WO2015178409A1 - Cultivation apparatus and cultivation method - Google Patents

Cultivation apparatus and cultivation method Download PDF

Info

Publication number
WO2015178409A1
WO2015178409A1 PCT/JP2015/064421 JP2015064421W WO2015178409A1 WO 2015178409 A1 WO2015178409 A1 WO 2015178409A1 JP 2015064421 W JP2015064421 W JP 2015064421W WO 2015178409 A1 WO2015178409 A1 WO 2015178409A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
liquid
particles
cultivation liquid
crop
Prior art date
Application number
PCT/JP2015/064421
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 池口
将人 馬場
龍資 中井
圭一郎 松尾
大志 深川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020167028451A priority Critical patent/KR20170005796A/en
Priority to CN201580016337.4A priority patent/CN106163263B/en
Publication of WO2015178409A1 publication Critical patent/WO2015178409A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/003Controls for self-acting watering devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/005Reservoirs connected to flower-pots through conduits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/02Self-acting watering devices, e.g. for flower-pots having a water reservoir, the main part thereof being located wholly around or directly beside the growth substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a cultivation apparatus and a cultivation method.
  • the medium In this hydroponics, generally, the medium is not used, and the root of the plant is directly immersed in the culture solution.
  • an oxygen supply structure such as a circulatory pump or a cultivation liquid circulation pump that can send air along with the cultivation liquid circulation Oxygen is supplied to (see JP 2013-9644 A).
  • the present invention has been made based on the above-described circumstances, and can stably apply an appropriate water stress to a crop and supply sufficient oxygen to the root of the crop at low cost to prevent root rot.
  • An object is to provide a cultivation apparatus and a cultivation method that can be avoided and can reduce the amount of soil used compared to soil cultivation.
  • a cultivation apparatus made to solve the above-described problem is a cultivation apparatus including a medium part for growing a crop and a cultivation liquid supply mechanism for supplying the cultivation liquid to the medium part.
  • the culture unit has a frame, particles filled in the frame, and a region in which the cultivation liquid is supplied by capillary action to at least a middle layer of the layer formed by the filled particles.
  • the cultivation method is a cultivation method for supplying a culture solution to a medium part on which a crop is grown, and the medium part includes a frame body and particles filled in the frame body. And a region in which at least a middle layer of the layer formed by the filler particles has a region where the cultivation liquid is supplied by capillary action, and the cultivation solution is supplied to the crop through the region.
  • the cultivation apparatus and cultivation method according to the embodiment of the present invention it is possible to stably apply an appropriate water stress to a crop, and supply sufficient oxygen to the root of the crop at low cost to avoid root rot.
  • the amount of soil used can be reduced compared to soil cultivation.
  • a cultivation apparatus is a cultivation apparatus that includes a medium part for growing a crop and a cultivation liquid supply mechanism that supplies a cultivation liquid to the medium part, and the medium part is a frame. And a particle filling the inside of the frame, and a region where the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particle.
  • the culture medium portion has a frame body and particles filled in the frame body, and at least a middle layer portion of the layer formed by the filled particles develops a capillary phenomenon so that the culture solution is in the culture medium portion.
  • the area to be supplied By having the area to be supplied, excessive supply of the cultivation liquid is avoided, and an appropriate moisture stress can be stably applied to the root of the crop.
  • region where culture solution is supplied by capillary phenomenon is large compared with a liquid phase, and is excellent in air permeability. Thereby, even if there is no oxygen supply structure, root rot due to lack of oxygen can be effectively suppressed, and equipment costs and operation costs can be reduced.
  • moisture stress means, for example, drought stress caused by exposure of crops to low humidity conditions, and osmotic stress caused by high osmotic pressure due to high concentration of salt in the environment surrounding the crops. To do.
  • the culture solution supply mechanism includes a storage unit that stores the culture solution, and a liquid supply unit that is disposed between the medium unit and the storage unit, and the liquid supply unit capillaries the culture solution in the storage unit. It is good to supply to the bottom part of the particle
  • the temperature of the culture medium can be adjusted to be an appropriate temperature for the growth of the crop by adjusting the temperature of the culture solution in the reservoir.
  • the medium temperature can be adjusted at a lower cost than when adjusting the temperature using a conventional air conditioner or the like. .
  • the culture medium temperature is closely linked with the temperature of the cultivation liquid, it is easy to adjust the culture medium temperature.
  • At least the bottom of the frame body is a root-permeable water-permeable sheet.
  • a root-permeable water-permeable sheet it is possible to prevent the root part of the crop in the medium part from being immersed in the storage part. As a result, root rot prevention and moisture stress can be more effectively exhibited. Moreover, contamination of the storage part can be prevented.
  • the particles soil is preferable.
  • the middle layer of the layer formed by the filler particles can exhibit the capillary phenomenon more reliably and effectively.
  • root rot prevention and moisture stress can be more effectively exhibited.
  • sand is preferable.
  • the ratio of the gas phase to the liquid phase in the middle layer of the layer formed by the filler particles can be further increased, and the oxygen supply capacity can be effectively increased.
  • Sand is less susceptible to root disease because it has a lower organic content and fewer microorganisms than soil. Accordingly, it is possible to omit or simplify the circulating filter treatment of the cultivation liquid necessary for hydroponics and the sterilization of the cultivation apparatus. Furthermore, since sand is physicochemically stable, even if it is used for many years, continuous cropping failure is unlikely to occur and it can be used continuously, and root disease is unlikely to occur.
  • sand since sand has a single grain structure, the reproducibility of capillary action and the uniform diffusibility of water are higher than other soils having a aggregate structure, and it is easy to adjust moisture. As a result, a high-quality crop can be cultivated at a low cost.
  • sand means, for example, debris having a diameter of 0.01 mm or more and 2 mm or less in which capillary water is retained in the pores by deposits of unconsolidated fragments.
  • the height of the capillary rise of the layer formed by the filler particles is preferably 3 cm or more and 300 cm or less.
  • the particles preferably contain 50% by mass or more of single particles having a particle size of 0.1 mm or more and 1 mm or less.
  • the middle layer more effectively exhibits capillarity, and further increases the ratio of the gas phase to the liquid phase in the middle layer, thereby further improving root rot due to lack of oxygen. Can be suppressed.
  • the “particle size” is based on the number of particles on the sieve and the openings of each sieve by using the sieves defined in JIS-Z8801-1 (2006) and applying the particles in order from the sieve with the largest openings. It is the average particle diameter calculated.
  • the tap density of the particles is preferably 1.00 g / cm 3 or more and 3.00 g / cm 3 or less.
  • the middle layer portion can exhibit the capillary phenomenon more effectively, and the ratio of the gas phase to the liquid phase in the middle layer portion can be increased to increase oxygen. Root rot due to lack can be more effectively suppressed.
  • the “tap density” means the bulk density of the powder, and is a value measured according to JIS-Z2512 (2012).
  • another cultivation method is a cultivation method for supplying a culture solution to a medium part on which a crop is grown, and the medium part is filled in the frame body. And a region to which the cultivation liquid is supplied by capillary action in at least the middle layer of the layer formed by the filler particles, and the cultivation liquid is supplied to the crop through the region.
  • the cultivation liquid is supplied to the crop from the region where the cultivation liquid is supplied by the capillary phenomenon of the layer formed by the filler particles in the frame, excessive supply of the cultivation liquid is avoided, and the root of the crop is avoided. Stable and moderate moisture stress can be applied.
  • the above-mentioned region where the cultivation liquid is supplied by capillary action has a large gas phase compared with the liquid phase and excellent air permeability, so that even if there is no oxygen supply structure, sufficient oxygen can be supplied to the root of the crop and root rot can be prevented. It can be effectively suppressed.
  • the cultivation method since the cultivation method only needs to fill the frame with particles of soil or the like in an amount that can cause capillary action in the region, the amount of soil used can be greatly reduced compared to conventional soil cultivation, Can be reduced in weight.
  • the said cultivation method can be set as the structure which provides farmland on the scaffold formed with cheap materials, such as a resin pipe, and can adjust the height difference of farmland easily by adjustment of a scaffold.
  • the cultivation apparatus 1 shown in FIG. 1 mainly includes a medium part 2 for causing the crop P to grow and a culture liquid supply mechanism 20 for supplying the culture liquid to the medium part 2.
  • the culture medium part 2 includes a frame 4, a filling liquid 5 filled in the frame 4, and a cultivation liquid supply region in which the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particles 5.
  • the cultivation liquid supply mechanism 20 includes a storage section 3 that stores the cultivation liquid and a liquid feeding section 7 that supplies the cultivation liquid to the bottom of the filled particles 5 in the culture medium section 2.
  • the said cultivation apparatus 1 is equipped with the water level salt concentration adjustment mechanism 21 which adjusts the water level and salt concentration of the cultivation liquid in the said storage part 3, the root
  • the culture medium part 2 includes a frame 4, a filling liquid 5 filled in the frame 4, and a cultivation liquid supply region in which the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particles 5. 6 and is a part where the crop P is grown.
  • the frame body 4 holds the filler particles 5 and prevents the roots of the crop P from penetrating out of the frame body 4.
  • the frame body 4 is a bottomed cylindrical body.
  • the planar shape of the frame 4 is not particularly limited, but a shape that can be superimposed is preferable from the viewpoint of transportation, and a circular shape is more preferable.
  • the bottom of the frame 4 is constituted by a root-permeable water-permeable sheet 8.
  • the viewpoint of improving the water retention of the culture medium part 2 makes only the bottom surface the impermeable sheet 8. It is preferable.
  • the lower limit of the average inner diameter of the frame 4 is preferably 6 cm, and more preferably 9 cm.
  • the upper limit of the average inner diameter of the frame 4 is preferably 23 cm, and more preferably 15 cm.
  • the “average inner diameter” means a value obtained by averaging the diameters of circles having the same area as the shape of the inner surface of the frame body 4 in plan view (diameter in terms of a perfect circle) in the height direction of the frame body 4.
  • the paper, sheet-like resin, etc. which have air permeability and water permeability are mentioned.
  • the sheet-like resin may be a woven fabric or a non-woven fabric. Among them, a porous resin film is preferable, and a porous resin film obtained by stretching a fluororesin film such as polytetrafluoroethylene is more preferable.
  • the root water-permeable sheet 8 may be disposed only on the bottom surface portion of the frame body 4, but may also be laid in an area other than the frame body 4 in a plan view as shown in FIG. Since the root-permeable water-permeable sheet 8 has water permeability, by laying in this way, it exhibits functions such as waterproofing and light-shielding without interfering with the feeding of the cultivation liquid.
  • the bottom of the frame body 4 and the root-permeable water-permeable sheet 8 may be bonded, or the frame body 4 may be placed on the root-permeable water-permeable sheet 8.
  • root water-permeable sheet 8 Although it does not specifically limit as a raw material of the root
  • the lower limit of the average thickness of the root impermeable sheet 8 is preferably 0.1 mm, and more preferably 0.2 mm.
  • the upper limit of the average thickness of the root impermeable sheet 8 is preferably 5 mm, and more preferably 3 mm.
  • the middle layer portion and the lower layer portion of the layer formed by the filler particles 5 filled in the frame body 4 are included in the cultivation liquid supply region 6 that develops the capillary phenomenon.
  • the filler particles 5 are not particularly limited as long as the layer formed by filling exhibits a capillary phenomenon.
  • soil fine pumice such as pumice sand, pulverized particles of porous volcanic rock, granular rock wool, coral sand , Coral, charcoal and the like. You may use these in mixture of 2 or more types. Of these, soil is preferable as the filler particles 5 from the viewpoint of ensuring good capillary action and returning to natural soil when it becomes unnecessary.
  • the soil examples include commercially available horticultural soil, vermiculite, bentonite, zeolite, sand, Kanuma soil, Akadama soil, and true sand soil.
  • sand is preferable.
  • the ratio of the gas phase to the liquid phase can be further increased, and the oxygen supply capacity can be effectively increased. Thereby, even if there is no oxygen supply structure, root rot due to lack of oxygen can be effectively suppressed.
  • sand since sand has a lower organic matter content and a lower microbial population compared to general soil, root disease is unlikely to occur.
  • the lower limit of the single particle size of the packed particles 5 is preferably 0.1 mm, and more preferably 0.15 mm.
  • the upper limit of the particle size is preferably 1 mm, more preferably 0.6 mm.
  • the lower limit of the content ratio of the single particles having a particle size of 0.1 mm or more and 1 mm or less of the filled particles 5 is preferably 50% by mass, and more preferably 80% by mass.
  • the upper limit of the tap density of the particles is preferably from 3.00 g / cm 3, more preferably 1.85 g / cm 3, more preferably 1.83 g / cm 3.
  • the lower limit of the capillary height of the layer formed by the filled particles 5 is preferably 3 cm, more preferably 10 cm, and even more preferably 20 cm.
  • the upper limit of the capillary height of the layer formed by the filler particles 5 is preferably 300 cm, more preferably 200 cm, and even more preferably 40 cm.
  • the height of the capillary rise (m) h is the surface tension (N / m) of the cultivation liquid, T is the contact angle (°) of the cultivation liquid, ⁇ is the density (kg / m 3 ) of the cultivation liquid, and gravity.
  • (m / s 2 ) is g
  • the mass 10% particle diameter (m) of the packed particles 5 is r
  • the “mass 10% particle size” means the particle size when the passing mass percentage read from the particle size accumulation curve is 10% in accordance with JIS-A1204 (2009) “Soil particle size test method”. D (10% particle size D 10 ) is meant.
  • h 2T cos ⁇ / ⁇ gr (1)
  • the lower limit of the average flow rate of the cultivation liquid at a position where the height from the bottom surface of the frame 4 of the cultivation liquid supply region 6 is 0 cm is preferably 0.2 L / hr, and 0.3 L / hr. Is more preferable. If the average flow rate of the cultivation liquid is less than the lower limit, the crop P is less than the required water absorption rate, and therefore the crop P may be dried up due to running out of water.
  • an average flow velocity is the average of the numerical values obtained by measuring the passing amount (L) of the cultivation liquid that passes through the bottom surface of the frame 4 and reaches the cultivation liquid supply region 6 with five or more independent frames 4. Value.
  • the water absorption speed of the crop P is equal to or less than the average flow rate in the cultivation liquid supply region 6, and thus the crop P absorbs water indefinitely (this The amount of water absorption is called the maximum water absorption day). If the water level of the liquid level of the storage part 3 to be described later is gradually lowered from this state, the water supply speed is gradually lowered and the water absorption is restricted (the water absorption amount at this time is referred to as the limited water absorption amount). In the said cultivation apparatus 1, since the water absorption daily amount of the crop P can be estimated from water consumption daily amount, water absorption amount can be restrict
  • the culture medium part 2 Since the water supply continues even if the average flow rate of the cultivation liquid is restricted, the culture medium part 2 is less likely to be dried than the case where the amount of water supply is restricted, and the risk of damaging the root part is small.
  • the decrease in the amount of water retained in the culture medium part 2 due to the water supply speed limitation can also be measured by the decrease in the weight of the culture medium part 2. Therefore, the administrator can manage moisture without an expensive moisture sensor.
  • the lower limit of the filling height of the packed particles 5 is preferably 1 cm, more preferably 3 cm, and even more preferably 5 cm.
  • the upper limit of the filling height of the packed particles 5 is preferably 50 cm, more preferably 30 cm, and even more preferably 15 cm.
  • the lower limit of the water retention amount of the cultivation liquid in the cultivation liquid supply region 6 is preferably 0.04 L, more preferably 0.05 L, and even more preferably 0.10 L.
  • the upper limit of the water retention amount of the cultivation liquid in the cultivation liquid supply region 6 is preferably 2L, more preferably 1.5L, and even more preferably 0.6L.
  • the water retention amount refers to a volume conversion of a value obtained by subtracting the mass of the culture medium part 2 in the dry state from the mass of the culture medium part 2 in the water retention condition.
  • the culture solution supply mechanism 20 includes a storage unit 3 that stores the culture solution, and a liquid feeding unit 7 that is disposed between the culture medium unit 2 and the storage unit 3.
  • the liquid feeding part 7 is a sheet body.
  • the liquid feeding part 7 is disposed between the culture medium part 2 and the storage part 3 so that a part thereof is immersed in the storage part 3 to be described later, and the cultivation liquid in the storage part 3 is pumped by capillary action. Then, it is supplied to the bottom of the packed particles 5 in the medium part 2 through the root-permeable water-permeable sheet 8. Since the culture solution supply mechanism 20 includes the liquid feeding unit 7, the culture solution can be easily and reliably supplied into the culture unit 2 even if the culture unit 2 and the storage unit 3 are separated.
  • the liquid feeding part 7 is not particularly limited as long as it can pump the cultivation liquid by capillary action and can be supplied to the bottom part of the filled particles 5, and examples thereof include a nonwoven fabric, a rock wool sheet, a felt sheet, and a urethane sheet. Among these, non-woven fabrics are preferred from the viewpoint of appropriate capillary action and appropriate water absorption.
  • the lower limit of the water permeability of the liquid feeding part 7 is preferably 0.01%, more preferably 1%.
  • 40% is preferable and 30% is more preferable.
  • the water permeability of the liquid feeding part 7 is less than the said minimum, there exists a possibility that the quantity of the cultivation liquid supplied to the bottom part of the filling particle
  • the water permeability of the liquid feeding part 7 exceeds the said upper limit, there exists a possibility that the cost of the liquid feeding part 7 and the said cultivation apparatus 1 may become high too much.
  • the water permeability represents the ratio of water that has passed to the back surface of the liquid feeding unit 7 when water is sprayed from the surface of the planar liquid feeding unit 7.
  • the lower limit of the average thickness of the liquid feeding part 7 is preferably 0.5 mm, more preferably 0.7 mm.
  • an upper limit of the average thickness of the liquid feeding part 7 2 mm is preferable and 1.5 mm is more preferable.
  • the average thickness of the liquid feeding part 7 is less than the above lower limit, the strength of the liquid feeding part 7 may be reduced and may break.
  • the average thickness of the liquid feeding part 7 exceeds the said upper limit, there exists a possibility that the cost of the liquid feeding part 7 may become high.
  • the lower limit of the pumping height of the liquid feeding section 7 is preferably 3 cm, more preferably 10 cm, and further preferably 20 cm.
  • an upper limit of the pumping height of the liquid feeding part 7 300 cm is preferable, 200 cm is more preferable, and 40 cm is further more preferable.
  • the pumping height of the liquid feeding part 7 is less than the said lower limit, the quantity of the cultivation liquid supplied to the bottom part of the filling particle
  • the pumping height of the liquid feeding part 7 exceeds the said upper limit there exists a possibility that the cost of the liquid feeding part 7 may become high.
  • the pumping height is measured by the following method.
  • a sheet obtained by cutting the liquid feeding section 7 into a width of 4 cm and a length of 120 cm is coated with a polyethylene film having an average thickness of 0.03 mm (the sheet is inserted into a film formed by thermocompression bonding to cover the periphery).
  • the sheet is inserted into a film formed by thermocompression bonding to cover the periphery.
  • the upper and lower portions are opened by 5 cm so as to be in contact with the liquid surface. And let the average value of the value which measured the height pumped up from the liquid surface in 24 hours 5 times be pumping height.
  • the storage part 3 is comprised from the water-impermeable storage tank holding a cultivation liquid.
  • the storage unit 3 is disposed away from the culture unit 2. Specifically, the storage unit 3 is disposed below the culture unit 2 and in a region that does not overlap with the culture unit 2 in plan view. By arranging the storage unit 3 in such a region, it is possible to more reliably prevent the root of the crop P from entering the storage unit 3 and to share one storage unit 3 among the plurality of culture medium units 2. Can do.
  • the storage tank of the storage unit 3 is open at the top to facilitate the supply of the cultivation liquid, and the second waterproof sheet 9b is laid on the bottom and side surfaces to prevent the cultivation liquid from leaking out.
  • the first waterproof sheet 9a and the second waterproof sheet 9b may be formed from a single sheet.
  • a part of the liquid feeding part 7 is immersed in the storage part 3, and the cultivation liquid is supplied to the bottom of the packed particles 5 in the culture medium part 2 through the liquid feeding part 7. Since the cultivating solution is unidirectionally fed from the storage unit 3 to the culture unit 2, it is possible to prevent horizontal propagation of diseases through the stored water found in hydroponics.
  • maintains a fertilizer. It is preferable that a fertilizer contains a chemical fertilizer from a viewpoint which can suppress that a germ propagates in the storage part 3. FIG. In addition, you may give a fertilizer directly not only in a cultivation liquid but in the culture medium part 2. FIG.
  • the upper part of the storage unit 3 is shielded from light by a light shielding material.
  • a light shielding material for example, the root water-permeable sheet 8, the first waterproof sheet 9a, and the like can be used.
  • the storage part 3 is light-shielded, and it can suppress that algae reproduces in the storage part 3.
  • FIG. 1 the cultivation liquid which the storage part 3 hold
  • the 1st waterproof sheet 9a is a sheet
  • the 1st waterproof sheet 9a can also exhibit the function as a light-shielding material.
  • the 2nd waterproof sheet 9b is a sheet
  • the first waterproof sheet 9a and the second waterproof sheet 9b are not particularly limited as long as they do not pass water and the roots of the crops P.
  • polyolefin film, fluororesin film, biodegradable plastic film, etc. Can be used.
  • the water level salinity adjusting mechanism 21 supplies the water sensor 11 and the water tension sensor 12 embedded in the packed particles 5 of the medium part 2 and the supply of the cultivation liquid that is supplied to the storage part 3 based on the measured values of these sensors. And a controller 13 for adjusting the amount and the salinity.
  • the moisture sensor 11 detects the amount of moisture held by the culture medium unit 2, and the moisture tension sensor 12 detects the moisture tension between the packed particles 5.
  • the control unit 13 supplies the cultivation liquid from the supply pipe 14 to the storage unit 3 so that a drying stress suitable for the crop P is applied based on the water content in the culture medium unit 2 and the water tension between the packed particles 5. Is controlled, and the water level of the cultivation liquid in the storage part 3 is adjusted.
  • the liquid surface height in the culture medium part 2 after capillary rise can be adjusted by raising and lowering the water level of the cultivation liquid in the storage part 3. Therefore, by adjusting the water level of the cultivation liquid in the storage unit 3 in this way, it is possible to apply a drying stress for high sugar content treatment, and to improve the taste of the crop P.
  • the cultivation apparatus 1 In conventional hydroponics, it was difficult to control the supply of the cultivation liquid to the crop, but in the cultivation apparatus 1, the moisture content in the culture medium part 2 and the moisture tension between the filled particles 5 are adjusted. Since the liquid level height in the culture medium part 2 after capillary rise can be adjusted based on this, it can adjust so that the supply amount of the cultivation liquid to the crop P may be decreased.
  • control part 13 is the cultivation supplied to the storage part 3 from the supply pipe
  • the cultivation apparatus 1 adjusts the salinity concentration together with the water level adjustment in this way, it is possible to effectively apply moisture stress to the crop P with a smaller amount of salt addition.
  • the cultivation method is a cultivation method in which a culture solution is supplied to a medium part on which a crop P is grown, and the medium part 2 includes a frame body 4 and packed particles 5 filled in the frame body 4.
  • the cultivation liquid supply area 6 to which the cultivation liquid is supplied by capillary action is provided at least in the middle layer of the layer formed by the filler particles 5, and the cultivation liquid is supplied to the crop P through the cultivation liquid supply area 6. It is a cultivation method.
  • the cultivation method includes a step of supplying the culture solution to the culture medium unit 2 by the liquid feeding unit 7 (cultivation solution supply step), and a water level of the storage unit 3 that holds the culture solution supplied to the culture medium unit 2.
  • the liquid feeding unit 7 feeds the cultivation liquid held in the storage unit 3 to the bottom of the culture medium unit 2.
  • This cultivated liquid is supplied to the cultivated liquid supply region 6 of the culture medium part 2 by capillary action of the layer formed by the filled particles 5 in the frame body 4.
  • the cultivation liquid is pumped from the storage unit 3 that holds the cultivation liquid by the capillary phenomenon of the liquid feeding unit 7, and is supplied to the bottom of the filled particles 5 in the culture medium unit 2 through the root-permeable water-permeable sheet 8. .
  • the cultivated liquid fed to the bottom of the filler particles 5 is supplied to the root of the crop P through the cultivated liquid supply region 6 by the capillary phenomenon of the layer formed by the filler particles 5.
  • a supply amount of cultivation liquid suitable for the crop P is added to the storage section 3 in accordance with the supply state of the cultivation liquid to the culture medium section 2.
  • the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the filled particles 5, and based on the detection results, the control unit 13 stores the cultivation liquid 3. Add to the supply. Thereby, the cultivation liquid can be continuously supplied to the crop P.
  • the drying stress step the water level of the storage unit 3 that holds the cultivation liquid is adjusted according to the supply state of the cultivation liquid to the culture medium unit 2, and drying stress is applied by adjusting the water level.
  • the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the packed particles 5, and the controller 13 adds to the storage part 3 based on these detection results. Adjust the amount of cultivation liquid supplied.
  • the water level of the culture solution in the storage unit 3 is adjusted by adjusting the supply amount of the culture solution to the storage unit 3.
  • the liquid level height in the culture medium part 2 after a capillary rise is adjusted by raising and lowering the water level of the cultivation liquid in the storage part 3, and appropriate dry stress is applied to the crop P.
  • the salt concentration of the culture solution supplied to the culture medium unit 2 is adjusted according to the supply state of the culture solution to the culture medium unit 2, and osmotic stress is applied by adjusting the salt concentration of the culture solution.
  • the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the packed particles 5, and the control unit 13 supplies the storage unit 3 based on these detection results. Adjust the amount of salt added to the cultivation solution. Thereby, the osmotic pressure of the cultivation liquid with respect to the root part of the crop P is adjusted, and an appropriate osmotic stress is applied to the crop P.
  • the cultivation apparatus has a cultivation liquid supply region in which the cultivation liquid is supplied into the culture medium part by developing a capillary phenomenon in at least the middle layer part of the layer formed by the filler particles in the frame body, avoid excessive supply of the cultivation liquid. Therefore, it is possible to stably apply an appropriate water stress to the root of the crop.
  • the cultivation liquid supply region to which the cultivation liquid is supplied by capillary action is large in gas phase and excellent in air permeability as compared with the liquid phase, the cultivation apparatus can prevent root rot due to lack of oxygen even without an oxygen supply structure. It can be effectively suppressed.
  • the cultivation device only needs to fill the frame with particles such as soil in an amount that can cause capillary action in the cultivation liquid supply region, and can significantly reduce the amount of soil used compared to conventional soil cultivation.
  • the medium part can be reduced in weight.
  • the said cultivation apparatus can be set as the structure which provides farmland on the scaffold formed with cheap materials, such as a resin pipe, and can adjust the height difference of farmland easily by adjustment of a scaffold.
  • the said cultivation apparatus is downward irrigation, it is water saving rather than upper irrigation. This is because the amount of water retained in the upper layer of the medium part is relatively low and evaporation is unlikely to occur. Since evaporation does not easily occur in this way, humidity management and irrigation management of the greenhouse are unlikely to interfere.
  • the storage tank of a storage part is water-impermeable, it is further water-saving and it can construct
  • the said cultivation apparatus can raise the consumption rate of the cultivation liquid hold
  • the cultivation apparatus 31 shown in FIG. 2 mainly includes a medium part 32 for causing the crop P to grow and a cultivation liquid supply mechanism for supplying the cultivation liquid to the medium part 32.
  • the culture medium portion 32 includes a frame 34, a filling particle 35 filled in the frame 34, and a cultivation liquid supply region in which the cultivation liquid is supplied to at least the middle layer of the layer formed by the filling particles 35 by capillary action. 36.
  • the cultivation liquid supply mechanism is configured by a storage unit 33 that stores the cultivation liquid.
  • the cultivation apparatus 31 includes a water level adjustment mechanism 38 that adjusts the water level of the cultivation liquid in the storage unit 33 and a temperature adjustment mechanism that adjusts the temperature of the cultivation liquid in the storage unit 33.
  • the storage unit 3 and the culture medium unit 2 are separated from each other, whereas the cultivation device 31 does not separate the storage unit 33 and the culture medium unit 32 from each other, and the cultivation liquid supply mechanism.
  • the point which does not have a liquid feeding part differs from the cultivation apparatus 1 of 1st embodiment.
  • the said cultivation apparatus 31 does not have a liquid feeding part, it does not provide the root
  • a different point from the cultivation apparatus 1 of 1st embodiment is demonstrated.
  • the culture medium portion 32 includes a frame 34, a filling particle 35 filled in the frame 34, and a cultivation liquid supply region in which the cultivation liquid is supplied to at least the middle layer of the layer formed by the filling particles 35 by capillary action. 36, and is a part for causing the crop P to grow.
  • the frame 34 has a plurality of minute through holes formed in the bottom portion through which the cultivation liquid passes and the filler particles 35 do not pass, and is placed on a plurality of platforms 37 arranged at the bottom of the storage portion 33. ing. As for this frame 34, the bottom part is immersed in the cultivation liquid, the immersion part of the filling particles 35 becomes a cultivation liquid infiltration layer into which the cultivation liquid has invaded, and the upper part of the cultivation liquid infiltration layer of the filling particles 35 is all the cultivation liquid supply region. 36. Since the cultivation apparatus 31 tends to lack oxygen in the cultivation liquid infiltrated layer, the roots of the crop P are difficult to extend into the cultivation liquid infiltrated layer.
  • the part other than the bottom part of the frame 4 of 1st embodiment for example, the same material as a side surface can be used.
  • the sheet-like resin may be a woven fabric or a non-woven fabric. Among them, a porous resin film is preferable, and a porous resin film obtained by stretching a fluororesin film such as polytetrafluoroethylene is more preferable.
  • the cultivation liquid supply mechanism includes a storage unit 33 that stores the cultivation liquid.
  • the storage unit 33 is provided with a plurality of platforms 37 on the bottom, and the culture medium unit 32 is placed on these platforms 37.
  • the storage unit 33 holds the culture solution at a predetermined water level, and the culture unit 32 is placed in the storage unit 33 so that the bottom of the frame 34 is immersed in the culture solution.
  • the several culture medium part 32 is mounted in the one storage part 33. FIG. By placing a plurality of medium parts 32 in one storage part 33, it is possible to simultaneously and equally adjust the drying stress on the plurality of medium parts 32.
  • the water level adjustment mechanism 38 includes a water level meter 39 provided in the storage unit 33 and a control unit 40 that adjusts the supply amount of the cultivation liquid to the storage unit 33 based on the water level detected by the water level meter 39.
  • the water level meter 39 detects the water level of the cultivation liquid in the storage unit 33 and notifies the control unit 40 of the detection result.
  • the control unit 40 obtains the supply amount of the cultivation liquid to be replenished to the storage unit 33 based on the water level detected by the water level gauge 39, and supplies the cultivation liquid from the supply pipe 41.
  • the control unit 40 controls the supply amount of the cultivation liquid so that the water level in the storage unit 33 is always constant, so that the cultivation liquid can be automatically supplied and labor saving of the manager's watering work can be achieved. Can do.
  • the water level of the storage unit 33 may be adjusted so as to apply a drying stress by controlling the amount of the cultivation liquid supplied to the storage unit 33 by the control unit 40.
  • the control unit 40 since the liquid level height in the culture medium part 32 after capillary rise can be adjusted by raising / lowering the water level of the cultivation liquid in the storage part 33, the supply amount of the cultivation liquid to the storage part 33 is controlled. Thus, an appropriate drought stress can be applied to the crop P.
  • the amount of salt added to the culture solution supplied to the storage unit 33 may be adjusted by the control unit 40. Since the control unit 40 can detect the amount of the cultivation liquid retained in the storage unit 33 from the water level detected by the water level meter 39, the addition of salt that causes osmotic stress suitable for the crop P from the amount of the cultivation liquid. The amount can be determined. Thereby, since the osmotic pressure of the cultivation liquid with respect to the root part of the crop P can be adjusted, an appropriate osmotic pressure stress can be applied to the crop P.
  • the temperature adjustment mechanism includes, for example, a thermometer 42 that is embedded and disposed in the packed particles 35 of the medium unit 32, and a heater that is disposed in the control unit 40 and heats the cultivation liquid supplied from the control unit 40 to the storage unit 33. 43.
  • the temperature adjustment mechanism is a mechanism attached to adjust the temperature in the culture medium part, and is a mechanism for adjusting the temperature of the cultivation liquid.
  • the control part 40 controls the heater 43 so that the temperature of the cultivation liquid supplied to the root part of the crop P becomes an appropriate temperature, and the storage part 33. While adjusting the temperature of the cultivation liquid supplied to, the cultivation liquid adjusted in temperature is supplied to the storage part 33.
  • the temperature of the culture medium part 32 is closely linked to the temperature of the cultivation liquid, and thus the cultivation liquid supplied to the culture medium part 32 is adjusted by adjusting the temperature of the cultivation liquid supplied to the storage part 33 in this way.
  • the temperature in the culture medium part 32 can be adjusted with high accuracy. Therefore, by providing such a temperature control mechanism, the temperature in the culture medium part 32 can be adjusted easily and effectively compared to the temperature control of the culture medium part by adjusting the temperature in the greenhouse in a conventional air conditioner or the like.
  • the said cultivation apparatus does not have a liquid feeding part as a cultivation liquid supply mechanism, it can be set as a simple structure and can reduce installation cost. Moreover, since the said cultivation apparatus detects the water level of a storage part with a water level meter, it can adjust the water level of a storage part with high precision.
  • the said cultivation apparatus adjusts the temperature of a culture
  • the said cultivation apparatus can be drive
  • the sheet body is used as the liquid feeding section 7, but the liquid feeding section 7 is not limited to the sheet body as long as the culture liquid in the storage section 3 can be supplied to the culture medium section 2.
  • a plate-like or cylindrical supply path connected to the storage part 3 and the culture medium part 2 may be used as the liquid feeding part 7.
  • fine pumice such as soil, pumice sand, pulverized particles of porous volcanic rock, granular rock wool, coral sand, coral, charcoal, etc.
  • molded into a plate or cylinder, or into a cylindrical frame A structure having a shape that does not collapse due to the passage of the cultivation liquid by filling or the like may be used, and the storage unit 3 and the bottom of the culture unit 2 may be connected via this structure.
  • the cultivation apparatus which adjusts a drying stress and an osmotic pressure stress by a control part was demonstrated, the cultivation apparatus which is not provided with a control part is also in the range which this invention intends. Even if the cultivation apparatus does not include a control unit, the cultivation solution has a region in which the cultivation solution is supplied into the medium portion by expressing capillary action in at least the middle layer of the layer formed by the filler particles in the frame. Therefore, it is possible to stably apply an appropriate water stress to the root of the crop and to effectively suppress root rot due to lack of oxygen.
  • the drying stress and the osmotic pressure stress applied to the crop P by the control unit 13 may be applied simultaneously, or may be applied at different timings suitable for the crop P.
  • the said cultivation apparatus is good also as a structure which adds only any one of a dry stress and an osmotic pressure stress.
  • a water level salinity concentration adjustment mechanism is a water level meter. It is good also as a structure provided with the control part which controls the supply amount of the cultivation liquid to a storage part. For example, a water level meter is provided in the storage unit, and the amount of cultivation liquid supplied to the storage unit is adjusted based on this water level, thereby adjusting the drying stress and osmotic pressure stress applied to the crop P.
  • the detection target is visible and easy to detect and can be installed at a lower cost than when using a moisture sensor and a moisture tension sensor.
  • the cultivation apparatus 1 provided with the root-permeable water permeable sheet 8, the 1st waterproof sheet 9a, and the 2nd waterproof sheet 9b was demonstrated, the cultivation apparatus of a structure which is not provided with these also intends this invention. Within range.
  • ⁇ Growth evaluation> As an example, tomato seedlings were planted in a medium part filled with 4 cm of sand (80% by mass or more of sand particles having a particle size of 0.15 to 0.6 mm) in a pot frame, and the water surface height of 3 cm. The lower part of the culture medium part was immersed in a storage part holding the culture solution of and left for 2 months or longer. At this time, oxygen supply required for hydroponics was not performed, and the supply of the culture solution for maintaining the water level was continued. As a result, even after 2 months, the tomato grew without fruit rot and settled.
  • Test No. except that the pot frame was cylindrical with a height of 25 cm.
  • Test No. 1 as an example was carried out in the same manner as the evaluation seedling of No. 1. 2 seedlings were evaluated. Two test Nos. A total of 27 fruits were harvested for the 2 seedlings to be evaluated. Evaluation similar to 1 evaluation seedling was implemented. *
  • Test No. except that the pot frame was cylindrical with a height of 20 cm.
  • Test No. 1 as an example was carried out in the same manner as the evaluation seedling of No. 1. 3 seedlings were evaluated. Two test Nos. A total of 28 fruits were harvested for the three evaluated seedlings. Evaluation similar to 1 evaluation seedling was implemented. *
  • the pot frame was filled with sand and planted tomato seedlings.
  • the sand filled in the cylindrical part at the top of the pot frame was 0.5 L.
  • This pot frame body is mounted on the bottom of the storage part, and the cylindrical bottom position of the pot frame body is 8 cm above the water surface of the storage part holding the cultivation liquid having a water surface height of 2 cm. It arranged so that it might become a position.
  • the cultivation liquid was pumped to the columnar medium portion by capillary action of sand filled in a plate shape at the bottom of the pot frame.
  • the average thickness of the plate-shaped sand with which the lower part of the pot frame was filled was 1 cm. This test No. Fourteen seedlings were harvested for the four evaluation seedlings. Evaluation similar to 1 evaluation seedling was implemented.
  • a tomato seedling was planted in a medium part filled with 2.2 L of sand in a cylindrical pot frame having a height of 20 cm having a plurality of through holes in the bottom part, and test No. 1 as an example. 5 seedlings were evaluated. Two test Nos. About the evaluation seedling of 5, it arrange
  • Test No. Tomato seedlings were planted using the same kind of sand as that used in No. 1 as soil, and test No. 1 as a comparative example. 6 seedlings were evaluated. 14 test Nos. About 6 evaluation seedlings, it cultivated for 3 months without performing high sugar content processing by conventional soil cultivation, and harvested a total of 195 fruits. These test Nos. For the evaluation seedling of No. 6, test No. Evaluation similar to 1 evaluation seedling was implemented.
  • Test No. Tomato seedlings were planted using the same kind of sand as that used in No. 1 as soil, and test No. 1 as a comparative example. 7 seedlings were evaluated. 12 test Nos. About 7 evaluation seedlings, the high sugar content process was implemented for one month from 2 months by conventional soil cultivation, and a total of 162 fruits were harvested. These test Nos. For the evaluation seedling of No. 7, test No. Evaluation similar to 1 evaluation seedling was implemented.
  • test No. 5 is compared.
  • the average sugar content of the fruit of No. 6 was 6.2 ° Bx, whereas 1 to Test No. In No. 5, it was confirmed that fruits having a high sugar content of 6.7 ° Bx to 7.5 ° Bx could be produced.
  • the average yield conversion value in No. 4 was 21.4 t / 1000 m 2 / year, and it was found that a fruit yield equivalent to that of conventional soil cultivation was obtained.
  • 42 L of sand is planted with an average of 2.75 seedlings per bed (1000 mm ⁇ 600 mm ⁇ 70 mm). That is, since conventional soil cultivation uses 15.3 L of sand per strain, test no. It can be said that the amount of sand used in conventional soil cultivation can be reduced by 96.7% by using No. 4 ultra-small pot frame.
  • ⁇ Agricultural land height difference evaluation> Using the cultivation apparatus of the first embodiment, the growth state of the crop due to the difference in farmland height was evaluated. Specifically, using a 25 m long farmland 50 provided on a scaffold as shown in FIG. 4, five or six main leaves are provided at three ends of the farmland 50 in the longitudinal direction and at the center. The first pot frame body 51a, the second pot frame body 51b, and the third pot frame body 51c planted with the tomato seedlings developed are mounted. And these tomato seedlings were cultivated until the third inflorescence could be confirmed. The cultivation period is 43 days.
  • each pot frame The height in the vertical direction of each pot frame is the first pot frame 51a placed on one end side in the longitudinal direction of the farmland 50, the second pot frame 51b placed on the longitudinal center of the farmland 50, and the farmland 50.
  • the height of the third pot frame 51c placed on the other end in the longitudinal direction was higher in order, and the height difference between the first pot frame 51a and the third pot frame 51c was about 3 cm.
  • the first pot frame body 51a the second pot frame body 51b, and the third pot frame body 51c
  • ⁇ Medium temperature survey> Using the cultivation apparatus 1 of the first embodiment, the temperature in the greenhouse, the temperature of the medium part 2 and the temperature of the cultivation liquid in the storage part 3 are measured, and the temperature of the medium part 2 and the temperature in the greenhouse and the storage part 3 are measured. The relationship with the temperature of the cultivation liquid was investigated. A tomato seedling is cultivated using the cultivation apparatus 1, and the time-dependent change of these temperatures in 5.5 days just before a harvest is shown in FIG.
  • the cultivation apparatus and cultivation method of the present invention it is possible to stably apply an appropriate water stress to the crop, and supply sufficient oxygen to the root of the crop at low cost to avoid root rot. Therefore, high quality crops can be cultivated at low cost. Moreover, according to the cultivation apparatus and cultivation method of this invention, the usage-amount of soil can be reduced compared with soil cultivation, and it is easy to provide a scaffold in farmland.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

A cultivation apparatus according to the present invention is provided with: a culture medium part in which a crop is grown; and a cultivation-liquid supply mechanism for supplying a cultivation liquid to the culture medium part. The culture medium part is provided with: a frame; particles for filling the inside of the frame; and an area in which capillary action is used to supply the cultivation liquid to at least an intermediate-layer section of a layer formed by the filling particles.

Description

栽培装置及び栽培方法Cultivation apparatus and cultivation method
 本発明は、栽培装置及び栽培方法に関する。 The present invention relates to a cultivation apparatus and a cultivation method.
 作物の土壌栽培では、例えば連作障害、土の固さにより根の伸長が抑えられることによる作物全体の生育障害、害虫の影響や土壌の老朽化による収量の低下等様々な問題がある。近年、これらの問題を解消する栽培方法として水耕栽培が着目され、種々の装置が開発されている。 In soil cultivation of crops, there are various problems such as continuous cropping failure, growth failure of the whole crop by suppressing root elongation due to soil hardness, the effect of pests and decrease in yield due to soil aging. In recent years, hydroponics has attracted attention as a cultivation method for solving these problems, and various devices have been developed.
 この水耕栽培では、一般的には培地を使用せず、植物の根部を栽培液中に直接浸漬する。従来の水耕栽培では、植物の根腐れを避けるため根部に酸素を多く供給する必要があり、散気管や栽培液循環に伴い空気を送ることができる栽培液循環ポンプ等の酸素補給構造により根部への酸素の供給が行われている(特開2013-9644号公報参照)。 In this hydroponics, generally, the medium is not used, and the root of the plant is directly immersed in the culture solution. In conventional hydroponic cultivation, it is necessary to supply a large amount of oxygen to the root to avoid root rot of the plant, and the root by an oxygen supply structure such as a circulatory pump or a cultivation liquid circulation pump that can send air along with the cultivation liquid circulation Oxygen is supplied to (see JP 2013-9644 A).
特開2013-9644号公報JP 2013-9644 A
 しかしながら、上記従来の栽培装置においては酸素が十分に供給されているとは言い難く、また装置の管理コストが高くなる等の不都合がある。 However, in the conventional cultivation apparatus, it is difficult to say that oxygen is sufficiently supplied, and there are disadvantages such as an increase in management cost of the apparatus.
 また、水耕栽培のように根が浸漬した条件では、水の過剰供給により、得られる作物の含水量増大に伴う食味の低下を招来する場合がある。作物の食味を維持又は向上させるために、例えば乾燥ストレスや浸透圧ストレス等の水分ストレスを加えることによる高糖度処理を行うことが知られているが、より安定的に適度な水分ストレスをかけることができる栽培装置が望まれている。 In addition, under conditions where the roots are soaked as in hydroponics, the excess supply of water may lead to a decrease in taste due to an increase in the water content of the crop obtained. In order to maintain or improve the taste of crops, it is known to perform high sugar content treatment by applying water stress such as drought stress or osmotic stress, but more appropriate moderate water stress should be applied. The cultivation apparatus which can do is desired.
 また、従来の土壌栽培では、大量の土壌が必要となる。そのため、土壌の質量が非常に大きくなり足場等の上に農地を設ける構成とすることが困難であり、農地に高低差がある場合、整地するための大きな労力とコストとが必要となる。 Also, conventional soil cultivation requires a large amount of soil. Therefore, the mass of soil becomes very large and it is difficult to provide a farmland on a scaffold or the like. When there is a difference in height between farmlands, a large amount of labor and cost are required for leveling.
 本発明は、上述のような事情に基づいてなされたものであり、作物に安定的に適度な水分ストレスをかけることができると共に、低コストで作物の根部に十分な酸素を供給し根腐れを避けることができ、かつ土壌栽培に比べて土壌の使用量を低減できる栽培装置及び栽培方法を提供することを目的とする。 The present invention has been made based on the above-described circumstances, and can stably apply an appropriate water stress to a crop and supply sufficient oxygen to the root of the crop at low cost to prevent root rot. An object is to provide a cultivation apparatus and a cultivation method that can be avoided and can reduce the amount of soil used compared to soil cultivation.
 上記課題を解決するためになされた本発明の一態様に係る栽培装置は、作物を着生させる培地部と、この培地部に栽培液を供給する栽培液供給機構とを備える栽培装置であって、上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有する栽培装置である。 A cultivation apparatus according to an aspect of the present invention made to solve the above-described problem is a cultivation apparatus including a medium part for growing a crop and a cultivation liquid supply mechanism for supplying the cultivation liquid to the medium part. The culture unit has a frame, particles filled in the frame, and a region in which the cultivation liquid is supplied by capillary action to at least a middle layer of the layer formed by the filled particles.
 また、本発明の一態様に係る栽培方法は、作物を着生させた培地部に栽培液を供給する栽培方法であって、上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有し、上記領域を介して作物に栽培液を供給する栽培方法である。 Further, the cultivation method according to one aspect of the present invention is a cultivation method for supplying a culture solution to a medium part on which a crop is grown, and the medium part includes a frame body and particles filled in the frame body. And a region in which at least a middle layer of the layer formed by the filler particles has a region where the cultivation liquid is supplied by capillary action, and the cultivation solution is supplied to the crop through the region.
 本発明の実施形態に係る栽培装置及び栽培方法によれば、作物に安定的に適度な水分ストレスをかけることができると共に、低コストで作物の根部に十分な酸素を供給して根腐れを避けることができ、かつ土壌栽培に比べて土壌の使用量を低減できる。 According to the cultivation apparatus and cultivation method according to the embodiment of the present invention, it is possible to stably apply an appropriate water stress to a crop, and supply sufficient oxygen to the root of the crop at low cost to avoid root rot. The amount of soil used can be reduced compared to soil cultivation.
本発明の第一実施形態に係る栽培装置を示す模式図である。It is a mimetic diagram showing the cultivation device concerning a first embodiment of the present invention. 本発明の第二実施形態に係る栽培装置を示す模式図である。It is a schematic diagram which shows the cultivation apparatus which concerns on 2nd embodiment of this invention. 培地量評価における収量及び糖度を示すグラフである。It is a graph which shows the yield and sugar content in medium amount evaluation. 農地高低差評価におけるポット枠体の配置を示す模式的平面図である。It is a typical top view which shows arrangement | positioning of the pot frame in a farmland height difference evaluation. 温室内気温、貯留部液温及び培地部温度の各温度変化を示すグラフである。It is a graph which shows each temperature change of greenhouse temperature, storage part liquid temperature, and culture medium part temperature.
 1 栽培装置
 2 培地部
 3 貯留部
 4 枠体
 5 充填粒子
 6 栽培液供給領域
 7 送液部
 8 遮根透水シート
 9a 第一防水シート
 9b 第二防水シート
 11 水分センサー
 12 水分張力センサー
 13 制御部
 14 供給管
 20 栽培液供給機構
 21 水位塩分濃度調節機構
 31 栽培装置
 32 培地部
 33 貯留部
 34 枠体
 35 充填粒子
 36 栽培液供給領域
 37 台
 38 水位調節機構
 39 水位計
 40 制御部
 41 供給管
 42 温度計
 43 ヒーター
 50 農地
 51a 第1ポット枠体
 51b 第2ポット枠体
 51c 第3ポット枠体
 P 作物
DESCRIPTION OF SYMBOLS 1 Cultivation apparatus 2 Medium part 3 Storage part 4 Frame body 5 Filling particle 6 Cultivation liquid supply area 7 Liquid feeding part 8 Root water-permeable sheet 9a First waterproof sheet 9b Second waterproof sheet 11 Moisture sensor 12 Moisture tension sensor 13 Control part 14 Supply pipe 20 Cultivation liquid supply mechanism 21 Water level salinity adjustment mechanism 31 Cultivation device 32 Medium part 33 Storage part 34 Frame body 35 Filled particles 36 Cultivation liquid supply area 37 units 38 Water level adjustment mechanism 39 Water level meter 40 Control part 41 Supply pipe 42 Temperature Total 43 Heaters 50 Agricultural land 51a First pot frame 51b Second pot frame 51c Third pot frame P Crop
[本発明の実施形態の説明]
 本発明の一実施形態に係る栽培装置は、作物を着生させる培地部と、この培地部に栽培液を供給する栽培液供給機構とを備える栽培装置であって、上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有する栽培装置である。
[Description of Embodiment of the Present Invention]
A cultivation apparatus according to an embodiment of the present invention is a cultivation apparatus that includes a medium part for growing a crop and a cultivation liquid supply mechanism that supplies a cultivation liquid to the medium part, and the medium part is a frame. And a particle filling the inside of the frame, and a region where the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particle.
 当該栽培装置は、培地部が、枠体とこの枠体内に充填される粒子とを有し、かつこの充填粒子が形成する層の少なくとも中層部に毛管現象を発現して栽培液が培地部内に供給される領域を有することで、栽培液の過剰な供給が避けられ、作物の根部に安定的に適度な水分ストレスをかけることができる。また、毛管現象により栽培液が供給される上記領域は、気相が液相に比べて大きく、通気性に優れる。これにより、酸素供給構造がなくとも、酸素不足による根腐れを効果的に抑制することができ、設備コスト及び運転コストを削減できる。また、上記領域で毛管現象が発現できる量の土壌等の粒子が枠体内に充填されればよいので、従来の土壌栽培に比べて土壌の使用量を大幅に低減でき、培地部を軽量化できる。これにより、樹脂パイプ等の安価な材料で形成した足場の上に農地を設ける構成とでき、足場の調節により農地の高低差を容易に調整できる。ここで、「水分ストレス」とは、例えば作物が低湿度の状態に曝されることによる乾燥ストレス、及び作物を取り囲む環境が高濃度の塩分のため高浸透圧となることによる浸透圧ストレスを意味する。 In the cultivation apparatus, the culture medium portion has a frame body and particles filled in the frame body, and at least a middle layer portion of the layer formed by the filled particles develops a capillary phenomenon so that the culture solution is in the culture medium portion. By having the area to be supplied, excessive supply of the cultivation liquid is avoided, and an appropriate moisture stress can be stably applied to the root of the crop. Moreover, the said area | region where culture solution is supplied by capillary phenomenon is large compared with a liquid phase, and is excellent in air permeability. Thereby, even if there is no oxygen supply structure, root rot due to lack of oxygen can be effectively suppressed, and equipment costs and operation costs can be reduced. In addition, since it is only necessary to fill the frame with particles of soil or the like in an amount capable of causing capillary action in the above region, the amount of soil used can be greatly reduced compared to conventional soil cultivation, and the medium part can be reduced in weight. . Thereby, it can be set as the structure which provides farmland on the scaffold formed with cheap materials, such as a resin pipe, and the height difference of farmland can be easily adjusted by adjustment of a scaffold. Here, “moisture stress” means, for example, drought stress caused by exposure of crops to low humidity conditions, and osmotic stress caused by high osmotic pressure due to high concentration of salt in the environment surrounding the crops. To do.
 上記栽培液供給機構が、栽培液を貯留する貯留部と、上記培地部及び貯留部間に配設される送液部とを有し、上記送液部が、貯留部の栽培液を毛管現象により培地部内の粒子の底部に供給するとよい。栽培液供給機構が、このような貯留部及び送液部を備えることで、培地部と貯留部とを隔離しても培地部内に栽培液を容易かつ確実に供給することが可能となる。また、貯留部の栽培液を毛管現象により培地部内の粒子の底部に供給することで、栽培液が貯留部から培地部へ一方向的に送液されるので、貯留水を介した病害の水平伝播を防止できる。 The culture solution supply mechanism includes a storage unit that stores the culture solution, and a liquid supply unit that is disposed between the medium unit and the storage unit, and the liquid supply unit capillaries the culture solution in the storage unit. It is good to supply to the bottom part of the particle | grains in a culture-medium part. Since the culture solution supply mechanism includes such a storage unit and a liquid supply unit, the culture solution can be easily and reliably supplied into the culture unit even if the culture unit and the storage unit are separated. Moreover, since the cultivating solution is fed unidirectionally from the storing unit to the medium unit by supplying the cultivating solution in the storing unit to the bottom of the particles in the medium unit by capillary action, the level of the disease through the stored water is horizontal. Propagation can be prevented.
 上記貯留部内の栽培液の水位又は塩分濃度を調節する機構を備えるとよい。このように、貯留部内の栽培液の水位又は塩分濃度を調節可能とすることで、作物の根部に対してかかる乾燥ストレス又は浸透圧ストレスを制御できるため、収穫する作物の糖度をより高めることができる。 It is good to have a mechanism to adjust the water level or salinity of the cultivation liquid in the storage part. Thus, by making it possible to adjust the water level or salinity of the cultivation liquid in the storage part, it is possible to control the drought stress or osmotic stress applied to the root part of the crop, so that the sugar content of the crop to be harvested can be further increased. it can.
 上記貯留部内の栽培液の温度を調節する温度調節機構を備えるとよい。このように、貯留部内の栽培液の温度を調節することで、作物の生育に適切な温度となるよう培地の温度を調節することができる。また、栽培液の温度調節に要する運転コストは、気温を調節するエアコン等の運転コストより低いので、従来のエアコン等により気温を調節する場合に比べて低コストで培地温度を調節することができる。また、培地温度は栽培液の温度と密接に連動するので、培地温度を調節し易い。 It is good to have a temperature adjustment mechanism that adjusts the temperature of the cultivation liquid in the storage part. Thus, the temperature of the culture medium can be adjusted to be an appropriate temperature for the growth of the crop by adjusting the temperature of the culture solution in the reservoir. Moreover, since the operating cost required for adjusting the temperature of the cultivation liquid is lower than the operating cost of an air conditioner or the like that adjusts the temperature, the medium temperature can be adjusted at a lower cost than when adjusting the temperature using a conventional air conditioner or the like. . Moreover, since the culture medium temperature is closely linked with the temperature of the cultivation liquid, it is easy to adjust the culture medium temperature.
 上記枠体の少なくとも底部が遮根透水シートであることが好ましい。このように枠体の少なくとも底部を遮根透水シートとすることで、培地部内の作物の根部が貯留部に浸漬することを防ぐことができる。その結果、根腐れ防止及び水分ストレスの付与をより効果的に発揮させることができる。また、貯留部の汚染を防ぐこともできる。 It is preferable that at least the bottom of the frame body is a root-permeable water-permeable sheet. Thus, by using at least the bottom part of the frame as a root-permeable water-permeable sheet, it is possible to prevent the root part of the crop in the medium part from being immersed in the storage part. As a result, root rot prevention and moisture stress can be more effectively exhibited. Moreover, contamination of the storage part can be prevented.
 上記粒子としては、土壌が好ましい。このように上記粒子を土壌とすることで、充填粒子が形成する層の中層部が毛管現象をより確実かつ効果的に発揮することができる。その結果、根腐れ防止及び水分ストレスの付与をより効果的に発揮させることができる。 As the particles, soil is preferable. By using the particles as soil in this way, the middle layer of the layer formed by the filler particles can exhibit the capillary phenomenon more reliably and effectively. As a result, root rot prevention and moisture stress can be more effectively exhibited.
 上記土壌としては、砂が好ましい。このように上記土壌として砂を用いることで、充填粒子が形成する層の中層部における気相の液相に対する比をより高めることができ、酸素供給能力を効果的に高めることができる。また、砂は土に比べて有機物含量が低く微生物生息数も少ないので根病が起こり難い。従って、水耕栽培で必要な栽培液の循環フィルター処理や、栽培装置の殺菌等を省略又は簡略化できる。さらに、砂は物理化学的に安定であるため、長年使用した場合でも連作障害が発生し難く継続的に使用でき、根病も起こり難い。また、砂は単粒構造であるため、団粒構造をとる他の土壌よりも毛管現象の再現性及び水の均一拡散性が高く、水分調節をし易い。その結果、低コストで高品質な作物を栽培することができる。ここで、「砂」とは、例えば未固結の破片の堆積物で孔隙に毛管水が保水される例えば直径が0.01mm以上2mm以下の砕屑物を意味する。 As the soil, sand is preferable. By using sand as the soil as described above, the ratio of the gas phase to the liquid phase in the middle layer of the layer formed by the filler particles can be further increased, and the oxygen supply capacity can be effectively increased. Sand is less susceptible to root disease because it has a lower organic content and fewer microorganisms than soil. Accordingly, it is possible to omit or simplify the circulating filter treatment of the cultivation liquid necessary for hydroponics and the sterilization of the cultivation apparatus. Furthermore, since sand is physicochemically stable, even if it is used for many years, continuous cropping failure is unlikely to occur and it can be used continuously, and root disease is unlikely to occur. Moreover, since sand has a single grain structure, the reproducibility of capillary action and the uniform diffusibility of water are higher than other soils having a aggregate structure, and it is easy to adjust moisture. As a result, a high-quality crop can be cultivated at a low cost. Here, “sand” means, for example, debris having a diameter of 0.01 mm or more and 2 mm or less in which capillary water is retained in the pores by deposits of unconsolidated fragments.
 上記充填粒子が形成する層の毛管上昇高さとしては、3cm以上300cm以下が好ましい。このような毛管上昇高さとすることで、装置設計の自由度を高められるほか、農作業の作業性を向上させることができる。 The height of the capillary rise of the layer formed by the filler particles is preferably 3 cm or more and 300 cm or less. By setting such a capillary rise height, the degree of freedom in device design can be increased, and the workability of farm work can be improved.
 上記粒子は、粒径0.1mm以上1mm以下の単粒を50質量%以上含むことが好ましい。上記粒子をこのような構成とすることで、上記中層部が毛管現象をより効果的に発揮し、かつ中層部における気相の液相に対する比をさらに高めることで酸素不足による根腐れをより効果的に抑制することができる。ここで、「粒径」とは、JIS-Z8801-1(2006)に規定される篩を用い、目開きの大きい篩から順に粒子をかけて篩上の粒子数と各篩の目開きとから算出される粒子の平均径である。 The particles preferably contain 50% by mass or more of single particles having a particle size of 0.1 mm or more and 1 mm or less. By configuring the particles in this way, the middle layer more effectively exhibits capillarity, and further increases the ratio of the gas phase to the liquid phase in the middle layer, thereby further improving root rot due to lack of oxygen. Can be suppressed. Here, the “particle size” is based on the number of particles on the sieve and the openings of each sieve by using the sieves defined in JIS-Z8801-1 (2006) and applying the particles in order from the sieve with the largest openings. It is the average particle diameter calculated.
 上記粒子のタップ密度としては、1.00g/cm以上3.00g/cm以下が好ましい。このように粒子のタップ密度を上記範囲内とすることで、上記中層部が毛管現象をより効果的に発揮することができ、かつ中層部における気相の液相に対する比をより高めることで酸素不足による根腐れをより効果的に抑制することができる。ここで、「タップ密度」とは、粉体の嵩密度を意味し、JIS-Z2512(2012)に準拠して測定される値である。 The tap density of the particles is preferably 1.00 g / cm 3 or more and 3.00 g / cm 3 or less. Thus, by setting the tap density of the particles within the above range, the middle layer portion can exhibit the capillary phenomenon more effectively, and the ratio of the gas phase to the liquid phase in the middle layer portion can be increased to increase oxygen. Root rot due to lack can be more effectively suppressed. Here, the “tap density” means the bulk density of the powder, and is a value measured according to JIS-Z2512 (2012).
 また、別の本発明の一態様に係る栽培方法は、作物を着生させた培地部に栽培液を供給する栽培方法であって、上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有し、上記領域を介して作物に栽培液を供給する栽培方法である。 Further, another cultivation method according to one aspect of the present invention is a cultivation method for supplying a culture solution to a medium part on which a crop is grown, and the medium part is filled in the frame body. And a region to which the cultivation liquid is supplied by capillary action in at least the middle layer of the layer formed by the filler particles, and the cultivation liquid is supplied to the crop through the region.
 当該栽培方法は、枠体内の充填粒子が形成する層の毛管現象により栽培液が供給される領域から作物へ栽培液が供給されるので、栽培液の過剰な供給が避けられ、作物の根部に安定的に適度な水分ストレスをかけることができる。また、毛管現象により栽培液が供給される上記領域は、気相が液相に比べて大きく通気性に優れるので、酸素供給構造がなくとも、作物の根部に十分な酸素を供給でき根腐れを効果的に抑制できる。また、当該栽培方法は、上記領域で毛管現象が発現できる量の土壌等の粒子を枠体内に充填すればよいので、従来の土壌栽培に比べて土壌の使用量を大幅に低減でき、培地部を軽量化できる。これにより、当該栽培方法は、樹脂パイプ等の安価な材料で形成した足場の上に農地を設ける構成とでき、足場の調節により農地の高低差を容易に調整できる。 In this cultivation method, since the cultivation liquid is supplied to the crop from the region where the cultivation liquid is supplied by the capillary phenomenon of the layer formed by the filler particles in the frame, excessive supply of the cultivation liquid is avoided, and the root of the crop is avoided. Stable and moderate moisture stress can be applied. In addition, the above-mentioned region where the cultivation liquid is supplied by capillary action has a large gas phase compared with the liquid phase and excellent air permeability, so that even if there is no oxygen supply structure, sufficient oxygen can be supplied to the root of the crop and root rot can be prevented. It can be effectively suppressed. In addition, since the cultivation method only needs to fill the frame with particles of soil or the like in an amount that can cause capillary action in the region, the amount of soil used can be greatly reduced compared to conventional soil cultivation, Can be reduced in weight. Thereby, the said cultivation method can be set as the structure which provides farmland on the scaffold formed with cheap materials, such as a resin pipe, and can adjust the height difference of farmland easily by adjustment of a scaffold.
[本発明の実施形態の詳細]
 以下、本発明に係る栽培装置の実施形態について図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
Hereinafter, an embodiment of a cultivation apparatus according to the present invention will be described in detail with reference to the drawings.
〔第一実施形態〕
 図1に示す当該栽培装置1は、作物Pを着生させる培地部2と、この培地部2に栽培液を供給する栽培液供給機構20とを主に備える。培地部2は、枠体4と、この枠体4内に充填される充填粒子5と、この充填粒子5が形成する層の少なくとも中層部に毛管現象により栽培液が供給される栽培液供給領域6とを有する。また、栽培液供給機構20は、栽培液を貯留する貯留部3と、栽培液を培地部2内の充填粒子5の底部に供給する送液部7とを有する。また、当該栽培装置1は、上記貯留部3内の栽培液の水位及び塩分濃度を調節する水位塩分濃度調節機構21、遮根透水シート8、第一防水シート9a及び第二防水シート9bを備える。
[First embodiment]
The cultivation apparatus 1 shown in FIG. 1 mainly includes a medium part 2 for causing the crop P to grow and a culture liquid supply mechanism 20 for supplying the culture liquid to the medium part 2. The culture medium part 2 includes a frame 4, a filling liquid 5 filled in the frame 4, and a cultivation liquid supply region in which the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particles 5. 6. The cultivation liquid supply mechanism 20 includes a storage section 3 that stores the cultivation liquid and a liquid feeding section 7 that supplies the cultivation liquid to the bottom of the filled particles 5 in the culture medium section 2. Moreover, the said cultivation apparatus 1 is equipped with the water level salt concentration adjustment mechanism 21 which adjusts the water level and salt concentration of the cultivation liquid in the said storage part 3, the root | penetration water-permeable sheet 8, the 1st waterproof sheet 9a, and the 2nd waterproof sheet 9b. .
<培地部>
 培地部2は、枠体4と、この枠体4内に充填される充填粒子5と、この充填粒子5が形成する層の少なくとも中層部に毛管現象により栽培液が供給される栽培液供給領域6とを有し、作物Pを着生させる部分である。
<Medium part>
The culture medium part 2 includes a frame 4, a filling liquid 5 filled in the frame 4, and a cultivation liquid supply region in which the cultivation liquid is supplied by capillary action to at least the middle layer of the layer formed by the filling particles 5. 6 and is a part where the crop P is grown.
(枠体)
 枠体4は、充填粒子5を保持すると共に、作物Pの根が枠体4外へ貫通することを防止する。
(Frame)
The frame body 4 holds the filler particles 5 and prevents the roots of the crop P from penetrating out of the frame body 4.
 枠体4は有底筒状体である。枠体4の平面形状としては、特に限定されないが、輸送の観点からは重ね合わせ可能な形状が好ましく、円形がより好ましい。また、枠体4の底部は遮根透水シート8で構成される。このように枠体4の少なくとも底部を遮根透水シート8とすることで、培地部2内の作物Pの根部が貯留部3に浸漬することを防止できる。 The frame body 4 is a bottomed cylindrical body. The planar shape of the frame 4 is not particularly limited, but a shape that can be superimposed is preferable from the viewpoint of transportation, and a circular shape is more preferable. Further, the bottom of the frame 4 is constituted by a root-permeable water-permeable sheet 8. Thus, by making at least the bottom part of the frame 4 into the root water-permeable sheet 8, the root part of the crop P in the culture medium part 2 can be prevented from being immersed in the storage part 3.
 なお、枠体4の底部だけでなく、側部及び上部も遮根透水シート8とする構成としてもよいが、培地部2の保水性を高める観点からは底面のみを遮根透水シート8とすることが好ましい。 In addition, although not only the bottom part of the frame 4 but a side part and an upper part are good also as a structure which makes the root impermeable sheet 8, the viewpoint of improving the water retention of the culture medium part 2 makes only the bottom surface the impermeable sheet 8. It is preferable.
 枠体4の平均内径の下限としては、6cmが好ましく、9cmがより好ましい。一方、枠体4の平均内径の上限としては、23cmが好ましく、15cmがより好ましい。枠体4の平均内径が上記下限未満の場合、作物Pの根部が十分に広がることができず生育不良となるおそれがある。逆に、枠体4の平均内径が上記上限を超える場合、培地部2の質量が大きくなりすぎるおそれがある。なお、「平均内径」とは、枠体4の平面視内面形状と同面積の円の直径(真円換算径)を枠体4の高さ方向で平均した値を意味する。 The lower limit of the average inner diameter of the frame 4 is preferably 6 cm, and more preferably 9 cm. On the other hand, the upper limit of the average inner diameter of the frame 4 is preferably 23 cm, and more preferably 15 cm. When the average inner diameter of the frame body 4 is less than the lower limit, the root of the crop P cannot be sufficiently spread, and there is a risk of poor growth. On the other hand, when the average inner diameter of the frame body 4 exceeds the upper limit, the mass of the culture medium portion 2 may be too large. The “average inner diameter” means a value obtained by averaging the diameters of circles having the same area as the shape of the inner surface of the frame body 4 in plan view (diameter in terms of a perfect circle) in the height direction of the frame body 4.
 枠体4の底部(遮根透水シート8)を除く部分を構成する材料としては、特に限定されないが、通気性と透水性とを有する紙、シート状の樹脂等が挙げられる。シート状の樹脂は織布でも不織布でもよく、その中でも多孔質樹脂フィルムが好ましく、ポリテトラフルオロエチレン等のフッ素樹脂製フィルムを延伸した多孔質樹脂フィルムがより好ましい。  Although it does not specifically limit as a material which comprises the part except the bottom part (root shield water-permeable sheet 8) of the frame 4, The paper, sheet-like resin, etc. which have air permeability and water permeability are mentioned. The sheet-like resin may be a woven fabric or a non-woven fabric. Among them, a porous resin film is preferable, and a porous resin film obtained by stretching a fluororesin film such as polytetrafluoroethylene is more preferable. *
 遮根透水シート8は、枠体4の底面部分のみに配設してもよいが、図1に示すように平面視で枠体4以外の領域にも敷設してもよい。遮根透水シート8は、透水性を有するため、このように敷設することで栽培液の送液を邪魔せずに、防水、遮光等の機能を奏する。なお、枠体4の底部と遮根透水シート8とは接着されていてもよいし、枠体4を遮根透水シート8の上に載置してもよい。 The root water-permeable sheet 8 may be disposed only on the bottom surface portion of the frame body 4, but may also be laid in an area other than the frame body 4 in a plan view as shown in FIG. Since the root-permeable water-permeable sheet 8 has water permeability, by laying in this way, it exhibits functions such as waterproofing and light-shielding without interfering with the feeding of the cultivation liquid. The bottom of the frame body 4 and the root-permeable water-permeable sheet 8 may be bonded, or the frame body 4 may be placed on the root-permeable water-permeable sheet 8.
 遮根透水シート8の素材としては、特に限定されないが、例えば紙、織布等が挙げられる。 Although it does not specifically limit as a raw material of the root | root water-permeable sheet 8, For example, paper, a woven fabric, etc. are mentioned.
 遮根透水シート8の平均厚みの下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、遮根透水シート8の平均厚みの上限としては、5mmが好ましく、3mmがより好ましい。遮根透水シート8の平均厚みが上記下限未満の場合、遮根性が損なわれるおそれがある。逆に、遮根透水シート8の平均厚みが上記上限を超える場合、遮根透水シート8のコストが高くなりすぎるおそれがある。 The lower limit of the average thickness of the root impermeable sheet 8 is preferably 0.1 mm, and more preferably 0.2 mm. On the other hand, the upper limit of the average thickness of the root impermeable sheet 8 is preferably 5 mm, and more preferably 3 mm. When the average thickness of the root-permeable water-permeable sheet 8 is less than the above lower limit, the root-shielding property may be impaired. On the contrary, when the average thickness of the root impermeable sheet 8 exceeds the upper limit, the cost of the root impermeable sheet 8 may be too high.
(粒子)
 枠体4内に充填される充填粒子5が形成する層の中層部及び下層部が、毛管現象を発現する栽培液供給領域6に含まれる。充填粒子5としては、充填により形成する層が毛管現象を発現するものであれば特に限定されないが、例えば土壌、パミスミサンド等の微粒軽石、多孔性の火山岩の粉砕粒、粒状のロックウール、コーラルサンド、サンゴ、木炭等が挙げられる。これらは2種以上を混合して用いてもよい。これらのうち、良好な毛管現象が確保され、また不要になった場合に自然土に返せる観点から、充填粒子5としては土壌が好ましい。
(particle)
The middle layer portion and the lower layer portion of the layer formed by the filler particles 5 filled in the frame body 4 are included in the cultivation liquid supply region 6 that develops the capillary phenomenon. The filler particles 5 are not particularly limited as long as the layer formed by filling exhibits a capillary phenomenon. For example, soil, fine pumice such as pumice sand, pulverized particles of porous volcanic rock, granular rock wool, coral sand , Coral, charcoal and the like. You may use these in mixture of 2 or more types. Of these, soil is preferable as the filler particles 5 from the viewpoint of ensuring good capillary action and returning to natural soil when it becomes unnecessary.
 上記土壌としては、例えば市販の園芸用の培土、バーミキュライト、ベントナイト、ゼオライト、砂、鹿沼土、赤玉土、真砂土等が挙げられる。これらの中でも、砂が好ましい。上記土壌として砂を用いることで、気相の液相に対する比をより高めて、酸素供給能力を効果的に高めることができる。これにより、酸素供給構造がなくとも、酸素不足による根腐れを効果的に抑制することができる。また、砂は一般的な培土に比べて有機物含量が低く微生物生息数も少ないので根病が起こり難い。 Examples of the soil include commercially available horticultural soil, vermiculite, bentonite, zeolite, sand, Kanuma soil, Akadama soil, and true sand soil. Among these, sand is preferable. By using sand as the soil, the ratio of the gas phase to the liquid phase can be further increased, and the oxygen supply capacity can be effectively increased. Thereby, even if there is no oxygen supply structure, root rot due to lack of oxygen can be effectively suppressed. In addition, since sand has a lower organic matter content and a lower microbial population compared to general soil, root disease is unlikely to occur.
 充填粒子5の単粒の粒径の下限としては、0.1mmが好ましく、0.15mmがより好ましい。一方、上記粒径の上限としては、1mmが好ましく、0.6mmがより好ましい。上記粒径が上記下限未満の場合、栽培液供給領域6の空隙部分が少なくなりすぎて過湿になり雑菌が繁殖し易くなるおそれがある。逆に、上記粒径が上記上限を超える場合、栽培液供給領域6の空隙が大きくなりすぎて毛管現象が弱くなり、所定の量の栽培液を根部に給水できなくなるおそれがある。 The lower limit of the single particle size of the packed particles 5 is preferably 0.1 mm, and more preferably 0.15 mm. On the other hand, the upper limit of the particle size is preferably 1 mm, more preferably 0.6 mm. When the said particle size is less than the said minimum, there exists a possibility that the space | gap part of the cultivation liquid supply area | region 6 may decrease too much, and it may become excessively humid and a germ may propagate easily. On the contrary, when the particle size exceeds the upper limit, the gap in the cultivation liquid supply region 6 becomes too large and the capillary phenomenon becomes weak, and there is a possibility that a predetermined amount of the cultivation liquid cannot be supplied to the root.
 充填粒子5の粒径0.1mm以上1mm以下の単粒の含有割合の下限としては、50質量%が好ましく、80質量%がより好ましい。上記単粒の含有割合が上記下限未満の場合、栽培液供給領域6が発揮する毛管現象が弱くなり、所定の量の栽培液を根部に給水できなくなるおそれがある。 The lower limit of the content ratio of the single particles having a particle size of 0.1 mm or more and 1 mm or less of the filled particles 5 is preferably 50% by mass, and more preferably 80% by mass. When the content rate of the said single grain is less than the said minimum, the capillary phenomenon which the cultivation liquid supply area | region 6 exhibits becomes weak, and there exists a possibility that a predetermined amount of cultivation liquid cannot be supplied to a root part.
 充填粒子5を構成する粒子のタップ密度の下限としては、1.00g/cmが好ましく、1.65g/cmがより好ましく、1.70g/cmがさらに好ましい。一方、上記粒子のタップ密度の上限としては、3.00g/cmが好ましく、1.85g/cmがより好ましく、1.83g/cmがさらに好ましい。上記粒子のタップ密度が上記下限未満の場合、栽培液供給領域6の空隙が大きくなりすぎて毛管現象が弱くなり、所定の量の栽培液を根部に給水できなくなるおそれがある。逆に、上記粒子のタップ密度が上記上限を超える場合、栽培液供給領域6の空隙部分が少なくなりすぎて過湿になり雑菌が繁殖し易くなるおそれがある。 The lower limit of the tap density of the particles constituting the filler particles 5, preferably from 1.00 g / cm 3, more preferably 1.65 g / cm 3, more preferably 1.70 g / cm 3. On the other hand, the upper limit of the tap density of the particles is preferably from 3.00 g / cm 3, more preferably 1.85 g / cm 3, more preferably 1.83 g / cm 3. When the tap density of the particles is less than the lower limit, the gap in the cultivation liquid supply region 6 becomes too large, the capillary phenomenon becomes weak, and there is a possibility that a predetermined amount of the cultivation liquid cannot be supplied to the root. On the other hand, when the tap density of the particles exceeds the upper limit, there is a possibility that the void portion of the cultivation liquid supply region 6 becomes too small and becomes excessively humid, and various bacteria are likely to propagate.
 充填粒子5が形成する層の毛管上昇高さの下限としては、3cmが好ましく、10cmがより好ましく、20cmがさらに好ましい。一方、充填粒子5が形成する層の毛管上昇高さの上限としては、300cmが好ましく、200cmがより好ましく、40cmがさらに好ましい。充填粒子5が形成する層の毛管上昇高さを上記範囲とすることで、装置設計の自由度を高められるほか、農作業の作業性を向上させることができる。充填粒子5が形成する層の毛管上昇高さが上記下限未満の場合、作物Pの根部に栽培液を給水できず作物Pが生育不良となるおそれがある。逆に、充填粒子5が形成する層の毛管上昇高さが上記上限を超える場合、根部に水分ストレスを与え難くなるおそれがある。 The lower limit of the capillary height of the layer formed by the filled particles 5 is preferably 3 cm, more preferably 10 cm, and even more preferably 20 cm. On the other hand, the upper limit of the capillary height of the layer formed by the filler particles 5 is preferably 300 cm, more preferably 200 cm, and even more preferably 40 cm. By setting the capillary height of the layer formed by the filler particles 5 within the above range, the degree of freedom in device design can be increased and the workability of farm work can be improved. When the capillary height of the layer formed by the filler particles 5 is less than the lower limit, the cultivation liquid cannot be supplied to the root of the crop P, and the crop P may be poorly grown. Conversely, if the capillary height of the layer formed by the filler particles 5 exceeds the above upper limit, it may be difficult to apply moisture stress to the root.
 なお、毛管上昇高さ(m)hは、栽培液の表面張力(N/m)をT、栽培液の接触角(°)をθ、栽培液の密度(kg/m)をρ、重力(m/s)をg、充填粒子5の質量10%粒子径(m)をrとすると、下記式(1)で求められる。ここで、「質量10%粒子径」とは、JIS-A1204(2009)「土の粒度試験方法」に準拠して、粒径加積曲線から読み取られる通過質量百分率が10%のときの粒径D(10%粒径D10)を
意味する。
 h=2Tcosθ/ρgr ・・・(1)
The height of the capillary rise (m) h is the surface tension (N / m) of the cultivation liquid, T is the contact angle (°) of the cultivation liquid, ρ is the density (kg / m 3 ) of the cultivation liquid, and gravity. When (m / s 2 ) is g, and the mass 10% particle diameter (m) of the packed particles 5 is r, the following equation (1) is obtained. Here, the “mass 10% particle size” means the particle size when the passing mass percentage read from the particle size accumulation curve is 10% in accordance with JIS-A1204 (2009) “Soil particle size test method”. D (10% particle size D 10 ) is meant.
h = 2T cos θ / ρgr (1)
 1つの枠体4において、栽培液供給領域6の枠体4の底面からの高さが0cmの位置における栽培液の平均流速の下限としては、0.2L/hrが好ましく、0.3L/hrがより好ましい。上記栽培液の平均流速が上記下限未満であると、作物Pが必要な吸水速度に満たないため、水切れにより作物Pが枯れるおそれがある。なお、平均流速とは、枠体4の底面を通過して栽培液供給領域6に至る栽培液の通過量(L)を5つ以上の独立した枠体4で測定して得られる数値の平均値である。 In one frame 4, the lower limit of the average flow rate of the cultivation liquid at a position where the height from the bottom surface of the frame 4 of the cultivation liquid supply region 6 is 0 cm is preferably 0.2 L / hr, and 0.3 L / hr. Is more preferable. If the average flow rate of the cultivation liquid is less than the lower limit, the crop P is less than the required water absorption rate, and therefore the crop P may be dried up due to running out of water. In addition, an average flow velocity is the average of the numerical values obtained by measuring the passing amount (L) of the cultivation liquid that passes through the bottom surface of the frame 4 and reaches the cultivation liquid supply region 6 with five or more independent frames 4. Value.
 栽培液供給領域6における栽培液の平均流速が十分に大きい条件では、栽培液供給領域6に作物Pの吸水速度が平均流速以下となる地点が存在するため、作物Pは際限なく吸水する(このときの吸水量を最大吸水日量という)。この状態から後述する貯留部3の液面の水位を少しずつ下げていくと、徐々に給水速度が低下して吸水に制限が掛かる(このときの吸水量を制限吸水日量という)。当該栽培装置1では作物Pの吸水日量は水消費日量から概算できるため、吸水量を任意の割合に制限できる。栽培液の平均流速が制限されても給水は継続するため、給水量を制限する場合と比べて培地部2は乾燥し難く、根部が傷むおそれは小さい。給水速度制限による培地部2の保水量の低下は、培地部2の重量の低下によっても計測できる。そのため、管理者は高価な水分センサーがなくとも水分を管理できる。 Under conditions where the average flow rate of the cultivation liquid in the cultivation liquid supply region 6 is sufficiently large, there is a point where the water absorption speed of the crop P is equal to or less than the average flow rate in the cultivation liquid supply region 6, and thus the crop P absorbs water indefinitely (this The amount of water absorption is called the maximum water absorption day). If the water level of the liquid level of the storage part 3 to be described later is gradually lowered from this state, the water supply speed is gradually lowered and the water absorption is restricted (the water absorption amount at this time is referred to as the limited water absorption amount). In the said cultivation apparatus 1, since the water absorption daily amount of the crop P can be estimated from water consumption daily amount, water absorption amount can be restrict | limited to arbitrary ratios. Since the water supply continues even if the average flow rate of the cultivation liquid is restricted, the culture medium part 2 is less likely to be dried than the case where the amount of water supply is restricted, and the risk of damaging the root part is small. The decrease in the amount of water retained in the culture medium part 2 due to the water supply speed limitation can also be measured by the decrease in the weight of the culture medium part 2. Therefore, the administrator can manage moisture without an expensive moisture sensor.
 充填粒子5の充填高さの下限としては、1cmが好ましく、3cmがより好ましく、5cmがさらに好ましい。一方、充填粒子5の充填高さの上限としては、50cmが好ましく、30cmがより好ましく、15cmがさらに好ましい。充填粒子5の充填高さが上記下限未満の場合、作物Pの根が栽培液供給領域6の毛管構造を破壊することにより、生育不良となるおそれがある。逆に、充填粒子5の充填高さが上記上限を超える場合、培地部2の質量が大きくなりすぎるおそれがある。 The lower limit of the filling height of the packed particles 5 is preferably 1 cm, more preferably 3 cm, and even more preferably 5 cm. On the other hand, the upper limit of the filling height of the packed particles 5 is preferably 50 cm, more preferably 30 cm, and even more preferably 15 cm. When the filling height of the filling particles 5 is less than the above lower limit, the roots of the crop P may break down the capillary structure of the cultivation liquid supply region 6, which may cause poor growth. On the contrary, when the filling height of the filling particles 5 exceeds the above upper limit, the mass of the culture medium part 2 may be too large.
 栽培液供給領域6の栽培液の保水量の下限としては、0.04Lが好ましく、0.05Lがより好ましく、0.10Lがさらに好ましい。一方、栽培液供給領域6の栽培液の保水量の上限としては、2Lが好ましく、1.5Lがより好ましく、0.6Lがさらに好ましい。栽培液供給領域6の栽培液の保水量が上記下限未満の場合、当該栽培装置1の故障等により貯留部3からの給水が失われた場合に、作物Pが全滅するリスクが高くなる場合がある。逆に、栽培液の保水量が上記上限を超える場合、培地部2の質量が大きくなるおそれや、保水量の調節が困難となるおそれがある。なお、保水量とは、保水状態の培地部2の質量から乾燥状態の培地部2の質量を引いた値を体積換算したものをいう。 The lower limit of the water retention amount of the cultivation liquid in the cultivation liquid supply region 6 is preferably 0.04 L, more preferably 0.05 L, and even more preferably 0.10 L. On the other hand, the upper limit of the water retention amount of the cultivation liquid in the cultivation liquid supply region 6 is preferably 2L, more preferably 1.5L, and even more preferably 0.6L. When the water retention amount of the cultivation liquid in the cultivation liquid supply area 6 is less than the above lower limit, there is a case where the risk that the crop P is completely destroyed when water supply from the storage unit 3 is lost due to a failure of the cultivation apparatus 1 or the like. is there. On the other hand, when the water retention amount of the cultivation liquid exceeds the above upper limit, the mass of the culture medium part 2 may increase, or the adjustment of the water retention amount may be difficult. The water retention amount refers to a volume conversion of a value obtained by subtracting the mass of the culture medium part 2 in the dry state from the mass of the culture medium part 2 in the water retention condition.
<栽培液供給機構>
 栽培液供給機構20は、栽培液を貯留する貯留部3と、培地部2及び貯留部3間に配設される送液部7とを有する。
<Culture solution supply mechanism>
The culture solution supply mechanism 20 includes a storage unit 3 that stores the culture solution, and a liquid feeding unit 7 that is disposed between the culture medium unit 2 and the storage unit 3.
(送液部)
 送液部7はシート体である。送液部7は、培地部2及び貯留部3間に、その一部が後述の貯留部3内に浸漬されるように配設されており、貯留部3の栽培液を毛管現象により揚水し、遮根透水シート8を介して培地部2内の充填粒子5の底部に供給する。栽培液供給機構20が送液部7を有することで、培地部2と貯留部3とを隔離しても培地部2内に栽培液を容易かつ確実に供給することが可能となる。
(Liquid feeding part)
The liquid feeding part 7 is a sheet body. The liquid feeding part 7 is disposed between the culture medium part 2 and the storage part 3 so that a part thereof is immersed in the storage part 3 to be described later, and the cultivation liquid in the storage part 3 is pumped by capillary action. Then, it is supplied to the bottom of the packed particles 5 in the medium part 2 through the root-permeable water-permeable sheet 8. Since the culture solution supply mechanism 20 includes the liquid feeding unit 7, the culture solution can be easily and reliably supplied into the culture unit 2 even if the culture unit 2 and the storage unit 3 are separated.
 送液部7は、毛管現象により栽培液を揚水し、充填粒子5の底部に供給できるものであれば特に制限されないが、例えば不織布、ロックウールシート、フェルトシート、ウレタンシート等が挙げられる。これらのうち、適度な毛管現象の発現及び適切な吸水率を発揮させる観点から、不織布が好ましい。 The liquid feeding part 7 is not particularly limited as long as it can pump the cultivation liquid by capillary action and can be supplied to the bottom part of the filled particles 5, and examples thereof include a nonwoven fabric, a rock wool sheet, a felt sheet, and a urethane sheet. Among these, non-woven fabrics are preferred from the viewpoint of appropriate capillary action and appropriate water absorption.
 送液部7の透水率の下限としては、0.01%が好ましく、1%がより好ましい。一方、送液部7の透水率の上限としては、40%が好ましく、30%がより好ましい。送液部7の透水率が上記下限未満の場合、培地部2内の充填粒子5の底部に供給される栽培液の量が不十分となるおそれがある。逆に、送液部7の透水率が上記上限を超える場合、送液部7ひいては当該栽培装置1のコストが高くなりすぎるおそれがある。ここで、透水率とは、平面状の送液部7の表面から水を散布した際に送液部7の裏面へ通過した水の比率をあらわす。 The lower limit of the water permeability of the liquid feeding part 7 is preferably 0.01%, more preferably 1%. On the other hand, as an upper limit of the water permeability of the liquid feeding part 7, 40% is preferable and 30% is more preferable. When the water permeability of the liquid feeding part 7 is less than the said minimum, there exists a possibility that the quantity of the cultivation liquid supplied to the bottom part of the filling particle | grains 5 in the culture medium part 2 may become inadequate. On the contrary, when the water permeability of the liquid feeding part 7 exceeds the said upper limit, there exists a possibility that the cost of the liquid feeding part 7 and the said cultivation apparatus 1 may become high too much. Here, the water permeability represents the ratio of water that has passed to the back surface of the liquid feeding unit 7 when water is sprayed from the surface of the planar liquid feeding unit 7.
 送液部7の平均厚みの下限としては、0.5mmが好ましく、0.7mmがより好ましい。一方、送液部7の平均厚みの上限としては、2mmが好ましく、1.5mmがより好ましい。送液部7の平均厚みが上記下限未満の場合、送液部7の強度が低下し破断するおそれがある。逆に、送液部7の平均厚みが上記上限を超える場合、送液部7のコストが高くなるおそれがある。 The lower limit of the average thickness of the liquid feeding part 7 is preferably 0.5 mm, more preferably 0.7 mm. On the other hand, as an upper limit of the average thickness of the liquid feeding part 7, 2 mm is preferable and 1.5 mm is more preferable. When the average thickness of the liquid feeding part 7 is less than the above lower limit, the strength of the liquid feeding part 7 may be reduced and may break. On the contrary, when the average thickness of the liquid feeding part 7 exceeds the said upper limit, there exists a possibility that the cost of the liquid feeding part 7 may become high.
 送液部7の揚水高さの下限としては、3cmが好ましく、10cmがより好ましく、20cmがさらに好ましい。一方、送液部7の揚水高さの上限としては、300cmが好ましく、200cmがより好ましく、40cmがさらに好ましい。送液部7の揚水高さが上記下限未満の場合、培地部2内の充填粒子5の底部に供給される栽培液の量が不十分となり水切れが起こるおそれがある。逆に、送液部7の揚水高さが上記上限を超える場合、送液部7のコストが高くなるおそれがある。ここで、揚水高さとは、以下の手法で測定される。まず、送液部7を幅4cm、長さ120cmに切断したシートを平均厚み0.03mmのポリエチレンフィルムで被覆(熱圧着で袋状としたフィルムにシートを挿入して周りを被覆)したものを測定サンプルとし、鉛直に測定サンプルを吊り下げられるようにした架台にセットする。このとき、上部及び下部を5cm開放して液面に接しておくようにする。そして、24時間で液面から揚水した高さを5回測定した値の平均値を揚水高さとする。 The lower limit of the pumping height of the liquid feeding section 7 is preferably 3 cm, more preferably 10 cm, and further preferably 20 cm. On the other hand, as an upper limit of the pumping height of the liquid feeding part 7, 300 cm is preferable, 200 cm is more preferable, and 40 cm is further more preferable. When the pumping height of the liquid feeding part 7 is less than the said lower limit, the quantity of the cultivation liquid supplied to the bottom part of the filling particle | grains 5 in the culture medium part 2 may become inadequate, and there exists a possibility that water drainage may occur. On the contrary, when the pumping height of the liquid feeding part 7 exceeds the said upper limit, there exists a possibility that the cost of the liquid feeding part 7 may become high. Here, the pumping height is measured by the following method. First, a sheet obtained by cutting the liquid feeding section 7 into a width of 4 cm and a length of 120 cm is coated with a polyethylene film having an average thickness of 0.03 mm (the sheet is inserted into a film formed by thermocompression bonding to cover the periphery). Set as a measurement sample, and place it on a stand that allows the measurement sample to be suspended vertically. At this time, the upper and lower portions are opened by 5 cm so as to be in contact with the liquid surface. And let the average value of the value which measured the height pumped up from the liquid surface in 24 hours 5 times be pumping height.
(貯留部)
 貯留部3は、栽培液を保持する非透水性の貯留槽から構成される。貯留部3は培地部2と離間して配設される。具体的には、貯留部3は、培地部2の下方かつ平面視で培地部2と重複しない領域に配設されている。このような領域に貯留部3を配設することで、作物Pの根が貯留部3に侵入することをより確実に防止できると共に、複数の培地部2で1つの貯留部3を共有することができる。なお、貯留部3の貯留槽は、上方が開放され栽培液の供給を容易にすると共に、底面及び側面には第二防水シート9bが敷設され栽培液の漏出を防止している。第一防水シート9aと第二防水シート9bとは一枚のシートから形成されてもよい。
(Reservoir)
The storage part 3 is comprised from the water-impermeable storage tank holding a cultivation liquid. The storage unit 3 is disposed away from the culture unit 2. Specifically, the storage unit 3 is disposed below the culture unit 2 and in a region that does not overlap with the culture unit 2 in plan view. By arranging the storage unit 3 in such a region, it is possible to more reliably prevent the root of the crop P from entering the storage unit 3 and to share one storage unit 3 among the plurality of culture medium units 2. Can do. The storage tank of the storage unit 3 is open at the top to facilitate the supply of the cultivation liquid, and the second waterproof sheet 9b is laid on the bottom and side surfaces to prevent the cultivation liquid from leaking out. The first waterproof sheet 9a and the second waterproof sheet 9b may be formed from a single sheet.
 貯留部3内には送液部7の一部が浸漬されており、栽培液はこの送液部7を介して培地部2内の充填粒子5の底部に供給される。栽培液は貯留部3から培地部2へ一方向的に送液されるため、水耕栽培に見られる貯留水を介した病害の水平伝播を防止できる。 A part of the liquid feeding part 7 is immersed in the storage part 3, and the cultivation liquid is supplied to the bottom of the packed particles 5 in the culture medium part 2 through the liquid feeding part 7. Since the cultivating solution is unidirectionally fed from the storage unit 3 to the culture unit 2, it is possible to prevent horizontal propagation of diseases through the stored water found in hydroponics.
 貯留部3が保持する栽培液は、肥料を含むことが好ましい。肥料は、貯留部3において雑菌が繁殖することを抑制できる観点から、化学肥料を含むことが好ましい。なお、肥料は、栽培液だけでなく、培地部2内に直接与えてもよい。 It is preferable that the cultivation liquid which the storage part 3 hold | maintains a fertilizer. It is preferable that a fertilizer contains a chemical fertilizer from a viewpoint which can suppress that a germ propagates in the storage part 3. FIG. In addition, you may give a fertilizer directly not only in a cultivation liquid but in the culture medium part 2. FIG.
 貯留部3の上部は、遮光材で遮光されていることが好ましい。この遮光材としては、例えば遮根透水シート8、第一防水シート9a等を使用できる。このように貯留部3が遮光されることで、貯留部3において藻が繁殖することを抑制することができる。加えて、当該栽培装置1においては、貯留部3の保持する栽培液が作物Pの根に直接接触しない。これらの相乗効果で、貯留部3は清潔な状態が保たれており、栽培液はフィルター処理せずとも雑菌の繁殖が抑制されている。 It is preferable that the upper part of the storage unit 3 is shielded from light by a light shielding material. As this light shielding material, for example, the root water-permeable sheet 8, the first waterproof sheet 9a, and the like can be used. Thus, the storage part 3 is light-shielded, and it can suppress that algae reproduces in the storage part 3. FIG. In addition, in the said cultivation apparatus 1, the cultivation liquid which the storage part 3 hold | maintains does not contact the root of the crop P directly. With these synergistic effects, the storage unit 3 is kept clean, and the growth of germs is suppressed without filtering the cultivation liquid.
<防水シート>
 第一防水シート9aは、培地部2設置領域以外の領域の遮根透水シート8及び送液部7の上面側に積層されるシートであり、栽培液の蒸発、漏出した栽培液等が貯留部3に混入すること等を防止する。また、上述したように、第一防水シート9aは、遮光材としての機能も発揮することができる。
<Waterproof sheet>
The 1st waterproof sheet 9a is a sheet | seat laminated | stacked on the upper surface side of the root | blocking water-permeable sheet | seat 8 of the area | regions other than the culture | cultivation part 2 installation area | region, and the liquid feeding part 7, 3 is prevented. Moreover, as above-mentioned, the 1st waterproof sheet 9a can also exhibit the function as a light-shielding material.
 第二防水シート9bは、遮根透水シート8と送液部7又は貯留部3との下面側に積層されるシートであり、当該栽培装置1を例えば地表と隔離することで、漏出した栽培液が地下に浸透することを防止できる。 The 2nd waterproof sheet 9b is a sheet | seat laminated | stacked on the lower surface side of the root impermeable sheet 8 and the liquid feeding part 7 or the storage part 3, and the cultivation liquid which leaked by isolating the said cultivation apparatus 1 from the ground surface, for example Can be prevented from penetrating underground.
 第一防水シート9a及び第二防水シート9bとしては、水と作物Pの根とを通さないものであれば特に限定されないが、例えばポリオレフィン系フィルム、フッ素樹脂系フィルム、生分解性プラスチックフィルム等を使用することができる。 The first waterproof sheet 9a and the second waterproof sheet 9b are not particularly limited as long as they do not pass water and the roots of the crops P. For example, polyolefin film, fluororesin film, biodegradable plastic film, etc. Can be used.
<水位塩分濃度調節機構>
 水位塩分濃度調節機構21は、培地部2の充填粒子5中に埋め込まれた水分センサー11及び水分張力センサー12と、これらのセンサーの測定値に基づいて貯留部3へ継ぎ足し供給する栽培液の供給量及び塩分濃度を調節する制御部13とを有する。
<Water level salinity adjustment mechanism>
The water level salinity adjusting mechanism 21 supplies the water sensor 11 and the water tension sensor 12 embedded in the packed particles 5 of the medium part 2 and the supply of the cultivation liquid that is supplied to the storage part 3 based on the measured values of these sensors. And a controller 13 for adjusting the amount and the salinity.
 水分センサー11は、培地部2が保持する水分量を検出し、水分張力センサー12は、充填粒子5間の水分張力を検出する。制御部13は、培地部2内の水分量及び充填粒子5間の水分張力に基づいて、作物Pに適した乾燥ストレスがかかるように、供給管14から貯留部3への栽培液の供給量を制御し、貯留部3内の栽培液の水位を調節する。貯留部3内の栽培液の水位を上下させることで毛管上昇後の培地部2内の液面高さを調節することができる。従って、このように貯留部3内の栽培液の水位を調節することで、高糖度処理のための乾燥ストレスをかけることができ、作物Pの食味の向上を図ることができる。 The moisture sensor 11 detects the amount of moisture held by the culture medium unit 2, and the moisture tension sensor 12 detects the moisture tension between the packed particles 5. The control unit 13 supplies the cultivation liquid from the supply pipe 14 to the storage unit 3 so that a drying stress suitable for the crop P is applied based on the water content in the culture medium unit 2 and the water tension between the packed particles 5. Is controlled, and the water level of the cultivation liquid in the storage part 3 is adjusted. The liquid surface height in the culture medium part 2 after capillary rise can be adjusted by raising and lowering the water level of the cultivation liquid in the storage part 3. Therefore, by adjusting the water level of the cultivation liquid in the storage unit 3 in this way, it is possible to apply a drying stress for high sugar content treatment, and to improve the taste of the crop P.
 従来の水耕栽培では作物への栽培液の供給量を減少させるよう制御することは困難であったが、当該栽培装置1では、培地部2内の水分量及び充填粒子5間の水分張力に基づいて毛管上昇後の培地部2内の液面高さを調節できるので、作物Pへの栽培液の供給量を減少させるように調節することができる。 In conventional hydroponics, it was difficult to control the supply of the cultivation liquid to the crop, but in the cultivation apparatus 1, the moisture content in the culture medium part 2 and the moisture tension between the filled particles 5 are adjusted. Since the liquid level height in the culture medium part 2 after capillary rise can be adjusted based on this, it can adjust so that the supply amount of the cultivation liquid to the crop P may be decreased.
 また、制御部13は、培地部2内の水分量及び充填粒子5間の水分張力に基づいて、作物Pに適した浸透圧ストレスがかかるように、供給管14から貯留部3へ供給する栽培液に添加する塩分の量を調節する。これにより、作物Pの根部に対する栽培液の浸透圧を調節できるので、高糖度処理のための浸透圧ストレスをかけることができ、作物Pの食味の向上を図ることができる。なお、このように栽培液に塩分を添加する場合、作物Pの根部から吸収される栽培液の塩分濃度を調節するだけの量の塩分を添加すればよいので、従来の水耕栽培で塩分を直接添加する場合に比べて塩分の使用量を低減できる。 Moreover, the control part 13 is the cultivation supplied to the storage part 3 from the supply pipe | tube 14 so that the osmotic stress suitable for the crop P may be applied based on the moisture content in the culture medium part 2, and the moisture tension between the filling particles 5. Adjust the amount of salt added to the solution. Thereby, since the osmotic pressure of the cultivation liquid with respect to the root part of the crop P can be adjusted, the osmotic stress for high sugar content processing can be applied, and the taste of the crop P can be improved. In addition, when adding salinity to the cultivation liquid in this way, it is sufficient to add an amount of salinity sufficient to adjust the salinity concentration of the cultivation liquid absorbed from the root of the crop P. The amount of salt used can be reduced as compared with the case of direct addition.
 当該栽培装置1は、このように水位調節と共に塩分濃度を調節するので、より少ない塩分の添加量で、効果的に作物Pに対して水分ストレスをかけることができる。 Since the cultivation apparatus 1 adjusts the salinity concentration together with the water level adjustment in this way, it is possible to effectively apply moisture stress to the crop P with a smaller amount of salt addition.
[栽培方法]
 当該栽培方法は、作物Pを着生させた培地部に栽培液を供給する栽培方法であって、上記培地部2が、枠体4と、この枠体4内に充填される充填粒子5と、この充填粒子5が形成する層の少なくとも中層部に毛管現象により栽培液が供給される栽培液供給領域6とを有し、上記栽培液供給領域6を介して作物Pに栽培液を供給する栽培方法である。
[Cultivation method]
The cultivation method is a cultivation method in which a culture solution is supplied to a medium part on which a crop P is grown, and the medium part 2 includes a frame body 4 and packed particles 5 filled in the frame body 4. The cultivation liquid supply area 6 to which the cultivation liquid is supplied by capillary action is provided at least in the middle layer of the layer formed by the filler particles 5, and the cultivation liquid is supplied to the crop P through the cultivation liquid supply area 6. It is a cultivation method.
 当該栽培方法は、より具体的には、送液部7によって培地部2に栽培液を供給する工程(栽培液供給工程)と、培地部2に供給する栽培液を保持する貯留部3の水位の調節により作物Pに乾燥ストレスをかける工程(乾燥ストレス工程)と、培地部2に供給する栽培液の塩分濃度の調節により作物Pに浸透圧ストレスをかける工程(浸透圧ストレス工程)とを備える。 More specifically, the cultivation method includes a step of supplying the culture solution to the culture medium unit 2 by the liquid feeding unit 7 (cultivation solution supply step), and a water level of the storage unit 3 that holds the culture solution supplied to the culture medium unit 2. A step of applying drought stress to the crop P by adjusting the amount (dry stress step) and a step of applying osmotic stress to the crop P by adjusting the salinity concentration of the cultivation liquid supplied to the culture medium unit 2 (osmotic stress step). .
<栽培液供給工程>
 栽培液供給工程では、送液部7が貯留部3で保持される栽培液を培地部2の底部まで送液する。この栽培液は、枠体4内の充填粒子5が形成する層の毛管現象により培地部2の栽培液供給領域6へ供給される。具体的には、栽培液を保持する貯留部3から、送液部7の毛管現象により栽培液を揚水し、遮根透水シート8を介して培地部2内の充填粒子5の底部へ供給する。そして、充填粒子5の底部へ送液された栽培液は、充填粒子5が形成する層の毛管現象によって栽培液供給領域6を介して作物Pの根部へ供給される。
<Cultivation liquid supply process>
In the cultivation liquid supply step, the liquid feeding unit 7 feeds the cultivation liquid held in the storage unit 3 to the bottom of the culture medium unit 2. This cultivated liquid is supplied to the cultivated liquid supply region 6 of the culture medium part 2 by capillary action of the layer formed by the filled particles 5 in the frame body 4. Specifically, the cultivation liquid is pumped from the storage unit 3 that holds the cultivation liquid by the capillary phenomenon of the liquid feeding unit 7, and is supplied to the bottom of the filled particles 5 in the culture medium unit 2 through the root-permeable water-permeable sheet 8. . Then, the cultivated liquid fed to the bottom of the filler particles 5 is supplied to the root of the crop P through the cultivated liquid supply region 6 by the capillary phenomenon of the layer formed by the filler particles 5.
 栽培液供給工程では、培地部2への栽培液の供給状態に従って作物Pに適した供給量の栽培液を貯留部3に継ぎ足す。具体的には、水分センサー11及び水分張力センサー12により培地部2内の水分量及び充填粒子5間の水分張力を検出し、これらの検出結果に基づいて制御部13が栽培液を貯留部3へ継ぎ足し供給する。これにより、作物Pに連続的に栽培液を供給することができる。 In the cultivation liquid supply process, a supply amount of cultivation liquid suitable for the crop P is added to the storage section 3 in accordance with the supply state of the cultivation liquid to the culture medium section 2. Specifically, the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the filled particles 5, and based on the detection results, the control unit 13 stores the cultivation liquid 3. Add to the supply. Thereby, the cultivation liquid can be continuously supplied to the crop P.
<乾燥ストレス工程>
 乾燥ストレス工程では、培地部2への栽培液の供給状態に従って栽培液を保持する貯留部3の水位を調節し、この水位の調節により乾燥ストレスをかける。具体的には、水分センサー11及び水分張力センサー12により培地部2内の水分量及び充填粒子5間の水分張力を検出し、これらの検出結果に基づいて制御部13が貯留部3へ継ぎ足す栽培液の供給量を調節する。この貯留部3への栽培液の供給量の調節により、貯留部3内の栽培液の水位を調節する。このようにして貯留部3内の栽培液の水位を上下させることで毛管上昇後の培地部2内の液面高さを調節し、作物Pに対して適切な乾燥ストレスをかける。
<Drying stress process>
In the drying stress step, the water level of the storage unit 3 that holds the cultivation liquid is adjusted according to the supply state of the cultivation liquid to the culture medium unit 2, and drying stress is applied by adjusting the water level. Specifically, the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the packed particles 5, and the controller 13 adds to the storage part 3 based on these detection results. Adjust the amount of cultivation liquid supplied. The water level of the culture solution in the storage unit 3 is adjusted by adjusting the supply amount of the culture solution to the storage unit 3. Thus, the liquid level height in the culture medium part 2 after a capillary rise is adjusted by raising and lowering the water level of the cultivation liquid in the storage part 3, and appropriate dry stress is applied to the crop P.
<浸透圧ストレス工程>
 浸透圧ストレス工程では、培地部2への栽培液の供給状態に従って培地部2に供給する栽培液の塩分濃度を調節し、この栽培液の塩分濃度の調節により浸透圧ストレスをかける。具体的には、水分センサー11及び水分張力センサー12により培地部2内の水分量及び充填粒子5間の水分張力を検出し、これらの検出結果に基づいて制御部13が貯留部3へ供給する栽培液に添加する塩分の量を調節する。これにより、作物Pの根部に対する栽培液の浸透圧を調節し、作物Pに対して適切な浸透圧ストレスをかける。
<Osmotic stress process>
In the osmotic stress step, the salt concentration of the culture solution supplied to the culture medium unit 2 is adjusted according to the supply state of the culture solution to the culture medium unit 2, and osmotic stress is applied by adjusting the salt concentration of the culture solution. Specifically, the moisture sensor 11 and the moisture tension sensor 12 detect the amount of moisture in the culture medium part 2 and the moisture tension between the packed particles 5, and the control unit 13 supplies the storage unit 3 based on these detection results. Adjust the amount of salt added to the cultivation solution. Thereby, the osmotic pressure of the cultivation liquid with respect to the root part of the crop P is adjusted, and an appropriate osmotic stress is applied to the crop P.
<利点>
 当該栽培装置は、枠体内の充填粒子が形成する層の少なくとも中層部に毛管現象を発現して栽培液が培地部内に供給される栽培液供給領域を有するので、栽培液の過剰な供給が避けられ、作物の根部に安定的に適度な水分ストレスをかけることができる。また、毛管現象により栽培液が供給される栽培液供給領域は、気相が液相に比べて大きく通気性に優れるので、当該栽培装置は、酸素供給構造がなくとも、酸素不足による根腐れを効果的に抑制することができる。
<Advantages>
Since the cultivation apparatus has a cultivation liquid supply region in which the cultivation liquid is supplied into the culture medium part by developing a capillary phenomenon in at least the middle layer part of the layer formed by the filler particles in the frame body, avoid excessive supply of the cultivation liquid. Therefore, it is possible to stably apply an appropriate water stress to the root of the crop. In addition, since the cultivation liquid supply region to which the cultivation liquid is supplied by capillary action is large in gas phase and excellent in air permeability as compared with the liquid phase, the cultivation apparatus can prevent root rot due to lack of oxygen even without an oxygen supply structure. It can be effectively suppressed.
 また、当該栽培装置は、栽培液供給領域で毛管現象が発現できる量の土壌等の粒子を枠体内に充填すればよく、従来の土壌栽培に比べて土壌の使用量を大幅に低減できるので、培地部を軽量化できる。これにより、当該栽培装置は、樹脂パイプ等の安価な材料で形成した足場の上に農地を設ける構成とすることができ、足場の調節により農地の高低差を容易に調整できる。 In addition, the cultivation device only needs to fill the frame with particles such as soil in an amount that can cause capillary action in the cultivation liquid supply region, and can significantly reduce the amount of soil used compared to conventional soil cultivation. The medium part can be reduced in weight. Thereby, the said cultivation apparatus can be set as the structure which provides farmland on the scaffold formed with cheap materials, such as a resin pipe, and can adjust the height difference of farmland easily by adjustment of a scaffold.
 また、当該栽培装置は下方灌水であるため、上方灌水より節水である。これは培地部の上層の保水量が比較的低く蒸発が起こり難いためである。このように蒸発が起こり難いため、温室の湿度管理と灌水管理とが干渉し難い。当該栽培装置では貯留部の貯留槽が非透水性であるためさらに節水であり、排水のない完全閉鎖的な栽培装置が構築可能である。また、蒸発による水分の流亡が極めて小さいため、栽培液の消費量をほぼ正確に計測でき、吸水量を通じた植物生育の定量化が可能となる。さらに、このように培地部からの蒸発量が小さく、培地部に保たれた水分に塩類が溶出するため、上方灌水や毛管水耕に比べ塩類集積が起こり難いというメリットがある。また、培地部をフラッシングすることも容易である。 Moreover, since the said cultivation apparatus is downward irrigation, it is water saving rather than upper irrigation. This is because the amount of water retained in the upper layer of the medium part is relatively low and evaporation is unlikely to occur. Since evaporation does not easily occur in this way, humidity management and irrigation management of the greenhouse are unlikely to interfere. In the said cultivation apparatus, since the storage tank of a storage part is water-impermeable, it is further water-saving and it can construct | assemble the completely closed cultivation apparatus without drainage. Moreover, since the loss of water due to evaporation is extremely small, the consumption of the cultivation liquid can be measured almost accurately, and the plant growth through the water absorption can be quantified. Furthermore, since the amount of evaporation from the medium part is small and the salt is eluted in the water retained in the medium part, there is an advantage that salt accumulation is less likely to occur compared to upward irrigation or capillary hydroponics. Further, it is easy to flush the culture medium part.
 また、当該栽培装置は、培地量を最小化することで、培地部に保持される栽培液の消費速度を高めることができ、貯留部中の栽培液と培地部中の栽培液とがほぼ均質となる。これにより他の培地耕に比べて栽培液の変更の影響も即座に得ることができ、培地部中のpHの調整等が容易となる。 Moreover, the said cultivation apparatus can raise the consumption rate of the cultivation liquid hold | maintained at a culture-medium part by minimizing the amount of culture media, and the cultivation liquid in a storage part and the cultivation liquid in a culture-medium part are substantially homogeneous. It becomes. Thereby, compared with other culture medium cultivation, the influence of the change of a culture solution can also be obtained immediately, and adjustment of pH in a culture medium part etc. becomes easy.
〔第二実施形態〕
 図2に示す当該栽培装置31は、作物Pを着生させる培地部32と、この培地部32に栽培液を供給する栽培液供給機構とを主に備える。培地部32は、枠体34と、この枠体34内に充填される充填粒子35と、この充填粒子35が形成する層の少なくとも中層部に毛管現象により栽培液が供給される栽培液供給領域36とを有する。なお、栽培液供給機構は、栽培液を貯留する貯留部33により構成される。また、当該栽培装置31は、上記貯留部33内の栽培液の水位を調節する水位調節機構38と、貯留部33内の栽培液の温度を調節する温度調節機構とを備える。
[Second Embodiment]
The cultivation apparatus 31 shown in FIG. 2 mainly includes a medium part 32 for causing the crop P to grow and a cultivation liquid supply mechanism for supplying the cultivation liquid to the medium part 32. The culture medium portion 32 includes a frame 34, a filling particle 35 filled in the frame 34, and a cultivation liquid supply region in which the cultivation liquid is supplied to at least the middle layer of the layer formed by the filling particles 35 by capillary action. 36. The cultivation liquid supply mechanism is configured by a storage unit 33 that stores the cultivation liquid. The cultivation apparatus 31 includes a water level adjustment mechanism 38 that adjusts the water level of the cultivation liquid in the storage unit 33 and a temperature adjustment mechanism that adjusts the temperature of the cultivation liquid in the storage unit 33.
 第一実施形態の栽培装置1は、貯留部3と培地部2とが隔離されていたのに対し、当該栽培装置31は、貯留部33と培地部32とを隔離せず、栽培液供給機構が送液部を有していない点が第一実施形態の栽培装置1と異なる。なお、当該栽培装置31は、送液部を有していないので、栽培装置1が備える遮根透水シート8、第一防水シート9a及び第二防水シート9bなどは備えない。以下、第一実施形態の栽培装置1と異なる点について説明する。 In the cultivation device 1 of the first embodiment, the storage unit 3 and the culture medium unit 2 are separated from each other, whereas the cultivation device 31 does not separate the storage unit 33 and the culture medium unit 32 from each other, and the cultivation liquid supply mechanism. However, the point which does not have a liquid feeding part differs from the cultivation apparatus 1 of 1st embodiment. In addition, since the said cultivation apparatus 31 does not have a liquid feeding part, it does not provide the root | blocking water-permeable sheet 8, the 1st waterproof sheet 9a, the 2nd waterproof sheet 9b, etc. with which the cultivation apparatus 1 is provided. Hereinafter, a different point from the cultivation apparatus 1 of 1st embodiment is demonstrated.
<培地部>
 培地部32は、枠体34と、この枠体34内に充填される充填粒子35と、この充填粒子35が形成する層の少なくとも中層部に毛管現象により栽培液が供給される栽培液供給領域36とを有し、作物Pを着生させる部分である。
<Medium part>
The culture medium portion 32 includes a frame 34, a filling particle 35 filled in the frame 34, and a cultivation liquid supply region in which the cultivation liquid is supplied to at least the middle layer of the layer formed by the filling particles 35 by capillary action. 36, and is a part for causing the crop P to grow.
 枠体34は、栽培液が通過し充填粒子35は通過しない複数の微小な貫通孔が底部に形成されており、貯留部33の底に配設された複数の台37の上に載置されている。この枠体34は、底部が栽培液に浸漬しており、充填粒子35の浸漬部分は栽培液が侵入した栽培液浸潤層となり、充填粒子35の栽培液浸潤層の上方が全て栽培液供給領域36となる。当該栽培装置31は、栽培液浸潤層において酸素が不足しがちであるため、作物Pの根は栽培液浸潤層に伸長し難い。 The frame 34 has a plurality of minute through holes formed in the bottom portion through which the cultivation liquid passes and the filler particles 35 do not pass, and is placed on a plurality of platforms 37 arranged at the bottom of the storage portion 33. ing. As for this frame 34, the bottom part is immersed in the cultivation liquid, the immersion part of the filling particles 35 becomes a cultivation liquid infiltration layer into which the cultivation liquid has invaded, and the upper part of the cultivation liquid infiltration layer of the filling particles 35 is all the cultivation liquid supply region. 36. Since the cultivation apparatus 31 tends to lack oxygen in the cultivation liquid infiltrated layer, the roots of the crop P are difficult to extend into the cultivation liquid infiltrated layer.
 なお、枠体34の底部を除く部分、例えば側面を構成する材料としては、特に限定されないが、第一実施形態の枠体4の底部を除く部分、例えば側面と同様の材料を用いることができる。すなわち、通気性と透水性とを有する紙、シート状の樹脂等が挙げられる。シート状の樹脂は織布でも不織布でもよく、その中でも多孔質樹脂フィルムが好ましく、ポリテトラフルオロエチレン等のフッ素樹脂製フィルムを延伸した多孔質樹脂フィルムがより好ましい。 In addition, although it does not specifically limit as a material which comprises the part except the bottom part of the frame 34, for example, a side surface, The part other than the bottom part of the frame 4 of 1st embodiment, for example, the same material as a side surface can be used. . That is, paper, sheet-like resin, etc. which have air permeability and water permeability are mentioned. The sheet-like resin may be a woven fabric or a non-woven fabric. Among them, a porous resin film is preferable, and a porous resin film obtained by stretching a fluororesin film such as polytetrafluoroethylene is more preferable.
<栽培液供給機構>
 栽培液供給機構は、栽培液を貯留する貯留部33で構成される。
<Culture solution supply mechanism>
The cultivation liquid supply mechanism includes a storage unit 33 that stores the cultivation liquid.
(貯留部)
 貯留部33は、底に複数の台37が配設され、これらの台37の上に培地部32が載置される。貯留部33には、所定の水位の栽培液が保持され、枠体34の底部がこの栽培液に浸漬するように培地部32が貯留部33内に載置される。なお、1つの貯留部33内に複数の培地部32が載置されることが好ましい。1つの貯留部33内に複数の培地部32を載置することで、これらの複数の培地部32に対する乾燥ストレスを同時かつ同等に調節できる。
(Reservoir)
The storage unit 33 is provided with a plurality of platforms 37 on the bottom, and the culture medium unit 32 is placed on these platforms 37. The storage unit 33 holds the culture solution at a predetermined water level, and the culture unit 32 is placed in the storage unit 33 so that the bottom of the frame 34 is immersed in the culture solution. In addition, it is preferable that the several culture medium part 32 is mounted in the one storage part 33. FIG. By placing a plurality of medium parts 32 in one storage part 33, it is possible to simultaneously and equally adjust the drying stress on the plurality of medium parts 32.
<水位調節機構>
 水位調節機構38は、貯留部33内に付設された水位計39と、水位計39で検出される水位に基づいて貯留部33への栽培液の供給量を調節する制御部40とを備える。
<Water level adjustment mechanism>
The water level adjustment mechanism 38 includes a water level meter 39 provided in the storage unit 33 and a control unit 40 that adjusts the supply amount of the cultivation liquid to the storage unit 33 based on the water level detected by the water level meter 39.
 水位計39は、貯留部33内の栽培液の水位を検出し、その検出結果を制御部40へ通知する。 The water level meter 39 detects the water level of the cultivation liquid in the storage unit 33 and notifies the control unit 40 of the detection result.
 制御部40は、水位計39で検出された水位に基づいて貯留部33へ補充すべき栽培液の供給量を求め、供給管41より栽培液を供給する。例えば、貯留部33内の水位が常に一定になるように制御部40が栽培液の供給量を制御することで、栽培液を自動供給でき、管理者の水やりの手間の省力化を図ることができる。 The control unit 40 obtains the supply amount of the cultivation liquid to be replenished to the storage unit 33 based on the water level detected by the water level gauge 39, and supplies the cultivation liquid from the supply pipe 41. For example, the control unit 40 controls the supply amount of the cultivation liquid so that the water level in the storage unit 33 is always constant, so that the cultivation liquid can be automatically supplied and labor saving of the manager's watering work can be achieved. Can do.
 また、制御部40による貯留部33への栽培液の供給量の制御により、乾燥ストレスをかけるように貯留部33の水位を調節してもよい。上述したように、貯留部33内の栽培液の水位を上下させることで毛管上昇後の培地部32内の液面高さを調節できるので、貯留部33への栽培液の供給量を制御することで、作物Pに対して適切な乾燥ストレスをかけることができる。 Further, the water level of the storage unit 33 may be adjusted so as to apply a drying stress by controlling the amount of the cultivation liquid supplied to the storage unit 33 by the control unit 40. As above-mentioned, since the liquid level height in the culture medium part 32 after capillary rise can be adjusted by raising / lowering the water level of the cultivation liquid in the storage part 33, the supply amount of the cultivation liquid to the storage part 33 is controlled. Thus, an appropriate drought stress can be applied to the crop P.
 また、制御部40により、貯留部33へ供給する栽培液に添加する塩分の量を調節してもよい。制御部40は、水位計39で検出された水位から貯留部33内に保持される栽培液量を検出できるので、この栽培液量から作物Pに適した浸透圧ストレスがかかるような塩分の添加量を求めることができる。これにより、作物Pの根部に対する栽培液の浸透圧を調節できるので、作物Pに対して適切な浸透圧ストレスをかけることができる。なお、浸透圧ストレスを調節する場合、第一実施形態の栽培装置1のように培地部32内の水分量及び充填粒子35間の水分張力を検出できる機構を備えることにより、より適切な浸透圧をかけることができる。 Further, the amount of salt added to the culture solution supplied to the storage unit 33 may be adjusted by the control unit 40. Since the control unit 40 can detect the amount of the cultivation liquid retained in the storage unit 33 from the water level detected by the water level meter 39, the addition of salt that causes osmotic stress suitable for the crop P from the amount of the cultivation liquid. The amount can be determined. Thereby, since the osmotic pressure of the cultivation liquid with respect to the root part of the crop P can be adjusted, an appropriate osmotic pressure stress can be applied to the crop P. In addition, when adjusting an osmotic pressure stress, by providing the mechanism which can detect the water | moisture content in the culture medium part 32 and the moisture tension between the filling particles 35 like the cultivation apparatus 1 of 1st embodiment, more suitable osmotic pressure is provided. Can be applied.
<温度調節機構>
 温度調節機構は、例えば培地部32の充填粒子35に埋め込まれて配設される温度計42と、制御部40に配設され、制御部40から貯留部33へ供給する栽培液を加熱するヒーター43とを備える。
<Temperature control mechanism>
The temperature adjustment mechanism includes, for example, a thermometer 42 that is embedded and disposed in the packed particles 35 of the medium unit 32, and a heater that is disposed in the control unit 40 and heats the cultivation liquid supplied from the control unit 40 to the storage unit 33. 43.
 発明者らは、後述する培地温度調査により、培地部の温度が温室内の気温よりも栽培液の温度に密接に連動することを見出した。これにより、従来のエアコン等で温室内の気温を調節するよりも、培地部へ供給する栽培液の温度を調節する方が、培地部の温度を効率よく調節できることを見出した。上記温度調節機構は、この知見に基づき、培地部内の温度を調節するために付設した機構であり、栽培液の温度を調節する機構である。 The inventors have found that the temperature of the culture medium part is more closely linked to the temperature of the cultivation liquid than the temperature in the greenhouse by the culture medium temperature survey described later. As a result, it has been found that the temperature of the culture medium can be adjusted more efficiently by adjusting the temperature of the cultivation liquid supplied to the culture medium than by adjusting the temperature in the greenhouse with a conventional air conditioner or the like. Based on this knowledge, the temperature adjustment mechanism is a mechanism attached to adjust the temperature in the culture medium part, and is a mechanism for adjusting the temperature of the cultivation liquid.
 制御部40は、温度計42で検出される培地部32の温度に基づいて、作物Pの根部に供給される栽培液の温度が適切な温度となるよう、ヒーター43を制御して貯留部33へ供給する栽培液の温度を調節すると共に、その温度調節した栽培液を貯留部33へ供給する。上述したように、培地部32の温度は栽培液の温度に密接に連動するので、このように貯留部33へ供給する栽培液の温度を調節することで、培地部32に供給される栽培液の温度が調節され、これにより培地部32内の温度を精度よく調節できる。従って、このような温度調節機構を備えることで、従来のエアコン等での温室内の気温調節による培地部の温度調節に比べて容易かつ効果的に培地部32内の温度を調節できる。 Based on the temperature of the culture medium part 32 detected by the thermometer 42, the control part 40 controls the heater 43 so that the temperature of the cultivation liquid supplied to the root part of the crop P becomes an appropriate temperature, and the storage part 33. While adjusting the temperature of the cultivation liquid supplied to, the cultivation liquid adjusted in temperature is supplied to the storage part 33. As described above, the temperature of the culture medium part 32 is closely linked to the temperature of the cultivation liquid, and thus the cultivation liquid supplied to the culture medium part 32 is adjusted by adjusting the temperature of the cultivation liquid supplied to the storage part 33 in this way. Thus, the temperature in the culture medium part 32 can be adjusted with high accuracy. Therefore, by providing such a temperature control mechanism, the temperature in the culture medium part 32 can be adjusted easily and effectively compared to the temperature control of the culture medium part by adjusting the temperature in the greenhouse in a conventional air conditioner or the like.
<利点>
 当該栽培装置は、栽培液供給機構として送液部を有していないので、簡易な構成とでき、設備コストを低減できる。また、当該栽培装置は、水位計により貯留部の水位を検出するので、精度よく貯留部の水位を調節できる。
<Advantages>
Since the said cultivation apparatus does not have a liquid feeding part as a cultivation liquid supply mechanism, it can be set as a simple structure and can reduce installation cost. Moreover, since the said cultivation apparatus detects the water level of a storage part with a water level meter, it can adjust the water level of a storage part with high precision.
 また、当該栽培装置は、温度調節機構により栽培液の温度を調節することで培地部の温度を調節する。これにより、当該栽培装置は、従来のエアコン等での温室内の気温調節による培地部の温度調節に比べて低コストで運転でき、作物の栽培コストを低減できる。 Moreover, the said cultivation apparatus adjusts the temperature of a culture | cultivation part by adjusting the temperature of a culture solution with a temperature control mechanism. Thereby, the said cultivation apparatus can be drive | operated at low cost compared with the temperature control of the culture medium part by the temperature control in the greenhouse in the conventional air conditioner etc., and can reduce the cultivation cost of a crop.
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
 上記第一実施形態では送液部7としてシート体を用いたが、貯留部3内の栽培液を培地部2に供給できれば送液部7はシート体に限定されない。例えば、送液部7として貯留部3と培地部2とに接続される板状や筒状の供給路を用いてもよい。また、送液部7として、上記充填粒子5として好適に用いられるものを含む構造体を用いてもよい。つまり、例えば土壌、パミスサンド等の微粒軽石、多孔性の火山岩の粉砕粒、粒状のロックウール、コーラルサンド、サンゴ、木炭等の板状や筒状等への成形や、筒状の枠内への充填等により栽培液の通過で崩れない形状の構造体とし、この構造体を介して貯留部3と培地部2の底部とを接続してもよい。 In the first embodiment, the sheet body is used as the liquid feeding section 7, but the liquid feeding section 7 is not limited to the sheet body as long as the culture liquid in the storage section 3 can be supplied to the culture medium section 2. For example, a plate-like or cylindrical supply path connected to the storage part 3 and the culture medium part 2 may be used as the liquid feeding part 7. Moreover, you may use the structure containing what is used suitably as the said filling particle 5 as the liquid feeding part 7. FIG. In other words, for example, fine pumice such as soil, pumice sand, pulverized particles of porous volcanic rock, granular rock wool, coral sand, coral, charcoal, etc., molded into a plate or cylinder, or into a cylindrical frame A structure having a shape that does not collapse due to the passage of the cultivation liquid by filling or the like may be used, and the storage unit 3 and the bottom of the culture unit 2 may be connected via this structure.
 また、上記実施形態においては、制御部により乾燥ストレス及び浸透圧ストレスを調節する栽培装置について説明したが、制御部を備えない栽培装置も本発明の意図する範囲内である。当該栽培装置は、制御部を備えていなくても、枠体内の充填粒子が形成する層の少なくとも中層部に毛管現象を発現して栽培液が培地部内に供給される領域を有するので、栽培液の過剰な供給が避けられ、作物の根部に安定的に適度な水分ストレスをかけることができ、かつ酸素不足による根腐れを効果的に抑制することができる。 Moreover, in the said embodiment, although the cultivation apparatus which adjusts a drying stress and an osmotic pressure stress by a control part was demonstrated, the cultivation apparatus which is not provided with a control part is also in the range which this invention intends. Even if the cultivation apparatus does not include a control unit, the cultivation solution has a region in which the cultivation solution is supplied into the medium portion by expressing capillary action in at least the middle layer of the layer formed by the filler particles in the frame. Therefore, it is possible to stably apply an appropriate water stress to the root of the crop and to effectively suppress root rot due to lack of oxygen.
 また、上記第一実施形態において制御部13により作物Pに加える乾燥ストレス及び浸透圧ストレスは、同時に加えてもよいし、それぞれを作物Pに適した別々のタイミングで加えてもよい。また、当該栽培装置は、乾燥ストレス及び浸透圧ストレスのいずれか一方のみを加える構成としてもよい。 In the first embodiment, the drying stress and the osmotic pressure stress applied to the crop P by the control unit 13 may be applied simultaneously, or may be applied at different timings suitable for the crop P. Moreover, the said cultivation apparatus is good also as a structure which adds only any one of a dry stress and an osmotic pressure stress.
 また、上記第一実施形態では、水位塩分濃度調節機構21として水分センサー11及び水分張力センサー12を備える構成について説明したが、上記第二実施形態のように、水位塩分濃度調節機構が水位計と貯留部への栽培液の供給量を制御する制御部とを備える構成としてもよい。例えば貯留部内に水位計を付設し、この水位に基づいて貯留部へ供給する栽培液量を調節することにより、作物Pにかかる乾燥ストレス及び浸透圧ストレスを調節する。水位塩分濃度調節機構として水位計を用いる場合、水分センサー及び水分張力センサーを用いる場合に比べて、検出対象が可視的で検出し易く、かつ低コストで設置できる。 Moreover, although said 1st embodiment demonstrated the structure provided with the water | moisture-content sensor 11 and the water | moisture-content tension sensor 12 as the water level salinity concentration adjustment mechanism 21, like the said 2nd embodiment, a water level salinity concentration adjustment mechanism is a water level meter. It is good also as a structure provided with the control part which controls the supply amount of the cultivation liquid to a storage part. For example, a water level meter is provided in the storage unit, and the amount of cultivation liquid supplied to the storage unit is adjusted based on this water level, thereby adjusting the drying stress and osmotic pressure stress applied to the crop P. When using a water level meter as the water level salinity adjusting mechanism, the detection target is visible and easy to detect and can be installed at a lower cost than when using a moisture sensor and a moisture tension sensor.
 また、上記第一実施形態では、遮根透水シート8、第一防水シート9a及び第二防水シート9bを備える栽培装置1について説明したが、これらを備えない構成の栽培装置も本発明の意図する範囲内である。 Moreover, in said 1st embodiment, although the cultivation apparatus 1 provided with the root-permeable water permeable sheet 8, the 1st waterproof sheet 9a, and the 2nd waterproof sheet 9b was demonstrated, the cultivation apparatus of a structure which is not provided with these also intends this invention. Within range.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
<生育評価>
 実施例として、4cmの高さの砂(粒径0.15mm~0.6mmである砂粒子が80質量%以上)をポット枠体に詰めた培地部にトマト苗を植え、3cmの水面高さの栽培液を保持する貯留部に培地部の下方を浸漬し、2ヶ月以上静置した。この際、水耕栽培では必要とされる酸素供給などは行わず、水位維持のための栽培液の給液を継続した。その結果、2ヶ月経過後もトマトは根腐れすることなく成長し着果した。
<Growth evaluation>
As an example, tomato seedlings were planted in a medium part filled with 4 cm of sand (80% by mass or more of sand particles having a particle size of 0.15 to 0.6 mm) in a pot frame, and the water surface height of 3 cm. The lower part of the culture medium part was immersed in a storage part holding the culture solution of and left for 2 months or longer. At this time, oxygen supply required for hydroponics was not performed, and the supply of the culture solution for maintaining the water level was continued. As a result, even after 2 months, the tomato grew without fruit rot and settled.
 比較例の水耕栽培では、溶存酸素の確保による根呼吸の維持と雑菌の繁殖防止が最重視され、水分管理の大きな手間が必要となる。これに対し、上記実施例の栽培方法では、酸素供給設備、除菌設備及び水分管理の手間を省略できる。 In the hydroponic cultivation of the comparative example, maintenance of root respiration by securing dissolved oxygen and prevention of miscellaneous germs are the most important, and a great amount of water management is required. On the other hand, in the cultivation method of the said Example, the effort of oxygen supply equipment, disinfection equipment, and moisture management can be omitted.
<培地量評価>
 底面部に複数の貫通孔を有する高さ30cmの円柱状のポット枠体に砂(粒径0.15mm~0.6mmである砂粒子が80質量%以上)4.3Lを充填した培地部にトマト苗を植え、実施例としての試験No.1の評価苗とした。2個の試験No.1の評価苗について、水面高さ2cmの栽培液を保持する貯留部に培地部の底部を浸漬し2ヶ月静置した。その後、栽培液への塩分の添加により浸透圧ストレスをかけて高糖度処理を1ヶ月実施し、合計30個の果実を収穫した。それぞれの評価苗で収穫した果実について、糖度(Brix値)を測定すると共に収量換算値(t/1000m/年)を求めた。図3に、これらの平均収量換算値(t/1000m/年)及び平均糖度(°Bx)をそれぞれ棒グラフ及び黒点で示す。なお、図3中のエラーバーは標準偏差を示している。
<Evaluation of medium amount>
In a medium part filled with 4.3 L of sand (80% by mass or more of sand particles having a particle size of 0.15 mm to 0.6 mm) in a cylindrical pot frame having a height of 30 cm having a plurality of through holes in the bottom part. A tomato seedling was planted, and test No. 1 as an example. It was set as 1 evaluation seedling. Two test Nos. About 1 evaluation seedling, the bottom part of the culture-medium part was immersed in the storage part holding the cultivation liquid of 2 cm of water surface height, and left still for 2 months. Then, high sugar content processing was implemented for one month by applying osmotic pressure stress by adding salt to the cultivation liquid, and a total of 30 fruits were harvested. About the fruit harvested by each evaluation seedling, the sugar content (Brix value) was measured and the yield conversion value (t / 1000 m 2 / year) was obtained. In FIG. 3, these average yield conversion values (t / 1000 m 2 / year) and average sugar content (° Bx) are shown by a bar graph and a black dot, respectively. Note that error bars in FIG. 3 indicate standard deviations.
 ポット枠体を高さ25cmの円柱状のものとしたこと以外は試験No.1の評価苗と同様としたものを実施例としての試験No.2の評価苗とした。2個の試験No.2の評価苗について合計27個の果実を収穫し、試験No.1の評価苗と同様の評価を実施した。  Test No. except that the pot frame was cylindrical with a height of 25 cm. Test No. 1 as an example was carried out in the same manner as the evaluation seedling of No. 1. 2 seedlings were evaluated. Two test Nos. A total of 27 fruits were harvested for the 2 seedlings to be evaluated. Evaluation similar to 1 evaluation seedling was implemented. *
 ポット枠体を高さ20cmの円柱状のものとしたこと以外は試験No.1の評価苗と同様としたものを実施例としての試験No.3の評価苗とした。2個の試験No.3の評価苗について合計28個の果実を収穫し、試験No.1の評価苗と同様の評価を実施した。  Test No. except that the pot frame was cylindrical with a height of 20 cm. Test No. 1 as an example was carried out in the same manner as the evaluation seedling of No. 1. 3 seedlings were evaluated. Two test Nos. A total of 28 fruits were harvested for the three evaluated seedlings. Evaluation similar to 1 evaluation seedling was implemented. *
 実施例としての試験No.4では、上部5cmが円柱状で、下部10cmが厚み方向が水平方向となるよう立設された板状であり、下部が窄まった形状の高さ15cmのポット枠体を用いた。このポット枠体に砂を充填してトマト苗を植えた。ポット枠体上部の円柱状部分に充填された砂は0.5Lであった。1個の試験No.4の評価苗について、このポット枠体を貯留部の底に載置し、ポット枠体の円柱状の最下位置が、水面高さ2cmの栽培液を保持する貯留部の水面の8cm上方の位置となるように配置した。このようにして、ポット枠体の下部に板状に充填された砂の毛管現象によって栽培液が上記円柱状の培地部へ揚水されるようにした。なお、ポット枠体の下部に充填された板状の砂の平均厚みは、1cmであった。この試験No.4の評価苗について14個の果実を収穫し、試験No.1の評価苗と同様の評価を実施した。 Test No. as an example In No. 4, a pot frame having a height of 15 cm and a shape in which the upper part 5 cm is a columnar shape, the lower part 10 cm is erected so that the thickness direction is horizontal, and the lower part is constricted is used. The pot frame was filled with sand and planted tomato seedlings. The sand filled in the cylindrical part at the top of the pot frame was 0.5 L. One test no. About 4 evaluation seedlings, this pot frame body is mounted on the bottom of the storage part, and the cylindrical bottom position of the pot frame body is 8 cm above the water surface of the storage part holding the cultivation liquid having a water surface height of 2 cm. It arranged so that it might become a position. In this manner, the cultivation liquid was pumped to the columnar medium portion by capillary action of sand filled in a plate shape at the bottom of the pot frame. In addition, the average thickness of the plate-shaped sand with which the lower part of the pot frame was filled was 1 cm. This test No. Fourteen seedlings were harvested for the four evaluation seedlings. Evaluation similar to 1 evaluation seedling was implemented.
 底面部に複数の貫通孔を有する高さ20cmの円柱状のポット枠体に砂2.2Lを充填した培地部にトマト苗を植え、実施例としての試験No.5の評価苗とした。2個の試験No.5の評価苗について、ポット枠体の底面の位置が、水面高さ2cmの栽培液を保持する貯留部の水面の7cm上方の位置となるように配置した。そして、ポット枠体の底面と貯留部の栽培液の水面との間に不織布を配設し、この不織布での毛管現象によって栽培液が培地部へ揚水されるようにした。これらの試験No.5の評価苗について合計29個の果実を収穫し、試験No.1の評価苗と同様の評価を実施した。 A tomato seedling was planted in a medium part filled with 2.2 L of sand in a cylindrical pot frame having a height of 20 cm having a plurality of through holes in the bottom part, and test No. 1 as an example. 5 seedlings were evaluated. Two test Nos. About the evaluation seedling of 5, it arrange | positioned so that the position of the bottom face of a pot frame may become a position 7 cm above the water surface of the storage part holding the cultivation liquid with a water surface height of 2 cm. And the nonwoven fabric was arrange | positioned between the bottom face of a pot frame, and the water surface of the cultivation liquid of a storage part, and the cultivation liquid was pumped to the culture-medium part by the capillary phenomenon in this nonwoven fabric. These test Nos. A total of 29 fruits were harvested for 5 evaluated seedlings. Evaluation similar to 1 evaluation seedling was implemented.
 試験No.1で用いたものと同種の砂を土壌としてトマト苗を植え、比較例としての試験No.6の評価苗とした。14個の試験No.6の評価苗について、従来の土壌栽培により、高糖度処理を行わずに3ヶ月栽培し、合計195個の果実を収穫した。これらの試験No.6の評価苗について、試験No.1の評価苗と同様の評価を実施した。 Test No. Tomato seedlings were planted using the same kind of sand as that used in No. 1 as soil, and test No. 1 as a comparative example. 6 seedlings were evaluated. 14 test Nos. About 6 evaluation seedlings, it cultivated for 3 months without performing high sugar content processing by conventional soil cultivation, and harvested a total of 195 fruits. These test Nos. For the evaluation seedling of No. 6, test No. Evaluation similar to 1 evaluation seedling was implemented.
 試験No.1で用いたものと同種の砂を土壌としてトマト苗を植え、比較例としての試験No.7の評価苗とした。12個の試験No.7の評価苗について、従来の土壌栽培により、2ヶ月後から高糖度処理を1ヶ月実施し、合計162個の果実を収穫した。これらの試験No.7の評価苗について、試験No.1の評価苗と同様の評価を実施した。 Test No. Tomato seedlings were planted using the same kind of sand as that used in No. 1 as soil, and test No. 1 as a comparative example. 7 seedlings were evaluated. 12 test Nos. About 7 evaluation seedlings, the high sugar content process was implemented for one month from 2 months by conventional soil cultivation, and a total of 162 fruits were harvested. These test Nos. For the evaluation seedling of No. 7, test No. Evaluation similar to 1 evaluation seedling was implemented.
[評価結果]
 図3の結果より、試験No.1~試験No.5の実施例と高糖度処理を実施しない従来の土壌栽培(試験No.6)とを比較すると、試験No.6の果実の平均糖度が6.2°Bxであったのに対し、試験No.1~試験No.5では平均糖度6.7°Bx以上7.5°Bx以下という高糖度の果実を生産できることを確認できた。
[Evaluation results]
From the results of FIG. 1 to Test No. 5 and the conventional soil cultivation (test No. 6) in which high sugar content treatment is not performed, test No. 5 is compared. The average sugar content of the fruit of No. 6 was 6.2 ° Bx, whereas 1 to Test No. In No. 5, it was confirmed that fruits having a high sugar content of 6.7 ° Bx to 7.5 ° Bx could be produced.
 一方、高糖度処理を行った従来の土壌栽培(試験No.7)で収穫した果実の平均糖度は7.8°Bxと高かったものの、その平均収量換算値は12.5t/1000m/年と比較的小さかった。これに対し、試験No.1~試験No.5の実施例における平均収量換算値は20.8t/1000m/年以上であり、試験No.7の1.6倍以上の収量が得られることがわかった。これらのことから、試験No.1~試験No.5の栽培方法により、高糖度処理との兼ね合いで多少収量を犠牲にしてもそれを補う高糖度の果実を生産できること、すなわち糖度及び収量を高次元でバランスさせて作物を栽培できることがわかった。 On the other hand, although the average sugar content of fruits harvested by conventional soil cultivation (Test No. 7) subjected to high sugar content treatment was as high as 7.8 ° Bx, the average yield conversion value was 12.5 t / 1000 m 2 / year. And it was relatively small. In contrast, test no. 1 to Test No. The average yield conversion value in the example of 5 is 20.8 t / 1000 m 2 / year or more. It was found that a yield of 1.6 times or more of 7 was obtained. From these facts, test no. 1 to Test No. It was found that the cultivation method of No. 5 can produce fruits with a high sugar content that compensates for some of the yield due to the treatment with the high sugar content treatment, that is, the crop can be cultivated with a high balance between sugar content and yield.
 また、砂の充填量を0.5Lとした超小型のポット枠体を用いた試験No.4における平均収量換算値は21.4t/1000m/年であり、従来の土壌栽培と同等の果実の収量が得られることがわかった。なお、従来の土壌栽培では、1ベッド(1000mm×600mm×70mm)当たり平均2.75株の苗を植え42Lの砂を使用する。つまり、従来の土壌栽培では1株当たり15.3Lの砂を使用するので、試験No.4の超小型のポット枠体を用いることにより、従来の土壌栽培における砂の使用量を96.7%低減できるといえる。 Test No. 1 using an ultra-small pot frame with a sand filling amount of 0.5L. The average yield conversion value in No. 4 was 21.4 t / 1000 m 2 / year, and it was found that a fruit yield equivalent to that of conventional soil cultivation was obtained. In conventional soil cultivation, 42 L of sand is planted with an average of 2.75 seedlings per bed (1000 mm × 600 mm × 70 mm). That is, since conventional soil cultivation uses 15.3 L of sand per strain, test no. It can be said that the amount of sand used in conventional soil cultivation can be reduced by 96.7% by using No. 4 ultra-small pot frame.
<農地高低差評価>
 第一実施形態の栽培装置を用いて、農地高低差による作物の生育状態を評価した。具体的には、図4に示すような足場の上に設けた25m長の農地50を用いて、この農地50の長手方向の両端部及び中央部の3箇所に、本葉5枚又は6枚が展開したトマト苗を植えた第1ポット枠体51a、第2ポット枠体51b、第3ポット枠体51cを載置した。そして、第三花房が確認できるまでこれらのトマト苗を栽培した。栽培した期間は43日間である。各ポット枠体の鉛直方向高さは、農地50の長手方向の一端側に載置した第1ポット枠体51a、農地50の長手方向中央部に載置した第2ポット枠体51b、農地50の長手方向の他端側に載置した第3ポット枠体51cの順に高くなっており、第1ポット枠体51aと第3ポット枠体51cとの高低差は約3cmであった。
<Agricultural land height difference evaluation>
Using the cultivation apparatus of the first embodiment, the growth state of the crop due to the difference in farmland height was evaluated. Specifically, using a 25 m long farmland 50 provided on a scaffold as shown in FIG. 4, five or six main leaves are provided at three ends of the farmland 50 in the longitudinal direction and at the center. The first pot frame body 51a, the second pot frame body 51b, and the third pot frame body 51c planted with the tomato seedlings developed are mounted. And these tomato seedlings were cultivated until the third inflorescence could be confirmed. The cultivation period is 43 days. The height in the vertical direction of each pot frame is the first pot frame 51a placed on one end side in the longitudinal direction of the farmland 50, the second pot frame 51b placed on the longitudinal center of the farmland 50, and the farmland 50. The height of the third pot frame 51c placed on the other end in the longitudinal direction was higher in order, and the height difference between the first pot frame 51a and the third pot frame 51c was about 3 cm.
 上記3つのポット枠体:第1ポット枠体51a、第2ポット枠体51b、第3ポット枠体51cに植えたトマト苗について、農地50内の載置箇所の違いによる生育差は見られなかった。これにより、当該栽培方法により、ある程度の高低差がある場合でも同等の品質でトマト苗を栽培できることを確認できた。 Regarding the tomato seedlings planted in the above three pot frame bodies: the first pot frame body 51a, the second pot frame body 51b, and the third pot frame body 51c, there is no difference in growth due to the difference in the placement location in the farmland 50. It was. Thereby, it has confirmed that a tomato seedling could be cultivated by the said cultivation method with equivalent quality, even when there is a certain level difference.
<培地温度調査>
 第一実施形態の栽培装置1を用いて、温室内の気温、培地部2の温度及び貯留部3内の栽培液の温度を測定し、培地部2の温度と温室内の気温及び貯留部3内の栽培液の温度との関係を調査した。栽培装置1を用いてトマト苗を栽培し、収穫直前の5.5日間におけるこれらの温度の経時的変化を図5に示す。
<Medium temperature survey>
Using the cultivation apparatus 1 of the first embodiment, the temperature in the greenhouse, the temperature of the medium part 2 and the temperature of the cultivation liquid in the storage part 3 are measured, and the temperature of the medium part 2 and the temperature in the greenhouse and the storage part 3 are measured. The relationship with the temperature of the cultivation liquid was investigated. A tomato seedling is cultivated using the cultivation apparatus 1, and the time-dependent change of these temperatures in 5.5 days just before a harvest is shown in FIG.
 図5の結果より、培地部2の温度は、温室内の気温よりも栽培液の温度に密接に連動していることがわかった。従って、図1の栽培装置1で培地部2に供給する栽培液の温度を調節することで、従来のようなエアコン等による温室内の気温調節よりも、培地温度を調節し易いといえる。 From the results of FIG. 5, it was found that the temperature of the culture medium part 2 is more closely linked to the temperature of the cultivation liquid than the temperature in the greenhouse. Therefore, it can be said that adjusting the temperature of the cultivation liquid supplied to the culture medium unit 2 by the cultivation apparatus 1 in FIG. 1 makes it easier to adjust the culture medium temperature than adjusting the temperature in the greenhouse using a conventional air conditioner or the like.
 以上のように、本発明の栽培装置及び栽培方法によれば、作物に安定的に適度な水分ストレスをかけることができると共に、低コストで作物の根部に十分な酸素を供給し根腐れを避けることができるので、高品質な作物を低コストで栽培することができる。また、本発明の栽培装置及び栽培方法によれば、土壌栽培に比べて土壌の使用量を低減でき、農地に足場を設け易い。 As described above, according to the cultivation apparatus and cultivation method of the present invention, it is possible to stably apply an appropriate water stress to the crop, and supply sufficient oxygen to the root of the crop at low cost to avoid root rot. Therefore, high quality crops can be cultivated at low cost. Moreover, according to the cultivation apparatus and cultivation method of this invention, the usage-amount of soil can be reduced compared with soil cultivation, and it is easy to provide a scaffold in farmland.

Claims (11)

  1.  作物を着生させる培地部と、
     この培地部に栽培液を供給する栽培液供給機構と
     を備える栽培装置であって、
     上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有する栽培装置。
    A medium section for growing crops;
    A cultivation apparatus provided with a cultivation liquid supply mechanism for supplying a cultivation liquid to the medium part,
    The cultivation apparatus in which the culture medium part has a frame, particles filled in the frame, and a region where the cultivation liquid is supplied to at least a middle layer of a layer formed by the filled particles by capillary action.
  2.  上記栽培液供給機構が、栽培液を貯留する貯留部と、上記培地部及び貯留部間に配設される送液部とを有し、
     上記送液部が、貯留部の栽培液を毛管現象により培地部内の粒子の底部に供給する請求項1に記載の栽培装置。
    The culture solution supply mechanism includes a storage unit that stores the culture solution, and a liquid feeding unit that is disposed between the medium unit and the storage unit.
    The cultivation apparatus according to claim 1, wherein the liquid feeding section supplies the cultivation liquid in the storage section to the bottom of the particles in the medium section by capillary action.
  3.  上記貯留部内の栽培液の水位又は塩分濃度を調節する機構を備える請求項2に記載の栽培装置。 The cultivation apparatus according to claim 2, comprising a mechanism for adjusting a water level or a salinity concentration of the cultivation liquid in the storage unit.
  4.  上記貯留部内の栽培液の温度を調節する温度調節機構を備える請求項2又は請求項3に記載の栽培装置。 The cultivation apparatus of Claim 2 or Claim 3 provided with the temperature adjustment mechanism which adjusts the temperature of the cultivation liquid in the said storage part.
  5.  上記枠体の少なくとも底部が遮根透水シートである請求項1から請求項4のいずれか1項に記載の栽培装置。 The cultivation apparatus according to any one of claims 1 to 4, wherein at least a bottom portion of the frame body is a root-permeable water-permeable sheet.
  6.  上記粒子が土壌である請求項1から請求項5のいずれか1項に記載の栽培装置。 The cultivation apparatus according to any one of claims 1 to 5, wherein the particles are soil.
  7.  上記土壌が砂である請求項6に記載の栽培装置。 The cultivation apparatus according to claim 6, wherein the soil is sand.
  8.  上記充填粒子が形成する層の毛管上昇高さが3cm以上300cm以下である請求項1から請求項7のいずれか1項に記載の栽培装置。 The cultivation apparatus according to any one of claims 1 to 7, wherein a height of the capillary rise of the layer formed by the filled particles is 3 cm or more and 300 cm or less.
  9.  上記粒子が、粒径0.1mm以上1mm以下の単粒を50質量%以上含む請求項1から請求項8のいずれか1項に記載の栽培装置。 The cultivation apparatus according to any one of claims 1 to 8, wherein the particles include 50% by mass or more of a single particle having a particle size of 0.1 mm to 1 mm.
  10.  上記粒子のタップ密度が1.00g/cm以上3.00g/cm以下である請求項1から請求項9のいずれか1項に記載の栽培装置。 The cultivation apparatus according to any one of claims 1 to 9, wherein a tap density of the particles is 1.00 g / cm 3 or more and 3.00 g / cm 3 or less.
  11.  作物を着生させた培地部に栽培液を供給する栽培方法であって、
     上記培地部が、枠体と、この枠体内に充填される粒子と、この充填粒子が形成する層の少なくとも中層部に毛管現象により栽培液が供給される領域とを有し、
     上記領域を介して作物に栽培液を供給する栽培方法。
    A cultivation method for supplying a culture solution to a medium part on which a crop is grown,
    The medium part has a frame, particles filled in the frame, and a region in which the cultivation liquid is supplied by capillary action to at least a middle layer of the layer formed by the filled particles,
    A cultivation method for supplying a cultivation liquid to a crop through the region.
PCT/JP2015/064421 2014-05-21 2015-05-20 Cultivation apparatus and cultivation method WO2015178409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167028451A KR20170005796A (en) 2014-05-21 2015-05-20 Cultivation apparatus and cultivation method
CN201580016337.4A CN106163263B (en) 2014-05-21 2015-05-20 Cultivation device and cultivation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-105721 2014-05-21
JP2014105721 2014-05-21
JP2014256292A JP6576632B2 (en) 2014-05-21 2014-12-18 Cultivation apparatus and cultivation method
JP2014-256292 2014-12-18

Publications (1)

Publication Number Publication Date
WO2015178409A1 true WO2015178409A1 (en) 2015-11-26

Family

ID=54554075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064421 WO2015178409A1 (en) 2014-05-21 2015-05-20 Cultivation apparatus and cultivation method

Country Status (4)

Country Link
JP (1) JP6576632B2 (en)
KR (1) KR20170005796A (en)
CN (1) CN106163263B (en)
WO (1) WO2015178409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146664A3 (en) * 2018-03-16 2018-11-08 Universidad De Panamá Temperature regulating system and method in countercurrent flow for hydroponic crops

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184619A (en) * 2016-03-31 2017-10-12 幸男 黒川 Eco-cultivation system and plant cultivation house
JP6893790B2 (en) * 2017-01-17 2021-06-23 ヤンマーグリーンシステム株式会社 Cultivation equipment and cultivation method
KR20200029488A (en) * 2017-07-13 2020-03-18 가부시키가이샤 플랜트 라이프 시스템즈 Nutrient solution
JP6835998B1 (en) * 2020-05-15 2021-02-24 株式会社ミクニ How to grow carrots

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135427A (en) * 1990-09-28 1992-05-08 Toshiba Corp Nutriculture device
JPH09121701A (en) * 1995-10-27 1997-05-13 Daiko:Kk Cultivation of plant and device used therefor
JPH09275782A (en) * 1996-04-16 1997-10-28 Hitachi Ltd Device for hydroponics
JPH11318244A (en) * 1998-05-20 1999-11-24 Kochi Prefecture Hydroponics of japanese ginger and apparatus therefor
JP2003289734A (en) * 2002-04-04 2003-10-14 Kazuo Oshiro Culturing method and culturing facility
WO2012014536A1 (en) * 2010-07-28 2012-02-02 シャープ株式会社 Plant culture container and plant culture system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823731A (en) * 1981-08-03 1983-02-12 カネボウ株式会社 Culturing of crops
JPS59150254U (en) * 1983-03-28 1984-10-08 原 幸宏 plant hydroponic equipment
CN1098629C (en) * 1997-02-28 2003-01-15 韩玉娥 Method for cultivation of crops
JP2001292643A (en) * 2000-04-14 2001-10-23 Taiyo Kogyo Co Ltd Crop cultivation apparatus
JP2011139636A (en) * 2010-01-05 2011-07-21 Enseki Aojiru Kk Method for cultivating garlic and device for cultivating garlic
JP5290263B2 (en) * 2010-12-13 2013-09-18 協和株式会社 Hydroponic cultivation equipment
JP5767876B2 (en) 2011-06-30 2015-08-26 株式会社ユアサメンブレンシステム Disinfection device for hydroponics culture using membrane filtration and method thereof
CN102860250B (en) * 2011-07-08 2014-10-22 乔奥华塑胶制品(深圳)有限公司 Culture solution planting device
JP2013102710A (en) * 2011-11-11 2013-05-30 Minoru Industrial Co Ltd Automatic watering device
CN103250622A (en) * 2013-04-06 2013-08-21 王强 Water absorption soilless cultivation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135427A (en) * 1990-09-28 1992-05-08 Toshiba Corp Nutriculture device
JPH09121701A (en) * 1995-10-27 1997-05-13 Daiko:Kk Cultivation of plant and device used therefor
JPH09275782A (en) * 1996-04-16 1997-10-28 Hitachi Ltd Device for hydroponics
JPH11318244A (en) * 1998-05-20 1999-11-24 Kochi Prefecture Hydroponics of japanese ginger and apparatus therefor
JP2003289734A (en) * 2002-04-04 2003-10-14 Kazuo Oshiro Culturing method and culturing facility
WO2012014536A1 (en) * 2010-07-28 2012-02-02 シャープ株式会社 Plant culture container and plant culture system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146664A3 (en) * 2018-03-16 2018-11-08 Universidad De Panamá Temperature regulating system and method in countercurrent flow for hydroponic crops

Also Published As

Publication number Publication date
JP6576632B2 (en) 2019-09-18
KR20170005796A (en) 2017-01-16
CN106163263B (en) 2020-05-22
CN106163263A (en) 2016-11-23
JP2016000027A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6576632B2 (en) Cultivation apparatus and cultivation method
CN103781348B (en) Plant cultivating method, for its cultivation container and breeding arrangement
JP3678654B2 (en) Plant cultivation container and plant cultivation method
WO2015033495A1 (en) Hydroculture device and hydroculture method
JP3768489B2 (en) Plant cultivation apparatus and plant cultivation method
WO2016098414A1 (en) Cultivation device and cultivation method
JP2007195514A (en) Plant culture method and culture apparatus
JP2010099062A (en) Subsurface environment controller and subsurface environment control method for plant planted in vessel
JP4590561B2 (en) Hydroponic cultivation system using inclined bed
JP6680514B2 (en) Cultivation device and cultivation method
KR100598013B1 (en) Plant growing pot
JP2979209B2 (en) Hydroponic cultivation method and its structure
JP2017221150A (en) Plant cultivation device and irrigation control method
JP2012075356A (en) Cultivation system
JP2008178387A (en) Hydroponic apparatus and hydroponic method for solid culture medium culture
JP7000552B2 (en) Cultivation system and cultivation method
JP2004208611A (en) Method for cultivating japanese yam by nutritious liquid, and apparatus for cultivating the same
WO2017104703A1 (en) Open-field hydroponic kit, open-field hydroponic system, and plant manufacturing method
JP6807728B2 (en) Cultivation method and cultivation equipment
KR101435906B1 (en) Hydroponics cultivation apparatus
US8112936B1 (en) Container-based plant husbandry apparatus and controlled horticultural environment for using same
KR102011127B1 (en) An improved device for hydroponics
JPWO2019142363A1 (en) Cultivation method and cultivation equipment
JPH08191639A (en) Water-impermeable nonwoven fabric for nutritive solution culture
JP6667842B1 (en) Hydroponic cultivation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167028451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795550

Country of ref document: EP

Kind code of ref document: A1