JP2017221150A - Plant cultivation device and irrigation control method - Google Patents
Plant cultivation device and irrigation control method Download PDFInfo
- Publication number
- JP2017221150A JP2017221150A JP2016119619A JP2016119619A JP2017221150A JP 2017221150 A JP2017221150 A JP 2017221150A JP 2016119619 A JP2016119619 A JP 2016119619A JP 2016119619 A JP2016119619 A JP 2016119619A JP 2017221150 A JP2017221150 A JP 2017221150A
- Authority
- JP
- Japan
- Prior art keywords
- irrigation
- water
- water level
- soil
- plant cultivation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cultivation Of Plants (AREA)
- Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
Abstract
Description
本発明は、潅水シートの毛管現象により底面潅水を行う植物栽培装置およびこれを用いる潅水制御方法に関する。 The present invention relates to a plant cultivation apparatus that performs bottom surface irrigation by capillary action of an irrigation sheet and an irrigation control method using the same.
プランター等の植物栽培用の容器にて植物栽培を行うに際して、容器内の土壌より数cm下方にある貯水槽から、吸水力の強い潅水布の毛管現象により水を吸い上げて土壌に潅水する底面潅水(給水)が知られている(たとえば、特許文献1および2参照)。この方法は、土壌表面の通気性を維持しながら、植物の吸水量に見合う分量の水を給水できるので、優れた潅水方法である。 When cultivating plants in a plant cultivation container such as a planter, the bottom irrigation draws water from the water storage tank located several centimeters below the soil in the container by the capillarity of a strong irrigation cloth and irrigates the soil. (Water supply) is known (see, for example, Patent Documents 1 and 2). This method is an excellent irrigation method because water can be supplied in an amount corresponding to the amount of water absorbed by the plant while maintaining the air permeability of the soil surface.
しかしながら、特許文献1および2に記載されるような底面潅水では、植物生長に伴う吸水量の増大により、根が潅水布面上に密集するルートマットを形成することで(図4参照)、吸水能力が顕著に低下する問題があった。その結果、炎天下で萎れが発生することがあり、最悪の場合には枯死に至るおそれがあった。このことが、底面潅水の長年の課題であり、信頼性に欠ける大きな要因となっていた。 However, in the bottom irrigation as described in Patent Documents 1 and 2, water absorption is achieved by forming a root mat where the roots are concentrated on the irrigation cloth surface due to an increase in the amount of water absorption accompanying plant growth (see FIG. 4). There was a problem that the ability was significantly reduced. As a result, wilting may occur under hot weather, and in the worst case, there was a risk of death. This has been a problem for many years in the bottom irrigation and has been a major factor of lack of reliability.
ここで、蒸発散量は、原理的には、土壌−植物系の重量の変化から求める方法、チャンバー内に隔離した植物空間での入口と出口の通気量と絶対湿度から求める方法等がある。 Here, in principle, there are a method of obtaining the evapotranspiration from a change in the weight of the soil-plant system, a method of obtaining from the ventilation amount and absolute humidity of the inlet and outlet in the plant space isolated in the chamber, and the like.
しかし、いずれの方法も精密な設備が必要になる等のため、実用的でなく、通常の施設栽培では、たとえば、タイマ制御、日射制御、土壌水分センサによる制御等、気象の変化に見合う潅水制御が行われている。 However, each method is not practical because it requires precise equipment, etc. In normal facility cultivation, for example, timer control, solar radiation control, soil moisture sensor control, etc. Has been done.
このうち、タイマ制御では、天候や植物の状態が異なっても、定期的に一定量の潅水が行われてしまう。日射制御では、気象条件しか考慮されず、植物体の大きさやその生育状態には対応できない。土壌水分センサによる制御では、土壌水分が空間的に変化し、計測値が全体を代表した値となり得ない。実際に、土壌水分を1%レベルで把握するには10点以上の計測データが必要となると言う知見がある(Aitchisonらによる1951年の論文)。 Among them, in the timer control, even if the weather and the state of the plant are different, a certain amount of irrigation is periodically performed. In the solar radiation control, only the weather condition is considered, and it cannot cope with the size of the plant body or its growth state. In the control by the soil moisture sensor, the soil moisture changes spatially, and the measured value cannot be a value representative of the whole. In fact, there is a finding that more than 10 points of measurement data are required to grasp soil moisture at the 1% level (1951 paper by Aitchison et al.).
一方、ルートマットの形成を阻止する策としては、たとえば、潅水布を部分的に大気中に開放することで根の侵入を防止する方法、巻子布に薬剤を注入して根の集中を抑制する方法、吸水変異をプログラムにより可変させて欠損する土壌水分量を自動的に補う方法等、様々な試みがなされていた。しかし、これらの試みは、いずれも対処療法的な回避策であり、植物生理に絡むルートマットの形成を根本的に解決する方策とはなり得なかった。 On the other hand, measures to prevent the formation of the root mat include, for example, a method of preventing root invasion by partially opening the irrigation cloth into the atmosphere, and suppressing root concentration by injecting chemicals into the winding cloth. Various attempts have been made, such as a method for automatically compensating for the deficient soil moisture by changing the water absorption mutation by a program. However, all of these attempts are coping therapy workarounds, and could not be a solution for fundamentally solving the formation of root mats related to plant physiology.
本発明は、ルートマットの形成を根本的に阻止し、底面潅水にて最適な潅水を実現することにある。 An object of the present invention is to fundamentally prevent the formation of a root mat and realize optimum irrigation by bottom surface irrigation.
<1> 傾斜状の底部を有する植物栽培容器と、この容器の底面に敷かれた潅水シートと、前記植物栽培容器に収容され、栽培する植物が植えられる土壌と、前記栽培容器の傾斜下端側に設けられるとともに、前記潅水シートが挿入されて前記潅水シートの毛管現象を介して前記土壌に底面潅水を行う貯水容器と、この貯水容器に設けられた水位センサと、この水位センサにより検知された前記貯水容器の水位の低下に基づき、前記植物栽培容器の上方より前記土壌に更なる潅水を行う補助潅水装置と、を備えることを特徴とする植物栽培装置である。 <1> A plant cultivation container having an inclined bottom, an irrigation sheet laid on the bottom surface of the container, soil in which the plant to be cultivated and planted is planted, and an inclined lower end side of the cultivation container A water storage container in which the irrigation sheet is inserted to perform bottom irrigation of the soil through the capillary action of the irrigation sheet, a water level sensor provided in the water storage container, and the water level sensor A plant cultivation device comprising: an auxiliary irrigation device for further irrigating the soil from above the plant cultivation vessel based on a decrease in the water level of the water storage vessel.
<2> 前記潅水シート上に防根透水シートが敷かれる<1>に記載の植物栽培装置である。 <2> The plant cultivation apparatus according to <1>, wherein a root-proof permeable sheet is laid on the irrigation sheet.
<3> 前記補助潅水装置による潅水は潅水管を介して行われ、この潅水管の先端領域が前記土壌の植えられた前記植物の根の付近に挿入される<1>または<2>に記載の植物栽培装置である。 <3> The irrigation by the auxiliary irrigation device is performed through a irrigation tube, and a tip region of the irrigation tube is inserted in the vicinity of a root of the plant in which the soil is planted. <1> or <2> Plant cultivation equipment.
<4> 前記水位センサにより検知する水位変化量の設定値と、前記補助潅水装置を挿入する前記土壌の深さにより、潅水量を調整する<1>から<3>のいずれかに記載の植物栽培装置である。 <4> The plant according to any one of <1> to <3>, wherein the irrigation amount is adjusted according to a set value of a water level change amount detected by the water level sensor and a depth of the soil into which the auxiliary irrigation device is inserted. It is a cultivation device.
<5> <1>から<4>のいずれかに記載の植物栽培装置を用いる潅水制御方法であって、(a)前記潅水シートが底面潅水を行う工程と、(b)この潅水により前記水位センサが前記貯水容器の水位の低下を検知する工程と、(c)検知した前記貯水容器の水位の低下に基づき、前記補助潅水装置が前記土壌に更なる潅水を行い、前記土壌の植えられた前記植物の根の周囲に保水領域を形成する工程と、(d)この保水領域形成に用いられなかった余剰水が前記貯水容器に流入する工程と、を有することを特徴とする潅水制御方法である。 <5> An irrigation control method using the plant cultivation apparatus according to any one of <1> to <4>, wherein (a) the irrigation sheet performs irrigation on the bottom surface, and (b) the water level by the irrigation. A step in which a sensor detects a decrease in the water level of the water storage container; and (c) based on the detected decrease in the water level of the water storage container, the auxiliary irrigation device further irrigates the soil, and the soil is planted. A irrigation control method comprising the steps of: forming a water retention region around the root of the plant; and (d) a step of surplus water not used for forming the water retention region flowing into the water storage container. is there.
<6> (e)前記余剰水の流入により前記水位センサが前記貯水容器の水位の上昇を検知する工程と、(f)検知した前記貯水容器の水位の上昇に基づき、前記補助潅水装置が潅水を停止する工程と、を更に有する<5>に記載の潅水制御方法である。 <6> (e) a step in which the water level sensor detects an increase in the water level of the water storage container due to the inflow of the surplus water; and (f) the auxiliary irrigation device is irrigated based on the detected increase in the water level of the water storage container. The irrigation control method according to <5>, further comprising:
<7> 前記補助潅水装置の潅水の停止は、前記水位センサが前記貯水容器の当初水位への上昇を検知したことに基づく<6>に記載の潅水制御方法である。 <7> The irrigation control method according to <6>, wherein the irrigation of the auxiliary irrigation device is based on the fact that the water level sensor detects the rise of the water storage container to the initial water level.
本発明の植物栽培装置は、栽培する植物が植えられる土壌に、潅水シートの毛管現象を介した底面潅水と、補助潅水装置の上方からの補助潅水とから保水領域が形成されるため、当該植物の根の吸水可能な範囲が大きく拡がり、ルートマットの形成が根本的に阻止される。これにより、底面潅水にて最適な潅水が実現できる。 In the plant cultivation device of the present invention, a water retention area is formed in the soil where the plant to be cultivated is planted from the bottom irrigation through the capillary phenomenon of the irrigation sheet and the auxiliary irrigation from above the auxiliary irrigation device. The roots that can absorb water greatly expand, and the formation of the root mat is fundamentally prevented. Thereby, optimal irrigation is realizable by bottom surface irrigation.
本発明の潅水制御方法は、本発明の植物栽培装置を用いて潅水制御を行うため、ルートマットの形成が根本的に阻止され、底面潅水にて最適な潅水が実現できる。 Since the irrigation control method of the present invention performs irrigation control using the plant cultivation apparatus of the present invention, formation of the root mat is fundamentally prevented, and optimal irrigation can be realized by bottom surface irrigation.
本発明の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明の植物栽培装置の概略構成図である
図1に示すように、本発明の植物栽培装置1は、植物栽培容器10と、シート状の潅水布11と、土壌12と、貯水タンク(貯水容器)13と、水位センサとしてのフロートスイッチ14と、補助潅水装置15と、から主に構成される。また、補助潅水装置15は、潅水タンク20と、ポンプ21と、チューブ状の潅水管22とから構成される。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a plant cultivation apparatus according to the present invention. As shown in FIG. 1, a plant cultivation apparatus 1 according to the present invention includes a plant cultivation container 10, a sheet-like irrigation cloth 11, soil 12, and A water storage tank (water storage container) 13, a float switch 14 as a water level sensor, and an auxiliary irrigation device 15 are mainly configured. The auxiliary irrigation device 15 includes an irrigation tank 20, a pump 21, and a tubular irrigation pipe 22.
植物栽培容器10は、図示の例ではコンテナ状のプランターであり、底部が傾斜状に形成されている。なお、この植物栽培容器10は、栽培する植物の規模等、目的に応じて鉢等を用いるようにしてもよい。 The plant cultivation container 10 is a container-like planter in the illustrated example, and the bottom is formed in an inclined shape. In addition, this plant cultivation container 10 may use a pot etc. according to the objectives, such as the scale of the plant to grow.
潅水布11は、植物栽培容器10の底面および傾斜上端側の側面に沿って敷かれている。この潅水布11の上面には、防根透水布25が敷かれ、これにより栽培する植物の根の潅水布11への侵入を防ぐようになっている。なお、図示の例では、防根透水布25は、潅水布11が敷かれていない、植物栽培容器10の傾斜下端側の側面にも敷かれている。 The irrigation cloth 11 is laid along the bottom surface of the plant cultivation container 10 and the side surface on the inclined upper end side. On the upper surface of the irrigation cloth 11, a root-permeable permeable cloth 25 is laid to prevent the root of the plant to be cultivated from entering the irrigation cloth 11. In the illustrated example, the root-proof permeable cloth 25 is also laid on the side surface on the inclined lower end side of the plant cultivation container 10 where the irrigation cloth 11 is not laid.
土壌12は、これらの潅水布11および防根透水布25が敷かれた栽培容器10内に入れられ、この土壌12に栽培する植物Pが植えられる。 The soil 12 is put in a cultivation container 10 in which the irrigation cloth 11 and the root-permeable permeable cloth 25 are laid, and a plant P to be cultivated on the soil 12 is planted.
貯水タンク13は、植物栽培容器10の傾斜下端側に設けられ、潅水布11の下端が挿入されてタンク内の水に浸漬している。この貯水タンク13内にフロートスイッチ14が設けられている。 The water storage tank 13 is provided on the inclined lower end side of the plant cultivation container 10, and the lower end of the irrigation cloth 11 is inserted and immersed in the water in the tank. A float switch 14 is provided in the water storage tank 13.
補助潅水装置15を構成する潅水タンク20には、潅水管22が連結されており、この潅水管22の先端領域は、植物栽培容器10の上方より、土壌12の好ましくは図示のように、栽培する植物Pの根の付近に、適宜設定した深さtまで挿入される。なお、根の付近とは、本装置を使用する栽培者が目視で根に近いと判断する位置であればよく、具体的な寸法範囲は問わない。 A irrigation pipe 22 is connected to the irrigation tank 20 constituting the auxiliary irrigation apparatus 15, and the tip region of the irrigation pipe 22 is cultivated from the upper side of the plant cultivation container 10, preferably as shown in FIG. It is inserted in the vicinity of the root of the plant P to be made to a depth t set appropriately. In addition, the vicinity of a root should just be a position where the grower who uses this apparatus judges visually close to a root, and a specific dimension range is not ask | required.
潅水タンク20の水は、ポンプ21により潅水管22に給水される。このポンプ21は、有線ないし無線により、フロートスイッチ14と電気的に接続されている。 The water in the irrigation tank 20 is supplied to the irrigation pipe 22 by the pump 21. The pump 21 is electrically connected to the float switch 14 by wire or wireless.
植物栽培装置1は、上述した構成により、以下の(a)〜(f)のように作用し、潅水が制御される。 The plant cultivation apparatus 1 acts as in the following (a) to (f) by the above-described configuration, and irrigation is controlled.
(a)土壌12に負圧が生じると、潅水布11の毛管現象により、貯水タンク13の水の底面潅水が土壌12に行われる。 (A) When a negative pressure is generated in the soil 12, the bottom irrigation of the water in the water storage tank 13 is performed on the soil 12 due to the capillary action of the irrigation cloth 11.
(b)この潅水によりタンク13の水位が低下するが、その水位変化が設定値sを超えると、フロートスイッチ14が検知する。 (B) Although the water level of the tank 13 falls by this irrigation, the float switch 14 detects when the water level change exceeds the set value s.
(c)この水位変化のフロートスイッチ14による検知を操作信号として、補助潅水装置15のポンプ21が作動し、潅水管22により土壌12に潅水が行われ、これにより栽培する植物Pの根の周囲に保水領域Rが形成される。 (C) Using the detection of the water level change by the float switch 14 as an operation signal, the pump 21 of the auxiliary irrigation device 15 is operated, and the irrigation pipe 22 irrigates the soil 12, thereby surrounding the root of the plant P to be cultivated. A water retention region R is formed.
(d)この潅水を続けると、保水領域Rが十分に形成され、その形成に用いられない余剰水が生じることになる。この余剰水は、植物栽培容器10の底部の傾斜により潅水布11上を流れて貯水タンク13に流入する。 (D) If this irrigation is continued, the water retention area | region R will be fully formed and the surplus water which is not used for the formation will arise. This excess water flows on the irrigation cloth 11 due to the inclination of the bottom of the plant cultivation container 10 and flows into the water storage tank 13.
(e)この流入による水位上昇が設定値s、つまり当初水位に戻ると、その水位変化をフロートスイッチ14が検知する。 (E) When the water level rise due to this inflow returns to the set value s, that is, the initial water level, the float switch 14 detects the change in the water level.
(f)この水位変化のフロートスイッチ14による検知を停止信号として、補助潅水装置15のポンプ21が停止し、潅水管22による土壌12への潅水を終了する。 (F) The pump 21 of the auxiliary irrigation device 15 stops using the detection of the water level change by the float switch 14 as a stop signal, and the irrigation to the soil 12 by the irrigation pipe 22 is terminated.
本発明の植物栽培容器1の作用により、栽培する植物Pの根の周囲に形成される保水領域Rは、潅水布11からの底面潅水により供給される毛管水と、潅水管22により栽培容器10の上方から補助的に潅水される重力水とによる三次元的構造をなす領域となる。そのため、栽培する植物Pの吸水可能な範囲が飛躍的に増大することで、ルートマットの形成が抑制され、底面潅水においてルートマットが形成される構成上の問題が解消される。 By the action of the plant cultivation container 1 of the present invention, the water retention region R formed around the root of the plant P to be cultivated is the cultivation container 10 by the capillary water supplied by the bottom irrigation from the irrigation cloth 11 and the irrigation pipe 22. It becomes the area | region which makes the three-dimensional structure by gravity water irrigated auxiliary from above. Therefore, the range in which the plant P to be cultivated can drastically increase, so that the formation of the root mat is suppressed and the structural problem that the root mat is formed in the bottom irrigation is solved.
ルートマットの形成の要因は、根が正の水分屈性をもつことによる。つまり、根は水分の多少を感知する能力を有することから、正の水分屈性を発現する。この水分屈性の程度は、通常、土壌の水分勾配に比例する(「根の辞典」朝倉書店 1998、p.p65−66)。そこで、本発明のように、土壌空間に任意の保水領域を形成し、三次元的な水分勾配を生じさせ、そこに植物の根を誘導して空間的に分散させることで、潅水布に根が二次元的に密集する、ルートマットの形成を阻止することが可能となる。 The root mat formation is due to the positive hydrotropism of the roots. That is, since the root has the ability to sense the amount of water, it exhibits positive water tropism. The degree of water tropism is generally proportional to the soil water gradient (“Root Dictionary” Asakura Shoten 1998, pp. 65-66). Therefore, as in the present invention, an arbitrary water retention area is formed in the soil space, a three-dimensional water gradient is generated, and the roots of the plant are induced and dispersed spatially there, thereby allowing roots to be placed on the irrigation cloth. It is possible to prevent the formation of a root mat that is densely packed two-dimensionally.
また、保水領域Rの形成の際に余った水は、植物栽培容器10底面の潅水布11上を流れて貯水タンク13に流入し、その水位を元に戻すため、栽培する植物Pの吸水量に見合う水量を潅水できる利点を生かしながら、定常的に土壌12の保水量を維持でき、栽培する植物Pに対して過不足のない最適潅水が実現する。 Further, the water remaining in the formation of the water retention region R flows on the irrigation cloth 11 on the bottom surface of the plant cultivation container 10 and flows into the water storage tank 13 to restore its water level. The water retention amount of the soil 12 can be constantly maintained while taking advantage of the ability to irrigate a suitable amount of water, and optimum irrigation without excess or deficiency is realized for the plant P to be cultivated.
さらに、補助潅水装置15による潅水量は、フロートスイッチ14の検知する水位変化量の設定値sと、土壌12に挿入する潅水管22の深さtを変えることで適宜調整することができる。つまり、設定値sを変えることで補助潅水装置15からの潅水量を調整することができ、深さtを変えることで潅水管22からの水の土壌12への拡がり方を調整し、貯水タンク13へ還流する余剰水の量を変動させることができる。これにより、栽培する植物Pの種類、その生育段階、蒸発散量等に応じた潅水量の調整が可能となり、栽培する植物Pより得られる作物の収量や糖度に適した潅水を行うことができる。なお、この潅水量の調整は、たとえば、潅水管22の土壌12への挿入位置について、栽培する植物Pの根からの距離の長短を変えることでも調整可能である。 Further, the irrigation amount by the auxiliary irrigation device 15 can be appropriately adjusted by changing the set value s of the water level change detected by the float switch 14 and the depth t of the irrigation pipe 22 inserted into the soil 12. That is, the amount of irrigation from the auxiliary irrigation device 15 can be adjusted by changing the set value s, and the way in which the water from the irrigation pipe 22 spreads to the soil 12 can be adjusted by changing the depth t. The amount of surplus water recirculated to 13 can be varied. Thereby, it becomes possible to adjust the amount of irrigation according to the type of plant P to be cultivated, its growth stage, the amount of evapotranspiration, etc., and irrigation suitable for the yield and sugar content of the crop obtained from the plant P to be cultivated can be performed. . In addition, adjustment of this irrigation amount can also be adjusted by changing the length of the distance from the root of the plant P to grow about the insertion position to the soil 12 of the irrigation pipe | tube 22, for example.
また、補助潅水装置15のポンプ21の作動一回当たりの給水量は、フロートスイッチ14の感度と保水領域Rの保水量に依存し、かつ貯水タンク13の断面積および土壌12に挿入する潅水管22の深さtに直接関係する。この関係性を踏まえ、ポンプ21の一回当たりの給水量を極力少なくすれば、栽培する植物Pのリアルタイムに近い蒸発散量の水の供給が可能となり、蒸発散量の計測装置としても活用できる。 Further, the water supply amount per operation of the pump 21 of the auxiliary irrigation device 15 depends on the sensitivity of the float switch 14 and the water retention amount of the water retention region R, and the irrigation pipe inserted into the cross-sectional area of the water storage tank 13 and the soil 12. It is directly related to the depth t of 22. Based on this relationship, if the amount of water supply per pump 21 is reduced as much as possible, it is possible to supply water with an evapotranspiration amount close to real time for the plant P to be cultivated, and it can also be used as a device for measuring the evapotranspiration amount. .
ここで、潅水制御は、土壌−植物−大気を一つの連続したシステムとして捉えることができる(Kramer,「水環境と植物」 1986,p.p195−198)。そのため、この制御系を流れる吸水流量は、当該連続体のおかれた環境に適応した分量である。そして、通常は、土壌表面からの蒸発量は、植物の蒸散量に比して微量であるため、吸水量は概ね植物の蒸散量とみなしてよい。 Here, irrigation control can be understood as soil-plant-atmosphere as one continuous system (Kramer, “Water Environment and Plants” 1986, pp. 195-198). Therefore, the water absorption flow rate flowing through this control system is an amount adapted to the environment where the continuum is placed. In general, the amount of evaporation from the soil surface is very small compared to the amount of transpiration of the plant, so that the amount of water absorption may be generally regarded as the amount of transpiration of the plant.
〔吸水量の経時変化の測定〕
本発明の植物栽培装置における吸水量は、土壌保水量が概ね一定に保たれるため、植物が微気象の変化に適応して自らを最適に維持する必要水量となると考えられる。
[Measurement of water absorption over time]
The amount of water absorbed in the plant cultivation apparatus of the present invention is considered to be a necessary amount of water that the plant adapts to changes in microclimate and optimally maintains itself because the soil water retention amount is kept substantially constant.
そのことを実証するため、本発明の植物栽培容器1にて、植物Pとしてトマトを栽培した場合における、実測吸水量と、その際の大気側から見た負圧の値である大気の水ポテンシャル(物理モデル)の経時変化を比較した。結果を図2のグラフに示す。グラフにおいて、実測吸収量をmL/分、大気の水ポテンシャルの値を−MPaで縦軸に、測定月日を横軸に、それぞれ示してある。 In order to demonstrate that, in the plant cultivation container 1 of the present invention, when the tomato is cultivated as the plant P, the water absorption potential of the atmosphere, which is the measured water absorption amount and the negative pressure value seen from the atmosphere side at that time The time course of (physical model) was compared. The results are shown in the graph of FIG. In the graph, the measured absorption is mL / min, the value of the atmospheric water potential is −MPa on the vertical axis, and the measurement date is shown on the horizontal axis.
また、測定に際し、実測吸水量としては、一定時間内におけるフロートスイッチ14の検知した設定値sを超える水位変化の回数に基づき算出した値を、大気の水ポテンシャルとしては、その時の気温と相対湿度から算出した値を、ぞれぞれ採用した。 In the measurement, the measured water absorption is a value calculated based on the number of changes in the water level exceeding the set value s detected by the float switch 14 within a certain time, and the atmospheric water potential is the temperature and relative humidity at that time. The values calculated from the above were adopted.
図2の結果から、理論に基づく数値である大気の水ポテンシャルの値の増減パターンと、実測吸水量の増減パターンが良く一致していることが判る。 From the results shown in FIG. 2, it can be seen that the increase / decrease pattern of the atmospheric water potential, which is a numerical value based on the theory, is in good agreement with the increase / decrease pattern of the measured water absorption.
これにより、本発明によれば、作物種類、生育段階、栽培環境に応じた蒸発散量をリアルタイムに計測でき、過不足やタイムラグの無い最適な潅水が実現できる。 Thereby, according to this invention, the amount of evapotranspiration according to a crop kind, a growth stage, and a cultivation environment can be measured in real time, and optimal irrigation without excess and shortage and a time lag is realizable.
結果として、潅水管理は「水やり3年」と言われるように、勘と経験に基づく試行錯誤を強いられるが、その労苦から解放されるとともに、土壌量を従来の半分以下に減らすことができる。 As a result, irrigation management is forced to trial and error based on intuition and experience, as it is said to be “3 years of watering”, but it is freed from the labor and can reduce the amount of soil to less than half of the conventional amount. .
実際に、使用する土壌量が、本例のようなトマト栽培であれば、従来30L程度であったところ、4.5〜5Lと、1/6以下に省力化を果たすことができた。 Actually, if the amount of soil to be used is tomato cultivation as in this example, it was about 30 L in the past, but 4.5 to 5 L, and 1/6 or less, could be saved.
また、標準的な土耕栽培に比べ、施肥量は約3割強に、潅水量は8割程度に、それぞれ低減できる。そのため、低窒素状態で果実への炭水化物の転流が促進され、良質な作物が得られる。 In addition, compared to standard soil cultivation, the fertilization amount can be reduced to about 30% and the irrigation amount can be reduced to about 80%. For this reason, the translocation of carbohydrates to fruits is promoted under low nitrogen conditions, and high quality crops can be obtained.
〔保水量の測定〕
さらに、本発明の植物栽培装置1による給水を行った際に、土壌12の保水量が概ね一定に保たれていることを実証するため、植物Pとしてほうれん草をハウス栽培した場合における、日射強さ・気温・土壌含水率の経時変化と、その経時における積算給水量を測定した。日射強さ・気温・土壌含水率の経時変化の結果を図3(a)のグラフに、積算給水量を同(b)のグラフに、それぞれ示す。
[Measurement of water retention amount]
Furthermore, in order to demonstrate that when the water supply by the plant cultivation apparatus 1 of the present invention is performed, the water retention amount of the soil 12 is kept substantially constant, the solar radiation strength when spinach is cultivated as a plant P in a house.・ The change over time in temperature and soil moisture content and the cumulative water supply over time were measured. The results of changes over time in solar radiation intensity, temperature, and soil moisture content are shown in the graph of FIG. 3A, and the integrated water supply is shown in the graph of FIG.
測定は、土壌含水率については、土壌水分計(Delta−t社製、SM200)を用い、いわゆるADR法により行い、日射強さについては、日射計(英弘精機社製、Ms−802)を用いて行った。また、積算給水量の数値は、図2における吸水量と同様の算出方法に基づいて得られた数値を積算することにより得た。 The soil moisture content is measured using a soil moisture meter (manufactured by Delta-t, SM200) by the so-called ADR method, and the solar radiation intensity is measured using a solar radiation meter (manufactured by Eihiro Seiki Co., Ltd., Ms-802). I went. Moreover, the numerical value of the integrated water supply amount was obtained by integrating the numerical values obtained based on the same calculation method as the water absorption amount in FIG.
図3の結果から、時々刻々変化する日射強さおよび温度に対し、土壌含水率は33〜35%と概ね一定に維持されていることが判る。 From the results of FIG. 3, it can be seen that the soil moisture content is maintained at a substantially constant value of 33 to 35% with respect to the solar radiation intensity and temperature that change from moment to moment.
以上、本発明の実施の形態を詳細に説明したが、本発明の植物栽培装置および潅水制御方法は、上記実施の形態に限定されず、その範囲内で想定されるあらゆる技術的思想を含んでもよい。 As mentioned above, although embodiment of this invention was described in detail, the plant cultivation apparatus and irrigation control method of this invention are not limited to the said embodiment, Even if all the technical thoughts considered within the range are included. Good.
1 植物栽培装置
10 植物栽培容器
11 潅水布(潅水シート)
12 土壌
13 貯水タンク(貯水容器)
14 フロートスイッチ(水位センサ)
15 補助潅水装置
20 潅水タンク
21 ポンプ
22 潅水管
25 防根透水布
P 栽培する植物
R 保水領域
s フロートスイッチの設定値
t 土壌に挿入する潅水管の深さ
1 Plant cultivation equipment 10 Plant cultivation container 11 Irrigation cloth (irrigation sheet)
12 Soil 13 Water storage tank (water storage container)
14 Float switch (water level sensor)
15 Auxiliary irrigation device 20 Irrigation tank 21 Pump 22 Irrigation pipe 25 Root permeation cloth P Growing plant R Water retention area s Float switch setting t Depth of irrigation pipe inserted into soil
Claims (7)
この容器の底面に敷かれた潅水シートと、
前記植物栽培容器に収容され、栽培する植物が植えられる土壌と、
前記栽培容器の傾斜下端側に設けられるとともに、前記潅水シートが挿入されて前記潅水シートの毛管現象を介して前記土壌に底面潅水を行う貯水容器と、
この貯水容器に設けられた水位センサと、
この水位センサにより検知された前記貯水容器の水位の低下に基づき、前記植物栽培容器の上方より前記土壌に更なる潅水を行う補助潅水装置と、を備えることを特徴とする植物栽培装置。 A plant cultivation container having an inclined bottom;
A irrigation sheet laid on the bottom of the container;
Soil that is housed and planted in the plant cultivation container; and
A water storage container that is provided on the inclined lower end side of the cultivation container, and the irrigation sheet is inserted to perform bottom irrigation on the soil via the capillary phenomenon of the irrigation sheet;
A water level sensor provided in the water storage container;
A plant cultivation device comprising: an auxiliary irrigation device that further irrigates the soil from above the plant cultivation vessel based on a decrease in the water level of the water storage vessel detected by the water level sensor.
(a)前記潅水シートが底面潅水を行う工程と、
(b)この潅水により前記水位センサが前記貯水容器の水位の低下を検知する工程と、
(c)検知した前記貯水容器の水位の低下に基づき、前記補助潅水装置が前記土壌に更なる潅水を行い、前記土壌の植えられた前記植物の根の周囲に保水領域を形成する工程と、
(d)この保水領域形成に用いられなかった余剰水が前記貯水容器に流入する工程と、を有することを特徴とする潅水制御方法。 An irrigation control method using the plant cultivation apparatus according to any one of claims 1 to 4,
(A) the irrigation sheet performs bottom irrigation;
(B) the water level sensor detecting a drop in the water level of the water storage container by this irrigation;
(C) based on the detected decrease in the water level of the reservoir, the auxiliary irrigation device further irrigates the soil to form a water retention area around the root of the plant in which the soil is planted;
(D) A method of controlling irrigation, comprising a step of surplus water that has not been used for forming the water retention region flows into the water storage container.
(f)検知した前記貯水容器の水位の上昇に基づき、前記補助潅水装置が潅水を停止する工程と、を更に有する請求項5に記載の潅水制御方法。 (E) a step in which the water level sensor detects an increase in the water level of the water storage container by the inflow of the excess water;
The irrigation control method according to claim 5, further comprising: (f) the step of stopping the irrigation by the auxiliary irrigation device based on the detected rise in the water level of the water storage container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016119619A JP2017221150A (en) | 2016-06-16 | 2016-06-16 | Plant cultivation device and irrigation control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016119619A JP2017221150A (en) | 2016-06-16 | 2016-06-16 | Plant cultivation device and irrigation control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017221150A true JP2017221150A (en) | 2017-12-21 |
Family
ID=60685786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016119619A Pending JP2017221150A (en) | 2016-06-16 | 2016-06-16 | Plant cultivation device and irrigation control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017221150A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110574582A (en) * | 2019-10-24 | 2019-12-17 | 中国林业科学研究院林业新技术研究所 | Step-in plant planting system for simulating intertidal zone water level |
KR20210017921A (en) * | 2019-08-09 | 2021-02-17 | 한국과학기술연구원 | Reusable pot for stable nutrients supply |
US20210076580A1 (en) * | 2018-01-03 | 2021-03-18 | Sciroot Ltd. | Method for monitoring water status in a field |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3026409U (en) * | 1995-12-28 | 1996-07-12 | 群馬県 | Hydroponics equipment |
JPH11318244A (en) * | 1998-05-20 | 1999-11-24 | Kochi Prefecture | Hydroponics of japanese ginger and apparatus therefor |
JP2000060327A (en) * | 1998-08-27 | 2000-02-29 | Shinichiro Hayashi | Water supply apparatus for flowerpot |
JP2002360072A (en) * | 2001-06-07 | 2002-12-17 | Sanshu Kogyo Kk | Apparatus and method for culturing plant |
JP2004329011A (en) * | 2003-04-30 | 2004-11-25 | Nippon Kyodo Kikaku Kk | Method and device for plant cultivation |
JP2012075356A (en) * | 2010-09-30 | 2012-04-19 | Water Life Co Ltd | Cultivation system |
-
2016
- 2016-06-16 JP JP2016119619A patent/JP2017221150A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3026409U (en) * | 1995-12-28 | 1996-07-12 | 群馬県 | Hydroponics equipment |
JPH11318244A (en) * | 1998-05-20 | 1999-11-24 | Kochi Prefecture | Hydroponics of japanese ginger and apparatus therefor |
JP2000060327A (en) * | 1998-08-27 | 2000-02-29 | Shinichiro Hayashi | Water supply apparatus for flowerpot |
JP2002360072A (en) * | 2001-06-07 | 2002-12-17 | Sanshu Kogyo Kk | Apparatus and method for culturing plant |
JP2004329011A (en) * | 2003-04-30 | 2004-11-25 | Nippon Kyodo Kikaku Kk | Method and device for plant cultivation |
JP2012075356A (en) * | 2010-09-30 | 2012-04-19 | Water Life Co Ltd | Cultivation system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210076580A1 (en) * | 2018-01-03 | 2021-03-18 | Sciroot Ltd. | Method for monitoring water status in a field |
US12004456B2 (en) * | 2018-01-03 | 2024-06-11 | N-Drip Ltd. | Method for monitoring water status in a field |
KR20210017921A (en) * | 2019-08-09 | 2021-02-17 | 한국과학기술연구원 | Reusable pot for stable nutrients supply |
KR102295647B1 (en) * | 2019-08-09 | 2021-08-31 | 한국과학기술연구원 | Reusable pot for stable nutrients supply |
CN110574582A (en) * | 2019-10-24 | 2019-12-17 | 中国林业科学研究院林业新技术研究所 | Step-in plant planting system for simulating intertidal zone water level |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lieth et al. | Irrigation in soilless production | |
JP6479841B2 (en) | Complex potted plant self-water supply system | |
CN105050386B (en) | Device and method for hydroponics | |
KR100864475B1 (en) | Circulating water supply system for hydroponics using drainage electrode method there of hydroponing method | |
JP2017221150A (en) | Plant cultivation device and irrigation control method | |
WO2016098414A1 (en) | Cultivation device and cultivation method | |
JP6576632B2 (en) | Cultivation apparatus and cultivation method | |
KR101284631B1 (en) | Dual-structure water dispencer for hydroponic cultivating device | |
KR102511318B1 (en) | Hydroponics apparatus | |
KR100598013B1 (en) | Plant growing pot | |
AU2019201327B2 (en) | Method of indoor mushroom cultivation | |
JP6536190B2 (en) | Hydroponic cultivation apparatus and cultivation system | |
JP6680514B2 (en) | Cultivation device and cultivation method | |
JP2012075356A (en) | Cultivation system | |
KR101280123B1 (en) | Port table | |
RU78033U1 (en) | SYSTEM OF AUTOMATIC IRRIGATION OF PLANTS FOR HOUSING | |
JP4001181B1 (en) | Pot-cultivated hydroponic equipment that can grow large crops | |
WO2019163057A1 (en) | Cultivation system and cultivation method | |
JP6006182B2 (en) | Water supply device for cultivation tank | |
KR102011127B1 (en) | An improved device for hydroponics | |
JPH0284117A (en) | Method for controlling water content in culture medium for growing plant | |
JPH0529019Y2 (en) | ||
JP6854414B2 (en) | Evaporation potential measuring device | |
JPH1040A (en) | Automatic watering for plant and installation | |
WO2019163056A1 (en) | Cultivation system and cultivation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171128 |