WO2015174190A1 - 容器用鋼板 - Google Patents

容器用鋼板 Download PDF

Info

Publication number
WO2015174190A1
WO2015174190A1 PCT/JP2015/061458 JP2015061458W WO2015174190A1 WO 2015174190 A1 WO2015174190 A1 WO 2015174190A1 JP 2015061458 W JP2015061458 W JP 2015061458W WO 2015174190 A1 WO2015174190 A1 WO 2015174190A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
steel plate
layer
amount
coating
Prior art date
Application number
PCT/JP2015/061458
Other languages
English (en)
French (fr)
Inventor
幹人 須藤
馬場 和彦
祐介 中川
安秀 大島
威 鈴木
悦男 ▲濱▼田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580025043.8A priority Critical patent/CN106460192B/zh
Priority to KR1020167030443A priority patent/KR101791374B1/ko
Publication of WO2015174190A1 publication Critical patent/WO2015174190A1/ja
Priority to PH12016502097A priority patent/PH12016502097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a steel plate for containers.
  • Patent Document 1 discloses that “a surface treatment layer mainly composed of an inorganic component on the surface of a metal plate, and an organic resin on at least one surface of the surface treatment layer”.
  • Resin-coated surface treatment for cans or can lids "Metal plate" is disclosed ([Claim 1]).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a steel plate for containers that is excellent in corrosion resistance after film sticking and corrosion resistance after painting.
  • the present inventors have found that the coating film containing Ti satisfies the specific conditions, and thus the corrosion resistance in the state where the PET film is pasted and the state where the paint is applied. was found to be excellent, and the present invention was completed.
  • the present invention provides the following (I) to (VI).
  • (I) A steel plate for a container having a plated steel plate having a plated layer containing an Sn layer on at least a part of the surface of the steel plate, and a coating disposed on the surface of the plated steel plate on the plated layer side, the film contains a Ti, the amount of deposition of Ti in terms of per one surface of the plated steel sheet is less than 1.0 mg / m 2 or more 60.0 mg / m 2, and is defined by the following formula (1)
  • Ti 0 represents the amount of Ti converted adhesion (unit: mg / m 2 ) per one side of the plated steel sheet of the coating, and Ti A is in a 1 mol / L sodium hydroxide aqueous solution at 50 ° C. Represents the amount of Ti-based adhesion (unit: mg / m 2 ) per one side of the plated steel sheet of the film after being immersed in 10 minutes.
  • the plating layer further includes at least one layer selected from the group consisting of a Ni layer, a Ni—Fe alloy layer, a Fe—Sn alloy layer, and a Fe—Sn—Ni alloy layer.
  • (VI) A tin oxide film containing tin oxide is provided between the plating layer and the coating, and the amount of electricity required for the reduction of the tin oxide is 2.0 to 5.0 mC / cm 2 .
  • the steel plate for containers of the present invention schematically has a plated steel plate and a specific film disposed on the surface of the plated steel plate on the plating layer side.
  • the steel sheet for containers of the present invention is excellent in film adhesion and paint adhesion (hereinafter collectively referred to as “adhesion”), and also has corrosion resistance after film application and corrosion resistance after coating (hereinafter collectively referred to as “corrosion resistance”). Is also excellent).
  • adheresion film adhesion and paint adhesion
  • corrosion resistance corrosion resistance after film application and corrosion resistance after coating
  • the plated steel sheet has a plating layer covering at least a part of the surface of the steel sheet, and the plating layer includes at least a Sn layer.
  • a general steel plate for cans can be used as a raw steel plate.
  • the plating layer may be a continuous layer or a discontinuous island shape.
  • the plating layer should just be provided in the at least single side
  • the plating layer can be formed by a known method according to the contained metal element. Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.
  • the kind of steel plate is not particularly limited, and a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) that is usually used as a container material can be used.
  • the manufacturing method and material of the steel plate are not particularly limited, and the steel plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal slab manufacturing process.
  • a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a plated layer including an Sn layer described later may be formed on the Ni-containing layer.
  • Ni-containing layer By performing Sn plating using a steel sheet having a Ni-containing layer, a plating layer containing island-shaped Sn can be formed, and weldability is improved.
  • the Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer (Ni layer) and a Ni—Fe alloy layer.
  • the method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating. Further, when a Ni—Fe alloy layer is applied as the Ni-containing layer, the Ni diffusion layer can be coordinated by forming Ni on the steel sheet surface by electroplating and then annealing, thereby forming a Ni—Fe alloy layer.
  • the amount of Ni deposited in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the amount of metallic Ni per one side. If it is in the said range, it will become advantageous also in terms of cost.
  • the Ni adhesion amount can be measured by surface analysis with fluorescent X-rays. In this case, a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve.
  • the Ni adhesion amount in the Ni-containing layer can be obtained by subtracting the Ni adhesion amount contained in the film described later from the Ni adhesion amount obtained by fluorescent X-rays.
  • the plated steel sheet has a plating layer including a Sn layer on at least a part of the surface of the steel sheet.
  • the plating layer only needs to be provided on at least one side of the steel plate, and may be provided on both sides.
  • a plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it.
  • the Sn adhesion amount per one side of the steel sheet of the plating layer is preferably 0.1 to 15.0 g / m 2 . When the Sn adhesion amount is within the above range, the outer appearance characteristics and the corrosion resistance of the steel plate for containers are excellent.
  • the Sn adhesion amount can be measured by surface analysis using fluorescent X-rays.
  • fluorescent X-rays a calibration curve relating to the Sn amount is specified in advance using a Sn adhesion amount sample with a known Sn amount, and the Sn amount is relatively specified using the calibration curve.
  • a plating layer in addition to a plating layer composed of an Sn layer obtained by plating Sn, the lowermost layer (Sn layer / steel plate interface) of the Sn layer obtained by heating and melting Sn by energization heating after Sn plating, etc. A plating layer in which a part of the Fe—Sn alloy layer is formed is also included. Moreover, as a plating layer, Sn plating is performed on a steel sheet having a Ni-containing layer on the surface, and Sn is heated and melted by current heating or the like, and is formed on the lowermost layer (Sn layer / steel sheet interface) of the Sn layer.
  • Examples thereof include a plating layer in which an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, etc. are partially formed.
  • the above-mentioned Ni-containing layer Ni layer, Ni—Fe alloy layer is also included in the plated layer of the plated steel sheet.
  • Examples of the method for producing the plating layer include a known method (for example, an electroplating method or a method of plating by immersing in molten Sn).
  • a known method for example, an electroplating method or a method of plating by immersing in molten Sn.
  • a phenol sulfonic acid Sn plating bath, a methane sulfonic acid Sn plating bath, or a halogen-based Sn plating bath is used, and the adhesion amount per one surface is set to a predetermined amount (for example, 2.8 g / m 2 ).
  • Sn is electroplated, it is heated and melted at a temperature equal to or higher than the melting point of Sn (231.9 ° C.), and Fe—Sn is applied to the lowermost layer (Sn layer / steel plate interface) of the Sn single layer.
  • a plating layer on which an alloy layer is formed can be manufactured.
  • a Sn single plating layer (Sn layer) can be manufactured.
  • the steel sheet has a Ni-containing layer on its surface, the lowermost layer (Sn layer / steel sheet interface) of the plating layer (Sn layer) of Sn alone is obtained by performing a heat melting treatment after Sn plating on the Ni-containing layer.
  • An Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, and the like are formed.
  • positioned on the surface by the side of the plating layer of the plated steel plate mentioned above is demonstrated.
  • the film is roughly a film containing Ti (titanium element) as a component thereof, and is formed using a processing liquid (processing liquid of the present invention) described later.
  • the treatment liquid of the present invention contains hexafluorotitanate ions (TiF 6 2 ⁇ ), the coating can also contain F.
  • the coating has a Ti equivalent adhesion amount (hereinafter also referred to as “Ti adhesion amount”) per side of a plated steel sheet of 1.0 mg / m 2 or more and less than 60 mg / m 2 . If the Ti adhesion amount is less than 1.0 mg / m 2 or 60 mg / m 2 or more, the adhesion and corrosion resistance are poor. Ti adhesion amount, for the reason that adhesion and corrosion resistance more excellent, preferably 3 ⁇ 30mg / m 2, more preferably 5 ⁇ 20mg / m 2.
  • the coating when the coating contains Ni, the coating has a Ni conversion amount per side of the plated steel sheet (hereinafter also referred to as “Ni deposition amount”) of 0.1 to 3.0 mg / m 2 . Is preferred. If the Ni adhesion amount is within the above range, the container steel plate of the present invention is more excellent in adhesion and corrosion resistance.
  • Ti adhesion amount and Ni adhesion amount are measured by surface analysis using fluorescent X-rays.
  • Ti and Ni in the film are included as various Ti oxides and Ni oxides, respectively, and the types and aspects of these compounds are not particularly limited.
  • the fluorescent X-ray analysis is performed, for example, under the following conditions.
  • Apparatus X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation ⁇ Measurement diameter: 30mm ⁇ Measurement atmosphere: Vacuum ⁇ Spectrum: Ti-K ⁇ , Ni-K ⁇ ⁇ Slit: COARSE -Spectral crystal: TAP
  • the peak count numbers of Ti-K ⁇ and Ni-K ⁇ in the fluorescent X-ray analysis of the surface treatment film measured under the above conditions are used.
  • a calibration curve relating to the Ti adhesion amount and the Ni adhesion amount is specified in advance, and the Ti adhesion amount and the Ni adhesion amount are relatively determined using the calibration curve.
  • the plating layer contains Ni
  • the Ni adhesion amount contained in the film can be obtained by using both the cross-sectional observation by a scanning electron microscope (SEM) and a transmission electron microscope (TEM) and the glow discharge emission analysis.
  • the amount of Ni contained in the plating layer can be distinguished.
  • the cross section of the coating and the plating layer is exposed by focused ion beam (FIB) processing, and the thickness of the coating is calculated from cross-sectional observation by SEM or TEM.
  • FIB focused ion beam
  • the integrated emission count value by Ni element of the glow discharge emission analysis up to the sputtering time corresponding to the film thickness is obtained.
  • the Ni adhesion amount can be obtained using a calibration curve obtained in advance.
  • the calibration curve is created by the following method. First, glow discharge emission analysis is performed on a plurality of samples having a coating film containing Ni on a plating layer not containing Ni and having different Ni adhesion amounts, and a count integrated value up to a sputtering time at which no emission count due to Ni element is detected is obtained. . Next, the Ni adhesion amount of these samples is obtained by surface analysis using fluorescent X-rays. In this way, a calibration curve between the Ni count integrated value and the Ni adhesion amount by glow discharge emission analysis is created.
  • the film contains a Ti oxide having a crosslink such as a Ti—O—Ti bond.
  • the present inventors have found that the surface free energy of the film increases as the film crosslinks and the molecular weight increases. It has been found that the interaction between the film and the film and the paint becomes stronger and the adhesion is improved, which makes it difficult for the steel sheet to progress in corrosion, and has excellent corrosion resistance after film application and coating. . Then, the present inventors have found an A value, an atomic ratio (F / Ti) and an O state ratio (OH / MO), which will be described later, as an index of the crosslinking density.
  • the film has an A value defined by the following formula (1) of 30 or less.
  • A [(Ti 0 ⁇ Ti A ) / Ti 0 ] ⁇ 100 (1)
  • Ti 0 represents the Ti adhesion amount (unit: mg / m 2 ) of the film, and is measured by fluorescent X-ray.
  • Ti A represents the Ti adhesion amount (unit: mg / m 2 ) after immersing the container steel plate in a 1 mol / L sodium hydroxide aqueous solution at 50 ° C. for 10 minutes after measuring Ti 0 , and by fluorescent X-ray Measured.
  • the A value defined by the formula (1) is an index indicating the crosslinking density of the film.
  • the A value is set to 30 or less in the present invention.
  • the A value is preferably 20 or less, and more preferably 15 or less.
  • the atomic ratio (F / Ti) of F and Ti on the outermost surface opposite to the plating layer side is 0.00 ⁇ F / Ti ⁇ 0.10.
  • the atomic ratio (F / Ti) is more than 0.00 and less than 0.10.
  • the atomic ratio (F / Ti) is preferably 0.03 or less for the reason that adhesion and corrosion resistance are more excellent.
  • the atomic ratio can be measured from the values obtained by measuring the Fls and Ti3d peaks by X-ray photoelectron spectroscopy (XPS) and determining the atomic concentration by analysis software.
  • XPS X-ray photoelectron spectroscopy
  • monochromatic AlK ⁇ h ⁇ : 1486.6 eV
  • the proportion (unit:%) of O present in the film as O constituting the hydroxide is expressed as OH
  • the proportion of O present in the film as O constituting the metal oxide is expressed as MO
  • a ratio represented by OH / MO Is preferably less than 0.70.
  • OH and MO are both O content (unit: atomic%) present in the film as O constituting the hydroxide, and O constituting the metal oxide in the film. Based on the total amount (hereinafter also referred to as “total O amount”) (unit: atomic%) with the existing O amount (unit: atomic%). That is, “OH” means the ratio (unit:%) of the O amount (unit: atomic%) present in the film as O constituting the hydroxide to the total O amount (unit: atomic%). Similarly, “MO” means the ratio of the amount of O (unit: atomic%) present in the film as O constituting the metal oxide to the total amount of O (unit: atomic%).
  • the state ratio (OH / MO) of O (oxygen element) in the film is the ratio of O present in the film as O constituting the hydroxide (OH) and present in the film as O constituting the metal oxide. It means the ratio to the ratio of O (in other words, the ratio of O present in the film as O (MOM) bonded to the metal element) (MO).
  • the value of OH / MO is relatively small. That is, the state ratio (OH / MO) is also an index indicating the crosslinking density of the film.
  • the state ratio (OH / MO) is preferably less than 0.70 from the viewpoints of adhesion and corrosion resistance, and is more preferably 0.40 or less because the corrosion resistance is more excellent.
  • the lower limit of the state ratio (OH / MO) is not particularly limited, but is preferably 0.05 or more, and more preferably 0.15 or more.
  • the measurement may be performed using synchrotron radiation or the like, but in the present invention, a method for obtaining the state ratio by measuring the state of oxygen by XPS is employed.
  • the oxygen O1s peak was measured using monochromatic AlK ⁇ as an X-ray source, and the binding energy was in the range of 529.5 to 532.8 eV.
  • the peak is separated into O existing as O) and O existing as O constituting the hydroxide having a binding energy in the range of 530.9 to 532.8 eV, and the integrated intensity ratio is calculated by analysis software.
  • the value of the state ratio (OH / MO) is obtained.
  • the measurement area may be 100 ⁇ m ⁇ or more. In measurement, the outermost surface of the coating on the steel plate for containers is analyzed as it is.
  • the film having the A value, the atomic ratio (F / Ti) and the state ratio (OH / MO) as described above is a film formation in which the electrolysis current density during the cathodic electrolysis is set to a high current density, as will be described later. It is obtained by the production method of the present invention including a process and / or a post-immersion process.
  • ⁇ Surface free energy> As described above, when the film is crosslinked and the molecular weight is increased, the surface free energy ( ⁇ s) of the film is increased, and the adhesion and corrosion resistance are excellent. For this reason, in this invention, it is preferable that the surface free energy in the surface on the opposite side to the plating layer side of a film
  • the steel plate for containers of the present invention preferably has a tin oxide film containing tin oxide between the coating and the plating layer of the plated steel plate.
  • the amount of electricity required to reduce the tin oxide of the tin oxide film (hereinafter also referred to as “reduction amount of electricity”) is 2.0 to 5.0 mC / cm 2 .
  • the container steel plate of the present invention can suppress the coloring of the film and is excellent in appearance. This is because the tin oxide film suppresses impurity (mainly Sn) doping from the plating layer into the film, and as a result, the reduction of the band gap of the Ti oxide in the film is suppressed and the visible light absorption decreases.
  • the coating will have an interference color and the appearance may be inferior, so the amount of reducing electricity in the tin oxide film is 5.0 mC / cm 2 or less.
  • the amount of reducing electricity of the tin oxide film exceeds 5.0 mC / cm 2 , cohesive failure occurs in the tin oxide film, and film adhesion and paint adhesion may be reduced.
  • the amount of reducing electricity in the oxide film is 5.0 mC / cm 2 or less.
  • the amount of electricity required for the reduction of tin oxide is a steel plate for containers at a constant current of 0.05 mA / cm 2 in 0.001 mol / L hydrobromic acid aqueous solution from which dissolved oxygen has been removed by means such as bubbling of nitrogen gas. Can be obtained from a potential-time curve obtained by cathodic electrolysis.
  • hydrogen generation current coexists with the constant current method described above, and the reduction current of tin oxide cannot be measured directly.
  • the production method of the present invention includes at least a film forming step of forming the above-described film using a treatment liquid described later (hereinafter also referred to as “treatment liquid of the present invention”).
  • the film forming step is a step of forming the above-described film on the surface of the plated steel sheet on the plating layer side, and immersing the plated steel sheet in the treatment liquid of the present invention described later (immersion process) or dipping.
  • This is a step of subjecting the plated steel sheet to cathodic electrolysis.
  • the cathodic electrolysis treatment increases the surface OH ⁇ concentration of the plated steel sheet more than the dipping treatment, promotes the hydrolysis reaction of hexafluorotitanate ions (TiF 6 2 ⁇ ), and the film formed by the subsequent dehydration condensation. This is preferable because the progress of crosslinking is further promoted.
  • the treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the film.
  • Ti component include titanium hydrofluoric acid (H 2 TiF 6 ) and / or a salt thereof.
  • Specific examples of the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ) 2 TiF 6 ) and the like.
  • the content of the Ti component in the treatment liquid of the present invention is not particularly limited, but when using titanium hydrofluoric acid and / or a salt thereof, the amount converted to hexafluorotitanate ion (TiF 6 2 ⁇ ), The amount is preferably 0.004 to 0.4 mol / L, more preferably 0.02 to 0.2 mol / L.
  • the treatment liquid of the present invention contains a Ni component (Ni compound) for supplying Ni (nickel element) to the film.
  • Ni component is not particularly limited, nickel sulfate (NiSO 4), nickel sulfate hexahydrate, nickel chloride (NiCl 2), etc. nickel chloride hexahydrate and the like.
  • the content of the Ni component in the treatment liquid of the present invention is not particularly limited, but the amount converted to Ni ions (Ni 2+ ) is preferably 0.002 to 0.04 mol / L, preferably 0.004 to 0 0.02 mol / L is more preferable.
  • the solvent in the treatment liquid of the present invention water is usually used, and an organic solvent may be used in combination.
  • the pH of the treatment liquid of the present invention is not particularly limited, but is preferably pH 2.0 to 5.0. Within this range, the treatment time can be shortened and the stability of the treatment liquid is excellent.
  • a known acid component for example, phosphoric acid, sulfuric acid
  • alkali component for example, sodium hydroxide, aqueous ammonia
  • the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary.
  • the treatment liquid may contain a condensed phosphate such as pyrophosphate.
  • the liquid temperature of the treatment liquid is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
  • the electrolytic current density at the time of carrying out the cathodic electrolysis treatment is set to a high current density in the film forming step.
  • the surface OH ⁇ concentration of the plated steel sheet increases, the hydrolysis reaction of TiF 6 2- is promoted, and the subsequent crosslinking of the film by dehydration condensation proceeds, resulting in a high molecular weight.
  • a modified film is obtained.
  • membrane becomes excessive by setting it as a high current density can also be anticipated.
  • the electrolytic current density is preferably from 20.0A / dm 2 ultra 100.0 A / dm 2 or less, more preferably 25.0 ⁇ 100.0A / dm 2, 30.0 ⁇ 100.0A / dm 2 is more preferable.
  • a high current density is not essential, and examples of the electrolytic current density include 1.0 to 20.0 A / dm 2 .
  • the energization time for cathodic electrolysis is preferably 0.1 to 5 seconds, and more preferably 0.3 to 2 seconds.
  • the electric density is the product of the current density and the energization time, and is appropriately set.
  • the production method of the present invention is a method in which the plated steel sheet is placed in an acidic bath for 0.1 second or more after the immersion treatment or cathodic electrolysis treatment in the film formation step.
  • a post-immersion step is provided. Through such a post-immersion process, Ti of the Ti (OH) n F 6-n 2 ⁇ adsorbed on the surface of the plated steel sheet is efficiently removed, and many Ti—O—Ti bonds are formed by dehydration condensation.
  • the film is further crosslinked to obtain a high molecular weight film.
  • the immersion time in the acidic bath is not particularly limited as long as it is 0.1 seconds or longer, but is preferably 0.5 seconds or longer, and more preferably 1.0 to 3.0 seconds.
  • the pH of the acidic bath is, for example, 5.0 or less, and a known acid component (for example, phosphoric acid, sulfuric acid, nitric acid, etc.) is used for pH adjustment.
  • a known acid component for example, phosphoric acid, sulfuric acid, nitric acid, etc.
  • the temperature of the acidic bath include 60 to 100 ° C.
  • the production method of the present invention after The dipping process may not be provided.
  • the method of the water washing treatment is not particularly limited. For example, when the production is performed on a continuous line, a method of providing a water washing tank after the film treatment tank and continuously immersing in water after the film treatment is exemplified.
  • the temperature of water used for the water washing treatment is preferably 40 to 90 ° C.
  • the washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
  • drying may be performed instead of or after the washing process.
  • the temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied.
  • the temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a film
  • the lower limit is not particularly limited, but is usually about room temperature.
  • the production method of the present invention preferably includes a pretreatment step before the above-described film formation step.
  • a pretreatment step by immersing the plated steel sheet in a pretreatment liquid containing an oxidizing agent or carbonate, or by anodic electrolytic treatment in the pretreatment liquid, on the surface on the plating layer side of the plated steel sheet, This is a step of forming the tin oxide film described above.
  • a part of the plating layer including the Sn layer of the plated steel sheet is oxidized in the pretreatment liquid or carbonic acid. It is oxidized by the salt to form a tin oxide film containing tin oxide.
  • the oxidizing agent or carbonate contained in the pretreatment liquid is not particularly limited.
  • conventionally known oxidizing agents can be used, such as chlorine dioxide; perhalogen acids such as perchloric acid and periodic acid; sodium perchlorate, potassium perchlorate, ammonium perchlorate and the like.
  • Perchlorates Chlorites such as sodium chlorite and potassium chlorite; Hypochlorites such as sodium hypochlorite and calcium hypochlorite; Bromine such as sodium bromate and potassium bromate Acid salts; Iodates such as sodium iodate and potassium iodate; Periodates such as sodium periodate and potassium periodate; Sodium peroxide, potassium peroxide, magnesium peroxide, calcium peroxide, peroxide Alkali metal or alkaline earth metal peroxides such as barium; hydrogen peroxide such as hydrogen peroxide, sodium percarbonate or And the like; derivatives.
  • the carbonate a conventionally known water-soluble carbonate can be used, and examples thereof include alkali metal carbonates such as sodium carbonate and potassium carbonate.
  • the oxidizing agent a perchlorate, an alkali metal or alkaline earth metal peroxide, hydrogen peroxide or a derivative thereof can be used because a tin oxide film can be continuously and densely formed on a steel plate.
  • the carbonate is preferably sodium carbonate.
  • the content of the oxidizing agent or carbonate in the pretreatment liquid is preferably 5 to 30 g / L, and more preferably 10 to 20 g / L because the tin oxide film can be continuously and densely formed on the steel plate. preferable.
  • the liquid temperature of the pretreatment liquid is preferably 20 to 80 ° C., more preferably 40 to 60 ° C., because the amount of tin oxide film formed becomes an appropriate amount and the change in color tone of the film can be further suppressed.
  • the immersion time in the pretreatment liquid is preferably 0.1 to 5 seconds, and more preferably 0.2 to 2 seconds.
  • a water washing treatment may be performed as necessary.
  • the electrolysis conditions in the pretreatment liquid are such that electrolysis is performed so that the steel plate side becomes the anode, and the electrolysis current density is preferably 1.0 to 10.0 A / dm 2 , and 3.0 to 6.0 A / dm 2. 2 is more preferable.
  • the energization time is preferably 0.1 to 5 seconds, more preferably 0.2 to 2 seconds. After the electrolytic treatment in the pretreatment liquid, a water washing treatment may be performed as necessary.
  • the steel plate for containers of the present invention obtained by the manufacturing method of the present invention is used for manufacturing various containers such as DI cans, food cans and beverage cans.
  • a plated steel sheet was produced by the following method. First, a steel plate (T4 original plate) having a thickness of 0.22 mm was electrolytically degreased, and a nickel plating layer was formed on both sides with a Ni adhesion amount per one side shown in Table 5 using a Watt bath. Thereafter, the Ni—Fe alloy layer (Ni-containing layer) was annealed at 700 ° C. in a 10 vol.% H 2 +90 vol.% N 2 atmosphere to diffuse and infiltrate the nickel plating (Table 5 shows the Ni adhesion amount). ) was formed on both sides.
  • an Sn layer was formed on both surfaces of the steel sheet having the Ni-containing layer as the surface layer, using an Sn plating bath, with the Sn adhesion amount per one side shown in Table 5. Thereafter, a heat melting treatment was performed at a melting point of Sn or higher, and plating layers were formed on both surfaces of the T4 original plate. In this way, a plating layer comprising Ni—Fe alloy layer / Fe—Sn—Ni alloy layer / Sn layer was formed on both surfaces in order from the lower layer side.
  • a tin oxide film was formed on both sides depending on conditions (current density, energization time). In the case where the tin oxide film was not formed by the pretreatment process, “-” is shown in Table 4.
  • ⁇ Surface free energy ( ⁇ s)> The contact angle when the liquid is dropped on the surface of the test material is ⁇ , the dispersion force component of the surface free energy on the surface of the test material is ⁇ s d , the polar force component is ⁇ s h , and the surface free energy of the liquid is ⁇ l, its dispersion When the force component is ⁇ l d and the polar force component is ⁇ l h , the following relationship is satisfied.
  • Table 6 shows the surface free energies of the five liquids used in the measurement.
  • ⁇ Film adhesion> A commercially available PET film (Melinex 850, manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was performed, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
  • the roll pressure is 4 kg / cm 2
  • the plate feed speed is 40 mpm
  • the surface temperature of the plate after passing through the roll is 160 ° C.
  • heat-sealing was performed, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
  • a commercially available PET film (Melinex 850, manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was performed, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate. Next, a cross cut having a depth reaching the ground iron (steel plate) was put on the film surface of the produced laminated steel plate (width 70 mm ⁇ length 40 mm) using a cutter.
  • the laminated steel sheet with the cross cut was immersed in a test solution at 55 ° C. composed of a mixed aqueous solution containing 1.5 mass% citric acid and 1.5 mass% sodium chloride for 96 hours. After dipping, washing and drying, a cellophane adhesive tape was applied to the film surface, and the tape was peeled off.
  • the film peeling width (total left and right width spreading from the cut portion) was measured at four locations within 10 mm from the cross cut intersection, and the average value of the four locations was determined.
  • the average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ⁇ ⁇ ⁇ or ⁇ , it can be evaluated as having excellent corrosion resistance.
  • Corrosion width less than 0.8 mm ⁇ Corrosion width 0.8 mm or more and less than 1.5 mm ⁇ : Corrosion width 1.5 mm or more and less than 2.0 mm ⁇ : Corrosion width 2.0 mm or more
  • the film peeling width (total left and right width spreading from the cut portion) was measured at four locations within 10 mm from the cross cut intersection, and the average value of the four locations was determined.
  • the average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ⁇ ⁇ ⁇ or ⁇ , it can be evaluated as having excellent corrosion resistance.
  • Corrosion width less than 0.2 mm ⁇ Corrosion width 0.2 mm or more and less than 0.6 mm ⁇ : Corrosion width 0.6 mm or more and less than 1.0 mm ⁇ : Corrosion width 1.0 mm or more
  • test materials No. 1 to 40 have film adhesion and paint adhesion, and corrosion resistance after film application and corrosion resistance after coating. Was excellent.
  • invention examples (test materials No. 29 to 40) having a tin oxide film having a reducing electricity amount of 2.0 to 5.0 mC / cm 2 are more excellent in appearance.
  • a comparative example in which the A value is not 30 or less, the atomic ratio (F / Ti) is not less than 0.10, and the state ratio (OH / MO) is not less than 0.70 were inferior in corrosion resistance after film sticking and corrosion resistance after painting.
  • Comparative Example Ti coating weight of the coating is not less than 1.0 mg / m 2 or more 60.0 mg / m 2 (test material No.43 and 44), the film adhesion and coating adhesion, and film sticking after the corrosion resistance And the corrosion resistance after painting was inferior.
  • the Ni adhesion amount is not 0.1 to 3.0 mg / m 2 , the A value is not 30 or less, the atomic ratio (F / Ti) is not less than 0.10, and the state ratio ( The comparative example (test material No. 45) whose OH / MO was not less than 0.70 was inferior in film adhesion and paint adhesion, as well as corrosion resistance after application of the film and corrosion resistance after coating.

Abstract

 フィルム貼付後耐食性および塗装後耐食性に優れる容器用鋼板を提供する。上記容器用鋼板は、鋼板の表面の少なくとも一部にSn層を含むめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置された皮膜と、を有する容器用鋼板であって、上記皮膜は、Tiを含有し、上記めっき鋼板の片面あたりのTi換算の付着量が1.0mg/m2以上60.0mg/m2未満であって、かつ、特定の式(1)で定義されるA値が30以下であり、上記皮膜の最表面におけるFとTiとの原子比(F/Ti)が0.00超0.10未満であり、上記皮膜中のOの状態比(OH/MO)は0.70未満が好ましい。

Description

容器用鋼板
 本発明は、容器用鋼板に関する。
 缶等の容器に用いられる鋼板(容器用鋼板)として、例えば、特許文献1には、「金属板表面に無機成分を主体とする表面処理層、及び該表面処理層の少なくとも片面上に有機樹脂被覆が形成されている樹脂被覆表面処理金属板であって、前記無機表面処理層が、陰極電解を断続的に実施して形成され、リン酸イオンを含有せずFと水酸基を含むTi或いはTi及びZrの酸化物からなり、前記無機表面処理層の最表面に含有される、OとTiの原子比が、1<O/Ti<5であり、FとM(但しMは、Ti或いはTi及びZr)の原子比が、0 .1<F/M<2.5であり、Tiの重量膜厚が5~300mg/mであることを特徴とする缶又は缶蓋用樹脂被覆表面処理金属板」が開示されている([請求項1])。
特許第4487651号公報
 本発明者らが、特許文献1に記載された容器用鋼板(表面処理鋼板)について、PETフィルムに対する密着性(以下「フィルム密着性」ともいう)および塗料に対する密着性(以下「塗料密着性」ともいう)を検討していたところ、PETフィルムを貼り付けた状態での耐食性(以下「フィルム貼付後耐食性」ともいう)および塗料を塗布した状態での耐食性(以下「塗装後耐食性」ともいう)が不十分となる場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、フィルム貼付後耐食性および塗装後耐食性に優れる容器用鋼板を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行なった結果、Tiを含有する皮膜が特定の条件を満たすことで、PETフィルムを貼り付けた状態および塗料を塗布した状態での耐食性が優れることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(I)~(VI)を提供する。
 (I)鋼板の表面の少なくとも一部にSn層を含むめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置された皮膜と、を有する容器用鋼板であって、上記皮膜は、Tiを含有し、上記めっき鋼板の片面あたりのTi換算の付着量が1.0mg/m2以上60.0mg/m2未満であって、かつ、下記式(1)で定義されるA値が30以下であり、上記皮膜の最表面におけるFとTiとの原子比(F/Ti)が0.00超0.10未満である、容器用鋼板。
A=[(Ti0-TiA)/Ti0]×100・・・(1)
(式(1)中、Ti0は上記皮膜の上記めっき鋼板の片面あたりのTi換算の付着量(単位:mg/m2)を表し、TiAは50℃の1mol/L水酸化ナトリウム水溶液中に10分間浸漬した後の上記皮膜の上記めっき鋼板の片面あたりのTi換算の付着量(単位:mg/m2)を表す。)
 (II)水酸化物を構成するOとして上記皮膜中に存在するOの割合(単位:%)をOHと表記し、金属酸化物を構成するOとして上記皮膜中に存在するOの割合(単位:%)をMOと表記した場合に、OH/MOで表される比が0.70未満である、上記(I)に記載の容器用鋼板。
 (III)上記皮膜の表面自由エネルギーが、40mN/m以上である、上記(I)または(II)に記載の容器用鋼板。
 (IV)上記皮膜は、Niを含有し、上記めっき鋼板の片面あたりのNi換算の付着量が0.1~3.0mg/m2である、上記(I)~(III)のいずれかに記載の容器用鋼板。
 (V)上記めっき層が、さらに、Ni層、Ni-Fe合金層、Fe-Sn合金層、および、Fe-Sn-Ni合金層からなる群から選ばれる少なくとも1層を含む、上記(I)~(IV)のいずれかに記載の容器用鋼板。
 (VI)上記めっき層と上記皮膜との間に、錫酸化物を含有する錫酸化膜を有し、上記錫酸化物の還元に要する電気量が2.0~5.0mC/cm2である、上記(I)~(V)のいずれかに記載の容器用鋼板。
 本発明によれば、フィルム貼付後耐食性および塗装後耐食性に優れる容器用鋼板を提供できる。
[容器用鋼板]
 本発明の容器用鋼板は、概略的には、めっき鋼板と、めっき鋼板のめっき層側の表面上に配置された特定の皮膜と、を有する。
 本発明の容器用鋼板は、フィルム密着性および塗料密着性(以下、まとめて、単に「密着性」ともいう)が優れると共に、フィルム貼付後耐食性および塗装後耐食性(以下、まとめて、単に「耐食性」ともいう)が優れる。
 まず、以下に、めっき鋼板および皮膜の具体的な態様について詳述する。
 〔めっき鋼板〕
 めっき鋼板は、鋼板の表面の少なくとも一部を覆うめっき層を有し、めっき層は、少なくともSn層を含む。
 素材の鋼板としては、一般的な缶用の鋼板を使用できる。めっき層は、連続層であってもよいし、不連続の島状であってもよい。また、めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。めっき層の形成は、含有される金属元素に応じた公知の方法で行える。
 以下に、鋼板およびめっき層の好適態様について詳述する。
 〈鋼板〉
 鋼板の種類は特に限定されるものではなく、通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を用いることができる。この鋼板の製造方法、材質なども特に限定されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
 鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、このNi含有層上に後述するSn層を含むめっき層を形成してもよい。Ni含有層を有する鋼板を用いてSnめっきを施すことにより、島状Snを含むめっき層を形成することでき、溶接性が向上する。
 Ni含有層としてはニッケルが含まれていればよく、例えば、Niめっき層(Ni層)、Ni-Fe合金層などが挙げられる。
 鋼板にNi含有層を付与する方法は特に限定されず、例えば、公知の電気めっきなどの方法が挙げられる。また、Ni含有層としてNi-Fe合金層を付与する場合、電気めっきなどにより鋼板表面上にNi付与後、焼鈍することにより、Ni拡散層を配位させ、Ni-Fe合金層を形成できる。
 Ni含有層中のNi付着量は特に限定されず、片面当たりの金属Ni換算量として50~2000mg/m2が好ましい。上記範囲内であれば、コスト面でも有利となる。
 なお、Ni付着量は、蛍光X線により表面分析して測定できる。この場合、Ni付着量既知のNi付着サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を特定する。
 ただし、後述する皮膜がNiを含む場合には、上記の蛍光X線による表面分析によりNi含有層中のNi付着量のみを測定することは困難である。その場合は、Ni含有層中のNi付着量は、蛍光X線により求めたNi付着量から後述する皮膜中に含まれるNi付着量を差し引いて求めることができる。
 〈めっき層〉
 めっき鋼板は、鋼板表面の少なくとも一部に、Sn層を含むめっき層を有する。このめっき層は鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。また、めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。
 めっき層の鋼板片面当たりのSn付着量は、0.1~15.0g/m2が好ましい。Sn付着量が上記範囲内であれば、容器用鋼板の外観特性および耐食性に優れる。なかでも、これらの特性がより優れる点で、0.2~15.0g/m2がより好ましく、加工性が優れる点で、1.0~15.0g/m2がさらに好ましい。
 なお、Sn付着量は、蛍光X線により表面分析して測定できる。蛍光X線の場合、Sn量既知のSn付着量サンプルを用いて、Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にSn量を特定する。
 めっき層としては、Snをめっきして得られるSn層からなるめっき層のほか、Snめっき後通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe-Sn合金層が一部形成されためっき層も挙げられる。
 また、めっき層としては、Ni含有層を表面に有する鋼板に対してSnめっきを行い、さらに通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe-Sn-Ni合金層、Fe-Sn合金層などが一部形成されためっき層も挙げられる。
 なお、本発明においては、上述したNi含有層(Ni層、Ni-Fe合金層)も、めっき鋼板のめっき層に含まれるものとする。
 めっき層の製造方法としては、周知の方法(例えば、電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。
 例えば、フェノールスルフォン酸Snめっき浴、メタンスルフォン酸Snめっき浴、またはハロゲン系Snめっき浴を用い、片面あたりの付着量が所定量(例えば、2.8g/m2)となるように鋼板表面にSnを電気めっきした後、Snの融点(231.9℃)以上の温度で加熱溶融処理を行って、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe-Sn合金層を形成しためっき層を製造できる。加熱溶融処理を省略した場合、Sn単体のめっき層(Sn層)を製造できる。
 また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上にSnめっき後、加熱溶融処理を行うと、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe-Sn-Ni合金層、Fe-Sn合金層などが形成される。
 〔皮膜〕
 次に、上述しためっき鋼板のめっき層側の表面上に配置される皮膜について説明する。皮膜は、概略的には、その成分として、Ti(チタニウム元素)を含有する皮膜であり、後述する処理液(本発明の処理液)を用いて形成される。なお、本発明の処理液には、六フッ化チタン酸イオン(TiF6 2-)が含まれるため、皮膜にはFも含まれ得る。
 皮膜は、めっき鋼板の片面あたりのTi換算の付着量(以下、「Ti付着量」ともいう)が1.0mg/m2以上60mg/m2未満である。Ti付着量が1.0mg/m2未満または60mg/m2以上であると密着性および耐食性が劣る。Ti付着量は、密着性および耐食性がより優れるという理由から、3~30mg/m2が好ましく、5~20mg/m2がより好ましい。
 また、皮膜がNiを含有する場合、皮膜は、めっき鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が、0.1~3.0mg/m2であるのが好ましい。Ni付着量が上記範囲内であれば、本発明の容器用鋼板は、密着性および耐食性がより優れる。
 Ti付着量およびNi付着量は、蛍光X線による表面分析により測定する。
 皮膜中のTiおよびNiは、それぞれ、各種のTi酸化物およびNi酸化物として含まれ、これら化合物の種類や態様は特に限定されない。
 なお、蛍光X線分析は、例えば、下記条件により実施される。
 ・装置:リガク社製蛍光X線分析装置System3270
 ・測定径:30mm
 ・測定雰囲気:真空
 ・スペクトル:Ti-Kα、Ni-Kα
 ・スリット:COARSE
 ・分光結晶:TAP
 上記条件により測定した表面処理皮膜の蛍光X線分析のTi-Kα、Ni-Kαのピークカウント数を用いる。付着量既知の標準サンプルを用いて、Ti付着量およびNi付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にTi付着量およびNi付着量を求める。
 ただし、めっき層がNiを含む場合は、上記の蛍光X線による表面分析により皮膜中に含まれるNi付着量のみを測定することは困難である。
 その場合は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)や透過型電子顕微鏡(Transmission Electron Microscope:TEM)による断面観察とグロー放電発光分析とを併用することで皮膜中に含まれるNi付着量とめっき層中に含まれるNi量とを区別できる。
 具体的には、皮膜およびめっき層の断面を収束イオンビーム(Focused Ion Beam:FIB)加工により露出させ、SEMまたはTEMによる断面観察から皮膜の厚さを算出する。次いで、グロー放電発光分析によるスパッタリング深さとスパッタリング時間との関係を求める。その後、皮膜厚さに相当するスパッタリング時間までのグロー放電発光分析のNi元素による発光カウント積算値を求める。このNi元素による発光カウント積算値から、あらかじめ求めておいた検量線を用いて、Ni付着量を求めることができる。
 ここで、検量線は以下の方法で作成する。
 まず、Niを含まないめっき層上にNiを含む皮膜を有する、Ni付着量の異なる複数のサンプルについてグロー放電発光分析し、Ni元素による発光カウントが検出されなくなるスパッタリング時間までのカウント積算値を求める。次いでこれらのサンプルのNi付着量を蛍光X線による表面分析により求める。このようにして、グロー放電発光分析によるNiカウント積算値とNi付着量との検量線を作成する。
 ところで、皮膜は、Ti-O-Ti結合のような架橋を有するTi酸化物を含有すると考えられるが、本発明者らは、皮膜の架橋が進み高分子量化が進行すると、皮膜の表面自由エネルギーが大きくなり、皮膜とフィルムおよび塗料との相互作用が強くなって密着性が向上し、これにより、鋼板の腐食が進行しにくくなって、フィルム貼付後および塗装後の耐食性に優れることを見出した。そして、本発明者らは、架橋密度の指標として、後述するA値、原子比(F/Ti)およびOの状態比(OH/MO)を見出した。
 〈A値〉
 皮膜は、下記式(1)で定義されるA値が30以下である。
A=[(Ti0-TiA)/Ti0]×100・・・(1)
 式(1)中、Ti0は、皮膜のTi付着量(単位:mg/m2)を表し、蛍光X線により測定される。また、TiAは、Ti0測定後に容器用鋼板を50℃の1mol/L水酸化ナトリウム水溶液中に10分間浸漬した後のTi付着量(単位:mg/m2)を表し、蛍光X線により測定される。
 式(1)で定義されるA値は、皮膜の架橋密度を示す指標となる。すなわち、容器用鋼板を上記水酸化ナトリウム水溶液中に浸漬した場合において、皮膜の架橋が不十分で細切れであると皮膜から多くのTiが溶出してA値は大きくなる一方で、架橋が進み皮膜の高分子量化が進行しているとTi溶出量は低減してA値は小さくなる。
 このため、密着性および耐食性の観点から、本発明においては、A値を30以下とする。密着性および耐食性がより優れるという理由から、A値は20以下が好ましく、15以下がより好ましい。
 〈原子比(F/Ti)〉
 また、皮膜は、めっき層側とは反対側の最表面におけるFとTiとの原子比(F/Ti)が、0.00<F/Ti<0.10である。
 皮膜は、後述する処理液(本発明の処理液)を用いて形成されるが、具体的には、処理液に含まれる六フッ化チタン酸イオン(TiF6 2-)が、めっき鋼板の表面に生じたOH-によって加水分解反応を受けて、Ti(OH)n6-n 2-(n=0~6の整数)となってめっき鋼板の表面に吸着し、脱水縮合反応が進行することで皮膜が形成される。このとき、Ti(OH)n6-n 2-のFを効率良く取り除くことで、脱水縮合によるTi-O-Ti結合が多数形成され、皮膜の架橋が進み、高分子量化すると考えられる。つまり、皮膜の高分子量化には皮膜中に残存するFを低下させることを要する。このため、架橋が進み高分子量化した皮膜においては、上記原子比(F/Ti)の値が相対的に小さくなる。
 すなわち、上記原子比(F/Ti)も、皮膜の架橋密度を示す指標となる。密着性および耐食性の観点から、本発明においては、上記原子比(F/Ti)を0.00超0.10未満とする。密着性および耐食性がより優れるという理由から、上記原子比(F/Ti)は0.03以下とすることが好ましい。
 なお、上記原子比は、X線光電子分光法(XPS)によりFlsおよびTi3dのピークをそれぞれ測定し、解析ソフトウェアにより原子濃度を求めた値から測定できる。ここで、XPSのX線源として、単色化したAlKα(hν:1486.6eV)を用いた。測定に際しては、容器用鋼板の皮膜最表面をそのまま解析する。
 〈Oの状態比(OH/MO)〉
 本発明においては、水酸化物を構成するOとして上記皮膜中に存在するOの割合(単位:%)をOHと表記し、金属酸化物を構成するOとして上記皮膜中に存在するOの割合(単位:%)をMOと表記した場合に、OH/MOで表される比(本明細書中、「Oの状態比(OH/MO)」または単に「状態比(OH/MO)」ともいう)が0.70未満であることが好ましい。
 なお、「OH」および「MO」は、いずれも、水酸化物を構成するOとして上記皮膜中に存在するO量(単位:原子%)と、金属酸化物を構成するOとして上記皮膜中に存在するO量(単位:原子%)との合計量(以下「合計O量」ともいう)(単位:原子%)を基準とする。
 すなわち、「OH」は、水酸化物を構成するOとして上記皮膜中に存在するO量(単位:原子%)の合計O量(単位:原子%)に対する割合(単位:%)を意味する。
 同様に、「MO」は、金属酸化物を構成するOとして上記皮膜中に存在するO量(単位:原子%)の合計O量(単位:原子%)に対する割合を意味する。
 ここで、皮膜中のO(酸素元素)の状態比(OH/MO)の意義について説明する。
 まず、上記状態比(OH/MO)は、上述した定義どおり、水酸化物を構成するOとして皮膜中に存在するOの割合(OH)と、金属酸化物を構成するOとして皮膜中に存在するOの割合(換言すれば、金属元素に結合したO(M-O-M)として皮膜中に存在するOの割合)(MO)との比を意味する。
 したがって、上記状態比(OH/MO)は、六フッ化チタン酸イオン(TiF6 2-)が加水分解反応を受けて生成するTi(OH)n6-n 2-(n=0~6の整数)と、脱水縮合反応により形成されるTi-O-Ti結合との存在割合を表しており、皮膜の架橋が進行してTi-O-Ti結合が多数形成された、高分子量化した皮膜の場合、OH/MOの値は相対的に小さくなる。
 すなわち、上記状態比(OH/MO)も、皮膜の架橋密度を示す指標となる。
 上記状態比(OH/MO)は、密着性および耐食性の観点から、0.70未満が好ましく、耐食性がより優れるという理由から、0.40以下がより好ましい。
 なお、上記状態比(OH/MO)の下限値は特に限定されないが、0.05以上が好ましく、0.15以上がより好ましい。
 上記状態比(OH/MO)を求める方法としては、例えば放射光等を用いて測定してもよいが、本発明においては、XPSで酸素の状態を測定することで求める方法を採用する。具体的には、単色化したAlKαをX線源として、酸素O1sピークを測定し、結合エネルギーが529.5~532.8eVの範囲にある、金属酸化物を構成するO(金属元素に結合したO)として存在するOと、結合エネルギーが530.9~532.8eVの範囲にある、水酸化物を構成するOとして存在するOとにピーク分離し、解析ソフトにより積分強度比を算出して状態比(OH/MO)の値を求める。測定面積は100μmφ以上であればよい。測定に際しては、容器用鋼板の皮膜最表面をそのまま解析する。
 なお、上記のようなA値、原子比(F/Ti)および状態比(OH/MO)を有する皮膜は、後述するように、陰極電解処理時の電解電流密度を高電流密度にした皮膜形成工程および/または後浸漬工程を備える本発明の製造方法によって得られる。
 〈表面自由エネルギー〉
 上述したように、皮膜の架橋が進み高分子量化が進行すると、皮膜の表面自由エネルギー(γs)が大きくなって、密着性および耐食性が優れる。
 このため、本発明においては、皮膜のめっき層側と反対側の表面における表面自由エネルギーが、40mN/m以上であるのが好ましい。60mN/m以上がより好ましい。
 なお、表面自由エネルギーの測定方法については、後述する。
 〔錫酸化膜〕
 本発明の容器用鋼板は、皮膜とめっき鋼板のめっき層との間に、錫酸化物を含有する錫酸化膜を有することが好ましい。そして、この錫酸化膜の錫酸化物の還元に要する電気量(以下、「還元電気量」ともいう)が2.0~5.0mC/cm2である。
 本発明の容器用鋼板は、このような錫酸化膜を有することにより、皮膜の着色を抑制でき、外観に優れる。これは、錫酸化膜によって、めっき層から皮膜中への不純物(主にSn)ドープが抑制され、その結果、皮膜中のTi酸化物のバンドギャップの縮小が抑制されて可視光吸収が低下することで、茶系色の呈色が改善されるためと考えられる。
 もっとも、錫酸化膜が多すぎると、皮膜に干渉色がついてしまい、かえって外観が劣る場合があることから、錫酸化膜の還元電気量は5.0mC/cm2以下とする。
 また、錫酸化膜の還元電気量が5.0mC/cm2超であると、錫酸化膜内での凝集破壊が生じ、フィルム密着性および塗料密着性が低下する場合があることからも、錫酸化膜の還元電気量は5.0mC/cm2以下とする。
 錫酸化膜の還元電気量は、容器用鋼板の外観がより優れるという理由から、3.0~5.0mC/cm2が好ましく、3.6~5.0mC/cm2がより好ましい。
 錫酸化物の還元に要する電気量は、窒素ガスのバブリング等の手段によって溶存酸素を除去した0.001mol/Lの臭化水素酸水溶液中で0.05mA/cm2の定電流で容器用鋼板を陰極電解し、得られる電位-時間曲線から求めることができる。
 なお、皮膜がNiを含有する場合には、上述の定電流法では水素発生電流が共存し、錫酸化物の還元電流を直接測定できない。そのため、浸漬電位から-0.7V(vs.Ag/AgCl)の電位まで電位を掃引する過程で得られる1回目の還元電流曲線と、その後、同じく浸漬電位から-0.7V(vs.Ag/AgCl)の電位まで電位を掃引する2回目の還元電流曲線との差分に相当する電気量から求めることができる。
[容器用鋼板の製造方法]
 次に、上述した本発明の容器用鋼板を製造する方法(以下、「本発明の製造方法」ともいう)について説明する。本発明の製造方法は、少なくとも、後述する処理液(以下、「本発明の処理液」ともいう)を用いて上述した皮膜を形成する皮膜形成工程を備える。
 〔皮膜形成工程〕
 皮膜形成工程は、めっき鋼板のめっき層側の表面上に、上述した皮膜を形成する工程であって、後述する本発明の処理液中にめっき鋼板を浸漬する(浸漬処理)、または、浸漬しためっき鋼板に陰極電解処理を施す工程である。
 陰極電解処理は、浸漬処理よりも、めっき鋼板の表面OH-濃度がより増加し、六フッ化チタン酸イオン(TiF6 2-)の加水分解反応がより促進され、その後の脱水縮合による皮膜の架橋進行がより促進されるという理由から、好ましい。なお、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよい。
 以下に、使用される本発明の処理液や陰極電解処理の条件などについて詳述する。
 〈処理液〉
 本発明の処理液は、上記皮膜にTi(チタニウム元素)を供給するためのTi成分(Ti化合物)を含有する。このTi成分としては、チタンフッ化水素酸(H2TiF6)および/またはその塩が挙げられる。なお、チタンフッ化水素酸の塩の具体例としては、六フッ化チタン酸カリウム(K2TiF6)、六フッ化チタン酸ナトリウム(Na2TiF6)、六フッ化チタン酸アンモニウム((NH42TiF6)等が挙げられる。
 本発明の処理液におけるTi成分の含有量は、特に限定されないが、チタンフッ化水素酸および/またはその塩を使用する場合、六フッ化チタン酸イオン(TiF6 2-)に換算した量が、0.004~0.4mol/Lであるのが好ましく、0.02~0.2mol/Lがより好ましい。
 また、上記皮膜にNi(ニッケル元素)を含有させる場合、本発明の処理液は、上記皮膜にNi(ニッケル元素)を供給するためのNi成分(Ni化合物)を含有する。
 このNi成分としては、特に限定されないが、硫酸ニッケル(NiSO4)、硫酸ニッケル六水和物、塩化ニッケル(NiCl2)、塩化ニッケル六水和物などが挙げられる。
 本発明の処理液におけるNi成分の含有量は、特に限定されないが、Niイオン(Ni2+)に換算した量が、0.002~0.04mol/Lであるのが好ましく、0.004~0.02mol/Lがより好ましい。
 本発明の処理液中の溶媒としては、通常水が使用され、有機溶媒を併用してもよい。
 本発明の処理液のpHは、特に限定されないが、pH2.0~5.0が好ましい。該範囲内であれば、処理時間を短くでき、かつ、処理液の安定性に優れる。pHの調整には公知の酸成分(例えば、リン酸、硫酸)・アルカリ成分(例えば、水酸化ナトリウム、アンモニア水)を使用できる。
 また、本発明の処理液には、必要に応じて、ラウリル硫酸ナトリウム、アセチレングリコールなどの界面活性剤が含まれていてもよい。また、付着挙動の経時的な安定性の観点から、処理液には、ピロリン酸塩などの縮合リン酸塩が含まれていてもよい。
 処理液の液温は、20~80℃が好ましく、40~60℃がより好ましい。
 〈陰極電解処理〉
 上述した高分子量化した皮膜を得るための手法の1つとして、皮膜形成工程において、陰極電解処理を実施する際の電解電流密度を高電流密度とする。陰極電解処理時の電流密度を高めることで、めっき鋼板の表面OH-濃度が増加し、TiF6 2-の加水分解反応が促進され、その後の脱水縮合による皮膜の架橋が進行して、高分子量化した皮膜が得られる。また、高電流密度にすることで、皮膜のNi付着量が過大になることを抑制する効果も期待できる。具体的には、電解電流密度は、20.0A/dm2超100.0A/dm2以下が好ましく、25.0~100.0A/dm2がより好ましく、30.0~100.0A/dm2がさらに好ましい。
 もっとも、本発明の製造方法が後述する後浸漬工程を備える場合、高電流密度は必須ではなく、電解電流密度としては、例えば、1.0~20.0A/dm2が挙げられる。
 なお、陰極電解処理の通電時間は、0.1~5秒が好ましく、0.3~2秒がより好ましい。また、電気量密度は、電流密度と通電時間との積であり、適宜設定される。
 〔後浸漬工程〕
 また、上述した高分子量化した皮膜を得るための別の手法として、本発明の製造方法は、皮膜形成工程における浸漬処理または陰極電解処理の後に、めっき鋼板を酸性浴中に0.1秒以上浸漬させる後浸漬工程を備える。このような後浸漬工程を経ることで、めっき鋼板の表面に吸着したTi(OH)n6-n 2-のFが効率良く取り除かれ、脱水縮合によるTi-O-Ti結合が多数形成され、皮膜の架橋が進み、高分子量化した皮膜が得られる。
 酸性浴中への浸漬時間は、0.1秒以上であれば特に限定されないが、0.5秒以上が好ましく、1.0~3.0秒がより好ましい。
 酸性浴のpHは、例えば5.0以下が挙げられ、pH調整には公知の酸成分(例えば、リン酸、硫酸、硝酸など)が用いられる。
 なお、酸性浴としては、上述した本発明の処理液(pH=2.0~5.0)を用いてもよい。つまり、皮膜の高分子量化の程度は酸性浴に含まれるイオンの影響を受けないと推定している。
 酸性浴の温度としては、例えば、60~100℃が挙げられる。
 もっとも、上述した皮膜形成工程において、陰極電解処理時の電解電流密度を高電流密度(20.0A/dm2超100.0A/dm2以下)にした場合には、本発明の製造方法は後浸漬工程を備えなくてもよい。
 なお、後浸漬工程の後、または、後浸漬工程を経ない場合には陰極電解処理時の電解電流密度を高電流密度にした皮膜形成工程の後、皮膜中に含まれる不純物を低減させるという理由から、得られた鋼板の水洗処理を行うのが好ましい。
 水洗処理の方法は特に限定されず、例えば、連続ラインで製造を行う場合、皮膜処理タンクの後に水洗タンクを設け、皮膜処理後に連続して水に浸漬する方法などが挙げられる。水洗処理に用いる水の温度は、40~90℃が好ましい。
 このとき、水洗時間は、水洗処理による効果がより優れるという理由から、0.5秒超が好ましく、1.0~5.0秒が好ましい。
 さらに、水洗処理に代えて、または、水洗処理の後に、乾燥を行ってもよい。乾燥の際の温度および方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、皮膜の酸化を抑制でき、皮膜組成の安定性が保たれる。なお、下限は特に限定されないが、通常室温程度である。
 〔前処理工程〕
 本発明の製造方法は、上述した皮膜形成工程の前に、前処理工程を備えることが好ましい。前処理工程は、酸化剤もしくは炭酸塩を含有する前処理液に、めっき鋼板を浸漬する、または、上記前処理液中で陽極電解処理することにより、めっき鋼板のめっき層側の表面上に、上述した錫酸化膜を形成する工程である。
 めっき鋼板を上記前処理液に浸漬する、または、上記前処理液中で陽極電解処理することで、めっき鋼板が有するSn層を含むめっき層の一部が、前処理液中の酸化剤もしくは炭酸塩によって酸化されて、錫酸化物を含有する錫酸化膜が形成される。
 前処理液に含有される酸化剤または炭酸塩は特に限定されない。
 酸化剤としては、従来公知の酸化剤を用いることができ、例えば、二酸化塩素;過塩素酸、過ヨウ素酸などの過ハロゲン酸;過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸アンモニウムなどの過塩素酸塩類;亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩類;次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩類;臭素酸ナトリウム、臭素酸カリウムなどの臭素酸塩類;ヨウ素酸ナトリウム、ヨウ素酸カリウムなどのヨウ素酸塩類;過ヨウ素酸ナトリウム、過ヨウ素酸カリウムなどの過ヨウ素酸塩類;過酸化ナトリウム、過酸化カリウム、過酸化マグネシウム、過酸化カルシウム、過酸化バリウムなどのアルカリ金属またはアルカリ土類金属の過酸化物;過酸化水素、過炭酸ナトリウムなどの過酸化水素またはその誘導体;等が挙げられる。
 また、炭酸塩としては、従来公知の水溶性の炭酸塩を用いることができ、例えば、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩類が挙げられる。
 これらのうち、錫酸化膜を鋼板上に連続的かつ緻密に形成できるという理由から、酸化剤としては、過塩素酸塩類、アルカリ金属またはアルカリ土類金属の過酸化物、過酸化水素またはその誘導体が好ましく、炭酸塩としては、炭酸ナトリウムが好ましい。
 また、前処理液中の酸化剤または炭酸塩の含有量は、錫酸化膜を鋼板上に連続的かつ緻密に形成できるという理由から、5~30g/Lが好ましく、10~20g/Lがより好ましい。
 前処理液の液温は、形成される錫酸化膜量が適量となって、皮膜の色調変化をより抑制できるという理由から、20~80℃が好ましく、40~60℃がより好ましい。
 前処理液中への浸漬時間は、同様の理由から、0.1~5秒が好ましく、0.2~2秒がより好ましい。前処理液への浸漬後には、必要に応じて、水洗処理を施してもよい。
 前処理液中での電解条件は、同様の理由から、鋼板側が陽極になるよう電解し、電解電流密度は1.0~10.0A/dm2が好ましく、3.0~6.0A/dm2がより好ましい。さらに通電時間は、0.1~5秒が好ましく、0.2~2秒がより好ましい。前処理液中での電解処理後には、必要に応じて、水洗処理を施してもよい。
 本発明の製造方法によって得られる本発明の容器用鋼板は、DI缶、食缶、飲料缶など種々の容器の製造に使用される。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 〈めっき鋼板の製造〉
 以下の方法によって、めっき鋼板を製造した。
 まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて第5表に示す片面当たりのNi付着量でニッケルめっき層を両面に形成した。その後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりNi-Fe合金層(Ni含有層)(第5表にNi付着量を示す)を両面に形成した。
 引き続き、上記表層にNi含有層を有する鋼板を、Snめっき浴を用い、第5表中に示す片面当たりのSn付着量でSn層を両面に形成した。その後、Snの融点以上で加熱溶融処理を施し、めっき層をT4原板の両面に形成した。このようにして、下層側から順に、Ni-Fe合金層/Fe-Sn-Ni合金層/Sn層からなるめっき層を両面に形成した。
 〈容器用鋼板の試験材の作製〉
 以下のようにして、めっき鋼板の両面に皮膜が形成された容器用鋼板の試験材を作製した。
 《前処理工程》
 製造しためっき鋼板を水洗し、第1表に示す組成の前処理液(溶媒:水)を用いて、第4表に示す処理液温度ならびに第4表に示す浸漬条件(浸漬時間)または陽極電解条件(電流密度、通電時間)により、両面に錫酸化膜を形成した。なお、前処理工程によって錫酸化膜を形成しなかった場合には、第4表に「-」を記載した。
 《皮膜形成工程》
 次いで、前処理工程後を経た、または前処理工程を経なかっためっき鋼板を水洗し、pHを4.0に調整した第2表に示す組成の処理液(溶媒:水)を用い、第4表に示す処理液温度および電解条件(電流密度、通電時間、電気量密度)で陰極電解処理を施した。
 《後浸漬工程》
 一部の試験材については、皮膜形成工程の後、第3表に示す組成の酸性浴を用いて、第4表に示す処理液温度および浸漬時間で浸漬を行った。なお、後浸漬工程を経なかった場合には、第4表に「-」を記載した。
 なお、後浸漬工程の後、または、後浸漬工程を経なかった場合には皮膜形成工程の後に、得られた鋼板を水洗処理して、ブロアを用いて室温で乾燥を行った。
 その後、作製した容器用鋼板の試験材について、以下の方法で、フィルム密着性、塗料密着性、フィルム貼付後耐食性、塗装後耐食性、および、外観を評価した。評価結果を下記第5表に示す。
 錫酸化膜の還元電気量、ならびに、皮膜のTi付着量、Ni付着量、A値、原子比(F/Ti)および状態比(OH/MO)は、上述した方法により測定ないし計算した。また、皮膜の表面自由エネルギーを以下の方法により測定した。いずれも結果を下記第5表に示す。
 ただし、前処理工程によって錫酸化膜を形成しなかった場合、第5表の還元電気量の欄に「-」を記載した。なお、実際に、還元電気量を測定したところ、いずれも1.0mC/cm2未満であった。
 〈表面自由エネルギー(γs)〉
 試験材表面に液体を滴下したときの接触角をθ、試験材表面の表面自由エネルギーの分散力成分をγsd、その極性力成分をγsh、また、液体の表面自由エネルギーをγl、その分散力成分をγld、その極性力成分をγlhとすると、次の関係を満足する。
  γl(1+cosθ)/2×(rlh1/2
       =(γsd1/2×(γld1/2/(γlh1/2+(γsh1/2
 そこで、表面自由エネルギーが既知(γl、γlh、γldが既知)の5つの液体(水、グリセロール、ホルムアミド、エチレングリコール、ジエチレングリコール)を使用し、接触角計(協和界面科学社製CA-D型)を用いて、静的接触角を求めた(相対湿度:55~66%、温度20℃)。上記式に、上記5液の各々について測定した接触角θと各々の液体のγl、γlh、γldの値を代入して、最小二乗法フィッティングで、γsd、γshを求め、表面自由エネルギーγs(=γsd+γsh)を算出した(単位:mN/m)。なお、測定に用いた5液の表面自由エネルギーを第6表に示す。
 〈フィルム密着性〉
 作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850、デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行い、ラミネート鋼板を作製した。
 作製したラミネート鋼板(幅50mm×長さ50mm)に対し、先端径3/16インチRのポンチを用い、1kgの錘を25cmの高さから落下させ、フィルムを貼った面の側が凸になるようデュポン衝撃加工を行った。このような加工試験片を4つ作成し、レトルト装置内に、凸面が上になるように置き、130℃のレトルト環境で30分間保持後、取り出し、加工部のフィルム剥離の程度を目視で、下記5段階で評価し、4つの試験片の平均値(小数点以下1桁)を用いて、フィルム密着性を評価した。実用上、結果が3.0以上であれば、フィルム密着性に優れるものとして評価できる。
 5:剥離なし
 4:加工部の面積の5%未満で剥離発生
 3:加工部の面積の5%以上20%未満で剥離発生
 2:加工部の面積の20%以上50%未満で剥離発生
 1:加工部の面積の50%以上で剥離発生
 〈塗料密着性〉
 作製した容器用鋼板(幅100mm×長さ150mm)の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行い、付着量50mg/dm2の塗装を施した。次いで、上記塗装を施した同一の条件で作製した2枚の容器用鋼板を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×105Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片の2枚の容器用鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。2つの分割試験片の平均値を下記基準で評価した。実用上、結果が○または△であれば、塗料密着性に優れるものとして評価できる。
 ◎:2.0kgf以上(クロメート処理材同等)
 ○:1.0kgf以上2.0kgf未満
 ×:1.0kgf未満
 〈フィルム貼付後耐食性〉
 作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850、デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行い、ラミネート鋼板を作製した。
 次いで、作製したラミネート鋼板(幅70mm×長さ40mm)のフィルム面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れたラミネート鋼板を、1.5mass%クエン酸と1.5mass%食塩を含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄、乾燥した後、フィルム面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカットの交差部から10mm以内の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
 ◎:腐食幅0.8mm未満
 ○:腐食幅0.8mm以上1.5mm未満
 △:腐食幅1.5mm以上2.0mm未満
 ×:腐食幅2.0mm以上
 〈塗装後耐食性〉
 作製した容器用鋼板(幅70mm×長さ40mm)の表面に、エポキシフェノール系塗料を塗布した後、210℃で10分間の焼付を行い、付着量50mg/dm2の塗装を施した。
 次いで、上記塗装を施した容器用鋼板(塗装鋼板)の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れた塗装鋼板を、1.5mass%クエン酸と1.5mass%食塩を含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄、乾燥した後、塗膜にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカットの交差部から10mm以内の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
 ◎:腐食幅0.2mm未満
 ○:腐食幅0.2mm以上0.6mm未満
 △:腐食幅0.6mm以上1.0mm未満
 ×:腐食幅1.0mm以上
 〈外観〉
 作製した直後(作製後60分以内)の容器用鋼板について、皮膜の茶系色の呈色について評価した。具体的には、皮膜のL値を、日本電色工業社製SQ-2000を用いて測定し、下記基準で評価した。◎または○であれば、皮膜の着色が抑制され、外観に優れるものとして評価できる。
 ◎:L値75以上
 ○:L値70以上75未満
 △:L値60以上70未満
 ×:L値60未満
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記第1~5表に示す結果から明らかなように、本発明例(試験材No.1~40)は、いずれも、フィルム密着性および塗料密着性、ならびに、フィルム貼付後耐食性および塗装後耐食性が優れていた。
 また、還元電気量が2.0~5.0mC/cm2である錫酸化膜を有する発明例(試験材No.29~40)は、外観がより優れることが分かった。
 これに対して、A値が30以下ではなく、かつ、原子比(F/Ti)が0.10未満ではなく、さらに、状態比(OH/MO)が0.70未満ではない比較例(試験材No.41および42)は、フィルム貼付後耐食性および塗装後耐食性が劣っていた。
 また、皮膜のTi付着量が1.0mg/m2以上60.0mg/m2未満でない比較例(試験材No.43および44)は、フィルム密着性および塗料密着性、ならびに、フィルム貼付後耐食性および塗装後耐食性が劣っていた。
 また、Ni付着量が0.1~3.0mg/m2ではなくて、さらに、A値が30以下ではなく、原子比(F/Ti)が0.10未満ではなく、かつ、状態比(OH/MO)が0.70未満ではない比較例(試験材No.45)は、フィルム密着性および塗料密着性、ならびに、フィルム貼付後耐食性および塗装後耐食性が劣っていた。

Claims (6)

  1.  鋼板の表面の少なくとも一部にSn層を含むめっき層を有するめっき鋼板と、前記めっき鋼板の前記めっき層側の表面上に配置された皮膜と、を有する容器用鋼板であって、
     前記皮膜は、Tiを含有し、前記めっき鋼板の片面あたりのTi換算の付着量が1.0mg/m2以上60.0mg/m2未満であって、かつ、下記式(1)で定義されるA値が30以下であり、
     前記皮膜の最表面におけるFとTiとの原子比(F/Ti)が0.00超0.10未満である、容器用鋼板。
    A=[(Ti0-TiA)/Ti0]×100・・・(1)
    (式(1)中、Ti0は前記皮膜の前記めっき鋼板の片面あたりのTi換算の付着量(単位:mg/m2)を表し、TiAは50℃の1mol/L水酸化ナトリウム水溶液中に10分間浸漬した後の前記皮膜の前記めっき鋼板の片面あたりのTi換算の付着量(単位:mg/m2)を表す。)
  2.  水酸化物を構成するOとして前記皮膜中に存在するOの割合(単位:%)をOHと表記し、金属酸化物を構成するOとして前記皮膜中に存在するOの割合(単位:%)をMOと表記した場合に、OH/MOで表される比が0.70未満である、請求項1に記載の容器用鋼板。
  3.  前記皮膜の表面自由エネルギーが、40mN/m以上である、請求項1または2に記載の容器用鋼板。
  4.  前記皮膜は、Niを含有し、前記めっき鋼板の片面あたりのNi換算の付着量が0.1~3.0mg/m2である、請求項1~3のいずれか1項に記載の容器用鋼板。
  5.  前記めっき層が、さらに、Ni層、Ni-Fe合金層、Fe-Sn合金層、および、Fe-Sn-Ni合金層からなる群から選ばれる少なくとも1層を含む、請求項1~4のいずれか1項に記載の容器用鋼板。
  6.  前記めっき層と前記皮膜との間に、錫酸化物を含有する錫酸化膜を有し、前記錫酸化物の還元に要する電気量が2.0~5.0mC/cm2である、請求項1~5のいずれか1項に記載の容器用鋼板。
PCT/JP2015/061458 2014-05-15 2015-04-14 容器用鋼板 WO2015174190A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580025043.8A CN106460192B (zh) 2014-05-15 2015-04-14 容器用钢板
KR1020167030443A KR101791374B1 (ko) 2014-05-15 2015-04-14 용기용 강판
PH12016502097A PH12016502097A1 (en) 2014-05-15 2016-10-20 Steel plate for container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-101391 2014-05-15
JP2014101391 2014-05-15
JP2014-259985 2014-12-24
JP2014259985A JP5842988B2 (ja) 2014-05-15 2014-12-24 容器用鋼板

Publications (1)

Publication Number Publication Date
WO2015174190A1 true WO2015174190A1 (ja) 2015-11-19

Family

ID=54479734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061458 WO2015174190A1 (ja) 2014-05-15 2015-04-14 容器用鋼板

Country Status (7)

Country Link
JP (1) JP5842988B2 (ja)
KR (1) KR101791374B1 (ja)
CN (1) CN106460192B (ja)
MY (1) MY176527A (ja)
PH (1) PH12016502097A1 (ja)
TW (1) TWI552863B (ja)
WO (1) WO2015174190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401039B1 (ja) 2022-11-24 2023-12-19 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435924B1 (ja) 2022-11-24 2024-02-21 Jfeスチール株式会社 表面処理鋼板およびその製造方法
JP7460035B1 (ja) 2022-11-24 2024-04-02 Jfeスチール株式会社 表面処理鋼板およびその製造方法
JP7435925B1 (ja) 2022-11-24 2024-02-21 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487651B2 (ja) * 2004-06-22 2010-06-23 東洋製罐株式会社 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、金属蓋
JP2010255065A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 表面処理鋼板およびその製造方法
JP2011231404A (ja) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057336A1 (en) * 2004-06-22 2008-03-06 Toyo Seikan Kaisha, Ltd Surface-Treated Metal Materials, Method of Treating the Surfaces Thereof, Resin-Coated Metal Materials, Cans and Can Lids
JP5258253B2 (ja) * 2006-11-21 2013-08-07 新日鐵住金ステンレス株式会社 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP5218505B2 (ja) * 2010-09-15 2013-06-26 Jfeスチール株式会社 鋼板の連続電解処理装置およびそれを用いた表面処理鋼板の製造方法
JP5994495B2 (ja) * 2011-09-05 2016-09-21 Jfeスチール株式会社 容器用鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487651B2 (ja) * 2004-06-22 2010-06-23 東洋製罐株式会社 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、金属蓋
JP2010255065A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 表面処理鋼板およびその製造方法
JP2011231404A (ja) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401039B1 (ja) 2022-11-24 2023-12-19 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Also Published As

Publication number Publication date
JP5842988B2 (ja) 2016-01-13
KR101791374B1 (ko) 2017-10-27
PH12016502097B1 (en) 2017-01-09
KR20160140867A (ko) 2016-12-07
TWI552863B (zh) 2016-10-11
TW201545861A (zh) 2015-12-16
PH12016502097A1 (en) 2017-01-09
MY176527A (en) 2020-08-13
CN106460192A (zh) 2017-02-22
JP2015232169A (ja) 2015-12-24
CN106460192B (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
TWI633210B (zh) Sn系合金鍍敷鋼板
TWI633211B (zh) Sn鍍敷鋼板
JP5842988B2 (ja) 容器用鋼板
JP6040716B2 (ja) 処理液、容器用鋼板、および、容器用鋼板の製造方法
JP5910700B2 (ja) 容器用鋼板およびその製造方法
JP6197778B2 (ja) 容器用鋼板およびその製造方法
JP6610794B2 (ja) 容器用鋼板及びその製造方法
JP5978923B2 (ja) 容器用鋼板、その製造に用いられる処理液、および、容器用鋼板の製造方法
JP6003912B2 (ja) 容器用鋼板およびその製造方法
JP6094694B2 (ja) 容器用鋼板の製造方法
JP6156299B2 (ja) 容器用鋼板およびその製造方法
JP6048441B2 (ja) 容器用鋼板
JP6146402B2 (ja) 容器用鋼板
JP6052305B2 (ja) 容器用鋼板
JP6003910B2 (ja) 容器用鋼板およびその製造方法
JP6135650B2 (ja) 容器用鋼板
JP6003553B2 (ja) 処理液、容器用鋼板、および、容器用鋼板の製造方法
JP2014231631A (ja) 容器用鋼板
JP2016145425A (ja) 処理液、および、容器用鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016502097

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20167030443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201607622

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791930

Country of ref document: EP

Kind code of ref document: A1