WO2015173868A1 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
WO2015173868A1
WO2015173868A1 PCT/JP2014/062620 JP2014062620W WO2015173868A1 WO 2015173868 A1 WO2015173868 A1 WO 2015173868A1 JP 2014062620 W JP2014062620 W JP 2014062620W WO 2015173868 A1 WO2015173868 A1 WO 2015173868A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
absence
time
control
housing
Prior art date
Application number
PCT/JP2014/062620
Other languages
English (en)
French (fr)
Inventor
伊藤 慎一
恵美 竹田
正樹 豊島
守 濱田
吉川 利彰
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016518999A priority Critical patent/JP6270996B2/ja
Priority to PCT/JP2014/062620 priority patent/WO2015173868A1/ja
Publication of WO2015173868A1 publication Critical patent/WO2015173868A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioner.
  • the air conditioner sets the compressor frequency of the air conditioner according to the fluctuation of the indoor temperature before the operation, and reaches the set temperature at the set time.
  • the air conditioning load cannot be accurately estimated only by the indoor air temperature.
  • the compressor frequency will be increased excessively, resulting in a result that is contrary to energy saving, and the room temperature is far from the set temperature at the set time, and comfort is impaired. There was a possibility.
  • Patent Document 2 the temperature difference between the upper and lower sides of the enclosure is used for air conditioning control, and the air conditioning load can be accurately grasped by considering the thermal load state of the enclosure, enabling effective air conditioning control for energy saving. It is. Therefore, it seems that it is effective to some extent when the control of Patent Document 2 is applied to the control in the absence. However, when the operation of the air conditioner is stopped in the absence, the room air conditioning load at the start of the occupancy varies depending on the housing performance, so there is room for improvement.
  • the present invention has been made to solve the above-described problems, and by performing air-conditioning control in consideration of the housing performance when absent, it is possible to reduce air-conditioning power consumption while ensuring comfort.
  • An object is to provide an air conditioner.
  • An air conditioner includes an air conditioner that blows temperature-adjusted air to a space to be air-conditioned, a housing performance acquisition unit that acquires a housing performance based on a heat storage amount of the housing that constitutes the air-conditioning space, and an air conditioning target space.
  • Absence information acquisition means for acquiring absence time when a person is absent, load prediction means for calculating an air conditioning load that is predicted to occur in the air-conditioning target space from the start of absence to the set time after the absence time, and set at the set time
  • Air-conditioning control means for performing absence control for operating the air-conditioning means during the absence time so as to reach the temperature, the air-conditioning control means acquired by the predicted air-conditioning load obtained by the load prediction means and the chassis performance acquisition means Absence control is performed based on the housing performance.
  • FIG. 6 is a diagram comparing the present control and conventional control under Condition 1-Aa of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the present control and conventional control under Condition 1-Ba in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 2-Aa of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the present control and conventional control under condition 2-Ba of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 1-Ab in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 1-BB of FIG.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 2-Ab of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 2-Bb in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and conventional control under Condition 1-Ac in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the main control and the conventional control under condition 1-Bc in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the present control and the conventional control under condition 2-Ac in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 6 is a diagram comparing the present control and conventional control under condition 2-Bc of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 1 is a device layout diagram of the air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner includes a heat source device 10 and an indoor unit 20.
  • the heat source unit 10 and the indoor unit 20 are connected by a pipe 100 and are configured so that the refrigerant circulates.
  • the heat source device 10 and the indoor unit 20 are connected by a transmission line 101, and the indoor unit 20 and the external control means 41 are also connected by the transmission line 101.
  • the number of connected indoor units 20 is one, but the number of connected units is arbitrary depending on the outdoor functional capability and the required air conditioning capability, and the number is not limited.
  • the indoor unit 20 cools or heats the air-conditioning target space a
  • the air supply of the indoor unit 20 may be supplied to a large number of spaces by a duct, and the air conditioning range of the indoor unit 20 is not limited. .
  • the room temperature detection means 1A is a means for detecting the room temperature of the air-conditioning target space a.
  • sensor information of devices arranged in the air-conditioning target space a may be used.
  • the room temperature detection unit 1 ⁇ / b> A may be a suction temperature sensor disposed inside the indoor unit 20.
  • the sensor value detected with the temperature sensor is mentioned later via a wire and wireless communication. May be transmitted to the external control means 41.
  • the arrangement place of the room temperature detection means 1A and the communication means for transmitting the sensor value from the room temperature detection means 1A to the external control means 41 are not limited.
  • the absence information acquisition means 50 is a means for obtaining the absence information (absence time) of the user.
  • the absence information acquisition means 50 collects the usage information of one or a plurality of devices existing in the air-conditioning target space a, and the absence time based on the collected information.
  • the absence information acquisition means 50 is information on the use of equipment existing in the air-conditioning target space a, for example, equipment such as an air conditioner or lighting, human detection information using an infrared human sensor, and indoor door opening / closing information. Collect life patterns of users, etc. Then, the absence time may be acquired based on the at least one piece of information.
  • the absence time may be set as 7 hours. Further, the absence time may be acquired by communication with an external device, or the absence time may be acquired by user input. Further, the user's occupancy information may be acquired, and the absence time may be acquired based on the occupancy information.
  • the capacity detection means 60 detects the compressor frequency, power consumption, and the like of the compressor 13 (see FIG. 2) arranged in the heat source apparatus 10, and obtains information on the current operating capacity with respect to the maximum capacity in use.
  • the capacity detection means 60 obtains and determines the device control signal of the air conditioner in addition to the compressor frequency, and may estimate from the set temperature and room temperature fluctuation, and does not limit the detection method and the arrangement position. .
  • the load predicting unit 70 is a unit that predicts and calculates the air conditioning load of the air conditioning target space a at a set time (specifically, for example, the occupancy start time).
  • This air conditioning load is a heat load with respect to the set temperature of the air conditioner.
  • the load predicting means 70 will eventually generate the predicted air conditioning load (the air conditioning load at the start of occupancy, that is, from the absence start to the start of occupancy) by the following methods (1) to (3) Air conditioning load to be calculated).
  • a predicted air conditioning load is calculated from air conditioner operation data for each past time.
  • a predicted air conditioning load is calculated from at least one of indoor temperature fluctuation, outdoor temperature fluctuation, solar radiation fluctuation, solar power generation amount and weather fluctuation information obtained from the outside. (3) Set from outside.
  • the chassis performance acquisition means 80 is a means for acquiring the chassis performance from the thermal insulation performance of the chassis, the solar radiation shielding performance of the chassis, and the like. Specifically, it is means for discriminating the housing performance based on the housing performance evaluation value, which is an index related to the heat storage amount of the housing constituting the air-conditioning target space a. A large amount of heat storage means that it is not easily cooled or warmed, and has a high housing performance.
  • the chassis performance acquisition means 80 acquires the chassis performance evaluation value by any of the following methods (1) to (4), and determines the threshold value of the acquired chassis performance evaluation value. It is determined whether the housing constituting the target space a corresponds to the housing performance in three stages of “low”, “medium”, and “high”.
  • a housing performance evaluation value is obtained by calculation using at least one of the material, thickness, and heat insulation characteristic value of the wall surface of the air-conditioning target space a.
  • An enclosure performance evaluation value is obtained by calculating based on any time series fluctuation value of the outside air temperature, the outer wall temperature of the air-conditioning target space a, and the amount of solar radiation, and the time series fluctuation of the room temperature or the room wall surface temperature.
  • a body performance evaluation value is obtained by calculation based on past operation data during air conditioning and at least one fluctuation value of past outside air temperature, solar radiation amount, and outer wall temperature.
  • the past operation data at the time of air conditioning corresponds to, for example, the outdoor temperature, the indoor temperature, and the change history of the compressor frequency in the past air conditioning operation.
  • (4) Obtain the frame performance evaluation value from the user's input.
  • the housing performance acquisition means 80 is a time-series temperature difference between the indoor wall surface and the outdoor wall surface (if the room temperature is delayed with respect to the wall surface temperature fluctuation, the heat insulating performance of the housing is high), the room temperature, and the outside air temperature. It is possible to detect the housing performance by calculating the heat load based on the amount of solar radiation. In addition, since the basic performance of the housing itself does not change with respect to the operation of the device, you may enter the basic performance (such as the wall thickness of the house, the specifications of the members, etc.) required to determine the housing performance, The detection method and means in the housing performance acquisition means 80 are not limited.
  • the threshold used for determining the housing performance varies depending on the condition of the air conditioning load in the room. Therefore, even in the same chassis, the chassis performance may be determined as “medium” in summer when the air conditioning load is high, and the chassis performance may be determined as “high” in autumn when the air conditioning load is low compared to summer. . This is because it is necessary to thicken the heat insulating material in order to determine that the housing performance is high in summer, and therefore, a threshold value for distinguishing between “medium” and “high” becomes high. In this way, whether the housing performance is “low”, “medium”, or “high”, depending on the air conditioning load, even in the same housing.
  • the chassis performance is defined as the chassis performance with respect to the air conditioning load in Japan.
  • the air-conditioning load is mostly air-conditioning load due to solar radiation because the temperature difference between the indoor and outdoor is small. Therefore, the higher the solar radiation shielding ability of the enclosure, the smaller the air conditioning load, and the enclosure performance is high performance.
  • the air-conditioning load is mostly the ventilation load and the once-through load because the temperature difference between the indoor and outdoor is large. Therefore, the higher the housing airtightness and heat insulation of the housing, the smaller the air conditioning load and the higher the performance of the housing.
  • the housing performance increases, the amount of use (thickness) of the heat insulating material often increases, and the heat storage amount of the housing tends to increase as the heat insulating performance increases. Therefore, when evaluating the housing performance (that is, judging whether the housing performance is “low”, “medium”, or “high”), different methods may be used for cooling and heating. The evaluation results for each of these may not necessarily be the same. Moreover, the evaluation method in each of cooling and heating is not limited.
  • chassis performance acquisition means 80 how much heat storage performance building (house) is judged by the chassis performance acquisition means 80 as “frame performance: low”, “frame performance: medium”, and “frame performance: high”. Explain the guideline.
  • the room temperature detection means 1A, the absence information acquisition means 50, the capacity detection means 60, the load prediction means 70, and the housing performance acquisition means 80 described above may be incorporated in the air conditioner, or may be wired or wirelessly communicated. It has a means, and it may be constituted so that information can be acquired and transmitted. Each of these means may be configured in one device (for example, a notebook computer or a mobile phone with an Internet communication function) as long as it has communication means, or may be distributed among a plurality of devices. The number of device configurations may not be limited.
  • FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the heat source device 10 includes a compressor 13 that compresses a refrigerant, a heat exchanger 11, a blower unit 12, a throttle unit 14, and a four-way valve 15.
  • the indoor unit 20 includes a heat exchanger 21 and a blowing unit 22 that sends out air toward the heat exchanger 21.
  • the air conditioning system includes a compressor 13, a four-way valve 15, a heat exchanger 11, a throttle means 14, and a heat exchanger 21, and includes a refrigerant circuit through which the refrigerant circulates.
  • the four-way valve 15 changes the flow direction of the refrigerant.
  • the refrigeration cycle 1000 is configured so that the cooling operation or the heating operation can be performed by switching.
  • the air-conditioning means which concerns on this invention which blows the temperature-controlled air to the air-conditioning object space a by the compressor 13, the heat exchanger 11, the ventilation means 12, 22, the throttle means 14, and the four-way valve 15. 16 (see FIG. 3 to be described later. In FIG. 3, the heat exchanger 11 is omitted).
  • the compressor 13 is a compressor capable of changing an operation capacity (compressor frequency), and is a positive displacement compressor driven by a motor (not shown) controlled by an inverter.
  • the number of compressors 13 is not limited to one, and two or more compressors may be connected in parallel or in series.
  • the heat exchangers 11 and 21 are condensers that condense the refrigerant or evaporators that evaporate the refrigerant.
  • the heat exchangers 11 and 21 are cross fin type fin-and-tube heat exchangers each including a heat transfer tube and a large number of fins.
  • the air blowing means 12 is a fan capable of changing the flow rate of air supplied to the heat exchanger 11.
  • the air blowing means 22 is a fan capable of changing the flow rate of air supplied to the heat exchanger 21.
  • the air blowing means 12 and 22 are a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor.
  • the throttle means 14 is capable of adjusting the flow rate of the refrigerant flowing in the refrigerant circuit, etc., and is an electronic expansion valve that can adjust the aperture of the throttle by a stepping motor (not shown). It is a mechanical expansion valve or capillary tube that employs a diaphragm.
  • the four-way valve 15 is a valve for switching the direction of the refrigerant flowing through the heat exchangers 11 and 21.
  • the four-way valve 15 is switched to the dotted line side in FIG. 2, and the refrigerant circuit in which the refrigerant flows in the order of the compressor 13, the four-way valve 15, the heat exchanger 11, the throttle means 14, and the heat exchanger 21 is arranged.
  • the four-way valve 15 is switched to the solid line side in FIG. 2, and the refrigerant circuit in which the refrigerant flows in the order of the compressor 13, the four-way valve 15, the heat exchanger 21, the throttle means 14, and the heat exchanger 11.
  • refrigerant examples include HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium.
  • a discharge temperature sensor 1a is provided on the discharge side of the compressor 13, and a suction temperature sensor 1b is provided on the suction side.
  • the air conditioning system also includes a temperature sensor 1c that detects the temperature of the refrigerant flowing into the heat exchanger 11, and a temperature sensor 1d that detects the temperature of the refrigerant flowing out of the heat exchanger 11.
  • the air conditioning system also includes a temperature sensor 1e that detects the temperature of the refrigerant flowing into the heat exchanger 21 and a temperature sensor 1f that detects the temperature of the refrigerant flowing out of the heat exchanger 21.
  • the air conditioning system further includes a temperature sensor 1 g on the air suction side of the heat exchanger 11 and a temperature sensor 1 h on the air suction side of the heat exchanger 21.
  • the temperature detected by the temperature sensor 1g is used as the outside air temperature in the following control.
  • FIG. 3 is a control block diagram of the air conditioner of FIG.
  • the air conditioner includes a control unit 30 that controls the entire air conditioner.
  • the control means 30 is composed of, for example, a microcomputer and includes a CPU, a RAM, a ROM, and the like, and a control program is stored in the ROM.
  • the absence information acquisition means 50, the capacity detection means 60, the load prediction means 70, the chassis performance acquisition means 80, and the air conditioning control means 40 are functionally configured by the CPU and the control program.
  • the room temperature detection means 1A is used as a means for acquiring a sensor value acquired by another device arranged in the room
  • the room temperature detection means 1A is similarly functionally configured by a CPU and a control program. It corresponds to that.
  • the air conditioning control means 40 is configured by being divided into an external control means 41 arranged indoors, a heat source machine control means 42 arranged in the heat source machine 10, and an indoor unit control means 43 arranged in the indoor unit 20, The air conditioning means 16 is controlled in cooperation with each other.
  • the control means 30 is connected so as to acquire the detection temperatures of the temperature sensors 1a to 1h and the detection temperature of the room temperature detection means 1A.
  • the control means 30 has normal control (cooling and heating) for controlling each part so as to maintain the air-conditioning target space a at the set temperature, and absence control.
  • the absence control is an air conditioning control that is performed during the absence time of the user who uses the air-conditioning target space a, and is an operation that controls the air-conditioning means 16 so that the air-conditioning target space a reaches the set temperature at the set time (the occupancy start time). is there. Note that after the absence control is completed (that is, after the absence time is completed), the control returns to the normal control.
  • the first embodiment is characterized in that the absence control is performed based on the air conditioning load at the start of occupancy obtained by the load predicting means 70 and the chassis performance acquired by the chassis performance acquiring means 80. This point will be explained again.
  • the air conditioner starts operation of the compressor 13 at a predetermined frequency in accordance with a user operation start command.
  • operation modes such as cooling and heating are simultaneously set.
  • the air conditioner is operated so that the room temperature detected by the room temperature detecting means 1A becomes the set temperature.
  • the frequency of the compressor 13 is increased to increase the cooling capacity and heating capacity of the air conditioner so that the convergence to the set temperature is accelerated.
  • the frequency of the compressor 13 is lowered to reduce the cooling capacity and heating capacity of the air conditioner, avoiding excessive cooling and heating of the room. Stabilize the room temperature.
  • the air conditioner stops the operation of the compressor 13 when the room temperature reaches the set temperature.
  • a predetermined temperature for example, 1 ° C.
  • the heat load when air conditioning is performed, the heat load includes an air heat load that enters through heat transfer such as ventilation from the outside to the room, and a frame that corresponds to the heat capacity of the frame (such as a ceiling or wall) that forms the room. There is a heat load.
  • the air conditioning load is further affected by the housing performance in addition to these thermal loads.
  • FIG. 4 is a diagram showing an air conditioning load for each case performance according to the first embodiment of the present invention.
  • a case is considered in which there is no change in the set temperature Tset within a certain period of time, and there is no change in the outside air temperature Tout (assuming no load change).
  • the air conditioning load decreases as the housing performance is higher.
  • the device efficiency is the same, the higher the housing performance, the less. For this reason, if the housing performance is high, the load processing amount is small, so that energy is saved under stable conditions.
  • the air conditioning load is affected by the housing performance as described above, if the operation of the compressor 13 is stopped in the absence of the air conditioning load, the air conditioning load at the start of the occupancy differs depending on the housing performance. If the absence time is long, the compressor 13 is stopped at the start of the absence, and the operation of the compressor 13 is restarted from some time before the start of the stay, thereby efficiently loading the air conditioning load at the start of the stay. It can be processed. However, when the absence time is short, it may be more effective for energy saving to continue the operation without stopping the compressor 13 during the absence time. Therefore, it is effective to consider the absence time when performing the absence control.
  • absence control is performed in consideration of the housing performance, the absence time, and the air conditioning load at the start of the room.
  • operation is resumed when absent, or continuous operation is performed even when absent, thereby avoiding an increase in the capacity of the operation and realizing both efficiency of equipment and reduction of air conditioning load.
  • the absence control is performed by selecting a corresponding control pattern according to the combination of the housing performance, the absence time, and the air conditioning load at the start of the presence of the room.
  • FIG. 5 is a table showing the classification of elements (housing performance, absence time, load at room start) that determine the control pattern of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • “ ⁇ ” is indicated for the cell for the condition for selecting the first control pattern
  • “ ⁇ ” is indicated for the cell for the condition for selecting the second control pattern
  • the third control pattern is selected.
  • the condition cell is indicated by “ ⁇ ”.
  • the threshold value Tth may be a fixed value set by the user, may be set in consideration of the outside air temperature, the amount of solar radiation, and the like, and does not limit the setting method. For example, you may set as follows. After stopping the air conditioner, the room temperature rises under the influence of the outdoor environment, and then reaches an equilibrium state in which there is no or almost no temperature change. Therefore, the time until the room temperature becomes close to the equilibrium state may be set as the threshold value Tth.
  • the magnitude of the air conditioning load at the start of occupancy is determined by the amount of solar radiation, the amount of heat stored in the enclosure, and the outside air temperature. Specifically, the indoor temperature at the start of occupancy is predicted based on the amount of solar radiation, the amount of heat stored in the enclosure, and the outside air temperature, and if this predicted indoor temperature is higher than the outside air temperature at the start of absence, the air conditioning load at the start of occupancy Judge that it is big. On the other hand, when the predicted indoor temperature is equal to or lower than the outside air temperature at the start of absence, it is determined that the air conditioning load at the start of the stay is small. It is also possible to determine the air conditioning load using the capacity detecting means 60. Specifically, the operating capacity of the compressor 13 with respect to the set temperature is detected, and the magnitude of the air conditioning load is determined from the capacity ratio with respect to the maximum compressor capacity. It may be determined, and the determination method of the magnitude of the air conditioning load is not limited.
  • 1st control pattern is a pattern selected when a housing performance is low or high, The content is demonstrated below.
  • the operation time of the compressor 13 before the start of occupancy is determined based on the predicted air conditioning load predicted by the load prediction means 70 and the compressor frequency f1, and the operation time is subtracted from the occupancy time.
  • This is a control pattern for operating the compressor 13 at the compressor frequency f1 at time (operation restart time).
  • This operation time corresponds to the operation time required to load the predicted air conditioning load by operating the compressor 13 at the compressor frequency f1 to obtain the set temperature Tset at the start of occupancy.
  • the compressor frequency f1 is a frequency at which the air-conditioning apparatus can process the air-conditioning load at the start of occupancy with high efficiency.
  • the compressor frequency f1 is set with a target of about half of the compressor frequency at the time of resuming operation in the conventional control (control for stopping the operation of the compressor 13 at the start of absence and restarting the operation of the compressor 13 at the start of occupancy). Is done.
  • the second control pattern is “when the housing performance is medium and the result of the determination of the absence time is long” and “the case performance is medium and the absence time is long or short. This is a pattern selected when the determination result is short and the determination result of the predicted air conditioning load is small. The contents will be described below.
  • the second control pattern determines the operation time of the compressor 13 before the start of occupancy based on the predicted air conditioning load predicted by the load prediction means 70 and the compressor frequency f2 ( ⁇ f1), and the operation is started from the occupancy time. This is a control pattern in which the compressor 13 is operated at the compressor frequency f2 at the time when the time is subtracted (operation restart time).
  • the second control pattern is a pattern that operates at a lower capacity and longer than the first control pattern.
  • the third control pattern is a control pattern in which the control of the compressor 13 performed before the absence time is continuously performed during the absence time. This third control pattern is selected when the housing performance is medium, the determination result of the absence / absence time is short, and the determination result of the predicted air conditioning load is large. Note that the operation start time in the case of the third control pattern is equal to the absence start time.
  • FIG. 6 is a flowchart showing the operation of the air conditioner of FIG.
  • the air conditioning control means 40 acquires the absence information from the absence information acquisition means 50 (S1). Moreover, the air-conditioning control means 40 acquires the chassis performance from the chassis performance acquisition means 80 (S2). In addition, the air conditioning control means 40 acquires the air conditioning load at the start of occupancy from the load prediction means 70 (S3). Then, the air conditioning control means 40 checks whether the housing performance of the housing constituting the air-conditioning target space a is “low”, “medium”, or “high” (S4). In this case, the first control pattern is selected (S5).
  • the air conditioning control means 40 determines whether the absence time is “short” and the air conditioning load at the start of occupancy is “large” (S6). If there is, the second control pattern is selected (S7). On the other hand, the air-conditioning control means 40 selects a 3rd control pattern, when it is YES in step S6 (S8).
  • the air conditioning control means 40 executes the flowchart of FIG. 6 at the timing before the start of absence, selects one of the first to third control patterns, and performs control according to the selected control pattern when the absence time is reached.
  • the timing of selecting any of the first to third control patterns by executing the flowchart of FIG. 6 is the timing before the start of absence.
  • the operation times ⁇ 1 and ⁇ 2 may be updated using the predicted air conditioning load predicted at that time.
  • the conventional control is a control for stopping the operation of the compressor 13 at the start of absence and restarting the operation of the compressor 13 at the start of occupancy.
  • the compressor frequency at the time of restarting operation is the room temperature T and the set temperature Tset. It is determined from the difference in temperature.
  • FIG. 7 is a diagram comparing the present control and the conventional control under the condition 1-AA of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 8 is a diagram comparing the present control and the conventional control under Condition 1-Ba of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 9 is a diagram comparing the present control and the conventional control under the condition 2-AA of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 10 is a diagram comparing the present control and the conventional control under the condition 2-Ba of FIG. 5 with room temperature fluctuations and power consumption fluctuations. 7 to 10, the horizontal axis represents time, the vertical axis represents temperature, and in FIGS. 7 to 10, the thick dotted line represents conventional control, and the thick solid line represents main control. This also applies to FIGS. 11 to 18 described later.
  • the operation time ⁇ 1 before the start of occupancy can be expressed as a function of the difference between the room temperature and the set temperature and the space volume.
  • operating the compressor 13 during the absence time increases the total load processing amount. Therefore, only when the housing performance is low, the operation time ⁇ may be calculated at a frequency larger than the compressor frequency that the air conditioner can process with high efficiency.
  • FIG. 11 is a diagram comparing the present control and the conventional control under the condition 1-Ab of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • the temperature rise during the absence time when the absence time is short (FIGS. 13 and 14) is When the housing performance is low (FIGS. 9 and 10), it is less than the room temperature increase during the absence time. On the other hand, when the absence time is long, the room temperature rise during the absence time is short for both the housing having the medium performance (FIGS. 11 and 12) and the low housing (FIGS. 7 and 8). It is larger than the temperature rise range of (FIGS. 9, 10, 13, and 14), and is equal to or higher than the outside air temperature Tout.
  • Houses with medium housing performance have improved housing performance compared to houses with low housing performance, so the load that flows from the housing into the room per hour is less than houses with low housing performance. That is, the air conditioning load detected by the load predicting means 70 is smaller than that of a house having a low housing performance. For this reason, as apparent from a comparison between FIGS. 11 to 14 and FIGS. 9 to 12, the absence time operation time ⁇ 2 is longer than the operation time ⁇ 1, but the load processing amount can be reduced. It is. Therefore, during the absence time when the chassis performance is medium, the operating capacity can be reduced and load processing can be performed with higher efficiency than when the chassis performance is low.
  • the capacity is lower than that of the conventional control in which the air conditioning operation is started after the start of occupancy.
  • the load can be processed even in the highly efficient operation that has been realized, and energy saving is possible.
  • FIG. 12 is a diagram comparing the main control and the conventional control under the condition 1-BB of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 13 is a diagram comparing the present control and the conventional control under the condition 2-Ab of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • the method of setting the threshold Tth for distinguishing the length of the absence time is not limited to a specific method.
  • the chassis It is desirable to use different threshold values Tth for medium-performance houses and low-performance houses. Specifically, for example, when the housing performance is medium, the air conditioning load at the start of occupancy is greater than or equal to the air conditioning load at the start of occupancy. It is desirable to define the threshold Tth as the time during which the load processing amount is within 90% of the load amount processed by the conventional control.
  • FIG. 14 is a diagram comparing the present control and the conventional control under the condition 2-BB of FIG. 5 with room temperature fluctuations and power consumption fluctuations. (Main control: third control pattern) Even when the absence time is short, if the air conditioning load at the start of the occupancy is small, the air conditioning apparatus is stopped once after the absence starts to reduce the processing load amount at the absence. As is clear from FIG. 14, energy saving is achieved as compared with the conventional control by resuming the operation from the operation start time before the operation time ⁇ 2 from the start of occupancy.
  • FIG. 15 is a diagram comparing the main control and the conventional control under the condition 1-Ac in FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 16 is a diagram comparing the present control and the conventional control under Condition 1-Bc of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 17 is a diagram comparing the present control and the conventional control under the condition 2-Ac of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • FIG. 18 is a diagram comparing the present control and the conventional control under condition 2-Bc of FIG. 5 with room temperature fluctuations and power consumption fluctuations.
  • the occupancy information may be set not only based on the information on the air-conditioning target space a but also based on the life pattern of the entire home.
  • a HEMS Home Energy Management System
  • the occupancy information is processed by the system. Then, the occupancy information may be transmitted to the air conditioner and used for the absence control in this example.
  • Embodiment 1 the operation operation during cooling has been described, but the same can be applied during heating operation.
  • the air conditioning load is set to increase as the outside air temperature decreases or the solar radiation decreases.
  • the air conditioner of the first embodiment can improve comfort while reducing air-conditioning power consumption by controlling the air-conditioning operation in the absence from the housing performance and load state.
  • the air conditioner of the first embodiment can improve comfort while reducing air-conditioning power consumption by controlling the air-conditioning operation in the absence from the housing performance and load state.
  • not only the room temperature but also the amount of heat stored in the housing is taken into account for air conditioning control, reducing the amount of time during which the air conditioning load is excessive. Because it improves, energy saving is possible.
  • the processing load of the air conditioner is leveled by performing the absence control described above, the peak power consumption can be cut. Therefore, even when a usage amount suppression instruction (demand) is generated from the power supply side, it is possible to operate the air conditioning while maintaining comfort.
  • the operation of the compressor 13 is stopped when the absence start time is reached.
  • the present invention is not limited to stopping the operation of the compressor 13 at the absence start time, and the following control may be performed. That is, at the absence start time, the compressor temperature is lowered by forcibly lowering the set temperature Tset from the present led by the control means 30, and the operation of the compressor 13 is continued in a state where the processing load amount at the absence is reduced. You may do it.
  • the operation of the compressor 13 is resumed at the compressor frequency f1 before the operation time at the start of occupancy. If the second control pattern is used, the operation time before the occupancy start is started. The operation of the compressor 13 may be resumed at the compressor frequency f1.
  • 1A room temperature detection means 1a temperature sensor (discharge temperature sensor), 1b temperature sensor (suction temperature sensor), 1c temperature sensor, 1d temperature sensor, 1e temperature sensor, 1f temperature sensor, 1g temperature sensor, 1h temperature sensor, 10 heat source machine 11 heat exchanger, 12 air blowing means, 13 compressor, 14 throttling means, 15 four-way valve, 16 air conditioning means, 20 indoor units, 21 heat exchanger, 22 air blowing means, 30 control means, 40 air conditioning control means, 41 external Control means, 42 Heat source unit control means, 43 Indoor unit control means, 50 Absence information acquisition means, 60 Capacity detection means, 70 Load prediction means, 80 Housing performance acquisition means, 100 piping, 101 transmission line, 1000 refrigeration cycle, a air conditioning Target space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 温度調整した空気を空調対象空間に送風する空調手段16と、空調対象空間aを構成する躯体の蓄熱量に基づく躯体性能を取得する躯体性能取得手段80と、空調対象空間aに人が不在となる不在時間を取得する不在情報取得手段50と、不在開始から不在時間後の設定時刻までに空調対象空間aに発生すると予測される空調負荷を演算する負荷予測手段70と、設定時刻に設定温度になるように、不在時間に空調手段16を運転させる不在制御を行う空調制御手段40とを備え、空調制御手段40は、負荷予測手段70で得られた予測空調負荷と、躯体性能取得手段80で取得された躯体性能とに基づいて不在制御を行う。

Description

空調装置
 本発明は、空調装置に関するものである。
 従来、空調装置は使用者からの指示によって運転制御を実施していた。近年では在室前に前もって空調装置の運転を開始させ、予め設定した設定時刻(在室開始時刻)に室温が設定温度になるように予冷、予暖運転を実施し、快適性を向上させる制御(特許文献1参照)がある。また、空調対象の建物の躯体内の上下温度差を検知し、空調装置の圧縮機周波数と風量とを変更してその温度差を抑制し、在室時の快適性を向上させる制御(特許文献2参照)がある。
特公平7-107459号公報(請求項1) 特許4478082号公報明細書(請求項1)
 上記の特許文献1において空調装置は、運転前の室内温度の変動に応じて空調装置の圧縮機周波数を設定し、設定時刻に設定温度に到達するようにしている。しかし、近年では住宅の断熱性能、気密性の向上から、室内の空気温度のみでは空調負荷を正確に想定できない状況が発生している。このため、室内の空調負荷を例えば実際よりも大きく想定した場合、過剰に圧縮機周波数を上げることになり省エネに反した結果となり、また、設定時刻に設定温度から離れた室温となり快適性を損ねる可能性があった。
 特許文献2では、躯体内の上下温度差を空調制御に使用しており、躯体の熱負荷状態を考慮することで空調負荷を正確に把握することができ、省エネに効果的な空調制御が可能である。よって、特許文献2の制御を不在時の制御に適用した場合、ある程度、効果的であると思われる。しかし、不在時に空調装置の運転を停止した場合、在室開始時の室内の空調負荷は躯体性能に応じて変わってくるため、改善の余地があった。
 本発明は、上記のような課題を解決するためになされたものであり、不在時に躯体性能を考慮した空調制御を行うことで、快適性を確保しながら空調消費電力を低減することが可能な空調装置を提供することを目的とする。
 本発明に係る空調装置は、温度調整した空気を空調対象空間に送風する空調手段と、空調対象空間を構成する躯体の蓄熱量に基づく躯体性能を取得する躯体性能取得手段と、空調対象空間に人が不在となる不在時間を取得する不在情報取得手段と、不在開始から不在時間後の設定時刻までに空調対象空間に発生すると予測される空調負荷を演算する負荷予測手段と、設定時刻に設定温度になるように、不在時間に空調手段を運転させる不在制御を行う空調制御手段とを備え、空調制御手段は、負荷予測手段で得られた予測空調負荷と、躯体性能取得手段で取得された躯体性能とに基づいて不在制御を行うものである。
 本発明によれば、快適性の確保と空調消費電力の低減とが可能となる。
本発明の実施の形態1に係る空調装置の機器配置図である。 本発明の実施の形態1に係る空調装置の冷媒回路図である。 図1の空調装置の制御ブロック図である。 本発明の実施の形態1に係る躯体性能ごとの空調負荷を示す図である。 本発明の実施の形態1に係る空調装置の制御パターンを決定する要素(躯体性能、不在時間、在室開始時負荷)の分類を示す表である。 図1の空調装置の動作を示すフローチャートである。 図5の条件1-A-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件1-B-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-A-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-B-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件1-A-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件1-B-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-A-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-B-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件1-A-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件1-B-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-A-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。 図5の条件2-B-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
実施の形態1.
[システム構成]
 図1は、本発明の実施の形態1に係る空調装置の機器配置図である。
 空調装置は、熱源機10と室内機20とを備えている。熱源機10と室内機20とは配管100で接続されており、冷媒が循環するように構成されている。また、熱源機10と室内機20とは伝送線101で接続されており、室内機20と外部制御手段41との間も伝送線101で接続されている。また、図1では室内機20の接続台数は1台であるが、室外機能力、必要空調能力に応じて接続台数は任意であり、台数を限定するものではない。また、室内機20は空調対象空間aを冷房もしくは暖房しているが、室内機20の給気をダクトで多数の空間に供給してもよく、室内機20の空調範囲を限定するものではない。
 室温検知手段1Aは、空調対象空間aの室温を検知する手段である。例えばセンサによる室温検知などを利用する他、空調対象空間aに配置された機器のセンサ情報を利用してもよい。例えば、室温検知手段1Aは、室内機20内部に配置された吸込み温度センサでもよい。室温検知手段1Aとして、室内に配置された機器のうち、温度センサを配置している機器の温度センサを用いる場合には、その温度センサで検知したセンサ値を、有線、無線通信を介して後述の外部制御手段41に送信すればよい。このように、室温検知手段1Aの配置場所、室温検知手段1Aから外部制御手段41へセンサ値を送信する通信手段を限定するものではない。
 不在情報取得手段50は、使用者の不在情報(不在時間)を得る手段であり、例えば空調対象空間aに存在する一又は複数の機器の使用情報を収集し、収集した情報に基づいて不在時間を取得する。具体的には例えば、不在情報取得手段50は、空調対象空間aに存在する機器、例えば空調装置や照明などの機器の使用情報、赤外線の人感センサなどによる人検知情報、室内ドアの開閉情報、など使用者の生活パターンを収集しておく。そして、それらの少なくとも一つの情報に基づいて不在時間を取得してもよい。また、例えば、所定期間の平均的な空調装置の停止時間又は前日の空調装置の停止時間が、AM10:00~PM17:00までの場合、不在時間を7時間として設定すればよい。また、外部機器との通信により不在時間を取得してもよいし、使用者の入力により不在時間を取得してもよい。また、使用者の在室情報を取得し、その在室情報に基づいて不在時間を取得してもよい。
 容量検知手段60は、熱源機10に配置されている圧縮機13(図2参照)の圧縮機周波数、消費電量などを検知し、使用上の最大容量に対する現状運転容量の情報を得る。容量検知手段60は、圧縮機周波数以外にも空調装置の機器制御信号を取得して判定する他、設定温度と室温変動とから推定してもよく、検知方法、配置位置を限定するものではない。
 負荷予測手段70は、設定時刻(具体的には例えば在室開始時刻)における空調対象空間aの空調負荷を予測演算する手段である。この空調負荷は空調装置の設定温度に対する熱負荷であり、ここでは、具体的には貫流負荷、換気負荷、日射負荷、躯体蓄熱負荷、人体発熱による負荷、空調対象空間a内に配置された熱源による負荷等の総和となる。そのため、負荷予測手段70は、内外温度差、日射量、躯体温度、換気量、在室人数、室内配置機器の運転状態を取得もしくは事前に入力し、熱負荷を計算する。また、熱負荷総量が分かればよいため、個々の負荷量を計算する必要は必ずしも必要ない。よって、熱負荷総量は、過去の空調装置運転履歴と外気状態との関係から推定して検知することも可能であり、検知手段、方法を限定するものではない。
 負荷予測手段70は上記の内容も含めると、結局のところ以下の(1)~(3)の方法で予測空調負荷(在室開始時の空調負荷、すなわち不在開始から在室開始時までに発生する空調負荷)を演算することができる。
(1)過去の時間ごとの空調装置運転データから予測空調負荷を演算する。
(2)室内温度変動と、室外温度変動、日射量変動、太陽光発電量及び外部より得られる天候変動情報のうち少なくとも一つとから予測空調負荷を演算する。
(3)外部より設定する。
 躯体性能取得手段80は、躯体の断熱性能、躯体の日射遮蔽性能等から躯体性能を取得する手段である。具体的には、空調対象空間aを構成する躯体の蓄熱量に関する指標である躯体性能評価値に基づいて躯体性能を判別する手段である。蓄熱量が多いということは、簡単に冷えたり暖かくなったりしないということであり、躯体性能が高いということになる。
 躯体性能取得手段80は、以下の(1)~(4)の何れかの方法によって躯体性能評価値を取得し、取得した躯体性能評価値を閾値判別することで、本実施の形態1では空調対象空間aを構成する躯体が、「低」、「中」、「高」の3段階の何れの躯体性能に該当するかを判別する。
(1)空調対象空間aの壁面の材質、厚み、断熱特性値の少なくとも一つを用いて演算して躯体性能評価値を取得する。
(2)外気温度、空調対象空間aの外壁温度、日射量の何れかの時系列変動値と室内温度又は室内壁面温度の時系列変動とに基づいて演算して躯体性能評価値を取得する。
(3)過去の空調時の運転データと、過去の外気温度、日射量、外壁温度の少なくとも一つの変動値とに基づいて演算して躯体性能評価値を取得する。過去の空調時の運転データとは、例えば過去の空調運転の室外温度と室内温度と圧縮機周波数の変動履歴とが該当する。
(4)使用者の入力から躯体性能評価値を取得する。
 躯体性能取得手段80は、具体的には、室内壁面と室外壁面との時系列温度差(室温が壁面温度変動に対して遅れがあれば、躯体の断熱性能が高い)、室内温度、外気温度、日射量に基づいて熱負荷を計算することで躯体性能を検知することが可能となる。また、躯体そのものの基本性能自体は機器動作に対して変動するものではないので、躯体性能の判別に必要となる基本性能(住宅の壁面厚さ、部材の仕様等)を入力してもよく、躯体性能取得手段80における検知方法、手段を限定するものではない。
 ここで、躯体性能の判別に用いる閾値は室内の空調負荷の状態によって変化する。よって、同じ躯体であっても、空調負荷が高い夏には躯体性能が「中」と判別され、空調負荷が夏に比べて低い秋には躯体性能が「高」と判別されることがある。これは、夏であれば躯体性能が高いと判別するのには断熱材が厚い必要があり、それ故、「中」と「高」とを区別する閾値が高くなるためである。このように、同じ躯体であっても、躯体性能が「低」、「中」、「高」の何れとなるかは、空調負荷次第である。
 この点についてさらに説明する。ここでは、躯体性能は、日本国内の空調負荷に対する躯体性能として定義する。夏期において例えば室内27℃、室外35℃の場合、室内外温度差が小さいため、空調負荷は日射による空調負荷が大部分となる。そのため、躯体の日射遮蔽能力が高いほど空調負荷が小さくなり、躯体性能は高性能である。
 逆に冬期において例えば室内20℃、室外5℃とした場合、室内外温度差が大きいため、空調負荷は換気負荷、貫流負荷が大部分となる。そのため、躯体の住宅気密性、断熱性が高いほど空調負荷は小さくなり、躯体性能は高性能である。また、躯体性能が高くなると、断熱材の使用量(厚み)が多くなる場合が多く、躯体の蓄熱量は断熱性能が高いほど多くなる傾向にある。そのため、躯体性能を評価(つまり、躯体性能の「低」、「中」、「高」の判断)する際には冷房時と暖房時とで異なる方法を用いてもよく、冷房時と暖房時のそれぞれでの評価結果は必ずしも同一としなくてもよい。また、冷房時と暖房時のそれぞれにおける評価方法は限定されたものではない。
 ここで、どの程度の蓄熱性能の建物(住宅)が躯体性能取得手段80によって「躯体性能:低」、「躯体性能:中」、「躯体性能:高」と判断されることになるのか、その目安について説明しておく。
[躯体性能:低]
 断熱材を多く使用していない従来の住宅(目安としてQ値(熱損失係数)が3.0程度、日射量の約10%が熱負荷として住宅内に進入する)が「躯体性能:低」に該当する。「躯体性能:低」の躯体では、夏期冷房期(外気最高温度35℃想定)には短時間(Tth以下)で躯体温度が外気温度以上になる。
[躯体性能:中]
 断熱性を考慮し、断熱材を壁面に配置した住宅(Q値が2.0程度、日射量の5%程度が熱負荷として住宅内に侵入する)が「躯体性能:中」に該当する。「躯体性能:中」の住宅の特性としては、夏期冷房期(外気最高温度35℃想定)において、躯体温度が外気温度以上になるのにTth以上の時間を必要とする。
[躯体性能:高]
 外気、日射に基づく空調負荷が住宅内ではほとんど発生しない住宅(Q値が1.0以下、日射量の5%以下が熱負荷として住宅内に発生する)が「躯体性能:高」に該当する。「躯体性能:高」の住宅の特性としては、夏期冷房期(外気最高温度35℃想定)に躯体温度が外気温度以上になることが日照時間内ではほとんどない。
 以上に説明した室温検知手段1A、不在情報取得手段50、容量検知手段60、負荷予測手段70、躯体性能取得手段80は、空調装置内に組み込まれていても良いし、有線又は無線での通信手段を有し、情報取得、送信できるように構成されていてもよい。そして、これらの各手段は、通信手段を有するものであれば、一つの機器(例えばノートパソコン、インターネット通信機能付き携帯電話)内に構成されていてもよいし、複数の機器に分散して構成されていてもよいし、機器構成の個数を限定するものではない。
[冷媒回路構成]
 図2は、本発明の実施の形態1に係る空調装置の冷媒回路図である。
 熱源機10は、冷媒を圧縮する圧縮機13と、熱交換器11と、送風手段12と、絞り手段14と、四方弁15とを備えている。室内機20は、熱交換器21と、この熱交換器21に向けて空気を送出する送風手段22とを備えている。空気調和システムは、圧縮機13、四方弁15、熱交換器11、絞り手段14及び熱交換器21を有し、冷媒が循環する冷媒回路を備えており、四方弁15により冷媒の流れ方向を切り替えて冷房運転又は暖房運転が可能が冷凍サイクル1000が構成されている。なお、圧縮機13と、熱交換器11と、送風手段12、22と、絞り手段14と、四方弁15とにより、温度調整した空気を空調対象空間aに送風する、本発明に係る空調手段16(後述の図3参照。なお、図3において熱交換器11は省略)を構成している。
(圧縮機13)
 圧縮機13は、運転容量(圧縮機周波数)を可変することが可能な圧縮機であり、インバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機である。なお、本発明は圧縮機13の台数を1台に限定するものではなく、2台以上の圧縮機が並列もしくは直列に接続されたものであってもよい。
(熱交換器11、21)
 熱交換器11、21は、冷媒を凝縮させる凝縮器もしくは冷媒を蒸発させる蒸発器となるものである。熱交換器11、21は、伝熱管と多数のフィンとを備えたクロスフィン式のフィンアンドチューブ型熱交換器である。
(送風手段12、22)
 送風手段12は熱交換器11に供給する空気の流量を可変することが可能なファンである。また、送風手段22は熱交換器21に供給する空気の流量を可変することが可能なファンである。送風手段12、22はDCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等である。
(絞り手段14)
 絞り手段14は、冷媒回路内を流れる冷媒の流量の調節等が行うことが可能であり、ステッピングモータ(図示せず)により絞りの開度を調整することが可能な電子膨張弁、受圧部にダイアフラムを採用した機械式膨張弁又はキャピラリーチューブである。
(四方弁15)
 四方弁15は、熱交換器11、21を流れる冷媒の方向を切り替えるための弁である。室内を冷房する際には四方弁15は図2の点線側に切り替えられ、圧縮機13、四方弁15、熱交換器11、絞り手段14、及び熱交換器21の順に冷媒が流れる冷媒回路を構成する。室内を暖房する際には四方弁15は図2の実線側に切り替えられ、圧縮機13、四方弁15、熱交換器21、絞り手段14、及び熱交換器11の順に冷媒が流れる冷媒回路を構成する。
(冷媒)
 空調装置に用いられる冷媒は例えば、R410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、もしくは炭化水素、ヘリウムのような自然冷媒などがある。
[冷媒回路センサ配置]
 圧縮機13の吐出側には吐出温度センサ1a、吸入側には吸入温度センサ1bを備える。また、空気調和システムは、熱交換器11に流入する冷媒の温度を検出する温度センサ1cと、熱交換器11から流出する冷媒の温度を検出する温度センサ1dとを備える。また、空気調和システムは、熱交換器21に流入する冷媒の温度を検出する温度センサ1eと、熱交換器21から流出する冷媒の温度を検出する温度センサ1fとを備える。空気調和システムはさらに、熱交換器11の空気吸込み側に温度センサ1gを備え、また、熱交換器21の空気吸込み側に温度センサ1hを備える。温度センサ1gで検出された温度は、以下の制御において外気温度として用いられる。
[冷凍サイクル1000冷房動作]
 図2で冷凍サイクル1000の冷房動作を説明する。
 圧縮機13から吐出された冷媒は四方弁15を通過して熱交換器11へと流れる。熱交換器11はこのとき凝縮器として作用し、冷媒は空気と熱交換する際に凝縮液化し、絞り手段14へと流れる。冷媒は絞り手段14で減圧された後、蒸発器として機能する熱交換器21に流入し、冷媒は空気と熱交換して蒸発した後、四方弁15を通過して再び圧縮機13に吸入される。
[冷凍サイクル1000暖房動作]
 図2で冷凍サイクル1000の暖房動作を説明する。圧縮機13から吐出された冷媒は四方弁15を通過して熱交換器21へと流れる。熱交換器21はこのとき凝縮器として作用し、冷媒は空気と熱交換する際に凝縮液化し、絞り手段14へと流れる。冷媒は絞り手段14で減圧された後、蒸発器として機能する熱交換器11に流入し、冷媒は空気と熱交換して蒸発した後、四方弁15を通過して再び圧縮機13に吸入される。
[システム構成]
 図3は、図1の空調装置の制御ブロック図である。
 空調装置は、空調装置全体を制御する制御手段30を備えている。制御手段30は、例えばマイクロコンピュータで構成され、CPU、RAM及びROM等を備えており、ROMには制御プログラムが記憶されている。そして、CPUと制御プログラムとにより、不在情報取得手段50、容量検知手段60、負荷予測手段70、躯体性能取得手段80及び空調制御手段40が機能的に構成されている。また、室温検知手段1Aを、室内に配置された他の機器で取得したセンサ値を取得する手段とする場合には、室温検知手段1Aも同様に、CPUと制御プログラムとにより機能的に構成されたものに相当する。
 空調制御手段40は、室内に配置された外部制御手段41と、熱源機10に配置された熱源機制御手段42と、室内機20に配置された室内機制御手段43とに分けて構成され、互いに連携処理して空調手段16を制御する。
 制御手段30は、各温度センサ1a~1hの検知温度と室温検知手段1Aの検知温度とを取得できるように接続されている。制御手段30は、空調対象空間aを設定温度に維持するように各部を制御する通常制御(冷房、暖房)と、不在制御とを有している。不在制御は空調対象空間aを使用する使用者の不在時間に行う空調制御であり、空調対象空間aが設定時刻(在室開始時刻)に設定温度になるように空調手段16を制御する運転である。なお、不在制御終了後(つまり不在時間完了以降)は通常制御に戻る。
 本実施の形態1は、不在制御を、負荷予測手段70で得られた在室開始時の空調負荷と、躯体性能取得手段80で取得された躯体性能とに基づいて行う点に特徴があるが、この点については改めて説明する。
 次に、通常制御について説明する。
 空調装置は、使用者の運転開始指令により、所定周波数で圧縮機13を運転開始する。運転開始指令では、冷房、暖房などの運転モードも同時に設定される。そして、空調装置は室温検知手段1Aで検知された室温が、設定温度となるように運転する。その際、室温と設定温度との差温が大きい場合、圧縮機13の周波数を高くして空調装置の冷却能力、加熱能力を増大させ、設定温度への収束を速めるようにする。一方、室内温度と設定温度との温度差が小さい場合、圧縮機13の周波数を低くして空調装置の冷却能力、加熱能力を小さくし、室内が過剰に冷却、加熱されることを回避して室内温度の安定を図る。
 そして、空調装置は、室温が設定温度に到達すると、圧縮機13の運転を停止する。そして、室温と設定温度との温度差が所定温度(例えば1℃)以上となると、再び圧縮機13を起動して運転を再開する。使用者が在室中(空調装置がON中)、この動作が繰り返し行われる。
 次に不在制御について説明する。以下では、冷房時の例で説明する。一般に空調が行われる場合、熱負荷としては、室外から室内への換気等の熱伝達によって侵入する空気熱負荷の他、室内を構成する躯体など(天井や壁など。)の熱容量に応じた躯体熱負荷がある。そして、空調負荷はこれらの熱負荷に加えてさらに躯体性能の影響を受ける。
 図4は、本発明の実施の形態1に係る躯体性能ごとの空調負荷を示す図である。
 図4(A)に示すように、ある時間内において設定温度Tsetの変更が無く、且つ、外気温度Toutの変動(負荷変動もないと想定)もない場合について考える。この場合、図4(B)に示すように、躯体性能が高い方が空調負荷が少なくなる。また、消費電力も機器効率が同等であれば躯体性能が高い方が少なくなる。そのため、躯体性能が高ければ、負荷処理量が少なくて済むため、安定した条件下では省エネとなる。
 このように空調負荷は躯体性能の影響を受けるため、不在時に圧縮機13の運転を停止すると、躯体性能に応じて在室開始時の空調負荷が異なったものとなる。また、不在時間が長い場合には、不在開始時に圧縮機13を停止させ、在室開始時からある程度前から圧縮機13の運転を再開することで、在室開始時の空調負荷を効率良く負荷処理できる。しかし、不在時間が短い場合には、不在時間に圧縮機13を停止させずにそのまま運転を継続した方が省エネに効果的である場合もある。よって、不在制御を行うにあたり、不在時間も考慮することが有効である。
 そこで、本実施の形態1では、躯体性能と、不在時間と、在室開始時の空調負荷とを考慮して不在制御を行う。本実施の形態1では、不在時に運転再開するか、又は不在時にも連続運転することによって運転が高容量化することを回避し、機器効率と空調負荷削減との両立を実現する。具体的には、不在制御の制御パターンを3つ有し、躯体性能と、不在時間と、在室開始時の空調負荷との組み合わせに応じて該当の制御パターンを選択して不在制御を行う。
 図5は、本発明の実施の形態1に係る空調装置の制御パターンを決定する要素(躯体性能、不在時間、在室開始時負荷)の分類を示す表である。図5において、第1制御パターンが選択される条件のセルには「○」を示し、第2制御パターンが選択される条件のセルには「△」を示し、第3制御パターンが選択される条件のセルには「□」を示している。
 以下、図5における不在時間の長短、在室開始時の空調負荷の大小、躯体性能の高中低の判別方法について説明する。
[不在時間の長短]
 不在時間が閾値Tth以下の場合を短時間、不在時間が閾値Tth以上の場合を長時間とする。なお、この閾値Tthは、使用者が設定する固定値としてもよいし、外気温度、日射量などを考慮して設定してもよく、設定の方法を限定するものではない。例えば、以下のように設定してもよい。空調装置を停止後、室温は室外環境の影響を受けて上昇し、その後、温度変化が無い又はほとんどない状態を継続する平衡状態に至る。そこで、室温が平衡状態近くになるまでの時間を閾値Tthに設定してもよい。
[在室開始時の空調負荷の大小]
 在室開始時の空調負荷の大小は日射量、躯体蓄熱量及び外気温度によって決定する。具体的には、日射量、躯体蓄熱量及び外気温度に基づき在室開始時の室内温度を予測し、この予測室内温度が不在開始時の外気温度より高い場合、在室開始時の空調負荷が大きいと判断する。一方、予測室内温度が不在開始時の外気温度以下の場合、在室開始時の空調負荷が小さいと判別する。また、容量検知手段60を用いて空調負荷を判定することも可能であり、具体的には設定温度に対する圧縮機13の運転容量を検知し、最大圧縮機容量に対する容量比から空調負荷の大小を判定してもよく、空調負荷の大小の判定方法を限定するものではない。
[躯体性能の「低」、「中」、「高」]
 躯体性能の「低」、「中」、「高」の判別は上述の通りである。
 次に、第1制御パターン~第3制御パターンについて説明する。
(1)第1制御パターン
 第1制御パターンは、躯体性能が低又は高の場合に選択されるパターンであり、以下その内容について説明する。
 第1制御パターンは、負荷予測手段70で予測された予測空調負荷と圧縮機周波数f1とに基づいて在室開始前の圧縮機13の運転時間を決定し、在室時刻から運転時間を引いた時刻(運転再開時刻)に圧縮機周波数f1で圧縮機13を運転させる制御パターンである。この運転時間は、圧縮機13を圧縮機周波数f1で運転することにより予測空調負荷を負荷処理して在室開始時に設定温度Tsetにするのに要する運転時間に相当する。この圧縮機周波数f1は、在室開始時の空調負荷を空調装置が高効率で負荷処理できる周波数である。圧縮機周波数f1は従来制御(不在開始時に圧縮機13の運転を停止し、在室開始時に圧縮機13の運転を再開する制御)における、運転再開時の圧縮機周波数の半分程度を目処として設定される。
(2)第2制御パターン
 第2制御パターンは、「躯体性能が中で、且つ、不在時間の長短の判別結果が長である場合」及び「躯体性能が中で、且つ、不在時間の長短の判別結果が長が短であり、さらに予測空調負荷の大小の判別結果が小の場合」に選択されるパターンであり、以下その内容について説明する。
 第2制御パターンは、負荷予測手段70で予測された予測空調負荷と圧縮機周波数f2(<f1)とに基づいて在室開始前の圧縮機13の運転時間を決定し、在室時刻から運転時間を引いた時刻(運転再開時刻)に圧縮機周波数f2で圧縮機13を運転させる制御パターンである。第2制御パターンは、第1制御パターンよりも低容量で長く運転するパターンとなる。
(3)第3制御パターン
 第3制御パターンは、不在時間前に行っていた圧縮機13の制御を不在時間中も継続して行う制御パターンである。この第3制御パターンは、躯体性能が中で、且つ、不在時間の長短の判別結果が短であり、さらに、予測空調負荷の大小の判別結果が大である場合に選択される。なお、第3制御パターンの場合の運転開始時刻は不在開始時刻に等しいということになる。
 次に、上記構成の空調装置の動作を説明する。
 図6は、図1の空調装置の動作を示すフローチャートである。
 空調制御手段40は不在情報取得手段50から不在情報を取得する(S1)。また、空調制御手段40は躯体性能取得手段80から躯体性能を取得する(S2)。また、空調制御手段40は負荷予測手段70から在室開始時の空調負荷を取得する(S3)。そして、空調制御手段40は空調対象空間aを構成する躯体の躯体性能が「低」、「中」、「高」の何れであるのかをチェックし(S4)、「低」、「高」の場合には第1制御パターンを選択する(S5)。
 空調制御手段40は、ステップS4において躯体性能が「中」の場合、続いて不在時間が「短」で且つ在室開始時空調負荷が「大」であるかを判断し(S6)、NOである場合、第2制御パターンを選択する(S7)。一方、空調制御手段40は、ステップS6においてYESの場合、第3制御パターンを選択する(S8)。
 空調制御手段40は、不在開始時以前のタイミングで図6のフローチャートを実施して第1~第3制御パターンの何れかを選択し、不在時間になると選択した制御パターンに従った制御を行う。
 なお、図6のフローチャートを実施して第1~第3制御パターンの何れかを選択するタイミングは、不在開始時以前のタイミングで行う。なお、不在時間中に、その時点で予測される予測空調負荷を用いて運転時間α1、α2を更新するようにしてもよい。
 次に、本実施の形態1の不在制御(以下、本制御という)と従来制御とを比較して、本制御の消費電力が少ないことを図7~図18を参照して説明する。なお、従来制御とは、不在開始時に圧縮機13の運転を停止し、在室開始時に圧縮機13の運転を再開する制御であり、運転再開時の圧縮機周波数は室温Tと設定温度Tsetとの差温等から決定される。
 以下、「躯体性能:低」、「躯体性能:中」、「躯体性能:高」の順に説明する。
[躯体性能:低]
 図7は、図5の条件1-A-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図8は、図5の条件1-B-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図9は、図5の条件2-A-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図10は、図5の条件2-B-aでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図7~図10において横軸は時間、縦軸は温度を示し、また、図7~図10において太点線は従来制御、太実線は本制御を示している。この点は、後述の図11~図18も同様である。
(従来制御)
 従来制御では、不在時の熱負荷により在室開始時の室温Tは不在開始時よりも上昇しており、不在時間が長い場合も短い場合も外気温度以上(外気温度近傍の場合もある)となっている。このように従来制御では在室開始時に室温Tが外気温度Toutより高くなるため、空調装置の圧縮機周波数が上昇し、図7~図10の何れの場合も消費電力Woldが急激に上昇しており、機器効率が低下する状況が発生する。
(本制御:第1制御パターン)
 本制御では、在室開始よりも運転時間α1前から圧縮機13の運転を再開しており、その際の圧縮機周波数f1を従来制御時の半分程度が目処として設定されているため、機器の効率向上が可能となっている。
 躯体性能が低い場合は不在時間の長短に関わらず、貫流負荷、換気負荷が発生して室内温度の変動が大きくなる。また、躯体蓄熱量は躯体性能が低い場合は少ないため、空調を停止後の再起動時に空調負荷が蓄熱負荷によって空調装置の高容量運転が長時間化することが少なく短時間で処理できる。在室開始前の運転時間α1は、室温と設定温度との差温と空間体積との関数で表現することが可能となる。また、不在時間に圧縮機13の運転することは負荷処理総量の増加となる。従って躯体性能が低い場合に限っては、空調装置が高効率で処理できる圧縮機周波数よりも大きな周波数で運転時間αを演算してもよいとする。
[躯体性能:中]
[条件1-A-b;不在時間:長、在室開始時負荷:大]
 図11は、図5の条件1-A-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
(従来制御)
 躯体性能が中の住宅は、躯体性能が低の住宅と比較すると断熱性、気密性が改善されているため、不在時間が短い場合(図13、図14)の不在時間中の温度上昇幅は、躯体性能が低い場合(図9、図10)の不在時間中の室温上昇幅よりも少ない。逆に不在時間が長い場合は、躯体性能が中の住宅(図11、図12)及び低の住宅(図7、図8)の両方共、不在時間中の室温上昇幅が不在時間の短い場合(図9、図10、図13、図14)の温度上昇幅に比べて大きく、外気温度Tout以上となっている。
 従来制御では不在時間中に圧縮機13の運転を停止するため、在室開始時に室温Tが高くなる。このため、在室開始時の圧縮機周波数が上昇し、機器効率の低下する状況が発生する。これに加え、躯体性能が中の住宅は、低の住宅に比べて躯体蓄熱が大きいため、その躯体蓄熱が空調装置運転時の室温低下を阻害する。よって、図11~図14と、図7~10とにおいて在室開始後の消費電力Wold同士を比較して明かなように、躯体性能が中の住宅では、低の住宅と比較して圧縮機13を高容量で運転する運転時間が長期化して消費電力量が多くなっている。
(本制御:第2制御パターン)
 躯体性能が中の住宅は、低の住宅に比べて躯体性能を改善しているため、時間当たりに躯体から室内へ流入する負荷は、躯体性能が低い住宅と比較して少ない。つまり、負荷予測手段70で検知される空調負荷は、躯体性能が低の住宅よりも小さい。このため、図11~図14と図9~図12とを比較して明らかなように、不在時間の運転時間α2が運転時間α1より長くなっているが、負荷処理量は少なくすることが可能である。従って、躯体性能が中の場合の不在時間には、躯体性能が低の場合よりも運転容量を低容量化して高効率で負荷処理することができる。また、在室開始前に圧縮機13の運転を再開したことで在室開始後には躯体の蓄熱量が少なくなっているため、在室開始後から空調運転を開始する従来制御よりも、低容量化した高効率運転でも負荷処理が可能であり、省エネが可能となる。
[条件1-B-b;不在時間:長、在室開始時負荷:小]
 図12は、図5の条件1-B-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
(本制御:第2制御パターン)
 不在時間が長く、在室開始時の負荷が小さい場合も条件1-A-bと同様に在室開始時刻の運転時間α2前から運転を再開することで、従来制御に比べて省エネが可能となる。この条件1-B-bの場合は、条件1-A-bの場合(図11)よりも在室開始時の空調負荷が小さいため、運転時間α2が条件1-A-bの場合よりも短くなっており、さらに省エネとなっている。
[条件1-B-b;不在時間:長、在室開始時負荷:小]
 図13は、図5の条件2-A-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
(本制御:第3制御パターン)
 不在時間が短く、在室開始時の空調負荷が大きい場合には、不在開始時でも圧縮機13を停止せずに運転を継続する。このように、発生負荷に対して高効率化が可能な時間帯(不在開始時に近い時間)には空調負荷が増加しないように制御することによって機器効率の低下を抑制し、省エネ化が可能となる。
 なお、不在時間の長短を区別するための閾値Tthの設定方法が特定の方法に限定されない点は上述したが、不在時間の長短は躯体性能の他、機器効率変動などが密接に関わるため、躯体性能が中の住宅と低の住宅とでは、異なる閾値Tthを用いることが望ましい。具体的には例えば、躯体性能が中の場合は、在室開始時の空調負荷が不在開始時の空調負荷以上となる場合で、不在時に空調装置の設定を変更せずに連続運転した場合の負荷処理量が、従来制御の処理する負荷量の90%以内となる時間等を閾値Tthと定義することが望ましい。
[条件2-B-b;不在時間:短い、在室開始時負荷:小]
 図14は、図5の条件2-B-bでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
(本制御:第3制御パターン)
 不在時間が短い場合でも在室開始時の空調負荷が小さい場合は不在開始後に一度空調装置を停止させて不在時の処理負荷量を低減する。そして、図14から明かなように、在室開始時より運転時間α2前の運転開始時刻から運転再開することで従来制御よりも省エネが達成されている。
[躯体性能:高]
 図15は、図5の条件1-A-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図16は、図5の条件1-B-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図17は、図5の条件2-A-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。図18は、図5の条件2-B-cでの本制御と従来制御とを、室温変動、消費電力変動で比較した図である。
(従来制御)
 従来制御では不在開始時に圧縮機13の運転を停止するため、不在時の熱負荷により在室開始時には室温が上昇するが、躯体性能が高いため、外気温度以上には室内温度は上昇しない。また、躯体の蓄熱分は室外と室内とで独立に近い状態となっており、一部蓄熱された熱量が空調負荷として発生する。
(本制御:第1制御パターン)
 躯体性能が高い場合には在室開始時の空調負荷が躯体性能が中、低の場合よりも少ないため、運転時間α3は、運転時間α1、α2に比べて少なくなっている。そして、第1制御パターンでは、上述したように運転時間を、予測空調負荷と圧縮機周波数f1とに基づいて決定しており、この圧縮機周波数f1は従来制御時の半分程度を目処として設定されているため、機器の効率向上が可能となる。
 また、躯体性能が高い場合は不在時間の長短に関わらず、貫流負荷、換気負荷が小さいため温度変動は小さくなる。また、躯体蓄熱量も外部とは独立に近い状態となるため、空調停止後の再起動時に負荷が蓄熱負荷によって空調装置の高容量運転がもともと発生しにくい。このため、在室開始時刻より運転時間α3から運転再開することによる省エネ効果は他の躯体性能のものに比べて少なくなるものの、従来制御よりも効果的であることに変わりはない。
 また、本制御手法では、室内の不在室時間幅情報の高精度な入手が重要となるため、空調対象空間aに関する情報だけでなく、家庭全体の生活パターンから在室情報を設定してもよい。例えば、家全体の機器の状態を監視するHEMS(ホームエネルギーマネージメントシステム)を別途導入し、そのシステムにて在室情報を処理させる。そして、その在室情報を空調装置に伝送し、本例の不在制御に用いるようにしてもよい。
 以上の実施の形態1では、冷房時の運転動作について説明したが、暖房運転時も同様に実施できる。暖房運転の場合は、外気温度低いもしくは日射が少ないほど空調負荷が多くなる状態と設定する。このように設定することで、外気低温の夜間などが負荷の大きい条件となり、躯体性能ごとに空調制御することで省エネ運用が可能となる。
[発明の効果]
 以上説明したように、実施の形態1の空調装置は躯体性能、負荷状態から不在時の空調運転を制御することによって、空調消費電力を低減させながら、快適性を向上させることが可能となる。すなわち、室温だけでなく、躯体の蓄熱分を考慮して空調制御することで空調負荷が過剰になる時間を低減した結果、空調機器の運転が高容量化することを抑制可能となり、機器効率を向上するため、省エネが可能となる。
 また、上記の不在制御を行うことによって空調装置の処理負荷が平準化されるため、消費電力のピークカットが可能となる。そのため、電力供給側より使用量抑制指示(デマンド)が発生した場合でも快適性を保ちながら空調を運転することが可能となる。
 さらに、空調のピーク周波数を抑えることが可能になることから、圧縮機13の必要容量を低減することが可能となることから、機器小型化、冷媒使用量の低減が可能となり、省コスト、低GWP化が可能となる。
 なお、上記では、不在開始時刻となると圧縮機13の運転を停止するとしたが、本発明は不在開始時刻に圧縮機13の運転を停止することに限られず、次の制御としてもよい。すなわち、不在開始時刻となると設定温度Tsetを制御手段30主導で現在よりも強制的に下げることで圧縮機周波数を下げ、不在時の処理負荷量を低減した状態で圧縮機13の運転を継続させるようにしてもよい。この場合も、第1制御パターンであれば在室開始時の運転時間前から圧縮機周波数f1で圧縮機13の運転を再開し、第2制御パターンであれば在室開始時の運転時間前から圧縮機周波数f1で圧縮機13の運転を再開すればよい。
 1A 室温検知手段、1a 温度センサ(吐出温度センサ)、1b 温度センサ(吸入温度センサ)、1c 温度センサ、1d 温度センサ、1e 温度センサ、1f 温度センサ、1g 温度センサ、1h 温度センサ、10 熱源機、11 熱交換器、12 送風手段、13 圧縮機、14 絞り手段、15 四方弁、16 空調手段、20 室内機、21 熱交換器、22 送風手段、30 制御手段、40 空調制御手段、41 外部制御手段、42 熱源機制御手段、43 室内機制御手段、50 不在情報取得手段、60 容量検知手段、70 負荷予測手段、80 躯体性能取得手段、100 配管、101 伝送線、1000 冷凍サイクル、a 空調対象空間。

Claims (12)

  1.  温度調整した空気を空調対象空間に送風する空調手段と、
     前記空調対象空間を構成する躯体の蓄熱量に基づく躯体性能を取得する躯体性能取得手段と、
     前記空調対象空間に人が不在となる不在時間を取得する不在情報取得手段と、
     不在開始から前記不在時間後の設定時刻までに前記空調対象空間に発生すると予測される空調負荷を演算する負荷予測手段と、
     前記設定時刻に設定温度になるように、前記不在時間に前記空調手段を運転させる不在制御を行う空調制御手段とを備え、
     前記空調制御手段は、前記負荷予測手段で得られた予測空調負荷と、前記躯体性能取得手段で検知された前記躯体性能とに基づいて前記不在制御を行う空調装置。
  2.  前記空調制御手段は、前記不在制御の制御パターンを複数有し、前記躯体性能に基づいて前記複数の制御パターンの何れかを選択し、選択した前記制御パターンに従って前記不在制御を行う請求項1記載の空調装置。
  3.  前記複数の制御パターンの一つは、前記躯体性能取得手段で検知された前記躯体性能が、躯体性能を低、中、高の3段階に分けたうちの低又は高の場合に選択される制御パターンであり、前記予測空調負荷と第1圧縮機周波数とに基づいて前記設定時刻前の運転時間を決定し、前記設定時刻から前記運転時間を引いた時刻に前記第1圧縮機周波数で前記空調手段の圧縮機を運転させる制御パターンである請求項1又は請求項2記載の空調装置。
  4.  前記複数の制御パターンの一つは、「前記躯体性能取得手段で検知された前記躯体性能が、躯体性能を低、中、高の3段階に分けたうちの中であり、且つ、前記不在時間の長短の判別結果が長である場合」及び「前記躯体性能取得手段で検知された前記躯体性能が、躯体性能を低、中、高の3段階に分けたうちの中であり、且つ、前記不在時間の長短の判別結果が長が短であり、さらに前記予測空調負荷の大小の判別結果が小の場合」に選択される制御パターンであり、前記予測空調負荷と第2圧縮機周波数とに基づいて前記設定時刻前の運転時間を決定し、前記設定時刻から前記運転時間を引いた時刻に前記第2圧縮機周波数で前記空調手段の圧縮機を運転させる制御パターンである請求項1~請求項3の何れか一項に記載の空調装置。
  5.  前記第2圧縮機周波数は前記第1圧縮機周波数よりも低い請求項3に従属する請求項4記載の空調装置。
  6.  前記空調制御手段は、不在開始時に前記空調手段の圧縮機の運転を停止するか、又は不在開始時に前記不在時間前よりも前記圧縮機の圧縮機周波数を低下させて運転を続けており、前記設定時刻から前記運転時間を引いた前記時刻になると前記制御パターンに従った前記圧縮機周波数での運転に変更する請求項3~請求項5の何れか一項に記載の空調装置。
  7.  前記複数の制御パターンの一つは、前記躯体性能取得手段で検知された前記躯体性能が、躯体性能を低、中、高の3段階に分けたうちの中であり、且つ、前記不在時間の長短の判別結果が短であり、さらに、前記予測空調負荷の大小の判別結果が大である場合に選択される制御パターンであり、前記不在時間前に行っていた前記空調手段の圧縮機の制御を前記不在時間中も継続して行う制御パターンである請求項1~請求項5の何れか一項に記載の空調装置。
  8.  前記躯体性能取得手段は、前記躯体の蓄熱量に関する指標である躯体性能評価値に基づいて躯体性能を判別して取得しており、
     「前記空調対象空間の壁面の材質、厚み、断熱特性値の少なくとも一つを用いて演算して前記躯体性能評価値を取得する」、
     「外気温度、前記空調対象空間の外壁温度、日射量の何れかの時系列変動値と室内温度又は室内壁面温度の時系列変動とに基づいて演算して前記躯体性能評価値を取得する」、
     「過去の空調時の運転データと過去の外気温度、日射量、外壁温度の少なくとも一つの変動値とに基づいて演算して前記躯体性能評価値を取得する」、
     「使用者の入力から前記躯体性能評価値を取得する」、
    のうち、何れかの方法によって前記躯体性能評価値を取得する請求項1~請求項7の何れか一項に記載の空調装置。
  9.  前記不在情報取得手段は、前記空調対象空間に存在する一又は複数の機器の使用情報を収集し、収集した情報に基づいて前記不在時間を取得する請求項1~請求項8の何れか一項に記載の空調装置。
  10.  前記不在情報取得手段は、
     「前記空調装置、照明、人感センサ及び室内ドアの開閉装置のうちの一又は複数の運転情報に基づいて前記不在時間を取得する」、
     「外部機器との通信により前記不在時間を取得する」、
     「使用者の入力により前記不在時間を取得する」、
    のうち、何れかの方法によって前記不在時間を取得する請求項1~請求項9の何れか一項に記載の空調装置。
  11.  前記負荷予測手段は、
     「過去の時間ごとの空調装置運転データから前記予測空調負荷を演算する」、
     「室内温度変動と、室外温度変動、日射量変動、太陽光発電量及び外部より得られる天候変動情報のうち少なくとも一つとから前記予測空調負荷を演算する」、
     「外部より設定する」、
    のうち、何れかの方法によって前記予測空調負荷を演算する請求項1~請求項10の何れか一項に記載の空調装置。
  12.  前記躯体性能取得手段は、冷房時と暖房時とでは異なる方法で前記躯体の蓄熱量に基づく指標である躯体性能評価値を取得し、前記躯体性能評価値に基づいて躯体性能を取得する請求項1~請求項11の何れか一項に記載の空調装置。
PCT/JP2014/062620 2014-05-12 2014-05-12 空調装置 WO2015173868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016518999A JP6270996B2 (ja) 2014-05-12 2014-05-12 空調装置
PCT/JP2014/062620 WO2015173868A1 (ja) 2014-05-12 2014-05-12 空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062620 WO2015173868A1 (ja) 2014-05-12 2014-05-12 空調装置

Publications (1)

Publication Number Publication Date
WO2015173868A1 true WO2015173868A1 (ja) 2015-11-19

Family

ID=54479441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062620 WO2015173868A1 (ja) 2014-05-12 2014-05-12 空調装置

Country Status (2)

Country Link
JP (1) JP6270996B2 (ja)
WO (1) WO2015173868A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096585A (ja) * 2015-11-26 2017-06-01 清水建設株式会社 地熱利用空調方法
CN107272764A (zh) * 2017-06-29 2017-10-20 合肥同益信息科技有限公司 一种会议室内温度自动调节方法
JP2019124435A (ja) * 2018-01-19 2019-07-25 三菱電機株式会社 空調システム、制御装置、空調制御方法及びプログラム
WO2019198277A1 (ja) * 2018-04-11 2019-10-17 シャープ株式会社 空気調和システム
JP2020067222A (ja) * 2018-10-23 2020-04-30 富士通株式会社 制御プログラム、制御方法および制御装置
JP2020067207A (ja) * 2018-10-23 2020-04-30 富士通株式会社 制御プログラム、制御方法および制御装置
JP2020067206A (ja) * 2018-10-23 2020-04-30 富士通株式会社 トルク制御プログラム、トルク制御方法およびトルク制御装置
JP2020067270A (ja) * 2018-10-23 2020-04-30 富士通株式会社 空調制御プログラム、空調制御方法および空調制御装置
JP2021169869A (ja) * 2020-04-14 2021-10-28 清水建設株式会社 空調制御装置、空調制御方法、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881642B2 (ja) 2019-03-18 2021-06-02 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件決定システム
JP7393613B2 (ja) * 2019-03-18 2023-12-07 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件決定システム
JP7173907B2 (ja) 2019-03-18 2022-11-16 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件を決定する機械学習装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107459B2 (ja) * 1987-07-15 1995-11-15 株式会社日立製作所 空気調和機の前倒し運転制御方法
JP2013200098A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 空気調和装置
JP2013204852A (ja) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp 空調制御方法及び空調装置
JP2013238369A (ja) * 2012-05-16 2013-11-28 Sharp Corp 空気調和機
WO2014017316A1 (ja) * 2012-07-23 2014-01-30 三菱電機株式会社 空調装置及び空調制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107459B2 (ja) * 1987-07-15 1995-11-15 株式会社日立製作所 空気調和機の前倒し運転制御方法
JP2013200098A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 空気調和装置
JP2013204852A (ja) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp 空調制御方法及び空調装置
JP2013238369A (ja) * 2012-05-16 2013-11-28 Sharp Corp 空気調和機
WO2014017316A1 (ja) * 2012-07-23 2014-01-30 三菱電機株式会社 空調装置及び空調制御方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096585A (ja) * 2015-11-26 2017-06-01 清水建設株式会社 地熱利用空調方法
CN107272764A (zh) * 2017-06-29 2017-10-20 合肥同益信息科技有限公司 一种会议室内温度自动调节方法
JP2019124435A (ja) * 2018-01-19 2019-07-25 三菱電機株式会社 空調システム、制御装置、空調制御方法及びプログラム
JP7042628B2 (ja) 2018-01-19 2022-03-28 三菱電機株式会社 空調システム、制御装置、空調制御方法及びプログラム
CN112041619A (zh) * 2018-04-11 2020-12-04 夏普株式会社 空气调节系统
WO2019198277A1 (ja) * 2018-04-11 2019-10-17 シャープ株式会社 空気調和システム
JP7219266B2 (ja) 2018-04-11 2023-02-07 シャープ株式会社 空気調和システム
JPWO2019198277A1 (ja) * 2018-04-11 2021-04-15 シャープ株式会社 空気調和システム
JP2020067222A (ja) * 2018-10-23 2020-04-30 富士通株式会社 制御プログラム、制御方法および制御装置
JP2020067270A (ja) * 2018-10-23 2020-04-30 富士通株式会社 空調制御プログラム、空調制御方法および空調制御装置
JP2020067206A (ja) * 2018-10-23 2020-04-30 富士通株式会社 トルク制御プログラム、トルク制御方法およびトルク制御装置
US11448414B2 (en) 2018-10-23 2022-09-20 Fujitsu Limited Computer-readable recording medium recording torque control program, torque control method, and information processing apparatus
JP7215070B2 (ja) 2018-10-23 2023-01-31 富士通株式会社 制御プログラム、制御方法および制御装置
JP7215069B2 (ja) 2018-10-23 2023-01-31 富士通株式会社 制御プログラム、制御方法および制御装置
JP2020067207A (ja) * 2018-10-23 2020-04-30 富士通株式会社 制御プログラム、制御方法および制御装置
JP2021169869A (ja) * 2020-04-14 2021-10-28 清水建設株式会社 空調制御装置、空調制御方法、及びプログラム
JP7438831B2 (ja) 2020-04-14 2024-02-27 清水建設株式会社 空調制御装置、空調制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2015173868A1 (ja) 2017-04-20
JP6270996B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6270996B2 (ja) 空調装置
US10648684B2 (en) Air-conditioning apparatus and air-conditioning control method
JP5389211B2 (ja) 空調制御方法及び空調装置
JP5642121B2 (ja) 空調装置
JP5802339B2 (ja) 空気調和装置
JP5802340B2 (ja) 空気調和装置
JP6250076B2 (ja) 空調制御装置、空調制御システム、空調制御方法及びプログラム
JP5741723B1 (ja) 換気装置
JP2005156017A (ja) 空気調和機
JP5619056B2 (ja) 空調装置
JP6989812B2 (ja) 空調システム、空調制御装置、空気調和機、及び空調制御方法
KR102085832B1 (ko) 공기조화기 및 공기조화기의 제어방법
JP6053201B2 (ja) 冷凍装置
WO2021214930A1 (ja) 空気調和システムおよび制御方法
JP5863988B2 (ja) 空調装置、コントローラ、空調制御方法及びプログラム
KR20080073602A (ko) 멀티형 공기조화기 및 그 운전방법
KR100626425B1 (ko) 공기조화기의 운전지연 제어방법
JP3698036B2 (ja) 空気調和装置
JP3838267B2 (ja) 空気調和装置
JP6490095B2 (ja) 空気調和システム
WO2020208751A1 (ja) 空気調和装置
CN112041619B (zh) 空气调节系统
WO2018207304A1 (ja) 空気調和装置
JPH09152169A (ja) マルチ形空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016518999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891696

Country of ref document: EP

Kind code of ref document: A1