connected to the cylinder unit 42 via the cylinder rod 43, and can advance and retract in accordance with the operation of the cylinder unit 42.
  • the cylinder unit 42 is mounted and fixed on the base 15 via the block 41.
  • the pressure control valve 64 serves to supply the cylinder unit 42 with a high-pressure gas having an operating pressure adapted to the pressing force required from the seal member 44 side.
  • the check valve 69 serves to prevent the high pressure gas from flowing back in the second tube 67.
  • the control unit 70 acquires temperature information from the thermocouple 21 by transmitting information from (A) to (A), and controls the pressurizing cylinder 26, the switch 53, the switching valve 65, the on / off valve 68, and the like. .
  • the water circulation mechanism 72 includes a water tank 73 for storing water, a water pump 74 that pumps up the water stored in the water tank 73, pressurizes the water, and sends it to the cooling water passage 19 of the lower mold 11 and the cooling water passage 25 of the upper mold 12; It consists of a pipe 75. Although omitted, a cooling tower for lowering the water temperature and a filter for purifying water may be interposed in the pipe 75.
  • FIG. 3 shows a process from a pipe feeding process in which a metal pipe material 14 as a material is fed to an energization heating process in which the metal pipe material 14 is energized and heated.
  • a hardenable metal pipe material 14 of a steel type is prepared, and this metal pipe material 14 is provided on the lower mold 11 side by a robot arm or the like (not shown). Place on the electrodes 17, 18. Since the grooves 17a and 18a are formed in the first and second electrodes 17 and 18, the metal pipe material 14 is positioned by the grooves 17a and 18a.
  • the control unit 70 see FIG.
  • the control unit 70 heats the metal pipe material 14 by controlling the heating mechanism 50. Specifically, the control unit 70 turns on the switch 53 of the heating mechanism 50. If it does so, electric power will be supplied to the metal pipe material 14 from the power supply 51, and metal pipe material 14 itself heat
  • FIG. 4 shows the blow molding and the processing content after blow molding.
  • the blow molding die 13 is closed with respect to the heated metal pipe material 14, and the metal pipe material 14 is placed in the cavity of the blow molding die 13. Seal the arrangement.
  • the cylinder unit 42 is operated to seal both ends of the metal pipe material 14 with the seal member 44 which is a part of the blow mechanism 60 (see also FIG. 5).
  • the seal member 44 does not directly contact and seal against both end faces of the metal pipe material 14, but indirectly through the tapered concave surfaces 17b and 18b formed on the first and second electrodes 17 and 18. To be done. By doing so, the sealing performance can be improved because the sealing can be performed over a wide area.
  • the metal pipe material 14 is softened by being heated to a high temperature (around 950 ° C.), and can be blow-molded at a relatively low pressure. Specifically, when compressed air at normal temperature (25 ° C.) at 4 MPa is adopted as the high-pressure gas, the compressed air is eventually heated to around 950 ° C. in the sealed metal pipe material 14. The compressed air expands thermally and reaches about 16-17 MPa based on Boyle-Charles' law. That is, the metal pipe material 14 at 950 ° C. can be easily blow-molded.
  • the outer peripheral surface of the metal pipe material 14 blown and expanded contacts the cavity 16 of the lower mold 11 and is rapidly cooled, and simultaneously contacts the cavity 24 of the upper mold 12 to rapidly cool (the upper mold 12 and the lower mold).
  • 11 has a large heat capacity and is controlled at a low temperature, the heat of the pipe surface is taken away to the mold side at once when the metal pipe material 14 comes into contact.
  • Such a cooling method is called mold contact cooling or mold cooling.
  • the metal pipe 80 is quenched by supplying the cooling medium to the metal pipe 80.
  • molding apparatus 10 which concerns on this embodiment is provided with the cooling part 90 which supplies a cooling medium to the metal pipe 80 after shaping
  • the control unit 70 controls the operation of the blow molding die 13 so as to open the blow molding die 13 after the molding by the blow molding die 13 is completed, and supplies the cooling medium.
  • the cooling medium is not particularly limited, and a gas such as air or inert gas may be applied, a liquid such as water or oil may be applied, or a solid such as a metal plate or dry ice may be applied. .
  • the cooling unit 90 is configured by a blow mechanism 60. That is, the cooling unit 90 cools the metal pipe 80 by blowing a cooling gas (the gas used in the air blow for forming may be diverted) onto the metal pipe 80 as a cooling medium.
  • a cooling gas the gas used in the air blow for forming may be diverted
  • the control unit 70 controls the operation of the blow molding die 13 so as to open the blow molding die 13 after the completion of molding by the blow molding die 13, and causes the cooling medium to contact the metal pipe 80. By controlling 90, the metal pipe 80 is cooled by the cooling medium.
  • the control unit 70 controls the operation of the blow molding die 13 by controlling the driving unit 81 and moving the upper mold 12 via the slide 82. Further, the control unit 70 controls the operation of the blow molding die 13 so as to maintain the state where the blow molding die 13 and the metal pipe 80 are in contact with each other for a predetermined time after the molding is completed.
  • the metal pipe 80 may be cooled by the mold 13 and then the metal pipe 80 may be cooled by the cooling medium.
  • control unit 70 controls the metal pipe 80 by the blow molding die 13 until the metal pipe 80 reaches a first temperature (temperature T1 in FIG. 7B described later) which is higher than the martensite transformation start temperature. 80 cooling may be performed. Further, the control unit 70 may adjust the hardenability of the metal pipe 80 based on the timing at which the cooling of the metal pipe 80 with the cooling medium is started.
  • the relationship between the cooling of the metal pipe 80 and the temperature according to the present embodiment will be described with reference to the graph of FIG. First, with reference to Fig.7 (a), the relationship between the intensity
  • the region with a gray scale indicates the martensitic transformation region MT.
  • broken lines are graphs showing changes in time and temperature when the metal pipe 80 is cooled.
  • the cooling rate of the metal pipe 80 increases in the order of the broken line L9, the broken line L8, the broken line L7, the broken line L6, the broken line L5, the broken line L4, the broken line L3, the broken line L2, and the broken line L1.
  • martensitic transformation region MT martensitic transformation occurs.
  • the strength of the metal pipe 80 varies depending on the cooling rate in the region below the martensitic transformation start temperature TS.
  • the martensitic transformation start temperature TS is the maximum temperature in the martensitic transformation region MT.
  • the martensitic transformation start temperature TS of the present embodiment corresponds to the upper broken line in contact with the martensitic transformation region MT in FIGS.
  • the hardness of the metal pipe 80 increases as it cools along the broken line located on the left side of the drawing. Further, the metal pipe 80 has a lower hardness as it is cooled along the broken line located on the right side, but has a higher toughness.
  • L1 be a broken line indicating a temperature change when only cooling is performed by bringing the blow molding die 13 and the metal pipe 80 into contact after the molding is completed.
  • the cooling unit 90 is cooled by bringing a cooling medium into contact with the metal pipe 80, by cooling so as to change the temperature along the broken lines L2 to L5, A highly tough metal pipe 80 can be obtained.
  • the metal pipe 80 is cooled so as to change the temperature along the broken lines L6 to L9, the broken lines L6 to L9 do not pass the martensite transformation start temperature TS, and therefore the martensite transformation region MT does not pass. Therefore, as described later, it is preferable to perform cooling by appropriately combining mold cooling.
  • control unit 70 controls the operation of the blow molding die so as to maintain the state where the blow molding die 13 and the metal pipe 80 are in contact with each other for a predetermined time after the molding is completed. 13, the metal pipe 80 may be cooled, and then the cooling unit 90 may be controlled to cool the metal pipe 80 with a cooling medium.
  • the control unit 70 cools the metal pipe 80 by the blow molding die 13 until the metal pipe 80 reaches a first temperature (temperature T1 in FIG. 7B) that is higher than the martensite transformation start temperature TS. I do.
  • T1 in FIG. 7B a first temperature that is higher than the martensite transformation start temperature TS. I do.
  • the control unit 70 operates the cooling of the blow mold 13 and cools the metal pipe 80 so as to cool the metal pipe 80 along the broken line L10.
  • the unit 90 is controlled.
  • the control unit 70 performs control so that the blow molding die 13 is kept in contact with the metal pipe 80 immediately after the molding is completed. Further, the control unit 70 opens the blow molding die 13 at the start point P1 to release the contact between the blow molding die 13 and the metal pipe 80 and controls the cooling unit 90 to control the metal by the cooling medium. Cooling of the pipe 80 is started.
  • the start point P1 is a point at which the cooling by the blow mold 13 is switched to the cooling by the cooling catalyst, and the temperature at the start point P1 is T1, and the time (elapsed time from the start of cooling) is H1.
  • the time H1 corresponds to a time for maintaining the state in which the metal pipe 80 is in contact with the blow molding die 13.
  • the temperature of the metal pipe 80 rapidly decreases according to the broken line L10a due to conduction heat transfer from the metal pipe 80 to the blow molding die 13.
  • cooling with a cooling medium is performed.
  • the temperature of the metal pipe 80 is cooled according to the broken line L10b at a lower cooling rate than the broken line L10a.
  • the temperature T1 at the start point P1 is higher than the martensite transformation start temperature TS.
  • the control unit 70 may start cooling by the cooling unit 90 based on the elapse of time H1 from the start of cooling, and at the timing when it is detected that the temperature of the metal pipe 80 has reached the temperature T1. Cooling by 90 may be started.
  • the control unit 70 adjusts the hardenability of the metal pipe 80 based on the timing (start point P1) at which the cooling of the metal pipe 80 with the cooling medium is started. That is, the control unit 70 can improve the stretchability while adjusting the start point P1 to increase the quenching time with the cooling medium, while reducing the strength. Or the control part 70 can improve intensity
  • the control unit 70 performs cooling under preset cooling conditions based on characteristics required according to the use of the metal pipe 80 to be formed.
  • the molding apparatus 10 illustrated in FIG. 6 uses a blow mechanism 60 as the cooling unit 90 that sprays the cooling medium CM onto the metal pipe 80.
  • the control unit 70 controls the operation of the blow molding die 13 so that the blow molding die 13 and the metal pipe 80 are kept in contact with each other for a predetermined time after the molding is completed. To do. Thereby, the metal pipe 80 is cooled by the blow molding die 13, and after the metal pipe 80 is cooled by the blow molding die 13, the metal pipe 80 is cooled by the cooling medium CM.
  • the control unit 70 closed the upper die 12 and the lower die 11 by controlling the operation of the blow molding die 13. The state is maintained, and the state where the blow molding die 13 and the metal pipe 80 are in contact with each other is maintained for a predetermined time. Further, the control unit 70 controls the operation of the water circulation mechanism 72 to cause the cooling water to flow through the cooling water passage 25. Thereby, conduction heat transfer from the metal pipe 80 to the blow molding die 13 is performed, and the metal pipe 80 is cooled by the blow molding die 13.
  • the controller 70 operates the blow molding die 13 so as to open the blow molding die 13 after cooling the metal pipe 80 by the blow molding die 13. Take control.
  • the control unit 70 controls the blow mechanism 60 to separate the seal member 44 from both ends of the metal pipe 80.
  • the control unit 70 forms a gap GP between the surface of the recess 11b of the lower mold 11 and the outer surface of the metal pipe 80, and the recess 12b of the upper mold 12.
  • the blow molding die 13 is controlled so as to form a gap GP between the surface of the metal pipe 80 and the outer surface of the metal pipe 80.
  • the control unit 70 controls the ejector pin 91 to open the blow molding die 13 with the gap GP provided between the surface of the blow molding die 13 and the outer surface of the metal pipe.
  • the metal pipe 80 is held inside.
  • the control unit 70 controls the blow mechanism 60 to spray high-pressure gas as the cooling medium CM from the tip of the seal member 44 toward the end of the metal pipe 80.
  • the cooling medium CM flows into the metal pipe 80 and the gap GP.
  • the metal pipe 80 can be cooled by the cooling medium CM contacting the inner surface and the outer surface of the metal pipe 80.
  • the metal pipe 80 may be vibrated up and down using the pins 91 while the cooling medium CM is being sprayed onto the metal pipe 80. Thus, quenching of the formed metal pipe 80 is completed.
  • the control unit 70 controls the operation of the blow molding die 13 so as to open the blow molding die 13 after the molding by the blow molding die 13 is completed, and the cooling medium is made of metal.
  • the cooling unit 90 controls the cooling unit 90 so as to come into contact with the pipe 80, the metal pipe 80 is cooled (quenched) by the cooling medium.
  • the cooling rate can be reduced as compared with the cooling by bringing the blow molding die 13 into contact, and the toughness of the metal pipe 80 is enhanced. Can be hardened. For example, as shown in FIG.
  • the control unit 70 of the blow molding die 13 maintains the state where the blow molding die 13 and the metal pipe 80 are in contact with each other for a predetermined time after the molding is completed.
  • the metal pipe 80 is cooled by the blow molding die 13, and after the metal pipe 80 is cooled by the blow molding die 13, the metal pipe 80 is cooled by the cooling medium. Since the blow molding die 13 has high thermal conductivity and high heat capacity, the metal pipe 80 can be rapidly cooled by bringing the blow molding die 13 into contact with the metal pipe 80.
  • the blow molding die 13 is immediately cooled to increase the cooling rate, so that the time from the start of cooling until the temperature of the metal pipe 80 reaches the martensitic transformation start temperature is increased. It can be shortened.
  • the time during which the metal pipe 80 can be martensitic is the time from when the metal pipe 80 starts to cool until a predetermined time elapses.
  • the control of the cooling unit 90 is selected so that the cooling rate is lowered when it is desired to increase the stretchability, and the cooling rate is increased when the strength is desired to be increased.
  • the degree of freedom of quenching conditions can be increased.
  • the control unit 70 controls the operation of the blow molding die 13 so that the metal pipe 80 is at a temperature higher than the martensite transformation start temperature TS.
  • the metal pipe 80 is cooled by the blow mold 13 until T1 is reached.
  • the metal pipe 80 can be quickly cooled by the blow mold 13 up to the first temperature T1, which is the temperature just before the martensite transformation start temperature TS. Thereby, the time which can be made into a martensite can be lengthened.
  • the control unit 70 quenches the metal pipe 80 based on the timing (starting point P1 in FIG. 7B) at which the cooling of the metal pipe 80 with the cooling medium is started. Adjust gender. For example, it is possible to improve the stretchability by increasing the timing of the start of cooling with the cooling medium and extending the time of low-speed cooling, and improve the strength by delaying the timing and shortening the time of low-speed cooling. be able to. Thereby, the hardenability of the metal pipe 80 can be easily adjusted.
  • the cooling unit 90 blows a cooling gas onto the metal pipe 80 as a cooling medium.
  • gas As the cooling medium, it is easy to adjust the flow rate and the like, and hence it is possible to easily adjust the hardenability. Further, it is possible to cool the metal pipe 80 without making it dirty as compared with the case where a liquid is used as the cooling medium.
  • the cooling unit 90 is configured by a blow mechanism 60 that is a gas supply unit.
  • the gas supply part for expanding the metal pipe 80 can be diverted as a cooling part, the shaping
  • the cooling unit 90 may spray cooling gas on both the inner surface and the outer surface of the metal pipe 80. This makes it possible to remove scales (oxide layers) and the like, which will be described later, attached to both the inner surface and the outer surface of the metal pipe 80, and can effectively improve the quality of the molded product.
  • the forming method according to the present embodiment includes a heating process for heating the metal pipe material 14, a gas supply process for supplying a gas into the heated metal pipe material 14 and expanding it, and blow molding the expanded metal pipe material 14. It has a forming step of forming the metal pipe 80 in contact with the mold 13 and a cooling step of cooling the formed metal pipe 80 with a cooling medium. Further, in the cooling process, after the molding by the blow molding die 13 is completed, the blow molding die 13 is opened, and the cooling medium is brought into contact with the metal pipe 80, whereby the metal pipe 80 is cooled by the cooling medium. According to the molding method according to the present embodiment, the same operations and effects as those of the molding apparatus 10 described above can be obtained.
  • the present invention is not limited to the embodiment described above.
  • cooling may be performed only from the inside of the metal pipe 80 by supplying the cooling medium CM with the blow molding die 13 opened.
  • the cooling medium CM may be supplied from one side of the metal pipe 80 and discharged from one side at the same time.
  • the cooling medium CM may be supplied from both sides of the metal pipe 80 and discharged from both sides.
  • the cooling medium CM may be supplied from one side of the metal pipe 80 and discharged from the opposite side.
  • FIGS. 9A and 9B when cooling is performed from both inside and outside of the metal pipe 80, a gap between the outer surface of the metal pipe 80 and the surface of the blow mold 13 is used.
  • a flow path 93 for supplying the cooling medium CM may be provided on both sides of the metal pipe 80.
  • the flow direction of the cooling medium CM that cools the inside of the metal pipe 80 may be opposite to the flow direction of the cooling medium CM that cools the outside.
  • FIGS. 9C and 9D a structure in which the scale (oxide layer) is blown off inside and outside the metal pipe 80 may be used. As shown in FIGS.
  • the flow path 93 is communicated with a gap outside the metal pipe 80 at the end of the metal pipe 80 on the side where the cooling medium CM is supplied.
  • the flow path 93 is released so that the cooling medium CM that has passed through the gap outside the metal pipe 80 is removed as it is.
  • the cooling medium CM is supplied from one end of the metal pipe 80 to the inside and the outside of the metal pipe 80, and discharged together with the scale from the other end.
  • a scale receiving portion 94 constituted by a net or the like may be provided.
  • the supply direction switching may be repeated a plurality of times by switching the states of FIG. 9C and FIG. 9D.
  • a flow path 97 for allowing the cooling medium CM to flow inside the blow molding die 13 may be provided.
  • the flow path 97 is provided substantially at the center in the length direction of the lower mold 11 and the upper mold 12.
  • the cooling medium CM is supplied to the gap GP outside the metal pipe 80 via the flow path 97 inside the blow molding die 13 and discharged from both ends of the metal pipe 80.
  • the flow path 97 is sealed with a pin 96, and a molding surface is secured by the tip surface of the pin 96.
  • a cooling box 99 may be applied as the cooling unit 90.
  • the cooling box 99 is used for cooling and taking out the metal pipe 80.
  • the blow molding die 13 is opened after the cooling by the blow molding die 13 or after the molding is completed, and the metal pipe 80 is pushed up by the pin 91.
  • a cooling box 99 is placed in the blow mold 13.
  • the metal pipe 80 is accommodated in a cooling box 99, and the metal pipe 80 is cooled by a cooling medium such as liquid or solid.
  • the pin 91 is lowered, and the metal pipe 80 together with the cooling box 99 is taken out of the blow mold 13 as shown in FIG.
  • a sandwiching jig 100 may be applied as the cooling unit 90.
  • the sandwiching jig 100 is divided into a plurality of pieces having a shape along the outer surface of the metal pipe 80.
  • the sandwiching jig 100 includes a piece that sandwiches both ends of the metal pipe 80 and a piece that sandwiches the vicinity of the center.
  • Some pieces of the sandwiching jig 100 have a flow path 101 for flowing a cooling medium such as cooling water inside, and some pieces have a heating unit 102 such as a sheathed heater.
  • the flow path 101 may be heated by flowing a heating medium such as warm water.
  • the pinching jig 100 is attached to the metal pipe 80 after the blow molding die 13 is opened (for example, at a stage corresponding to FIGS. 11B and 11C).
  • the sandwiching jig 100 is attached to the metal pipe 80.
  • the metal pipe 80 is cooled by flowing a cooling medium through the flow path 101.
  • the heating unit 102 may partially heat a portion that is desired to be slowly cooled.
  • the metal pipe 80 is taken out from the blow molding die 13 together with the sandwiching jig 100.
  • a take-out chuck 110 having an air blowing function may be applied as the cooling unit 90.
  • the take-out chuck 110 can be attached to both ends of the metal pipe 80, and in the attached state, compressed air as a cooling medium can be blown against the inside and the outside of the metal pipe 80.
  • the take-out chuck 110 is used, after the blow molding die 13 is opened (for example, at a stage corresponding to FIGS. 11B and 11C), the take-out chuck 110 is attached to the metal pipe 80.
  • the take-out chuck 110 is attached to the metal pipe 80. In this state, the metal pipe 80 is cooled by air blowing.
  • the metal pipe 80 is taken out from the blow molding die 13 together with the take-out chuck 110.
  • a chuck 120 having a wiping function may be applied as the cooling unit 90.
  • the chuck 120 can be attached to the outer surface of the metal pipe 80. By driving along the outer surface of the metal pipe 80 with the chuck 120 attached, the outer surface of the metal pipe 80 can be wiped by the chuck 120.
  • the chuck 120 is used, after the metal pipe 80 is taken out from the blow molding die 13 (for example, a stage corresponding to FIG. 12B), the chuck 120 is attached to the metal pipe 80. As a result, the chuck 120 is attached to the metal pipe 80 as shown in FIG. In this state, the metal pipe 80 is cooled by wiping the surface of the metal pipe 80 with the chuck 120.
  • this chuck 120 When this chuck 120 is used, only a portion that needs to be cooled may be wiped, or the whole may be wiped slowly and evenly. Alternatively, only the portion that needs to be cooled is sandwiched between the chucks 120, and wiping may not be performed.
  • a cooling box 99 disposed outside the blow molding die 13 may be applied as the cooling unit 90.
  • the take-out chuck 115 is attached to the metal pipe 80 as shown in FIG.
  • the metal pipe 80 is stored in the cooling box 99.
  • the cooling box 99 is filled with a liquid or solid (dry ice or the like) cooling medium.
  • the molding apparatus 10 includes a heating mechanism 50 that can perform heat treatment between the upper and lower molds, and the heating mechanism 50 heats the metal pipe material 14 using Joule heat generated by energization.
  • the present invention is not limited thereto. Is not to be done.
  • the heat treatment may be performed at a place other than between the upper and lower molds, and the heated metal pipe may be carried between the molds.
  • radiant heat from a heater or the like may be used, or heating using high-frequency induction current is also possible.
  • non-oxidizing gases such as nitrogen gas and argon gas and inert gases can be mainly used.
  • these gases are difficult to generate oxide scale in the metal pipe, but are expensive.
  • compressed air is inexpensive unless it causes a major problem due to the generation of oxide scale, and there is no actual damage even if it leaks into the atmosphere, and handling is extremely easy. Therefore, the blowing process can be executed smoothly.
  • the blow mold may be either an anhydrous cold mold or a water-cooled mold.
  • the anhydrous cold mold takes a long time to lower the mold to near room temperature after completion of blow molding. In this respect, cooling is completed in a short time with a water-cooled mold. Therefore, a water-cooled mold is desirable from the viewpoint of improving productivity.
  • the metal pipe 80 becomes the 1st temperature (temperature T1 in FIG.7 (b)) higher than the martensite transformation start temperature TS
  • the metal pipe by the blow molding die 13 is used. 80, then the blow molding die 13 is opened to release the contact between the blow molding die 13 and the metal pipe 80 and the cooling of the metal pipe 80 by the cooling medium is started.
  • the metal pipe 80 is cooled by the blow molding die 13 until the temperature of the metal pipe 80 becomes lower than the martensite transformation start temperature TS, and then the blow molding die 13 is opened and blown.
  • the contact between the molding die 13 and the metal pipe 80 may be released and the cooling of the metal pipe 80 by the cooling medium may be started. That is, quenching with the blow mold 13 and quenching with the cooling medium may be used in combination in the martensitic transformation region MT shown in FIG.
  • the molding apparatus and molding method according to one aspect of the present invention can be used as a molding apparatus and a molding method in which a molded product having appropriate characteristics is provided with strength and toughness controlled according to the application, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

適切な特性を有する成形品を得ることができる成形装置及び成形方法を提供する。制御部(70)は、ブロー成形金型(13)による成形完了以降に、ブロー成形金型(13)を開くように当該ブロー成形金型(13)の動作を制御し、冷却媒体を金属パイプ(80)に接触させるように冷却部(90)を制御することによって、冷却媒体による金属パイプ(80)の冷却を行う。このように、冷却媒体を接触させて冷却を行うことで、ブロー成形金型(13)を接触させることによる冷却に比して、冷却速度を遅くすることができ、金属パイプ(80)のじん性を高めるような焼き入れが可能となる。また、冷却媒体を用いて冷却する場合は、冷却媒体を接触させる時間、冷却媒体の量、冷却媒体の温度等を調整することで、金型を接触させることによる冷却に比して、焼き入れ性の調整を容易に行うことができる。

Description

成形装置及び成形方法
 本発明は、金属パイプを成形する成形装置及び成形方法に関する。
 従来、加熱した金属パイプ材料内に気体を供給して膨張させることによって成形を行う成形装置が知られている。例えば、特許文献1に示す成形装置は、互いに対となる上型及び下型と、上型と下型との間で金属パイプ材料を保持する保持部と、保持部に保持された金属パイプ材料内に気体を供給する気体供給部と、を備えている。この成形装置では、上型と下型との間で保持された状態の金属パイプ材料内に気体を供給することによって、金属パイプ材料を膨張させて金型の形状に対応する形状に成形することができる。
特開2003-154415号公報
 ここで、上述の装置では、金型で金属パイプを成形した後、金属パイプを金型に接触させた状態を所定時間維持することによって、金属パイプを冷却して焼き入れを行っていた。しかしながら、金型を接触させることによる冷却のみを行う場合、冷却速度が速すぎることによって、金属パイプの強度が高くなり、脆くなる(じん性が低くなる)場合があった。従って、成形品の用途によって、強度とじん性をコントロールすることで、用途に応じて適切な特性を有する成形品を得ることが要請されていた。
 本発明は、上述のような課題を解決するためになされたものであり、適切な特性を有する成形品を得ることができる成形装置及び成形方法を提供することを目的とする。
 本発明の一態様に係る成形装置は、金属パイプを成形する成形装置であって、金属パイプ材料を加熱する加熱部と、加熱された金属パイプ材料内に気体を供給して膨張させる気体供給部と、膨張した金属パイプ材料を接触させて金属パイプを成形する金型と、成形後の金属パイプを冷却媒体によって冷却する冷却部と、金型の動作、気体供給部、及び冷却部を制御する制御部と、を備え、制御部は、金型による成形完了以降に、金型を開くように当該金型の動作を制御し、冷却媒体を金属パイプに接触させるように冷却部を制御することによって、冷却媒体による金属パイプの冷却を行う。
 本発明の一態様に係る成形装置において制御部は、金型による成形完了以降に、金型を開くように当該金型の動作を制御し、冷却媒体を金属パイプに接触させるように冷却部を制御することによって、冷却媒体による金属パイプの冷却を行う。このように、冷却媒体を接触させて冷却を行うことで、金型を接触させることによる冷却に比して、冷却速度を遅くすることができ、金属パイプのじん性を高めるような焼き入れが可能となる。また、冷却媒体を用いて冷却する場合は、金型を接触させることによる冷却に比して、焼き入れ性の調整を容易に行うことができる。以上により、用途に応じて成形品の強度とじん性をコントロールすることが可能となり、適切な特性を有する成形品を得ることができる。
 また、本発明の一態様に係る成形装置において、制御部は、成形完了後、金型と金属パイプとを接触させた状態を所定時間維持するように、金型の動作を制御することで、金型による金属パイプの冷却を行い、金型による金属パイプの冷却の後、冷却媒体による金属パイプの冷却を行ってよい。このように成形完了後は金型による冷却を行って、冷却速度を高くすることで、冷却を開始してから金属パイプの温度がマルテンサイト変態開始温度となるまでの時間を短縮することができる。従って、マルテンサイト化可能な時間を長く確保することが可能となり、冷却媒体による冷却速度を、所望の特性に応じて容易に調整することが可能となる。
 また、本発明の一態様に係る成形装置において、制御部は、金属パイプがマルテンサイト変態開始温度よりも高い温度である第1の温度となるまで、金型による金属パイプの冷却を行ってよい。これによって、マルテンサイト変態開始温度になる手前の温度である第1の温度までは、金型によって速やかに金属パイプを冷却することが可能となる。
 また、本発明の一態様に係る成形装置において、制御部は、冷却媒体による金属パイプの冷却を開始するタイミングに基づいて、金属パイプの焼き入れ性を調整してよい。これによって、容易に金属パイプの焼き入れ性を調整することができる。
 また、本発明の一態様に係る成形装置において、冷却部は、冷却媒体として、冷却用の気体を金属パイプに吹き付けてよい。冷却媒体として気体を用いることで、流量調整等が容易であるため、焼き入れ性の調整を容易に行うことができる。また、金属パイプを汚すことなく冷却することができる。
 また、本発明の一態様に係る成形装置において、冷却部は、気体供給部によって構成されてよい。これによって、金属パイプを膨張させるための気体供給部を冷却部として流用することができるため、成形装置をコンパクトにすることができる。
 また、本発明の一態様に係る成形装置において、冷却部は、金属パイプの内表面及び外表面の双方に冷却用の気体を吹き付けてもよい。これによって、金属パイプの内表面及び外表面の双方に付着した酸化層を除去することが可能となり、成形品の品質を効果的に向上することが可能となる。
 本発明の一態様に係る成形方法は、金属パイプを成形する成形方法であって、金属パイプ材料を加熱する加熱工程と、加熱された金属パイプ材料内に気体を供給して膨張させる気体供給工程と、膨張した金属パイプ材料を金型に接触させて金属パイプを成形する成形工程と、成形後の金属パイプを冷却媒体によって冷却する冷却工程と、を備え、冷却工程において、金型による成形完了以降に、金型を開き、冷却媒体を金属パイプに接触させることによって、冷却媒体による金属パイプの冷却を行う。
 本発明の一態様に係る成形方法によれば、上述の成形装置と同様な作用・効果を得ることができる。
 また、本発明の一態様に係る成形方法において、冷却工程では、成形完了後、金型と金属パイプとを接触させた状態を所定時間維持するように金型の動作を制御することで、金型による前記金属パイプの冷却を行い、金型による金属パイプの冷却の後、冷却媒体による金属パイプの冷却を行ってもよい。このように成形完了後は金型による冷却を行って、冷却速度を高くすることで、冷却を開始してから金属パイプの温度がマルテンサイト変態開始温度となるまでの時間を短縮することができる。従って、マルテンサイト化可能な時間を長く確保することが可能となり、冷却媒体による冷却速度を、所望の特性に応じて容易に調整することが可能となる。
 また、本発明の一態様に係る成形方法において、冷却工程では、金属パイプがマルテンサイト変態開始温度よりも高い温度である第1の温度となるまで、金型による金属パイプの冷却を行ってもよい。これによって、マルテンサイト変態開始温度になる手前の温度である第1の温度までは、金型によって速やかに金属パイプを冷却することが可能となる。
 また、本発明の一態様に係る成形方法において、冷却工程では、冷却媒体による金属パイプの冷却を開始するタイミングに基づいて、金属パイプの焼き入れ性を調整してもよい。これによって、容易に金属パイプの焼き入れ性を調整することができる。
 また、本発明の一態様に係る成形方法において、冷却工程では、冷却媒体として冷却用の気体を金属パイプに吹き付けることによって、金属パイプの冷却を行ってもよい。冷却媒体として気体を用いることで、流量調整等が容易であるため、焼き入れ性の調整を容易に行うことができる。また、金属パイプを汚すことなく冷却することができる。
 また、本発明の一態様に係る成形方法において、冷却工程では、金属パイプの内表面及び外表面の双方に気体を吹き付けてもよい。これによって、金属パイプが均一に冷却され、金属パイプの焼き入れ性におけるむらの発生を抑制できる。加えて、金属パイプの内表面及び外表面の双方に付着した酸化層を除去することが可能となり、成形品の品質を効果的に向上することが可能となる。
 また、本発明の一態様に係る成形方法において、冷却工程では、金属パイプに気体を吹き付け、金属パイプの表面に付着した酸化層を除去してもよい。これによって、金属材料の表面に付着した酸化層を除去し、成形品の表面に該酸化層が残存することを抑制できる。このため、成形品の外観及び材料強度に影響が及ぼされることを抑制でき、成形品の品質を向上することが可能となる。
 本発明によれば、適切な特性を有する成形品を得ることができる。
図1は、本発明の実施形態に係る成形装置の概略構成図である。 図2は、図1に示すII-II線に沿った断面図であって、ブロー成形金型の概略断面図である。 図3は、成形装置による製造工程を示す図であって、(a)は金型内に金属パイプ材料がセットされた状態を示す図、(b)は金属パイプ材料が電極に保持された状態を示す図である。 図4は、成形装置によるブロー成形工程とその後の流れを示す図である。 図5は、電極周辺の拡大図であって、(a)は電極が金属パイプ材料を保持した状態を示す図であり、(b)は電極にブロー機構が当接した状態を示す図であり、(c)は電極の正面図である。 図6(a)~(c)は、成形装置による焼き入れを行っている時の様子を示す図である。 図7(a),(b)は、焼き入れ時の時間と温度の関係を示すグラフである。 図8(a)~(c)は、変形例に係る冷却工程を示す図である。 図9(a)~(d)は、変形例に係る冷却工程を示す図である。 図10は、変形例に係る冷却工程を示す図である。 図11(a)~(c)は、変形例に係る冷却工程を示す図である。 図12(a),(b)は、変形例に係る冷却工程を示す図である。 図13(a),(b)は、変形例に係る冷却工程を示す図である。 図14(a),(b)は、変形例に係る冷却工程を示す図である。 図15(a),(b)は、変形例に係る冷却工程を示す図である。 図16(a),(b)は、変形例に係る冷却工程を示す図である。
 〈成形装置の構成〉
 図1に示しているように、金属パイプを成形する成形装置10は、上型12及び下型11からなるブロー成形金型(金型)13と、上型12及び下型11の少なくとも一方を移動させるスライド82と、スライド82を移動させるための駆動力を発生させる駆動部81と、上型12と下型11との間に金属パイプ材料14を水平に保持するパイプ保持機構30と、このパイプ保持機構30で保持されている金属パイプ材料14に通電して加熱する加熱機構(加熱部)50と、加熱された金属パイプ材料14に高圧ガスを吹込むブロー機構(気体供給部)60と、駆動部81、パイプ保持機構30、ブロー成形金型13の動作、加熱機構50及びブロー機構60を制御する制御部70と、ブロー成形金型13を強制的に水冷する水循環機構72と、冷却媒体によって金属パイプ80を冷却する冷却部90と、を備えて構成されている。制御部70は、金属パイプ材料14が焼入れ温度(AC3変態点温度以上)に加熱されたときにブロー成形金型13を閉じるとともに加熱された金属パイプ材料14に高圧ガスを吹込む等の一連の制御を行う。なお、以下の説明では、成形後のパイプを金属パイプ80(図2(b)参照)と称し、完成に至る途中の段階のパイプを金属パイプ材料14と称するものとする。
 下型11は、大きな基台15に固定されている。また下型11は、大きな鋼鉄製ブロックで構成されて、その上面にキャビティ(凹部)16を備える。更に下型11の左右端(図1において左右端)近傍には電極収納スペース11aが設けられ、当該スペース11a内にアクチュエータ(図示しない)で上下に進退動可能に構成された第1電極17と第2電極18を備えている。これら第1、第2電極17、18の上面には、金属パイプ材料14の下側外周面に対応した半円弧状の凹溝17a、18aが形成されていて(図5(c)参照)、当該凹溝17a、18aの部分に丁度金属パイプ材料14が嵌り込むように載置可能とされている。また、第1、第2電極17、18の正面(金型の外側方向の面)は凹溝17a、18aに向って周囲がテーパー状に傾斜して窪んだテーパー凹面17b、18bが形成されている。なお、下型11には冷却水通路19が形成され、略中央に下から差し込まれた熱電対21を備えている。この熱電対21はスプリング22で上下移動自在に支持されている。
 なお、下型11側に位置する一対の第1、第2電極17、18はパイプ保持機構30を兼ねており、金属パイプ材料14を、上型12と下型11との間に昇降可能に水平に支えることができる。また、熱電対21は測温手段の一例を示したに過ぎず、輻射温度計や光温度計のような非接触型温度センサであってもよい。なお、通電時間と温度との相関が得られれば、測温手段は省いて構成することも十分可能である。
 上型12は、下面にキャビティ(凹部)24を備え、冷却水通路25を内蔵した大きな鋼鉄製ブロックである。上型12は、上端部をスライド82に固定されている。そして、上型12が固定されたスライド82は、加圧シリンダ26で吊され、ガイドシリンダ27で横振れしないようにガイドされる。本実施形態に係る駆動部81は、スライド82を移動させるための駆動力を発生させるサーボモータ83を備えている。駆動部81は、加圧シリンダ26を駆動させる流体(加圧シリンダ26として油圧シリンダを採用する場合は、動作油)を当該加圧シリンダ26へ供給する流体供給部によって構成されている。制御部70は、駆動部81のサーボモータ83を制御することによって、加圧シリンダ26へ供給する流体の量を制御することにより、スライド82の移動を制御することができる。なお、駆動部81は、上述のように加圧シリンダ26を介してスライド82に駆動力を付与するものに限られず、例えば、スライド82に駆動部を機械的に接続させてサーボモータ83が発生する駆動力を直接的に又は間接的にスライド82へ付与するものであってもよい。なお、本実施形態では、上型12のみが移動するものであるが、上型12に加えて、または上型12に代えて下型11が移動するものであってもよい。また、本実施形態では、駆動部81がサーボモータ83を備えていなくともよい。
 また上型12の左右端(図1において左右端)近傍に設けられた電極収納スペース12a内には、下型11と同じく、アクチュエータ(図示しない)で上下に進退動可能に構成された第1電極17と第2電極18を備えている。これら第1、第2電極17、18の下面には、金属パイプ材料14の上側外周面に対応した半円弧状の凹溝17a、18aが形成されていて(図5(c)参照)、当該凹溝17a、18aに丁度金属パイプ材料14が嵌合可能とされている。また、第1、第2電極17、18の正面(金型の外側方向の面)には、凹溝17a、18aに向って周囲がテーパー状に傾斜して窪んだテーパー凹面17b、18bが形成されている。即ち、上下一対の第1、第2電極17、18で金属パイプ材料14を上下方向から挟持すると、丁度金属パイプ材料14の外周を全周に渡って密着するように取り囲むことができるように構成されている。
 図2は、ブロー成形金型13を側面方向から見た概略断面である。これは図1におけるII-II線に沿うブロー成形金型13の断面図であって、ブロー成形時の金型位置の状態を示している。図2に示すように、下型11の上面には矩形状の凹部11bが形成されている。上型12の下面には、下型11の凹部11bと対向する位置に矩形状の凹部12bが形成されている。ブロー成形金型13が閉じられた状態においては、下型11の凹部11bと上型12の凹部12bとが組み合わされることによって矩形状の空間であるメインキャビティ部MCが形成される。図2(a)に示すように、メインキャビティ部MC内に配置された金属パイプ材料14は、膨張することによって図2(b)に示すようにメインキャビティ部MCの内壁面と接触し、当該メインキャビティ部MCの形状(ここでは矩断面矩形状)に成形される。
 加熱機構50は、電源51と、この電源51から延びて第1電極17と第2電極18に接続している導線52と、この導線52に介設したスイッチ53とを有してなる。
 ブロー機構60は、高圧ガス源61と、この高圧ガス源61で供給された高圧ガスを溜めるアキュムレータ62と、このアキュムレータ62からシリンダユニット42まで延びている第1チューブ63と、この第1チューブ63に介設されている圧力制御弁64及び切替弁65と、アキュムレータ62からシール部材44内に形成されたガス通路46まで延びている第2チューブ67と、この第2チューブ67に介設されているオンオフ弁68及び逆止弁69とからなる。なお、シール部材44の先端は先細となるようにテーパー面45が形成されている。テーパー面45は、第1、第2電極のテーパー凹面17b、18bに丁度嵌合当接することができる形状に構成されている(図5参照)。なお、シール部材44は、シリンダロッド43を介してシリンダユニット42に連結されていて、シリンダユニット42の作動に合わせて進退動することが可能となっている。また、シリンダユニット42はブロック41を介して基台15上に載置固定されている。
 圧力制御弁64は、シール部材44側から要求される押力に適応した作動圧力の高圧ガスをシリンダユニット42に供給する役割を果たす。逆止弁69は、第2チューブ67内で高圧ガスが逆流することを防止する役割を果たす。制御部70は、(A)から(A)へ情報が伝達されることで、熱電対21から温度情報を取得し、加圧シリンダ26、スイッチ53、切替弁65及びオンオフ弁68等を制御する。
 水循環機構72は、水を溜める水槽73と、この水槽73に溜まっている水を汲み上げ、加圧して下型11の冷却水通路19や上型12の冷却水通路25へ送る水ポンプ74と、配管75とからなる。省略したが、水温を下げるクーリングタワーや水を浄化する濾過器を配管75に介在させることは差し支えない。
 〈成形装置の作用〉
 次に、成形装置10の作用について説明する。図3は材料としての金属パイプ材料14を投入するパイプ投入工程から、金属パイプ材料14に通電して加熱する通電加熱工程までを示している。図3(a)に示すように、焼入れ可能な鋼種の金属パイプ材料14を準備し、この金属パイプ材料14を、ロボットアーム等(図示しない)により、下型11側に備わる第1、第2電極17、18上に載置する。第1、第2電極17、18には凹溝17a、18aが形成されているので、当該凹溝17a、18aによって金属パイプ材料14が位置決めされる。次に、制御部70(図1参照)は、パイプ保持機構30を制御することによって、当該パイプ保持機構30に金属パイプ材料14を保持させる。具体的には、図3(b)のように、各電極17、18を進退動可能としているアクチュエータ(図示しない)を作動させ、各上下に位置する第1、第2電極17、18を接近・当接させる。この当接によって、金属パイプ材料14の両端部は、上下から第1、第2電極17、18によって挟持される。またこの挟持は第1、第2電極17、18に形成される凹溝17a、18aの存在によって、金属パイプ材料14の全周に渡って密着するような態様で挾持されることとなる。ただし、金属パイプ材料14の全周に渡って密着する構成に限られず、金属パイプ材料14の周方向における一部に第1、第2電極17,18が当接するような構成であってもよい。
 続いて、制御部70は、加熱機構50を制御することによって、金属パイプ材料14を加熱する。具体的には、制御部70は、加熱機構50のスイッチ53をONにする。そうすると、電源51から電力が金属パイプ材料14に供給され、金属パイプ材料14に存在する抵抗により、金属パイプ材料14自体が発熱する(ジュール熱)。この時、熱電対21の測定値が常に監視され、この結果に基づいて通電が制御される。
 図4は、ブロー成形及びブロー成形後の処理内容を示している。具体的には、図4(a)に示しているように、加熱後の金属パイプ材料14に対してブロー成形金型13を閉じ、金属パイプ材料14を当該ブロー成形金型13のキャビティ内に配置密閉する。その後、シリンダユニット42を作動させてブロー機構60の一部であるシール部材44で金属パイプ材料14の両端をシールする(図5も併せて参照)。なおこのシールは、シール部材44が直接金属パイプ材料14の両端面に当接してシールするのではなく、第1、第2電極17、18に形成されたテーパー凹面17b、18bを介して間接的に行われる。こうすることによって広い面積でシールできることからシール性能を向上させることができる。加えて、繰り返しのシール動作によるシール部材の摩耗を防止し、更に、金属パイプ材料14両端面の潰れ等を効果的に防止している。シール完了後、高圧ガスを金属パイプ材料14内へ吹き込んで、加熱により軟化した金属パイプ材料14をキャビティの形状に沿うように変形させる。その後、ブロー成形後の金属パイプ材料14に対して冷却を行い、焼き入れを行うと金属パイプ80ができ上がる(詳細については後述)。
 金属パイプ材料14は高温(950℃前後)に加熱されて軟化しており、比較的低圧でブロー成形することができる。具体的には、高圧ガスとして、4MPaで常温(25℃)の圧縮空気を採用した場合、この圧縮空気は、密閉した金属パイプ材料14内で結果的に950℃付近まで加熱される。圧縮空気は熱膨張し、ボイル・シャルルの法則に基づき、約16~17MPaにまで達する。即ち、950℃の金属パイプ材料14を容易にブロー成形することができる。
 そして、ブロー成形されて膨らんだ金属パイプ材料14の外周面が下型11のキャビティ16に接触して急冷されると同時に、上型12のキャビティ24に接触して急冷(上型12と下型11は熱容量が大きく且つ低温に管理されているため、金属パイプ材料14が接触すればパイプ表面の熱が一気に金型側へと奪われる。)される。このような冷却法は、金型接触冷却又は金型冷却と呼ばれる。その後、冷却媒体を金属パイプ80に供給することによって金属パイプ80の焼き入れが行われる。
 (金属パイプの冷却)
 次に、成形後の金属パイプ80の冷却について説明する。本実施形態に係る成形装置10は、成形後の金属パイプ80に冷却媒体を供給する冷却部90を備えている。本実施形態に係る成形装置10において、制御部70は、ブロー成形金型13による成形完了後に、当該ブロー成形金型13を開くように当該ブロー成形金型13の動作を制御し、冷却媒体を金属パイプ80に接触させるように冷却部90を制御することによって、冷却媒体による金属パイプ80の冷却を行う。冷却媒体は特に限定されず、空気、不活性ガス等の気体を適用してもよく、水、油等の液体を適用してもよく、金属プレートやドライアイス等の固体を適用してもよい。なお、これらの冷却媒体のうち、複数種類の冷却媒体を組み合わせて用いてもよい。図1に示す例では、冷却部90は、ブロー機構60によって構成される。すなわち、冷却部90は、冷却媒体として、冷却用の気体(成形のためのエアブローで用いた気体を流用してよい)を金属パイプ80に吹き付けることによって、金属パイプ80を冷却する。
 制御部70は、ブロー成形金型13による成形完了以降に、ブロー成形金型13を開くように当該ブロー成形金型13の動作を制御し、冷却媒体を金属パイプ80に接触させるように冷却部90を制御することによって、冷却媒体による金属パイプ80の冷却を行う。なお、制御部70は、駆動部81を制御してスライド82を介して上型12を移動させることによって、ブロー成形金型13の動作を制御する。また、制御部70は、成形完了後、ブロー成形金型13と金属パイプ80とを接触させた状態を所定時間維持するように、ブロー成形金型13の動作を制御することで、ブロー成形金型13による金属パイプ80の冷却を行い、その後、冷却媒体による金属パイプ80の冷却を行ってよい。また、制御部70は、金属パイプ80がマルテンサイト変態開始温度よりも高い温度である第1の温度(後述の図7(b)の温度T1)となるまで、ブロー成形金型13による金属パイプ80の冷却を行ってよい。また、制御部70は、冷却媒体による金属パイプ80の冷却を開始するタイミングに基づいて、金属パイプ80の焼き入れ性を調整してよい。
 本実施形態に係る金属パイプ80の冷却と温度との関係について、図7のグラフを参照して説明する。まず、図7(a)を参照して、金属パイプ80の強度と冷却との関係について説明する。図中、グレースケールを付した領域は、マルテンサイト変態領域MTを示している。図中、破線は金属パイプ80を冷却する際の時間と温度の変化を示すグラフである。破線L9、破線L8、破線L7、破線L6、破線L5、破線L4、破線L3、破線L2、破線L1の順に金属パイプ80の冷却速度が速くなる。破線がマルテンサイト変態領域MTを通過すると、マルテンサイト変態が起こる。金属パイプ80の強度は、マルテンサイト変態開始温度TS以下の領域における冷却速度によって変化する。ここで、マルテンサイト変態開始温度TSは、マルテンサイト変態領域MTにおける最大温度である。本実施形態のマルテンサイト変態開始温度TSは、図7(a),(b)において該マルテンサイト変態領域MTに接する上側の折れ線に相当する。金属パイプ80は、図の左側に位置する破線に沿って冷却するものほど硬度が高くなる。また、金属パイプ80は、右側に位置する破線に沿って冷却するものほど硬度が低くなるが、じん性が高くなる。例えば、成形終了後、ブロー成形金型13と金属パイプ80とを接触させることによる冷却のみを行った場合の温度変化を示す破線をL1とする。これに対して、成形終了後に直ちに型開し、冷却部90が金属パイプ80に冷却媒体を接触させることによって冷却する場合、破線L2~L5に沿った温度変化をするように冷却することで、高いじん性の金属パイプ80を得ることができる。ただし、破線L6~L9に沿った温度変化をするように金属パイプ80を冷却した場合、破線L6~L9がマルテンサイト変態開始温度TSを通過しないので、マルテンサイト変態領域MTも通過しない。よって、後述のように、金型冷却を適宜組み合わせて冷却を行うことが好ましい。
 また、制御部70は、成形完了後、ブロー成形金型13と金属パイプ80とを接触させた状態を所定時間維持するように、ブロー成形金型の動作を制御することで、ブロー成形金型13による金属パイプ80の冷却を行い、その後、冷却部90を制御して冷却媒体による金属パイプ80の冷却を行ってよい。制御部70は、金属パイプ80がマルテンサイト変態開始温度TSよりも高い温度である第1の温度(図7(b)における温度T1)となるまで、ブロー成形金型13による金属パイプ80の冷却を行う。具体的には、図7(b)に示すように、制御部70は、金属パイプ80が破線L10に沿った温度変化をするように冷却するように、ブロー成形金型13の動作、及び冷却部90を制御する。制御部70は、成形完了直後はブロー成形金型13を金属パイプ80に接触させた状態を維持するように制御する。また、制御部70は、開始点P1にてブロー成形金型13の型開を行ってブロー成形金型13と金属パイプ80との接触を解除すると共に冷却部90を制御して冷却媒体による金属パイプ80の冷却を開始する。開始点P1は、ブロー成形金型13による冷却から冷却触媒による冷却に切り替わるポイントであり、開始点P1での温度をT1とし、時間(冷却開始からの経過時間)をH1とする。この場合、時間H1は、金属パイプ80をブロー成形金型13に接触させた状態を維持する時間に該当する。成形完了から時間H1が経過するまでの間、金属パイプ80からブロー成形金型13への伝導伝熱により、金属パイプ80の温度は破線L10aに従って急激に低下する。時間H1の経過後は、冷却媒体による冷却が行われる。この場合、金属パイプ80から冷却媒体への伝導伝熱により、金属パイプ80の温度は破線L10bに従って、破線L10aと比較して低い冷却速度で冷却がなされる。開始点P1における温度T1は、マルテンサイト変態開始温度TSよりも高い温度である。なお、制御部70は、冷却開始から時間H1が経過したことに基づいて冷却部90による冷却を開始してもよく、金属パイプ80の温度が温度T1になったことを検出したタイミングで冷却部90による冷却を開始してもよい。
 制御部70は、冷却媒体による金属パイプ80の冷却を開始するタイミング(開始点P1)に基づいて、金属パイプ80の焼き入れ性を調整する。すなわち、制御部70は、開始点P1を調整することによって、冷却媒体による焼き入れ時間を長くすることで、強度が低下する反面、延伸性を向上させることができる。あるいは、制御部70は、冷却媒体による焼き入れ時間を短くすることで、強度を向上させることができる。制御部70は、成形の対象となる金属パイプ80の用途などに応じて要求される特性に基づいて、予め設定された冷却条件にて冷却を行う。
 次に、図6を参照して、成形完了後の金属パイプ80の冷却(焼き入れ)の工程の一例を説明する。図6に示す成形装置10は、金属パイプ80に冷却媒体CMを吹き付ける冷却部90として、ブロー機構60を用いている。また、図6に示す例では、制御部70は、成形完了後、ブロー成形金型13と金属パイプ80とを接触させた状態を所定時間維持するように、ブロー成形金型13の動作を制御する。これにより、ブロー成形金型13による金属パイプ80の冷却を行い、ブロー成形金型13による金属パイプ80の冷却の後、冷却媒体CMによる金属パイプ80の冷却を行う。
 まず、図6(a)に示すように、ブロー成形金型13による成形完了直後は、制御部70は、ブロー成形金型13の動作を制御することによって上型12及び下型11を閉じた状態を維持し、ブロー成形金型13と金属パイプ80とを接触させた状態を所定時間維持する。また、制御部70は、水循環機構72の動作を制御することによって冷却水通路25に冷却水を流す。これによって、金属パイプ80からブロー成形金型13への伝導伝熱が行われ、ブロー成形金型13による金属パイプ80の冷却が行われる。
 次に、図6(b)に示すように、制御部70は、ブロー成形金型13による金属パイプ80の冷却の後、ブロー成形金型13を開くように当該ブロー成形金型13の動作の制御を行う。また、制御部70は、ブロー機構60を制御することによって、シール部材44を金属パイプ80の両端部から離間させる。この時、制御部70は、図6(c)に示すように、下型11の凹部11bの表面と金属パイプ80の外表面との間に隙間GPを形成すると共に、上型12の凹部12bの表面と金属パイプ80の外表面との間に隙間GPを形成するように、ブロー成形金型13を開く制御を行う。なお、制御部70は、エジェクタのピン91を制御することによって、ブロー成形金型13の表面と金属パイプの外表面との間に隙間GPが設けられた状態で、開いたブロー成形金型13内で金属パイプ80を保持する。この状態で、制御部70は、ブロー機構60を制御することによって、シール部材44の先端から金属パイプ80の端部にむかって冷却媒体CMとして高圧ガスを吹き付ける。このとき、冷却媒体CMは、金属パイプ80の内部、及び隙間GPに流入する。そして、冷却媒体CMが金属パイプ80の内表面及び外表面に接触することによって、金属パイプ80を冷却することができる。なお、冷却媒体CMを金属パイプ80に吹き付けている間、ピン91を用いて金属パイプ80を上下振動させてもよい。以上によって、成形後の金属パイプ80に対する焼き入れが完了する。
 次に、本実施形態に係る成形装置10の作用・効果について説明する。
 本実施形態に係る成形装置10において制御部70は、ブロー成形金型13による成形完了以降に、ブロー成形金型13を開くように当該ブロー成形金型13の動作を制御し、冷却媒体を金属パイプ80に接触させるように冷却部90を制御することによって、冷却媒体による金属パイプ80の冷却(焼き入れ)を行う。このように、冷却媒体を接触させて冷却を行うことで、ブロー成形金型13を接触させることによる冷却に比して、冷却速度を遅くすることができ、金属パイプ80のじん性を高めるような焼き入れが可能となる。例えば、図7(a)に示すように、金型との接触のみによる冷却を行った場合、金属パイプ80の温度は破線L1に示すように急激に冷却されることで、高い強度を得ることができるものの、十分なじん性を得られない場合がある。それに比して、成形完了後に型開した上で冷却媒体による冷却を行うことで、金属パイプ80の温度を図7(a)の破線L2,L3,L4,L5又は図7(b)の破線L10に示すような温度変化を伴って冷却することが可能となる。また、冷却媒体を用いて冷却する場合は、冷却媒体を接触させる時間、冷却媒体の量、または冷却媒体の温度等を調整することで、金型を接触させることによる冷却に比して、焼き入れ性の調整を容易に行うことができる。以上により、用途に応じて成形品の強度とじん性をコントロールすることが可能となり、適切な特性を有する成形品を得ることができる。
 また、本実施形態に係る成形装置10において、制御部70は、成形完了後、ブロー成形金型13と金属パイプ80とを接触させた状態を所定時間維持するように、ブロー成形金型13の動作を制御することで、ブロー成形金型13による金属パイプ80の冷却を行い、ブロー成形金型13による金属パイプ80の冷却の後、冷却媒体による金属パイプ80の冷却を行う。ブロー成形金型13は熱伝導率が高く、また熱容量が高いため、ブロー成形金型13を金属パイプ80に接触させることで、金属パイプ80を急速に冷却することが可能である。このように成形完了後は直ちにブロー成形金型13による冷却を行って、冷却速度を高くすることで、冷却を開始してから金属パイプ80の温度がマルテンサイト変態開始温度となるまでの時間を短縮することができる。図7(b)に示すように、金属パイプ80のマルテンサイト化可能な時間は、金属パイプ80の冷却開始から所定時間が経過するまでの間の時間である。この冷却開始からマルテンサイト変態開始温度TSとなるまでの時間が短いほど、その後の冷却の自由度が増す(マルテンサイト化可能な時間を増やすことができる)。例を挙げると、図7(b)における破線L10bがマルテンサイト変態領域MTを通過する時間を増やすことができる。従って、マルテンサイト化可能な時間を長く確保することが可能となり、冷却媒体による冷却速度を、所望の特性に応じて容易に調整することが可能となる。例えば、マルテンサイト化可能な時間が長ければ、延伸性を高めたい場合には冷却速度が低くなるように冷却部90を制御することを選択し、強度を高めたい場合には冷却速度が高くなるように冷却部90を制御することを選択することが可能となる。すなわち、焼き入れの条件の自由度を増やすことができる。
 また、本実施形態に係る成形装置10において、制御部70は、ブロー成形金型13の動作を制御することで、金属パイプ80がマルテンサイト変態開始温度TSよりも高い温度である第1の温度T1となるまで、ブロー成形金型13による金属パイプ80の冷却を行う。これによって、マルテンサイト変態開始温度TSになる手前の温度である第1の温度T1までは、ブロー成形金型13によって速やかに金属パイプ80を冷却することが可能となる。これにより、マルテンサイト化可能な時間を長くすることができる。
 また、本実施形態に係る成形装置10において、制御部70は、冷却媒体による金属パイプ80の冷却を開始するタイミング(図7(b)の開始点P1)に基づいて、金属パイプ80の焼き入れ性を調整する。例えば、冷却媒体による冷却の開始のタイミングを早くして低速冷却の時間を長くすることで延伸性を向上させることができ、タイミングを遅くして低速冷却の時間を短くすることで強度を向上させることができる。これによって、容易に金属パイプ80の焼き入れ性を調整することができる。
 また、本実施形態に係る成形装置10において、冷却部90は、冷却媒体として、冷却用の気体を金属パイプ80に吹き付けている。冷却媒体として気体を用いることで、流量調整等が容易であるため、焼き入れ性の調整を容易に行うことができる。また、冷却媒体として液体を用いる場合に比して、金属パイプ80を汚すことなく冷却することができる。
 また、本実施形態に係る成形装置10において、冷却部90は、気体供給部であるブロー機構60によって構成されている。これによって、金属パイプ80を膨張させるための気体供給部を冷却部として流用することができるため、成形装置10をコンパクトにすることができる。
 また、本実施形態に係る成形装置10において、冷却部90は、金属パイプ80の内表面及び外表面の双方に冷却用の気体を吹き付けてもよい。これによって、金属パイプ80の内表面及び外表面の双方に付着した、後述するスケール(酸化層)等を除去することが可能となり、成形品の品質を効果的に向上することが可能となる。
 本実施形態に係る成形方法は、金属パイプ材料14を加熱する加熱工程と、加熱された金属パイプ材料14内に気体を供給して膨張させる気体供給工程と、膨張した金属パイプ材料14をブロー成形金型13に接触させて金属パイプ80を成形する成形工程と、成形後の金属パイプ80を冷却媒体によって冷却する冷却工程と、を備えている。また、冷却工程において、ブロー成形金型13による成形完了以降に、ブロー成形金型13を開き、冷却媒体を金属パイプ80に接触させることによって、冷却媒体による金属パイプ80の冷却を行う。本実施形態に係る成形方法によれば、上述の成形装置10と同様な作用・効果を得ることができる。
 本発明は上述の実施形態に限定されるものではない。
 例えば、図8に示すように、ブロー成形金型13を開いた状態で冷却媒体CMを供給することで、金属パイプ80の内部のみから冷却を行ってよい。この場合、図8(a)に示すように、金属パイプ80の片側から冷却媒体CMを供給し、同時に片側から排出してもよい。また、図8(b)に示すように、金属パイプ80の両側から冷却媒体CMを供給し、両側から排出してもよい。また、図8(c)に示すように、金属パイプ80の片側から冷却媒体CMを供給し、反対側から排出してもよい。
 また、図9(a),(b)に示すように、金属パイプ80の内部と外部の両方から冷却を行う場合、金属パイプ80の外表面とブロー成形金型13の表面との間の隙間に冷却媒体CMを供給するための流路93を、金属パイプ80の両側に設けてもよい。なお、図9(a)に示すように、金属パイプ80の内部を冷却する冷却媒体CMの流れる方向と、外部を冷却する冷却媒体CMの流れる方向とが逆であってもよい。また、図9(c),(d)に示すように、金属パイプ80の内部及び外部においてスケール(酸化層)を吹き飛ばす構造であってもよい。図9(c),(d)に示すように、金属パイプ80の端部のうち、冷却媒体CMを供給する側の端部では、金属パイプ80の外部の隙間に流路93を連通させる。一方、排出側の端部では、流路93を解除しておき、金属パイプ80の外部の隙間を通過した冷却媒体CMがそのまま抜けるようにしている。この状態で、金属パイプ80の一方の端部から冷却媒体CMを、金属パイプ80の内部及び外部に供給し、他方の端部からスケールと共に排出する。このとき、スケールが舞い散ることを防止するために、ネット等によって構成されるスケール受け部94を設けてもよい。金属パイプ80の一方向から冷却媒体CMのスケールを排出することができない場合は、図9(c)と図9(d)の状態を切り替えることで、供給方向の切り替えを複数回繰り返してよい。
 また、図10に示すように、ブロー成形金型13の内部に冷却媒体CMを流すための流路97を設けてもよい。流路97は、下型11及び上型12の長さ方向における略中央に設けられている。当該構成により、ブロー成形金型13内部の流路97を介して、金属パイプ80の外部の隙間GPに冷却媒体CMが供給され、金属パイプ80の両端側から排出される。なお、成形時においては、流路97はピン96で封止され、当該ピン96の先端面によって成形面が確保される。
 また、図11及び図12に示すように、冷却部90として冷却ボックス99を適用してもよい。この冷却ボックス99は、冷却及び金属パイプ80の取り出しのために用いられる。この場合、図11(a)に示すように、ブロー成形金型13による冷却後、または成形完了後にブロー成形金型13を開くと共に、ピン91で金属パイプ80を押し上げる。次に、図11(b)に示すように、ブロー成形金型13内に冷却ボックス99を配置する。次に、図11(c)に示すように、金属パイプ80を冷却ボックス99内に収納して、液体や固体などの冷却媒体によって金属パイプ80の冷却を行う。次に、図12(a)に示すように、ピン91を下げて、図12(b)に示すように、冷却ボックス99ごと金属パイプ80をブロー成形金型13から取り出す。
 また、図13に示すように、冷却部90として挟み治具100を適用してもよい。挟み治具100は、金属パイプ80の外表面に沿った形状を有する複数のピースに分割されている。図13に示す例では、挟み治具100は、金属パイプ80の両端部を挟むピースと、中央部付近を挟むピースと、を有している。挟み治具100の一部のピースは、冷却水などの冷却媒体を流すための流路101を内部に有し、一部のピースは、シーズヒータなどの加熱部102を有している。ただし、流路101に温水等の加熱媒体を流すことで加熱してもよい。この挟み治具100を用いる場合、ブロー成形金型13を開いた後(例えば、図11(b),(c)に対応する段階)、挟み治具100を金属パイプ80に取り付ける。これによって、図13(b)に示すように、金属パイプ80に挟み治具100が取り付けられた状態となる。当該状態で、流路101に冷却媒体を流すことによって金属パイプ80を冷却する。また、ゆっくりと冷却したい部分については、加熱部102で部分的に加熱してもよい。挟み治具100による冷却が完了したら、挟み治具100ごと金属パイプ80をブロー成形金型13から取り出す。
 また、図14に示すように、冷却部90としてエアブロー機能を有する取り出しチャック110を適用してもよい。取り出しチャック110は、金属パイプ80の両端部に取り付け可能であり、取り付けられた状態にて金属パイプ80の内部及び外部に対して冷却媒体としての圧縮空気を吹き付けることが可能である。この取り出しチャック110を用いる場合、ブロー成形金型13を開いた後(例えば、図11(b),(c)に対応する段階)、取り出しチャック110を金属パイプ80に取り付ける。これによって、図14(b)に示すように、金属パイプ80に取り出しチャック110が取り付けられた状態となる。当該状態で、エアブローすることよって金属パイプ80を冷却する。エアブローによる冷却が完了したら、取り出しチャック110ごと金属パイプ80をブロー成形金型13から取り出す。
 また、図15に示すように、冷却部90としてワイピング機能を有するチャック120を適用してもよい。チャック120は、金属パイプ80の外表面に取り付け可能である。チャック120が取り付けられた状態にて金属パイプ80の外表面に沿って駆動することによって、当該金属パイプ80の外表面をチャック120によってワイピングすることができる。このチャック120を用いる場合、ブロー成形金型13から金属パイプ80を取り出した後(例えば、図12(b)に対応する段階)、チャック120を金属パイプ80に取り付ける。これによって、図15(b)に示すように、金属パイプ80にチャック120が取り付けられた状態となる。当該状態で、チャック120で金属パイプ80の表面をワイピングすることによって金属パイプ80を冷却する。このチャック120を用いる場合、冷却が必要な箇所だけをワイピングしてもよく、ゆっくりと全体を満遍なくワイピングしてもよい。あるいは、冷却が必要な箇所だけをチャック120で挟んでおき、ワイピングを行わなくてもよい。
 また、図16に示すように、冷却部90として、ブロー成形金型13の外部に配置された冷却ボックス99を適用してもよい。この場合、ブロー成形金型13から取り出すとき、図16(a)に示すように、金属パイプ80に取り出しチャック115を取り付ける。その後、ブロー成形金型13から金属パイプ80を取り出した後(例えば、図12(b)に対応する段階)、金属パイプ80を冷却ボックス99に収納する。冷却ボックス99には、液体や固体(ドライアイス等)の冷却媒体を充填しておく。
 また、上記成形装置10は、上下金型の間で加熱処理できる加熱機構50を備え、該加熱機構50が通電によるジュール熱を利用して金属パイプ材料14を加熱していたが、これらに限定されるものではない。例えば、加熱処理が上下金型の間以外の場所で行われ、加熱後の金属製パイプを金型間に運び込んでもよい。また、通電によるジュール熱を利用する以外にも、ヒータ等の輻射熱を利用してもよいし、高周波誘導電流を利用して加熱することも可能である。
 高圧ガスは、窒素ガス、アルゴンガスなどの非酸化性ガスや不活性ガスを主に採用できる。しかしながら、これらのガスは金属パイプ内に酸化スケールを発生しづらくさせることができるものの、高価である。この点、圧縮空気であれば、酸化スケールの発生により大きな問題を生じさせない限り、安価であり、大気中に漏れても実害はなく、取扱いが極めて容易である。したがって、ブロー工程を円滑に実行することができる。
 ブロー成形金型は無水冷金型と水冷金型の何れでもよい。ただし、無水冷金型は、ブロー成形終了後に金型を常温付近まで下げるときに、長時間を要する。この点、水冷金型であれば、短時間で冷却が完了する。したがって、生産性向上の観点からは、水冷金型が望ましい。
 また、上記成形装置10では、金属パイプ80がマルテンサイト変態開始温度TSよりも高い温度である第1の温度(図7(b)における温度T1)となるまで、ブロー成形金型13による金属パイプ80の冷却を行い、その後、ブロー成形金型13の型開を行ってブロー成形金型13と金属パイプ80との接触を解除すると共に冷却媒体による金属パイプ80の冷却を開始するが、これ以外の制御を採用してもよい。例えば、金属パイプ80の温度がマルテンサイト変態開始温度TSよりも低い温度となるまで、ブロー成形金型13による金属パイプ80の冷却を行い、その後、ブロー成形金型13の型開を行ってブロー成形金型13と金属パイプ80との接触を解除すると共に冷却媒体による金属パイプ80の冷却を開始してもよい。すなわち、図7に示されるマルテンサイト変態領域MT内にてブロー成形金型13による焼き入れと冷却媒体による焼き入れを併用してもよい。
 本発明の一態様に係る成形装置及び成形方法は、例えば用途に応じて強度とじん性がコントロールされ、適切な特性を有する成形品を設けられる成形装置及び成形方法として用いることができる。
 10…成形装置、11…下型(金型)、12…上型(金型)、13…ブロー成形金型(金型)、14…金属パイプ材料、50…加熱機構(加熱部)、60…ブロー機構(気体供給部)、70…制御部、80…金属パイプ、90…冷却部。

Claims (14)

  1.  金属パイプを成形する成形装置であって、
     金属パイプ材料を加熱する加熱部と、
     加熱された前記金属パイプ材料内に気体を供給して膨張させる気体供給部と、
     膨張した前記金属パイプ材料を接触させて前記金属パイプを成形する金型と、
     成形後の前記金属パイプを冷却媒体によって冷却する冷却部と、
     前記金型の動作、前記気体供給部、及び前記冷却部を制御する制御部と、
    を備え、
     前記制御部は、
      前記金型による成形完了以降に、前記金型を開くように当該金型の動作を制御し、前記冷却媒体を前記金属パイプに接触させるように前記冷却部を制御することによって、前記冷却媒体による前記金属パイプの冷却を行う、成形装置。
  2.  前記制御部は、
      前記成形完了後、前記金型と前記金属パイプとを接触させた状態を所定時間維持するように、前記金型の動作を制御することで、前記金型による前記金属パイプの冷却を行い、
      前記金型による前記金属パイプの冷却の後、前記冷却媒体による前記金属パイプの冷却を行う、請求項1に記載の成形装置。
  3.  前記制御部は、
     前記金属パイプがマルテンサイト変態開始温度よりも高い温度である第1の温度となるまで、前記金型による前記金属パイプの冷却を行う請求項2に記載の成形装置。
  4.  前記制御部は、
     前記冷却媒体による前記金属パイプの冷却を開始するタイミングに基づいて、前記金属パイプの焼き入れ性を調整する、請求項2又は3に記載の成形装置。
  5.  前記冷却部は、前記冷却媒体として、冷却用の気体を前記金属パイプに吹き付ける、請求項1~4の何れか一項に記載の成形装置。
  6.  前記冷却部は、前記気体供給部によって構成される、請求項5に記載の成形装置。
  7.  前記冷却部は、前記金属パイプの内表面及び外表面の双方に前記冷却用の気体を吹き付ける、請求項5又は6に記載の成形装置。
  8.  金属パイプを成形する成形方法であって、
     金属パイプ材料を加熱する加熱工程と、
     加熱された前記金属パイプ材料内に気体を供給して膨張させる気体供給工程と、
     膨張した前記金属パイプ材料を金型に接触させて前記金属パイプを成形する成形工程と、
     成形後の前記金属パイプを冷却媒体によって冷却する冷却工程と、
    を備え、
     前記冷却工程において、
      前記金型による成形完了以降に、前記金型を開き、前記冷却媒体を前記金属パイプに接触させることによって、前記冷却媒体による前記金属パイプの冷却を行う、成形方法。
  9.  前記冷却工程では、
      前記成形完了後、前記金型と前記金属パイプとを接触させた状態を所定時間維持するように前記金型の動作を制御することで、前記金型による前記金属パイプの冷却を行い、
      前記金型による前記金属パイプの冷却の後、前記冷却媒体による前記金属パイプの冷却を行う、請求項8に記載の成形方法。
  10.  前記冷却工程では、前記金属パイプがマルテンサイト変態開始温度よりも高い温度である第1の温度となるまで、前記金型による前記金属パイプの冷却を行う、請求項9に記載の成形方法。
  11.  前記冷却工程では、前記冷却媒体による前記金属パイプの冷却を開始するタイミングに基づいて、前記金属パイプの焼き入れ性を調整する、請求項9又は10に記載の成形方法。
  12.  前記冷却工程では、前記冷却媒体として冷却用の気体を前記金属パイプに吹き付けることによって、前記金属パイプの冷却を行う、請求項8~11の何れか一項に記載の成形方法。
  13.  前記冷却工程では、前記金属パイプの内表面及び外表面の双方に前記気体を吹き付ける、請求項12に記載の成形方法。
  14.  前記冷却工程では、前記金属パイプに前記気体を吹き付け、前記金属パイプの表面に付着した酸化層を除去する、請求項12又は13に記載の成形方法。
PCT/JP2015/064479 2014-05-22 2015-05-20 成形装置及び成形方法 WO2015178419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580025906.1A CN106457346B (zh) 2014-05-22 2015-05-20 成型装置及成型方法
KR1020167034631A KR101893930B1 (ko) 2014-05-22 2015-05-20 성형장치 및 성형방법
CA2949758A CA2949758C (en) 2014-05-22 2015-05-20 Molding device and molding method
EP15795621.0A EP3147043B1 (en) 2014-05-22 2015-05-20 Molding device and molding method
US15/355,283 US10646912B2 (en) 2014-05-22 2016-11-18 Forming apparatus and forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105885 2014-05-22
JP2014105885A JP6381967B2 (ja) 2014-05-22 2014-05-22 成形装置及び成形方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/355,283 Continuation US10646912B2 (en) 2014-05-22 2016-11-18 Forming apparatus and forming method

Publications (1)

Publication Number Publication Date
WO2015178419A1 true WO2015178419A1 (ja) 2015-11-26

Family

ID=54554085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064479 WO2015178419A1 (ja) 2014-05-22 2015-05-20 成形装置及び成形方法

Country Status (7)

Country Link
US (1) US10646912B2 (ja)
EP (1) EP3147043B1 (ja)
JP (1) JP6381967B2 (ja)
KR (1) KR101893930B1 (ja)
CN (1) CN106457346B (ja)
CA (1) CA2949758C (ja)
WO (1) WO2015178419A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607812B (zh) * 2016-12-05 2017-12-11 財團法人金屬工業研究發展中心 成形裝置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771271B2 (ja) * 2015-03-31 2020-10-21 住友重機械工業株式会社 成形装置
KR101833354B1 (ko) * 2016-06-02 2018-03-05 경일산업 주식회사 아노다이징 처리가 가능한 알루미늄 소재를 이용한 금속케이스 제조 방법
KR101936478B1 (ko) * 2016-12-15 2019-01-08 현대자동차주식회사 입체냉각방식 핫 스템핑 공법과 핫 스템핑 시스템
CN110418686B (zh) * 2017-03-17 2021-12-10 住友重机械工业株式会社 成型装置及成型方法
JP6990519B2 (ja) * 2017-03-30 2022-01-12 住友重機械工業株式会社 成形装置
CN109926486B (zh) * 2017-12-18 2020-02-07 哈尔滨工业大学 Ti2AlNb基合金空心薄壁构件热态气压成形与热处理的方法
US12000007B2 (en) 2018-02-06 2024-06-04 Integrated Heat Treating Solutions, Llc High pressure instantaneously uniform quench to control part properties
JP7127331B2 (ja) * 2018-03-30 2022-08-30 マツダ株式会社 熱間プレス加工方法および加工装置
CN111203467B (zh) * 2019-03-04 2021-07-27 航宇智造(北京)工程技术有限公司 一种金属管材热态气体胀形与快冷强化系统及工艺
WO2020195579A1 (ja) * 2019-03-27 2020-10-01 住友重機械工業株式会社 成形装置及び成形方法
CN110976609B (zh) * 2019-11-11 2021-02-19 潍坊倍力汽车零部件有限公司 一种电加热式密封推头及金属成形工艺
JPWO2021182349A1 (ja) * 2020-03-10 2021-09-16
KR102570670B1 (ko) * 2021-08-30 2023-08-28 주식회사 화승알앤에이 차량용 호스 가공 유닛
JPWO2023038083A1 (ja) * 2021-09-08 2023-03-16
CN118119460A (zh) * 2022-02-17 2024-05-31 住友重机械工业株式会社 成型装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036208A (ja) * 2008-08-04 2010-02-18 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法
JP2011523593A (ja) * 2008-08-28 2011-08-18 ヒュンダイ スチール カンパニー 連続工程からなるプレス硬化方法およびその装置
JP2012000654A (ja) * 2010-06-18 2012-01-05 Linz Research Engineering Co Ltd フランジ付金属製パイプ製造装置及びその製造方法並びにブロー成形金型
JP2013075329A (ja) * 2011-09-30 2013-04-25 Kobe Steel Ltd プレス成形品の製造方法およびプレス成形設備

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975448B1 (en) * 1997-04-16 2002-06-12 Cosma International Inc. High pressure hydroforming press
JP3761820B2 (ja) * 2001-09-04 2006-03-29 アイシン高丘株式会社 金属部材成形方法
JP2003126923A (ja) * 2001-10-24 2003-05-08 Honda Motor Co Ltd 管状部材の成形方法
US7393421B2 (en) * 2006-04-10 2008-07-01 Gm Global Technology Operations, Inc. Method for in-die shaping and quenching of martensitic tubular body
DE102007056186B3 (de) * 2007-11-21 2009-01-08 Aisin Takaoka Co., Ltd., Toyota Warmformpresse
US20090242086A1 (en) * 2008-03-31 2009-10-01 Honda Motor Co., Ltd. Microstructural optimization of automotive structures
KR101258766B1 (ko) * 2011-03-08 2013-04-29 현대하이스코 주식회사 1800㎫ 인장강도를 갖는 고강도 열간 성형 도어 빔 제조 방법
JP5902939B2 (ja) 2011-12-13 2016-04-13 株式会社神戸製鋼所 熱間プレス成形品の製造方法
CN202803878U (zh) * 2011-12-22 2013-03-20 黄启瑞 金属板材的成型系统
TW201412434A (zh) * 2012-09-28 2014-04-01 Qi-Rui Huang 可提高量產速度之金屬成型系統

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036208A (ja) * 2008-08-04 2010-02-18 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法
JP2011523593A (ja) * 2008-08-28 2011-08-18 ヒュンダイ スチール カンパニー 連続工程からなるプレス硬化方法およびその装置
JP2012000654A (ja) * 2010-06-18 2012-01-05 Linz Research Engineering Co Ltd フランジ付金属製パイプ製造装置及びその製造方法並びにブロー成形金型
JP2013075329A (ja) * 2011-09-30 2013-04-25 Kobe Steel Ltd プレス成形品の製造方法およびプレス成形設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147043A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607812B (zh) * 2016-12-05 2017-12-11 財團法人金屬工業研究發展中心 成形裝置

Also Published As

Publication number Publication date
EP3147043B1 (en) 2022-12-28
CA2949758A1 (en) 2015-11-26
KR20170003987A (ko) 2017-01-10
EP3147043A4 (en) 2018-01-24
KR101893930B1 (ko) 2018-08-31
JP2015221445A (ja) 2015-12-10
JP6381967B2 (ja) 2018-08-29
EP3147043A1 (en) 2017-03-29
CN106457346B (zh) 2019-07-30
US20170066028A1 (en) 2017-03-09
US10646912B2 (en) 2020-05-12
CA2949758C (en) 2022-05-17
CN106457346A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6381967B2 (ja) 成形装置及び成形方法
US10173254B2 (en) Molding apparatus
JP6240564B2 (ja) 成形装置及び成形装置の部品の交換方法
JP6417138B2 (ja) 成形装置
WO2016158778A1 (ja) 成形装置
JP6475437B2 (ja) 成形装置
JP6670543B2 (ja) 成形装置及び成形方法
JP6463008B2 (ja) 成形装置
JP2017515681A (ja) 成形装置
JP6396249B2 (ja) 成形装置
JP6704982B2 (ja) 成形装置
JP2016002587A (ja) 成形システム
JP2016002586A (ja) 成形システム
JP7009264B2 (ja) 成形装置
JP2018167284A (ja) 金属体及び通電加熱方法
JP2016112567A (ja) 成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2949758

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015795621

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795621

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167034631

Country of ref document: KR

Kind code of ref document: A