WO2015172588A1 - 一种热释电弛豫铁电单晶的减薄方法 - Google Patents

一种热释电弛豫铁电单晶的减薄方法 Download PDF

Info

Publication number
WO2015172588A1
WO2015172588A1 PCT/CN2015/071795 CN2015071795W WO2015172588A1 WO 2015172588 A1 WO2015172588 A1 WO 2015172588A1 CN 2015071795 W CN2015071795 W CN 2015071795W WO 2015172588 A1 WO2015172588 A1 WO 2015172588A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
thickness
thinning
grinding
thinning method
Prior art date
Application number
PCT/CN2015/071795
Other languages
English (en)
French (fr)
Inventor
罗豪甦
李龙
赵祥永
许晴
王升
林迪
杨林荣
Original Assignee
上海硅酸盐研究所中试基地
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海硅酸盐研究所中试基地, 中国科学院上海硅酸盐研究所 filed Critical 上海硅酸盐研究所中试基地
Publication of WO2015172588A1 publication Critical patent/WO2015172588A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • the invention relates to a method for thinning a pyroelectric relaxation ferroelectric single crystal, in particular to a lead-doped lanthanum indium lanthanate-lead magnesium niobate-lead titanate prepared by the improved Bridgman method.
  • pyroelectric infrared detectors widely used are almost all made of single crystal or ceramic materials.
  • the high thickness of the bulk material is not conducive to increasing the specific detection rate of the detector, which greatly affects the performance of the detector.
  • An effective way to overcome the above disadvantages is to exfoliate the body material and grind it to a smaller size.
  • the thickness of the pyroelectric film is generally between 0.1 micrometers and several micrometers, and its mechanical strength is poor, and it needs to be attached to a substrate as a supporting material, such as a single crystal silicon wafer, magnesium oxide or aluminum oxide.
  • a substrate such as a single crystal silicon wafer, magnesium oxide or aluminum oxide.
  • the thermal conductivity of these substrate materials is generally large, and the temperature rise caused by infrared radiation on the pyroelectric film is reduced due to the rapid dissipation of heat flow from the pyroelectric film to the substrate, so that the sensitivity of the thin film detector is greatly reduced.
  • the pyroelectric material produced by the pyroelectric material only when it is 5-30 ⁇ m thick has higher detection sensitivity. Therefore, the common technical difficulty of the prior art is that the bulk material needs to be thinned to a thickness of 5 to 30 ⁇ m from the limit of 0.1 mm thick by general machining.
  • the object of the present invention is to overcome the deficiencies of the prior art and to propose a new method for thinning pyroelectric sheets.
  • the purpose of the invention is to achieve the effective thinning of the pyroelectric relaxation ferroelectric single crystal material by using the combination of grinding, etching and annealing, and to ensure the properties of the material after thinning, in order to produce a high-performance pyroelectric relaxation iron.
  • Electric single crystal infrared detectors provide a new direction.
  • novel thinning method provided by the present invention is suitable for the thinning of pyroelectric relaxation ferroelectric single crystal materials of the following general formula:
  • the thinning method provided by the invention comprises:
  • a first step grinding a single crystal, wherein the single crystal includes a first surface and a second surface opposite to the first surface,
  • the grinding includes rough grinding the first surface such that the flatness of the first surface reaches ⁇ 2 ⁇ m, the thickness of the single crystal is a first thickness, and chemical mechanical processing of the first surface after rough grinding Polishing so that the thickness of the single crystal is a second thickness, followed by
  • the grinding further includes rough grinding the second surface such that the flatness of the second surface reaches ⁇ 2 ⁇ m, the thickness of the single crystal is a third thickness, and chemistry of the second surface after rough grinding Mechanical polishing such that the thickness of the single crystal is a fourth thickness;
  • the second step wet etching the ground single crystal, wherein the etching time is 8-15 minutes;
  • the third step high temperature annealing of the etched single crystal, wherein the annealing temperature is 200-1000 ° C, and the annealing time is 5-50 hours.
  • the pyroelectric relaxation ferroelectric single crystal material is preferably as follows:
  • the above-mentioned rough grinding is to grind a single crystal using a grinding disc to ensure the flatness of the wafer is ⁇ 2 ⁇ m, wherein in the rough grinding, 1000 mesh green silicon carbide can be used. powder.
  • the abrasive is commercially available.
  • the green silicon carbide powder has high hardness and good consistency, which can effectively increase the thinning rate, reduce the scratch amount of the single crystal surface, and improve the thinning quality.
  • the first thickness is an arbitrary value, and those skilled in the art are free to select the initial thickness of the wafer.
  • it can be between 0.3 mm and 1.5 mm.
  • the second thickness is preferably 30-40 ⁇ m thinner than the first thickness.
  • the third thickness is 30-50 ⁇ m.
  • the fourth thickness is the resulting final thickness of 5-30 ⁇ m.
  • the rotational speed may be between 30 and 200 revolutions per minute and the lower pressure may be between 0.5 and 5 psi.
  • the rotation speed thereof is preferably kept at a low level, for example, less than 60 rpm, and the lower pressure is uniformly maintained, as an example.
  • the pressure can be adjusted according to the amount of crystal thickness, as is well known to those skilled in the art. Generally, the thicker the thickness, the greater the pressure.
  • the polishing solution is an acidic or alkaline silica sol (SiO 2 ). To ensure a certain polishing efficiency and low surface roughness, the particle size of the silica sol should be selected moderately and should be controlled below 80 nm.
  • the second surface is coarsely ground
  • the parameters thereof which is a conventional technical means in the art, and only needs to ensure uniform pressure under rough grinding.
  • the rotational speed may be between 30 and 200 revolutions per minute and the lower pressure may be between 0.5 and 5 psi. It can be easily understood by those skilled in the art that, since the second surface is coarsely ground, since it is in the latter half of the entire thinning process, the flatness and the like are more strict, and therefore, it is preferable to repeat the number of times.
  • the parameter requirements are consistent with the parameter requirements for chemical mechanical polishing of one side.
  • the wet etching corrosive liquid contains HF, NH 4 F and water, and preferably, the weight ratio of the three is 8.3:33:58.7.
  • the annealing gas atmosphere is an oxygen-rich gas atmosphere, preferably a pure oxygen gas atmosphere.
  • the method of combining the grinding-corrosion-annealing method of the invention can ensure the effective thinning of the pyroelectric relaxation ferroelectric single crystal material while ensuring the post-thinning pyroelectric relaxation ferroelectric single crystal Infrared detection performance.
  • the chemical mechanical thinning polishing technique is used to grind the relaxed ferroelectric single crystal. Due to the action of chemical mechanical polishing, surface stress and damage layer are introduced. When the thickness of the single crystal sensitive element is reduced to the micron level, the surface effect is The effect is more prominent, so that the overall dielectric loss of the single crystal chip is significantly increased, which affects the detection performance of the single crystal detector.
  • the post-treatment process technology adopted by the present invention while obtaining the extremely thin single crystal sensitive element, The effect of surface damage and defects on the pyroelectric and dielectric properties of single crystal sensitive elements is minimized, and the preparation of high performance and high quality single crystal sensitive elements is realized.
  • the grinding method used in the present invention grinds the front and back sides of a single crystal, and comprises two steps of coarse grinding and fine polishing, so that the thickness of the pyroelectric material is finally thinned to 5-30 micrometers, and is ensured. The flatness and smoothness of the single crystal.
  • the etching method used in the present invention can remove the surface damage of the single crystal introduced by the grinding step 2. Layer to solve the key problem of dielectric performance degradation.
  • the annealing method used in the present invention can remove the defects and surface stress generated by the single crystal in the grinding step, further reduce the dielectric loss and dielectric noise of the single crystal, and improve the pyroelectric relaxation ferroelectric single crystal detector. Detection performance.
  • Example 1a is a graph showing the relationship between the etching thickness of the single crystal wafer prepared in Example 1 as a function of time;
  • Example 1b is a graph showing the pyroelectricity and dielectric properties of the single crystal wafer prepared in Example 1 as a function of corrosion time;
  • Figure 2 shows the comparison of the dielectric properties of Mn-doped PMNT single crystal sensitive elements under different processing conditions.
  • the square-shaped curve in Figure 2 corresponds to a thick wafer
  • the curve composed of a circle corresponds to a thin wafer
  • the triangle corresponds to The curve
  • the diamond corresponding curve corresponds to a thin-etched-annealed wafer (ie, the wafer obtained by the post-processing method used herein).
  • One side of the Mn-doped 0.71 Pb (Mg 1/3 Nb 2/3 )O 3 -0.29 PbTiO 3 single crystal pyroelectric relaxation ferroelectric single crystal wafer was selected as the first surface, and the opposite surface was used as the second surface.
  • the optical grade glass substrate is placed on a heating platform at a set temperature of 80 ⁇ 0.5 ° C;
  • the yellow wax is applied to the glass substrate until the wax is completely melted into a liquid state.
  • the wafer is placed symmetrically on the substrate and pressed into close contact with the substrate to ensure that the thickness of the wax is as uniform as possible, and that there is no air bubble between the wafer and the substrate, thereby exposing the first surface.
  • the blade removes excess yellow wax around the wafer and is scrubbed with gasoline.
  • Applying a small amount of optical protective paint (shellac and alcohol mixture) to the edge of the wafer can prevent the penetration of the polishing solution during the polishing process from affecting the adhesion of the wafer, and on the other hand, the effect of protecting the edge of the wafer.
  • the first side of the wafer is coarsely ground on a grinding disc, and the wafer is thinned by using 1000# green silicon carbide powder.
  • the flatness of the first side of the wafer is guaranteed to be ⁇ 2 ⁇ m, which can be detected by optical flat crystal, wherein the rotation speed is 40 rpm and the down pressure is 2 psi.
  • the glass substrate is placed on a grinding and polishing machine, and the first surface is polished by a chemical polishing liquid, and the weight, position and time can be appropriately adjusted to ensure the flatness and smoothness of the first surface.
  • the flatness is ⁇ 1 ⁇ m, which can be detected by optical flat crystal, and is 40 microns thinner than the thickness after rough grinding on the first side.
  • the downforce is 2 psi;
  • the wafer was placed on a grinding disc, and the wafer was thinned to 35 ⁇ m with 1000# green silicon carbide powder, and the flatness of the wafer surface was ensured to be ⁇ 2 ⁇ m.
  • the thickness can be controlled by continuous measurement of the micrometer with a speed of 40 rpm and a downforce of 2 psi.
  • the glass substrate is placed on a grinding and polishing machine, and the second surface is polished by a chemical polishing liquid to thin the wafer to 15 ⁇ m, and the weight, position and time can be appropriately adjusted to ensure the flatness and smoothness of the second surface.
  • the wafer can be polished to a thickness of 15 ⁇ 1 ⁇ m as needed. Take a few points at the edge and center of the wafer and measure the thickness of the wafer with a micrometer to control the flatness of the wafer.
  • the chemical mechanical polishing solution is an alkaline silica sol with a pH of 9-10, the rotation speed is 50 rpm, and the downforce is 2 psi. .
  • the temperature control table power switch to set the three steps of temperature rise, heat preservation and temperature reduction.
  • the annealing temperature is 500 ° C
  • the annealing time is 10 hours
  • the program is run.
  • the single crystal sheet prepared in Example 1 was subjected to the following effects test:
  • the dielectric properties of the materials involved in the examples were measured using an Agilent Model 4294A Impedance Analyzer (Agilent Technologies, Inc.) and approximated from a plate capacitor; the pyroelectric coefficient after single crystal polarization was determined by autonomous The dynamic method pyroelectric coefficient measurement system is established, wherein after the single crystal is heated and polarized along the spontaneous polarization direction, the AC drive temperature range is 1 ° C and the frequency is 45 mHz; the single crystal sensitive element chip is passed through the single crystal.
  • the sensitive element is obtained by polarization treatment; the electrode is deposited by magnetron sputtering; the response rate of the pyroelectric detector is measured by an autonomously established black body infrared response test system, and the device noise passes through the Agilent 35670 A dynamic signal. Analyzer According to the Czech Republic Technology Co., Ltd., the detection rate is calculated from the measured response rate and noise based on the theoretical formula of the blackbody detection rate.
  • Figure 1(a) shows the variation of the thickness of the single crystal sensitive element with the corrosion time. It can be obtained that the corrosion rate of the etching solution on the single side of the wafer (the wafer is placed in the etching solution, both sides will corrode, so Double sided refers to the total corrosion rate of the upper and lower sides, and the etch rate of the single side refers to the corrosion rate of the single side) is about 20.8 nm/min.
  • Fig.1(b) shows the pyroelectricity and dielectric properties of Mn-doped PMNT single crystal sensitive elements as a function of corrosion time.
  • the pyroelectric coefficient increases with the increase of corrosion time, then gradually increases. It is stable; the dielectric loss increases first and then increases with the increase of corrosion time. This shows that wet etching can optimize the pyroelectric coefficient of the material to some extent, and the corrosion time is controlled at 8-15 minutes to effectively reduce the dielectric loss of the material.
  • the etched single crystal sensitive element is annealed (ie, C. high temperature anneal) to further remove residual mechanical stress on the surface and internal defects of the single crystal.
  • the annealing temperature was 500 ° C
  • the annealing atmosphere was oxygen (oxygen-rich atmosphere)
  • the annealing time was 10 hours.
  • Figure 2 shows the comparison of the dielectric properties of Mn-doped PMNT single crystal sensitive elements under different treatment processes. It can be seen from the figure that the single crystal sensitive element is thinned and polished to the micron scale, compared to the bulk material. The dielectric loss is significantly increased, but the dielectric loss of the single crystal sensitive element is effectively improved by wet etching and oxygen annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种热释电弛豫铁电单晶的减薄方法,包括对单晶的第一面进行粗磨以及对粗磨后的第一面进行化学机械抛光,对单晶的第二面进行粗磨以及对粗磨后的第二面进行化学机械抛光,对研磨后的单晶进行湿法腐蚀,对腐蚀后的单晶进行高温退火处理。采用研磨、腐蚀以及退火相结合的方式,达到热释电弛豫铁电单晶材料的有效减薄并保证减薄后材料的性能。

Description

一种热释电弛豫铁电单晶的减薄方法 技术领域
本发明涉及一种热释电弛豫铁电单晶的减薄方法,具体说,是涉及一种采用改进的Bridgman法制备得到的锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅三元系或锰掺杂铌镁酸铅-钛酸铅二元系热释电弛豫铁电单晶的减薄方法。
技术背景
目前,广泛使用的热释电红外探测器几乎都是用单晶或陶瓷体材料制成的。体材料的厚度高,不利于提高探测器的比探测率,极大的影响了探测器的性能。克服以上缺点的有效途径是将体材料薄片化,研磨到更小的尺寸。
热释电薄膜的厚度一般在0.1微米到几微米之间,自身的机械强度较差,需要附着在作为支撑材料的基底上,如在单晶硅片、氧化镁或氧化铝上。这些基底材料的热导率一般较大,造成红外辐射在热释电薄膜上产生的温升由于热流从热释电薄膜向基底的迅速散失而减小,使得薄膜探测器的灵敏度大大下降,以至于无法实用化。从现在对弛豫铁电单晶的性能与厚度关系规律来看,热释电材料只有在5~30μm厚时制作的红外敏感元才有较高的探测灵敏度。因此已有技术的共同技术难点是需要把体材料从一般机械加工所能达到0.1mm厚的极限再减薄到5~30μm厚。
本发明的目的就是为了克服已有技术存在的不足,提出了一种用于减薄热释电薄片的新方法。
发明概要
本发明的目的是采用研磨,腐蚀以及退火相结合的方式,达到热释电弛豫铁电单晶材料的有效减薄并保证减薄后材料的性能,为制作高性能热释电弛豫铁电单晶红外探测器提供了新的方向。
为达到上述目的,本发明采用如下技术方案:
本发明所提供的新型减薄方法适用于如下通式的热释电弛豫铁电单晶材料的减薄:
Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3;或
Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3
本发明所提供的减薄方法,包括:
第一步骤:对单晶进行研磨,其中该单晶包括第一面及与所述第一面相对的第二面,
所述研磨包括对所述第一面进行粗磨,使所述第一面的平整度达到±2μm,使该单晶的厚度为第一厚度,以及对粗磨后的第一面进行化学机械抛光,使该单晶的厚度为第二厚度,随后
所述研磨还包括对所述第二面进行粗磨,使所述第二面的平整度达到±2μm,使该单晶的厚度为第三厚度,以及对粗磨后的第二面进行化学机械抛光,使该单晶的厚度为第四厚度;
第二步骤:对研磨后的单晶进行湿法腐蚀,其中腐蚀时间为8-15分钟;
第三步骤:对腐蚀后的单晶进行高温退火处理,其中退火温度为200-1000℃,退火时间为5-50小时。
在本发明所提供的减薄方法中,热释电弛豫铁电单晶材料优选如下:
Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3式中,0.26≤x≤0.29、且晶体学方向为[111],或者0.35≤x≤0.40、且晶体学方向为[001];
Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,式中,0.26≤x≤0.30、0.36≤y≤0.57、0.15≤1-x-y≤0.38、且晶体学方向为[111],或者0.35≤x≤0.42、0.30≤y≤0.45、0.20≤1-x-y≤0.29、且晶体学方向为[001]。本领域技术人员可以理解的是,在用减薄方法进行材料处理的过程中,对于不同的材料,需要选择不同的减薄工艺。
在本发明所提供的减薄方法中,以上所称的粗磨为使用磨盘对单晶进行研磨,从而保证晶片的平整度在±2μm,其中,在粗磨时,可使用1000目绿色碳化硅粉。该磨料市售可得。绿色碳化硅粉硬度高,一致性好,可有效提高减薄速率,减少单晶表面划痕量,改善减薄质量。
在本发明所提供的减薄方法中,第一厚度为任意值,本领域技术人员可自由选择晶片的初始厚度。举例而言,可在0.3mm-1.5mm之间。
在本发明所提供的减薄方法中,综合考虑平坦化、材料成本以及减薄要求等因素,优选地,第二厚度较前述第一厚度薄30-40μm。
在本发明所提供的减薄方法中,第三厚度为30-50μm。
在本发明所提供的减薄方法中,第四厚度即为所得最终厚度5-30μm。
在本发明所提供的减薄方法中,当对第一面进行粗磨时,对其参数并未有任何特殊限定,乃是本领域的常规技术手段,仅需保证粗磨时下压力均匀即可。仅举例而言,在对第一面进行粗磨时,转速可在30-200转/分钟,下压力可在0.5-5psi之间。
在本发明所提供的减薄方法中,当对第一面进行化学机械抛光液时,其转速优选地应保持在较低水平,例如小于60转/分钟,下压力均匀需保持均匀,作为举例可选择在例如0.5-5psi之间,本领域技术人员熟知的,可以根据晶体厚度量调整压力大小,一般来说,厚度越厚,压力越大。抛光液为酸性或者碱性的硅溶胶(SiO2),为保证一定的抛光效率和低的表面粗糙度,硅溶胶的粒径选择需适中,应控制在80nm以下。
在本发明所提供的减薄方法中,当对第二面进行粗磨时,对其参数并未有任何特殊限定,乃是本领域的常规技术手段,仅需保证粗磨时下压力均匀 即可。仅举例而言,在对第一面进行粗磨时,转速可在30-200转/分钟,下压力可在0.5-5psi之间。且本领域技术人员可以轻易理解的是,由于对第二面进行粗磨时,由于其处于整个减薄流程的后半段,对平整度等要求更为严格,故优选地,可重复多次进行,即采用多次研磨多次测量的方法,即每次去除少量单晶层,且与彼此研磨后测量其平整性,从而保证晶片表面的一致性和平整度,以防晶片穿孔或塌边。
在本发明所提供的减薄方法中,当对第二面进行化学机械抛光液时,其参数要求与对一面进行化学机械抛光时的参数要求一致。
在本发明所提供的减薄方法中,其中湿法腐蚀的腐蚀液为包含HF、NH4F和水,优选地,三者的重量比配方为8.3:33:58.7。
在本发明所提供的减薄方法中,其中高温退火处理中,退火气体氛围为富氧气体氛围,优选为纯氧气体氛围。
本发明的技术效果至少包括:
1.本发明所采用研磨-腐蚀-退火相结合的方法,可以在达到热释电弛豫铁电单晶材料的有效减薄的同时,保证减薄后热释电弛豫铁电单晶的红外探测性能。采用了化学机械减薄抛光技术对弛豫铁电单晶进行研磨,由于化学机械抛光的作用,会引入表面应力和损伤层,当单晶敏感元厚度减小至微米级别时,该表面效应的作用更加凸显,使得单晶芯片的整体介电损耗明显增大,影响单晶探测器的探测性能,因此通过本发明所采取的后处理工艺技术,在获得极薄单晶敏感元的同时,也尽可能降低表面损伤及缺陷对单晶敏感元热释电、介电性能的影响,实现高性能高质量单晶敏感元的制备。
2.本发明所采用的研磨方法,对单晶的正反两面进行研磨,并包含了粗磨及精细抛光两步骤,使得热释电材料的厚度最终被减薄至5-30微米,并保证单晶的平整度及光洁度。
3.本发明所采用的腐蚀方法,可去除由研磨步骤二引入的单晶表面损伤 层,解决介电性能降低的关键问题。
4.本发明所采用的退火方法,可以去除单晶在研磨步骤中产生的缺陷和表面应力,进一步降低单晶的介电损耗和介电噪声,提高热释电弛豫铁电单晶探测器的探测性能。
附图说明
图1a是实施例1制备得到的单晶薄片的蚀刻厚度随时间变化的曲线关系;
图1b是实施例1制备得到的单晶薄片的热释电、介电性能随腐蚀时间的变化曲线;
图2给出了不同处理工艺下Mn掺杂PMNT单晶敏感元介电性能的对比,其中该图中,图2中方形组成的曲线对应厚晶片,圆形组成的曲线对应薄晶片,三角形对应的曲线对应薄-退火的晶片,而菱形对应的曲线对应薄-蚀刻的-退火的晶片(即本申请所使用的后处理方法所获得的晶片)。
发明内容
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例1
选用材料:Mn掺杂0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3单晶(晶体学方向为[111])
A.研磨
选Mn掺杂0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3单晶热释电弛豫铁电单晶晶片任一面作为第一面,其相对面作为第二面。
步骤流程:
1、加热平台温度设定
将光学级玻璃基板置于加热平台上,设定温度为80±0.5℃;
2、晶片粘接
将黄蜡涂抹于玻璃基板上,至蜡完全融化为液态。将晶片对称放于基板上,按压使之与基板紧密接触,保证蜡的厚度尽可能均匀,且晶片与基板之间无气泡,从而使第一面暴露在外。
3、保护漆
刀片去除晶片周边多余黄蜡,并配合使用汽油擦洗干净。取少量光学保护漆(虫胶与酒精混合液)涂于晶片边缘,可一方面防止抛光过程中抛光液的渗入影响晶片粘接牢度,另一方面起到保护晶片边缘平整度的效果。
4、第一面粗磨
将晶片第一面在磨盘上进行粗磨,采用1000#绿色碳化硅粉将晶片减薄, 保证晶片第一面的平整度±2μm,可用光学平晶检测,其中转速为40转/分钟,下压力2psi。
5、第一面抛光
将玻璃基板置于研磨抛光机上,采用化学抛光液对第一面进行抛光,可适当调整压重、位置及时间以保证第一面的平整度和光洁度。平整度±1μm,可用光学平晶检测,且相较第一面粗磨后的厚度薄40微米,其中化学机械抛光液为PH=9-10的碱性硅溶胶,转速为50转/分钟,下压力为2psi;
6、晶片翻面
在热台上以80℃加热融化黄蜡,取下晶片翻面,重复步骤2、3;
7、第二面粗磨
将晶片置于磨盘上,采用1000#绿色碳化硅粉将晶片减薄到35μm,且保证晶片表面的平整度±2μm。厚度可通过千分尺的不断测量进行控制,其中转速为40转/分钟,下压力为2psi。
8、第二面抛光
将玻璃基板置于研磨抛光机上,采用化学抛光液对第二面进行抛光将晶片减薄到15μm,可适当调整压重、位置及时间以保证第二面的平整度和光洁度。可根据需要将晶片抛光减薄至15±1μm。在晶片边缘、中心部任取数点,用千分尺进行厚度测量以控制晶片平整度,其中化学机械抛光液为PH=9-10的碱性硅溶胶,转速为50转/分钟,下压力为2psi。
B.腐蚀
1、溶液配比:用塑料烧杯按HF:NH4F:H2O=8.3:33:58.7的重量比配方分别称取所需HF、NH4F和H2O,倒入合适大小的塑料器皿中混合均匀;
2、进行腐蚀:将前步骤所获得的研磨后的晶片用细软毛笔转移至腐蚀液中,保证晶片完全浸没。腐蚀时间控制在10分钟。
C.高温退火(使用SGL-1100型真空管式高温实验炉)
1、装样品:
检查样品(前步骤所获得的腐蚀后的晶片),保证其干燥。将样品放入陶瓷小舟,卸下右侧真空法兰,用工具将小舟推至管式炉中段,装上法兰;
2、抽真空:
关闭除抽气口外的其它阀门,接通抽气泵抽真空,达到100Pa左右后关闭;
3、通气氛:
开启通气阀门,调节氧气瓶阀门至合适流量,当气室内气压达到8-9×104Pa时,关闭通气阀门。
4、退火程序设置:
按下温控表电源开关,设定升温、保温、降温三段程序,退火温度为500℃,退火时间10小时,运行程序。
效果实施例:
将实施例1制备得到的单晶薄片,经过以下效果测试:
实施例中涉及的材料介电性能测试是用Agilent 4294A型阻抗分析仪(安捷伦科技有限公司)测得样品电容,根据平板电容器近似计算得到的;单晶极化后的热释电系数是通过自主建立的动态法热释电系数测量系统测得的,其中将单晶沿自发极化方向升温极化后,交流驱动温度幅度为1℃,频率为45mHz;单晶敏感元芯片是通过对单晶敏感元进行极化处理得到的;电极是通过磁控溅射沉积得到的;热释电探测器的响应率是通过自主建立的黑体红外响应测试系统测得的,器件噪声通过Agilent 35670 A动态信号分析仪(安 捷伦科技有限公司)测得,探测率是根据黑体探测率的理论公式,由测得的响应率和噪声计算得到。
1.对前述实施例中进行湿法腐蚀(即B.腐蚀)后的晶片进行表征。图1(a)给出了单晶敏感元厚度随腐蚀时间的变化规律,可以得出该配比下的腐蚀液对晶片单面腐蚀速率(晶片置于腐蚀液中,上下两面都会腐蚀,故双面是指上下两面总的腐蚀速率,单面是指单独一面的腐蚀速率)的腐蚀速率约为20.8nm/min。图1(b)给出了Mn掺杂PMNT单晶敏感元热释电、介电性能随腐蚀时间的变化规律,可以看出热释电系数随腐蚀时间的增加,先逐渐增大,然后趋于平稳;介电损耗则随腐蚀时间的增加,先降低后增大。这说明湿法腐蚀可在一定程度上优化材料的热释电系数,且腐蚀时间控制在8-15分钟能有效降低材料的介电损耗。
2.对腐蚀后的单晶敏感元进行退火处理(即C.高温退火),以进一步去除表面残余的机械应力以及单晶的内部缺陷。退火温度为500℃,退火气氛为氧气(富氧氛围),退火时间为10小时。图2给出了不同处理工艺下Mn掺杂PMNT单晶敏感元介电性能的对比,从该图中可以看出单晶敏感元在减薄抛光至微米尺度时,相比于体材料,其介电损耗明显增大,但是通过湿法腐蚀和氧气退火后,单晶敏感元的介电损耗得到有效改善。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (11)

  1. 一种热释电弛豫铁电单晶的减薄方法,适用于如下通式的热释电弛豫铁电单晶材料的减薄:
    Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3,或
    Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,所述减薄方法包括:
    第一步骤:对所述单晶进行研磨,其中所述单晶包括第一面及与所述第一面相对的第二面,
    所述研磨包括对所述第一面进行粗磨,使所述第一面的平整度达到±2μm,使所述单晶的厚度为第一厚度,以及对粗磨后的第一面进行化学机械抛光,使所述单晶的厚度为第二厚度,随后所述研磨还包括对所述第二面进行粗磨,使所述第二面的平整度达到±2μm,使所述单晶的厚度为第三厚度,以及对粗磨后的第二面进行化学机械抛光,使所述单晶的厚度为第四厚度;
    第二步骤:对研磨后的所述单晶进行湿法腐蚀,其中腐蚀时间为8-15分钟;
    第三步骤:对腐蚀后的所述单晶进行高温退火处理,其中退火温度为200-1000℃,退火时间为5-50小时,其中,所述第一厚度为任意值,所述第二厚度较所述第一厚度薄30-40μm,所述第三厚度为30-50μm,所述第四厚度为5-30μm。
  2. 如权利要求1所述的减薄方法,热释电弛豫铁电单晶材料优选如下:
    Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3式中,0.26≤x≤0.29、且晶体学方向为[111],或者0.35≤x≤0.40、且晶体学方向为[001];
    Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,式中,0.26≤x≤0.30、0.36≤y≤0.57、0.15≤1-x-y≤0.38、且晶体学方向为[111],或者0.35≤x≤0.42、0.30≤y≤0.45、0.20≤1-x-y≤0.29、且晶体学方向为[001]。
  3. 如权利要求1所述的减薄方法,其中,当对所述第一面或第二面进行化学机械抛光时,所述抛光液为酸性或者碱性的硅溶胶。
  4. 如权利要求3所述的减薄方法,其中,所述硅溶胶的粒径在80nm以下。
  5. 如权利要求1所述的减薄方法,其中,当对所述对第一面或第二面进行化学机械抛光液时,其转速小于60转/分钟。
  6. 如权利要求1所述的减薄方法,其中,当对所述第二面进行粗磨时,可重复多次进行。
  7. 如权利要求1所述的减薄方法,其中,所述湿法腐蚀的腐蚀液为包含HF、NH4F和水。
  8. 如权利要求7所述的减薄方法,其中所述HF、NH4F和水的重量比配方为8.3:33:58.7。
  9. 如权利要求1所述的减薄方法,其中,所述高温退火处理中,退火气体氛围为富氧气体氛围。
  10. 如权利要求9所述的减薄方法,其中,所述退火气体氛围为纯氧气体氛围。
  11. 一种由如权利要求1所述方法制备得到的单晶薄片。
PCT/CN2015/071795 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的减薄方法 WO2015172588A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410199521.4 2014-05-12
CN201410199521.4A CN103943771A (zh) 2014-05-12 2014-05-12 一种弛豫铁电单晶热释电红外探测器及其制备方法
CNPCT/CN2014/083193 2014-07-29
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器

Publications (1)

Publication Number Publication Date
WO2015172588A1 true WO2015172588A1 (zh) 2015-11-19

Family

ID=51191353

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器
PCT/CN2015/071797 WO2015172590A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶红外探测器
PCT/CN2015/071791 WO2016015462A1 (zh) 2014-05-12 2015-01-29 一种四方相热释电弛豫铁电单晶材料及其制备方法
PCT/CN2015/071794 WO2015172587A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片的极化方法
PCT/CN2015/071792 WO2015172585A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电红外探测器
PCT/CN2015/071795 WO2015172588A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的减薄方法
PCT/CN2015/071793 WO2015172586A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片
PCT/CN2015/071796 WO2015172589A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的后处理方法

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器
PCT/CN2015/071797 WO2015172590A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶红外探测器
PCT/CN2015/071791 WO2016015462A1 (zh) 2014-05-12 2015-01-29 一种四方相热释电弛豫铁电单晶材料及其制备方法
PCT/CN2015/071794 WO2015172587A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片的极化方法
PCT/CN2015/071792 WO2015172585A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电红外探测器

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/071793 WO2015172586A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片
PCT/CN2015/071796 WO2015172589A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的后处理方法

Country Status (2)

Country Link
CN (1) CN103943771A (zh)
WO (8) WO2015172434A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法
CN104458007A (zh) * 2014-12-12 2015-03-25 电子科技大学 一种热释电红外探测器
CN104716255A (zh) * 2015-03-13 2015-06-17 电子科技大学 一种厚膜热释电敏感元及其制备方法
CN105390604B (zh) * 2015-12-11 2017-12-08 上海德凯仪器有限公司 热释电传感器制作工艺
CN106784290B (zh) * 2016-11-30 2021-04-20 北立传感器技术(武汉)有限公司 一种热释电弛豫单晶超薄灵敏芯片及其制备方法
CN106768389A (zh) * 2017-01-16 2017-05-31 北立传感器技术(武汉)有限公司 一种基于电流式弛豫铁电单晶热释电探测器及其制备方法
CN107843571A (zh) * 2017-10-19 2018-03-27 中国科学院上海硅酸盐研究所 一种基于弛豫铁电单晶红外热释电探测器的VOCs监测控制系统
CN108165255A (zh) * 2017-12-27 2018-06-15 哈尔滨工业大学 一种全固态光色晶体材料激光卡及其制备和使用方法
CN108645521A (zh) * 2018-05-09 2018-10-12 东莞传晟光电有限公司 一种热释电传感器
CN108562365A (zh) * 2018-05-31 2018-09-21 深圳通感微电子有限公司 一种热释电传感器
WO2019227377A1 (zh) * 2018-05-31 2019-12-05 深圳通感微电子有限公司 一种热释电传感器
DE102018122550A1 (de) 2018-09-14 2020-03-19 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
CN111900244A (zh) * 2020-07-01 2020-11-06 上海烨映电子技术有限公司 绝缘板载热电堆传感器元器件及其制作方法
CN115480287A (zh) * 2021-06-16 2022-12-16 清华大学 能量束探测装置及探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837420A (zh) * 2004-12-03 2006-09-27 中国科学院上海硅酸盐研究所 一种铌镁酸铅-钛酸铅热释电单晶材料及其应用
CN101834227A (zh) * 2010-04-27 2010-09-15 中国科学院上海微系统与信息技术研究所 一维光栅太赫兹量子阱光电探测器响应率的优化方法
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
CN102925959A (zh) * 2012-10-14 2013-02-13 宁波大学 新型弛豫铁电单晶pimnt的生长工艺
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027534C (zh) * 1991-01-05 1995-02-01 清华大学 提高铅系弛豫铁电陶瓷机电性能的工艺
US6495828B1 (en) * 2000-04-17 2002-12-17 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/pyroelectric infrared detector with a colossal magneto-resistive electrode material and rock salt structure as a removable substrate
US6890874B1 (en) * 2002-05-06 2005-05-10 Corning Incorporated Electro-optic ceramic material and device
CN100521819C (zh) * 2004-10-15 2009-07-29 清华大学 硅基铁电微声学传感器畴极化区域控制和电极连接的方法
CN100505355C (zh) * 2006-03-21 2009-06-24 同济大学 一种新型热释电红外探测器及其使用的复合薄膜探测元
CN101867011B (zh) * 2009-04-14 2012-08-22 中国科学院物理研究所 一种热释电薄膜材料及其制备方法
WO2011111309A1 (ja) * 2010-03-11 2011-09-15 パナソニック株式会社 焦電型温度センサを用いて温度を測定する方法
WO2012021608A2 (en) * 2010-08-10 2012-02-16 Trs Technologies, Inc. Temperature and field stable relaxor-pt piezoelectric single crystals
CN101976697A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 具有AlGaN吸收层的热释电紫外探测器
CN102503422B (zh) * 2011-11-02 2014-05-07 宁波大学 一种钛铌镁铟酸铅热释电陶瓷及制备方法
JP2013113692A (ja) * 2011-11-28 2013-06-10 Murata Mfg Co Ltd 赤外線センサ
CN102721658A (zh) * 2012-07-05 2012-10-10 昆明斯派特光谱科技有限责任公司 一种热释电光谱探测器的制备方法
CN202885979U (zh) * 2012-11-01 2013-04-17 中国科学院上海技术物理研究所 一种非制冷热释电线列焦平面
CN102928089B (zh) * 2012-11-01 2014-08-13 中国科学院上海技术物理研究所 一种非制冷热释电线列焦平面及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837420A (zh) * 2004-12-03 2006-09-27 中国科学院上海硅酸盐研究所 一种铌镁酸铅-钛酸铅热释电单晶材料及其应用
CN101834227A (zh) * 2010-04-27 2010-09-15 中国科学院上海微系统与信息技术研究所 一维光栅太赫兹量子阱光电探测器响应率的优化方法
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
CN102925959A (zh) * 2012-10-14 2013-02-13 宁波大学 新型弛豫铁电单晶pimnt的生长工艺
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法

Also Published As

Publication number Publication date
WO2016015462A1 (zh) 2016-02-04
WO2015172589A1 (zh) 2015-11-19
WO2015172590A1 (zh) 2015-11-19
WO2015172585A1 (zh) 2015-11-19
CN103943771A (zh) 2014-07-23
WO2015172587A1 (zh) 2015-11-19
WO2015172586A1 (zh) 2015-11-19
WO2015172434A1 (zh) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2015172588A1 (zh) 一种热释电弛豫铁电单晶的减薄方法
TWI776822B (zh) 複合基板、表面彈性波裝置及複合基板之製造方法
JP6070954B2 (ja) 補剛層を有するガラス上半導体基板及びその作製プロセス
JPH02156635A (ja) ウエーハ用研磨方法
TW201832391A (zh) 複合基板及複合基板的製造方法
TWI427688B (zh) 製造平滑晶圓之方法
JP2021147305A (ja) 窒化アルミニウムウェハの製造方法およびその窒化アルミニウムウェハ
CN102332423B (zh) 一种减少埋层空洞型soi晶片化学机械研磨破裂的工艺
WO2011021578A1 (ja) エピタキシャルシリコンウェーハの製造方法
US10066128B2 (en) Method for preparing an aluminum oxide polishing solution
CN109972204B (zh) 超薄超平晶片和制备该超薄超平晶片的方法
US20100285655A1 (en) Method of producing bonded wafer
JP2013161880A (ja) 炭化珪素単結晶基板の製造方法
JP2014040339A (ja) 圧電性酸化物単結晶ウエハの製造方法
WO2017098696A1 (ja) 研磨方法
CN114864410A (zh) 一种消除化合物半导体晶体表面损伤层的反应气氛退火方法
WO2022121012A1 (zh) 大尺寸超薄高精度铌酸锂晶片加工方法
Katoh et al. The nanotopography effect of improved single-side-polished wafer on oxide chemical mechanical polishing
CN106784290B (zh) 一种热释电弛豫单晶超薄灵敏芯片及其制备方法
CN108172502A (zh) 应用于非制冷红外焦平面的承载晶圆快速减薄方法
US20230128739A1 (en) Cmp process applied to a thin sic wafer for stress release and damage recovery
JP7443808B2 (ja) 圧電性酸化物単結晶基板の製造方法
US20240063050A1 (en) Ceramic wafer with surface shape and manufacturing thereof
CN117729833A (zh) 一种在空气中实现铌酸锂/钽酸锂晶片热释电压增强的方法
WO2020040203A1 (ja) 弾性表面波素子用基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15792288

Country of ref document: EP

Kind code of ref document: A1