WO2015172590A1 - 一种热释电弛豫铁电单晶红外探测器 - Google Patents

一种热释电弛豫铁电单晶红外探测器 Download PDF

Info

Publication number
WO2015172590A1
WO2015172590A1 PCT/CN2015/071797 CN2015071797W WO2015172590A1 WO 2015172590 A1 WO2015172590 A1 WO 2015172590A1 CN 2015071797 W CN2015071797 W CN 2015071797W WO 2015172590 A1 WO2015172590 A1 WO 2015172590A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sensitive element
pyroelectric
ferroelectric single
relaxation ferroelectric
Prior art date
Application number
PCT/CN2015/071797
Other languages
English (en)
French (fr)
Inventor
罗豪甦
李龙
赵祥永
狄文宁
焦杰
许晴
杨林荣
Original Assignee
上海硅酸盐研究所中试基地
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海硅酸盐研究所中试基地, 中国科学院上海硅酸盐研究所 filed Critical 上海硅酸盐研究所中试基地
Publication of WO2015172590A1 publication Critical patent/WO2015172590A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • the invention relates to a detector, in particular to a pyroelectric relaxation ferroelectric single crystal infrared detector.
  • Infrared detectors are mainly divided into photon type infrared detectors and thermal infrared detectors.
  • the common photon-type infrared detector mainly uses a narrow band gap semiconductor material represented by mercury cadmium telluride and an optoelectronic semiconductor material represented by gallium arsenide.
  • semiconductor infrared devices generally require low-temperature refrigeration, which is bulky, costly, and consumes a lot of power.
  • the pyroelectric infrared detector developed by the pyroelectric effect of the material has a flat spectral response in the ultraviolet, visible and infrared bands, and has no need for refrigeration, low power consumption, low noise bandwidth, compact structure and convenience.
  • the advantages of carrying and low cost have become one of the most eye-catching focuses in the field of infrared technology.
  • pyroelectric infrared detectors for low cost, low power consumption and miniaturization, pyroelectric infrared detectors are rapidly expanding from the military market to the civilian market, especially in human body detection, fire warning, gas analysis, infrared spectrometers. And the field of infrared thermal imaging has played an important role, while reflecting the huge market potential.
  • the materials currently used in pyroelectric infrared detectors mainly include lead zirconate titanate (PZT), barium titanate (BST) and lead citrate (PST), etc., and the main limitations of materials for pyroelectric unit detectors. Lithium niobate (LiTaO3), triglyceride sulfate (TGS), and the like.
  • PZT lead zirconate titanate
  • BST barium titanate
  • PST lead citrate
  • TGS triglyceride sulfate
  • these traditional materials have shortcomings such as low pyroelectric coefficient, large dielectric loss, and unstable physical properties, which are difficult to meet the application requirements of high-performance pyroelectric infrared detectors and their extended products.
  • the more mature commercial LiTaO3 infrared detectors have a detection level of only 1 ⁇ 10 8 cm (Hz) 1/2 /W to 4 ⁇ 10 8 cm (Hz) 1/2 /W. Therefore, at the same time, overcoming the shortcomings of the above materials, exploring new pyroelectric materials with high detection value has become an urgent need for the development of uncooled infrared devices.
  • Mn-doped PMNT single crystal in which the composition is Mn-doped PMN-0.26PT single crystal, pyroelectric
  • Mn Mn-doped PMN-0.26PT single crystal
  • pyroelectric pyroelectric
  • the processing method of the infrared detecting sensitive element of the material is different from the conventional pyroelectric material, especially when the thinning process is performed to improve the infrared detecting performance, the introduced size effect and surface damage effect cause single crystal reduction.
  • the performance of the post-thinness is seriously degraded, and the problem has not been solved so far, making the new pyroelectric material difficult to be practically used in an infrared device (Paper Literature 1).
  • the PMN single crystal has a low Curie temperature and has certain application limitations.
  • chemical composition control is used to prepare a high-Curie temperature ternary system of bismuth indium magnesium titanate (1).
  • -xy)Pb(In 1/2 Nb 1/2 )O 3 -yPb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 (referred to as PIMNT or PIN-PMN-PT) single crystal obtained by researchers Pay attention to it, but due to the complex composition of the ternary system single crystal, it is difficult to adjust the composition of high pyroelectricity, high Curie temperature and low dielectric constant. Therefore, there is no clear research result and publicity for the optimization of the performance of the crystal. Report (paper 2).
  • the sensitive components of the conventional pyroelectric infrared detector are generally all-electrode, and the area is fixed. If the electrode area is to be reduced to control the electrical parameters of the sensitive component for other purposes, it is not easy to realize, and therefore the adjustment of the electrode structure is also required. Improvements in terms.
  • Patent literature
  • Patent Document 1 Chinese patent CN 1080777C;
  • Patent Document 2 Chinese Patent CN100429334C.
  • the present invention provides a novel pyroelectric relaxation ferroelectric single crystal infrared detector, thereby solving the problems in the prior art.
  • An aspect of the present invention provides a pyroelectric relaxation ferroelectric single crystal infrared detector, the detector comprising
  • a sensitive element chip composed of one or more pyroelectric relaxation ferroelectric single crystal sensitive elements disposed in the accommodating space;
  • Electrodes respectively disposed on the upper surface and the lower surface of the pyroelectric relaxation ferroelectric single crystal sensitive element
  • An amplifying circuit using a voltage mode or a current mode characterized in that the material of the pyroelectric relaxation ferroelectric single crystal sensitive element is one or more of the following materials:
  • the hexagonal phase Mn is doped with (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 single crystal, wherein 0.26 ⁇ x ⁇ 0.29 and the crystallographic direction is [111],
  • the trigonal phase Mn is doped with (1-xy)Pb(In 1/2 Nb 1/2 )O 3 -yPb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 , where 0.15 ⁇ 1-xy ⁇ 0.38, 0.36 ⁇ y ⁇ 0.57, 0.26 ⁇ x ⁇ 0.30, and the crystallographic direction is [111];
  • the tetragonal phase Mn is doped with (1-xy)Pb(In 1/2 Nb 1/2 )O 3 -yPb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 , where 0.20 ⁇ 1-xy ⁇ 0.29, 0.30 ⁇ y ⁇ 0.45, 0.35 ⁇ x ⁇ 0.42, and the crystallographic direction is [001].
  • the electrodes on the upper surface and the lower surface of the pyroelectric relaxation ferroelectric single crystal sensitive element have an asymmetrical structure.
  • the electrodes of the upper surface and the lower surface of the pyroelectric relaxation ferroelectric single crystal sensitive element have different configurations or different sizes.
  • the electrode disposed on the upper surface is a single electrode
  • the electrode disposed on the lower surface includes a left electrode and a right electrode separated from each other, and the left electrode and the right electrode are not connected to each other to form the lower electrode into A split electrode.
  • the distance between the left electrode and the right electrode is between 0.5 mm and 1 mm.
  • the absorption layer is formulated as a mixture of multi-walled carbon nanotubes, nano-ferric oxide or nano-carbon powder and alcohol, and covers the upper surface by intermittent multiple spraying, the infrared of the absorption layer
  • the absorption rate is ⁇ 90%; the stent adopts a fine, low thermal conductivity alumina ceramic support, which is supported at the center of the pyroelectric relaxation ferroelectric single crystal sensitive element to realize pyroelectric relaxation Ferroelectric single crystal infrared detection of the thermal suspension of sensitive components.
  • the matching resistance R G of the voltage mode amplifying circuit is reduced to be much smaller than 100 G ⁇
  • the feedback capacitance C f of the current mode amplifying circuit is ⁇ 10 pF
  • the feedback resistance R f is reduced to be much smaller than 100 G ⁇ .
  • a pyroelectric detector prepared by using a relaxed ferroelectric single crystal sensitive element can achieve optimal performance with a smaller matching resistance, such as 20 G ⁇ , which is 100 G ⁇ than that used in a conventional infrared detector.
  • the price is greatly reduced, which can greatly reduce the preparation cost of the detector to a certain extent, and can reduce the cost to 10% in certain cases.
  • the matching resistance R G of the voltage mode amplifying circuit can achieve optimal infrared detecting performance when the distance is smaller than 100 G ⁇ , and the preferred matching resistance value is 20 G ⁇ , which effectively reduces the preparation cost of the detector.
  • the feedback capacitance C f ⁇ 10 pF of the current mode amplifying circuit and the feedback resistance are much smaller than 100 G ⁇ to obtain an optimal infrared detecting performance, and the preferred feedback resistance R f is 20 G ⁇ , which effectively reduces the preparation of the detector. cost.
  • only one of the pyroelectric relaxation ferroelectric single crystal sensitive elements may be contained, or a plurality of the pyroelectric relaxation ferroelectric single crystal sensitive elements may be contained, and different pyroelectric relaxation irons may be included.
  • the electric single crystal sensitive element can be compensated in series or in parallel, or can be used as an infrared detecting sensitive element alone.
  • a pyroelectric single crystal sensitive element of a specific relaxed ferroelectric single crystal material can be used to prepare a high-performance pyroelectric infrared detector of various structures, which has an ultra-high ratio detection rate, low noise, and high sensitivity. And other characteristics.
  • a pyroelectric single crystal sensitive element using a specific relaxed ferroelectric single crystal material has a high pyroelectric coefficient, a low dielectric loss, a suitable dielectric constant, and an absorption layer such as a multi-walled carbon nanotube.
  • the advantage of high infrared absorption rate is to prepare a pyroelectric relaxation ferroelectric single crystal infrared detector with high response rate, low noise and high detection rate.
  • a pyroelectric infrared detector using a pyroelectric single crystal sensitive element of a specific relaxed ferroelectric single crystal material can greatly improve the detection level of the detector in the field of pyroelectric infrared.
  • the absorbing layer may be a multi-walled carbon nanotube (short), and its absorption rate is ⁇ 90%, which can effectively improve the response rate of the detector.
  • the pyroelectric relaxation ferroelectric single crystal infrared detector of the invention has the advantages of high detection rate, low noise and high response rate, and has wide application value in the field of uncooled infrared detection such as gas detection and fire alarm monitoring.
  • Figure 1(a) shows the thickness of Mn doped 0.29PbIn 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal with corrosion time Law of change;
  • Figure 1(b) shows the thermal release of Mn-doped 0.29Pb(In 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal sensitive element. The variation of electrical and dielectric properties with corrosion time.
  • Figure 2 shows the Mn-doped 0.29Pb(In 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal sensitive element in different treatment processes. Comparison of electrical performance.
  • FIG. 3 illustrates a multi-walled carbon nanotube absorber layer and its infrared absorption properties according to an embodiment of the present application.
  • FIG. 4 is a schematic view showing the structure of a pyroelectric relaxation ferroelectric single crystal detector prepared according to an embodiment of the present application.
  • FIG. 5 illustrates a frequency response of an infrared detector response rate and a specific detection rate in a voltage mode according to an embodiment of the present application.
  • FIG. 6 illustrates the relationship between the response rate of the infrared detector and the specific detection rate in the current mode according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a structure of a sensitive element distributed electrode according to an embodiment of the present application.
  • Figure 8 illustrates the frequency response of the specific detection rate of an infrared detector including distributed electrodes in accordance with an embodiment of the present application.
  • Fig. 9 is a graph showing the relationship between the dielectric properties of a single crystal of the embodiment of the present application as a function of temperature and frequency.
  • the dielectric properties of the materials involved in the examples were measured using an Agilent Model 4294A Impedance Analyzer (Agilent Technologies, Inc.) and approximated from a plate capacitor; the pyroelectric coefficient after single crystal polarization is dynamic.
  • the pyroelectric coefficient measurement system measures, wherein the single crystal is heated and polarized in the direction of spontaneous polarization, the AC drive temperature range is 1 ° C, the frequency is 45 mHz;
  • the single crystal sensitive element chip is obtained by polarization treatment of the single crystal sensitive element; the electrode is obtained by magnetron sputtering deposition; the response rate of the pyroelectric detector is measured by the black body infrared response test system, the device
  • the noise was measured by an Agilent 35670 A Dynamic Signal Analyzer (Agilent Technologies, Inc.), and the detection rate was calculated from the measured response rate and noise based on the theoretical formula of the blackbody detection rate.
  • a 1 mol% Mn doped 0.71 Pb (Mg 1/3 Nb 2/3 ) O 3 -0.29 PbTiO 3 single crystal sensitive element was prepared with a crystallographic orientation ⁇ 111>, a size of 20 ⁇ 20 mm 2 and a thickness of 15 ⁇ . 1 ⁇ m.
  • the properties of the sputtered heterogeneous electrode after polarization are as follows: the Curie temperature is 135 ° C, the tripartite-tetragonal phase transition temperature is 108 ° C, the dielectric constant ⁇ r ⁇ 750, and the pyroelectric coefficient p ⁇ 12.0 ⁇ 10 -4 C /m 2 K.
  • the sensitive element of Mn-doped PMNT single crystal is reduced by nearly half, and the pyroelectric coefficient is p ⁇ 6.0 ⁇ 10 -4 C/m 2 K.
  • a method for preparing a tetragonal phase Mn doped with 0.29 Pb(In 1/2 Nb 1/2 )O 3 -0.31 Pb(Mg 1/3 Nb 2/3 )O 3 -0.40 PbTiO 3 is as follows:
  • the platinum crucible containing the seed crystal and the raw material needs to be properly sealed.
  • the thickness and shape of the crucible There is no strict limit to the thickness and shape of the crucible, and the thinner the thickness, the better it can withstand the melt, in order to reduce the cost as much as possible.
  • the number and shape of the crucible are also not strictly limited. In order to reduce the cost, it is preferred to have a plurality of crucibles, particularly a heterogeneous crucible, that is, a shaped crucible of a crystal shape desired by the user.
  • the furnace temperature is controlled at 1400 ° C.
  • the maximum temperature gradient in the descending direction of the crucible is not less than 50 ° C / cm.
  • a large-size (20 ⁇ 20mm 2 ) pyroelectric relaxation ferroelectric single crystal sensitive element was prepared, and the thickness of the single crystal sensitive element could be controlled from 5 ⁇ m to 15 ⁇ m, and then cut into small pieces by using a dicing machine as needed to prepare Pyroelectric relaxation ferroelectric single crystal detector sensitive element chip. Due to the action of chemical mechanical polishing, the surface stress and damage layer are introduced. When the thickness of the single crystal sensitive element is reduced to the micron level, the surface effect is more prominent, and the overall dielectric loss of the single crystal chip is significantly increased.
  • the detection performance of the single crystal detector therefore, through the post-treatment process technology adopted by the present invention, while obtaining the extremely thin pyroelectric relaxation ferroelectric single crystal sensitive element, the surface damage and defects are also minimized to be sensitive to the single crystal.
  • the effects of meta pyroelectricity and dielectric properties enable the preparation of high-performance, high-quality pyroelectric relaxation ferroelectric single crystal sensitive elements.
  • a HF:NH 4 F:H 2 O corrosion inhibitor with a ratio of 8.3:33:58.7 was used to wet-etch the surface of the prepared Mn-doped PMNT single crystal sensitive element.
  • Figure 1(a) shows the thickness of Mn doped 0.29PbIn 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal with corrosion time
  • the variation law can be obtained that the corrosion rate of the etching solution under the ratio to the Mn-doped PMNT single crystal is about 20.8 nm/min.
  • Figure 1(b) shows the thermal release of Mn-doped 0.29Pb(In 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal sensitive element.
  • the variation of electrical and dielectric properties with corrosion time shows that the pyroelectric coefficient increases with the increase of corrosion time, then gradually increases, and then tends to be stable; the dielectric loss increases with the increase of corrosion time, first decreases and then increases. .
  • wet etching can optimize the pyroelectric coefficient of the material to some extent, and the corrosion time is controlled to 15-20 minutes to effectively reduce the dielectric loss of the material.
  • the corroded pyroelectric relaxation ferroelectric single crystal sensitive element is annealed to further remove residual mechanical stress on the surface and internal defects of the single crystal.
  • the annealing temperature was 500 ° C
  • the annealing atmosphere was oxygen (oxygen-rich atmosphere)
  • the annealing time was 10 hours.
  • Figure 2 shows the Mn-doped 0.29Pb(In 1/2 Nb 1/2 )O 3 -0.31Pb(Mg 1/3 Nb 2/3 )O 3 -0.40PbTiO 3 single crystal sensitive element in different treatment processes.
  • the pyroelectric relaxation ferroelectric single crystal sensitive element has a significantly increased dielectric loss compared to the bulk material when thinned and polished to the micron scale, but by the wet method. After corrosion and oxygen annealing, the dielectric loss of the pyroelectric relaxation ferroelectric single crystal sensitive element is effectively improved.
  • a multi-walled carbon nanotube and alcohol are used to form a uniform solution by ultrasonic vibration, and an infrared absorbing layer is prepared on the surface of the pyroelectric relaxation ferroelectric single crystal sensitive element chip by spraying, as shown in FIG. 3(a).
  • Fig. 3(b) shows the infrared absorption performance of the multi-walled carbon nanotube absorber layer in the wavelength range of 2.5 to 25 ⁇ m, and it can be seen that the infrared absorption rate reaches 99%.
  • a single-point support of different thickness single crystal sensitive element chips is respectively packaged in a metal tube shell in a voltage mode and a current mode integrated circuit, thereby obtaining a high detection rate pyroelectric relaxation ferroelectric single crystal infrared unit detector, such as 4 is a schematic view showing the structure of the prepared pyroelectric relaxation ferroelectric single crystal detector, including: circuit board 1, electrode pins 2a, 2b, alumina adiabatic support 3, and conductive electrode 4 , gold electrode (bottom) 5, Ni-Cr electrode (bottom) 6, pyroelectric relaxation ferroelectric single crystal sensitive element 7, Ni-Cr electrode (top) 8, infrared absorbing layer 9 and gold wire lead 10.
  • the performance test circuit is used to characterize the detector.
  • the infrared response test system is established by using the black body radiation source system and the dynamic signal analyzer.
  • the temperature of the black body is precisely controlled by the temperature controller, and is selected as 500K.
  • the infrared radiation is modulated by the mechanical modulation disk.
  • the detector is placed 10 cm away from the light exit hole of the black body radiation source, and the light exit aperture is ⁇ 10 mm.
  • Figure 5 shows the frequency response of the 15 ⁇ m pyroelectric relaxation ferroelectric single crystal sensitive element detector in the prepared voltage mode in the range of 0.5Hz-100Hz.
  • the voltage response rate at 10 Hz is 27,710 mV, and the specific detection rate is 1.17 ⁇ 10 9 cm (Hz) 1/2 /W.
  • Fig. 6(a)-(c) show the relationship between the response rate and the specific detection rate of the 15 ⁇ m single crystal sensitive element detector in the prepared current mode. It can be seen from the figure that after the above etching and oxygen annealing treatment The dielectric loss of the single crystal sensitive element can be reduced from 2% to 0.5%, which greatly improves the detection level of the detector, which can be increased from 1.2 ⁇ 10 9 cm (Hz) 1/2 /W to 2.17 ⁇ 10.
  • the detector voltage response rate and the specific detection rate are greatly improved.
  • the voltage response rate is 2.0 ⁇ 10 5 V/W, which is nearly 2 times that of the 20 ⁇ m single crystal sensitive element detector;
  • the specific detection rate is 2.63 ⁇ 10 9 cm(Hz) 1/2 /W, obviously It is better than 20 ⁇ m single crystal sensitive element detector (2.04 ⁇ 10 9 cm(Hz) 1/2 /W), which is 5 times of the current commercial LiTaO 3 infrared detector.
  • the treated 1 mol% Mn doped 0.71 Pb (Mg 1/3 Nb 2/3 ) O 3 -0.29 PbTiO 3 single crystal sensitive element was placed in an electrode mask, and the distributed electrode was magnetron sputtered, the lower surface
  • the Ni-Cr/Au electrode was sputter deposited, the electrode area was 0.5 ⁇ 2 mm 2 , and the pitch was 0.1 mm, 0.5 mm, 1 mm, and 1.5 mm, respectively; the upper surface Ni-Cr electrode was a ⁇ 2.5 mm round electrode.
  • the electrodes at both ends of the sensitive element are polarized at 2kV/mm and -2kV/mm, respectively, forming reverse polarization, as shown in Figure 7, including: infrared absorption black layer 11, Ni-Cr electrode 12, pyroelectric relaxation Ferroelectric 13, Ni-Cr/Au electrode 14, P represents the polarization orientation.
  • the two sensitive electrodes of the sensitive element are led out by the gold wire, and the voltage mode amplifying circuit composed of the field effect transistor and the 20G ⁇ resistor is packaged in the TO39 pipe socket (Shanghai Kefa Precision Alloy Material Sales Co., Ltd.).
  • the multi-walled carbon nanotubes and the alcohol mixture are sprayed on the surface of the above sensitive element chip to prepare an absorption layer, thereby obtaining a high-frequency pyroelectric relaxation ferroelectric single crystal infrared detector.
  • the performance of the detector was characterized by an independently established electrical modulation infrared response test system.
  • Figure 8 shows the frequency response of the pyroelectric infrared detector with a high frequency of 20 ⁇ m based on the electrode structure.
  • the specific detection rate at the electrode spacing of 0.5mm and 10Hz is 1.39 ⁇ 10. 9 cm (Hz) 1/2 /W.
  • the detection performance is better than the 20 ⁇ m Mn-doped PMNT single crystal sensitive element detector in the above voltage mode, and maintains a high specific detection rate at a high frequency (100Hz), and is significantly better than the current commercial LiTaO 3 infrared. Detectors to meet the needs of higher frequency use.
  • the upper surface of the sensitive element of the pyroelectric detector of the structure does not need to take out the electrode, and all of them can be used for absorbing infrared light, thereby increasing the absorption efficiency of the infrared light; in addition, the structure is greatly maintained under the condition that the pyroelectric coefficient remains substantially unchanged.
  • the capacitance of the sensitive element is reduced, that is, the equivalent dielectric constant of the sensitive element is reduced, so that the dielectric noise is one order of magnitude smaller than the resistance noise, and the advantage of relaxing the high pyroelectric coefficient of the ferroelectric single crystal is simultaneously reduced.
  • the disadvantage of its high dielectric constant is reduced, and the specific detection rate of the detector is improved to some extent, and the higher specific detection rate is maintained at a higher frequency.
  • the structure provides a new pyroelectric detector structure that is easy to miniaturize and integrate, meeting the requirements of modern detectors with low cost, low power consumption, and compatibility with integrated circuits.
  • the chemical mechanical thinning polishing technique is used for thinning and polishing.
  • a tetragonal Mn-doped PIMNT pyroelectric relaxation ferroelectric single crystal sensitive element was prepared. The thickness of the single crystal sensitive element was controlled at 20 ⁇ m, and then the extremely thin single crystal sensitive element was cut into 2.5 ⁇ 2.5 mm using a dicing machine. 2 , to prepare a pyroelectric infrared detector sensitive element chip.
  • the HF:NH 4 F:H 2 O corrosion inhibitor with a ratio of 8.3:33:58.7 was also used.
  • the prepared high Curie temperature tetragonal phase Mn was doped with 0.29Pb (In 1/2 Nb 1/2
  • the surface of the O 3 -0.31 Pb (Mg 1/3 Nb 2/3 )O 3 -0.40 PbTiO 3 single crystal sensitive element was subjected to wet etching. After the end of the corrosion, the single crystal sensitive element sensitive element was annealed in an oxygen (oxygen-rich atmosphere) atmosphere at an annealing temperature of 600 ° C and an annealing time of 20 hours to remove surface damage layers, residual mechanical stress, and internal defects of the single crystal.
  • the crystal sensitive element is sputter deposited on the upper and lower surfaces thereof, for example, a Ni-Cr electrode and a Ni-Cr/Au electrode as the upper electrode and the lower electrode.
  • an electrode size of an upper electrode of ⁇ 2.5 mm and a lower electrode of ⁇ 2.0 mm is employed.
  • the sensitive element is also polarized by means of temperature-increasing polarization.
  • the polarization condition is 150 ⁇ 2°C
  • the polarization electric field is 4 ⁇ 0.2kV/mm
  • the polarization time is 15 ⁇ 1min.
  • the multi-walled carbon nanotubes and the alcohol mixture are sprayed on the surface of the single crystal sensitive element chip to prepare an absorption layer.
  • the single-crystal sensitive element chip and the electronic component are packaged in a metal tube shell by using a voltage mode and a current mode integrated circuit form, thereby obtaining a high Curie temperature pyroelectric infrared unit detector, and FIG. 7 shows a self-designed voltage mode. And current mode integrated circuit board schematic. The performance of the detector was also characterized by an independently established infrared response test system.
  • the voltage response rate and specific detection rate of the 20 ⁇ m high Curie temperature pyroelectric relaxation ferroelectric single crystal sensitive element detector at 10Hz under the prepared voltage mode reach 30020V/W and 1.15 ⁇ 10 9 cm(Hz) respectively . 2 /W
  • the voltage response rate and specific detection rate of the 20 ⁇ m high Curie temperature single crystal sensitive element detector at 10Hz in the current mode reached 78500V/W, 1.74 ⁇ 10 9 cm(Hz) 1/2 /W, respectively.
  • the current commercial LiTaO 3 infrared detector achieving a combination of high application temperature and high performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Radiation Pyrometers (AREA)

Abstract

提供一种热释电弛豫铁电单晶红外探测器,该探测器包括:设有引脚的底座;与底座封装在一起以形成容纳空间的带有窗口的壳体;设置于所述容纳空间中的灵敏元件(7),所述灵敏元件由弛豫铁电单晶制成;分别设置于所述灵敏元件的上表面的上电极(5,6)和所述灵敏元件的下表面的下电极(8);覆盖于所述灵敏元件上电极的吸收层(9);对灵敏元件进行支撑的支架(3);以及与所述灵敏元件相连的放大电路。上述探测器具备高响应率、低噪声和高探测率等优点。

Description

一种热释电弛豫铁电单晶红外探测器 技术领域
本发明涉及一种探测器,具体说,涉及一种热释电弛豫铁电单晶红外探测器。
技术背景
当今世界各国竞相发展红外探测和成像技术,其应用遍及军事、航天、科研、医疗、工业等众多领域。红外探测器主要分为光子型红外探测器和热型红外探测器两大类。目前常见的光子型红外探测器主要采用以碲镉汞为代表的窄禁带半导体材料和以砷化镓为代表的光电子半导体材料。但半导体红外器件一般需要低温致冷工作,体积大、成本高、功耗大。
而利用材料热释电效应研制的热释电红外探测器由于其在紫外波段、可见波段、红外波段具有平坦的光谱响应,同时具有无需致冷、功耗低、噪声带宽小、结构紧凑、便于携带、成本低等优点,已经成为当前红外技术领域中最引人瞩目的焦点之一。随着热释电红外探测器向低成本、低功耗及小型化发展,热释电红外探测器正从军用市场向民用市场快速拓展,尤其是在人体探测、火灾预警、气体分析、红外光谱仪以及红外热成像等领域发挥了重要作用,同时体现了巨大的市场潜力。
目前用于热释电红外探测器的材料主要包括锆钛酸铅(PZT),钛酸锶钡(BST)和钽钪酸铅(PST)等,用于热释电单元探测器件的材料主要局限于钽酸锂(LiTaO3)、硫酸三甘酞(TGS)等。但是,这些传统材料有着热释电系数低、介电损耗大以及物理性能不稳定等缺点,很难满足高性能热释电红外探测器及其延伸产品的应用要求。例如,比较成熟的商用LiTaO3红外探测器的探测率水平仅为1×108cm(Hz)1/2/W至4×108cm(Hz)1/2/W。因此同时克服以上材料的缺点,探索获得高探测优值的新型热释电材料成为目前发展非制冷红外器件的迫切需求。
从1996年开始,罗豪甦等人率先用改进的布里奇曼(Bridgman)方法 成功生长出大尺寸高质量的弛豫铁电单晶,如(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3铌镁钛酸铅(简称PMNT或PMN-PT),并成功实现了高质量PMNT单晶的批量生产(专利文献1)。
自2003年开始,罗豪甦等人又首先发现了弛豫铁电单晶(如PMNT)的优异热释电性能,并开展了大量的相关热释电性能优化和材料工艺研究,例如,当材料组成为x处于0.24-0.30之间,晶体学方向沿自发极化方向时,制备得到高热释电性能的PMNT单晶材料(专利文献2)。
为了进一步降低材料的介电损耗,提高器件的探测率,研究人员生长了Mn掺杂PMNT单晶(简称Mn:PMNT),其中组分为Mn掺杂PMN-0.26PT的单晶,热释电系数达到17.2×10-4C/m2K,介电损耗降到0.05%。尽管该材料性能优异,但由于对该材料的红外探测灵敏元件加工工艺不同于传统热释电材料,尤其是为提高红外探测性能进行减薄工艺时,引入的尺寸效应和表面损伤效应引起单晶体减薄后性能的严重劣化,该问题至今尚未解决,使得该新型热释电材料难以在红外器件中的实际应用(论文文献1)。
另外,PMNT单晶居里温度偏低,具有一定的应用限制性,为提高应用范围及其温度稳定性,采用化学组分调控,制备高居里温度的三元体系铌铟镁钛酸铅(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3(简称PIMNT或PIN-PMN-PT)单晶得到了研究人员的重视,但由于三元体系单晶的组分复杂,兼顾高热释电性能、高居里温度和低介电常数的组分调控难度较高,因此对该晶体的性能优化尚未有明确研究结果和公开报道(论文文献2)。
另外,传统热释电红外探测器的敏感元件一般为全电极,面积固定,若想减小电极面积以调控敏感元件的电学参数用于其它用途则不容易实现,因此也需要在电极结构的调整方面进行改进。
迄今为止,本领域尚未开发出一种克服了上述现有技术缺陷的高性能热释电红外探测器。
专利文献:
专利文献1:中国专利CN 1080777C;
专利文献2:中国专利CN100429334C。
论文文献:
论文文献1:L.H.Liu,X.B.Li,X.Wu,Y.J.Wang,W.N.Di,D.Lin,X.Y.Zhao,H.S.Luo,N.Neumann,Appl.Phys.Lett.95(2009)192903;
论文文献2:P.Yu,F.F.Wang,D.Zhou,W.W.Ge,X.Y.Zhao,H.S.Luo,J.L.Sun,X.J.Meng,J.H.Chu,Appl.Phys.Lett.92(2008)252907。
发明概要
本发明提供了一种新颖的热释电弛豫铁电单晶红外探测器,从而解决了现有技术中存在的问题。
本发明的一方面在于提供一种热释电弛豫铁电单晶红外探测器,该探测器包括
设有引脚的底座;
与所述底座封装在一起以形成容纳空间的带有一个或多个窗口的管壳;
设置于所述容纳空间中的由经过极化处理的一个或多个热释电弛豫铁电单晶敏感元构成的灵敏元芯片;
分别设置于所述热释电弛豫铁电单晶敏感元的上表面和下表面的电极;
覆盖所述热释电弛豫铁电单晶敏感元上表面的吸收层;
对所述的热释电弛豫铁电单晶敏感元进行支撑的支架;以及
采用了电压模式或电流模式的放大电路,其特征在于,所述热释电弛豫铁电单晶敏感元的材料为如下材料中的一种或多种:
三方相Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3单晶,其中,0.26≤x≤0.29、且晶体学方向为[111],
四方相Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3单晶,其中,0.35≤x≤0.40、且晶体学方向为[001];
三方相Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,其中0.15≤1-x-y≤0.38,0.36≤y≤0.57,0.26≤x≤0.30,且晶体学方向为[111];
四方相Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,其中 0.20≤1-x-y≤0.29、0.30≤y≤0.45、0.35≤x≤0.42,且晶体学方向为[001]。
其中,前述热释电弛豫铁电单晶敏感元的上表面和下表面的电极具有非对称的结构。
其中,前述热释电弛豫铁电单晶敏感元的上表面和下表面的电极具有不同构型或不同尺寸。
其中,前述设于所述上表面的电极为单电极,设于所述下表面的电极包括互相分离的左电极及右电极,所述左电极和右电极互不连通将所述下电极成型为一分割电极。
其中,前述左电极及右电极的间距为0.5mm-1mm间。
其中,前述吸收层的配方为多壁碳纳米管、纳米四氧化三铁或纳米碳粉和酒精的混合液,并以间歇多次式喷涂的方式覆盖所述上表面,所述吸收层的红外吸收率≥90%;所述支架采用细的、低热导率的氧化铝陶瓷支架,其在所述热释电弛豫铁电单晶敏感元的中心位置进行支撑,以实现热释电弛豫铁电单晶红外探测灵敏元件的热悬空。
其中,前述电压模式放大电路的匹配电阻RG降至远小于100GΩ,所述电流模式放大电路的反馈电容Cf≤10pF,反馈电阻Rf降至远小于100GΩ。
在本发明中,采用弛豫铁电单晶敏感元制备的热释电探测器,只需更小的匹配电阻即可达到最优性能,如20GΩ,比通常的红外探测器中使用的100GΩ的价格大大降低,可在一定程度大大降低探测器的制备成本,如特定情况下可以降低成本达到10%。
在本发明中,所述电压模式放大电路的匹配电阻RG在远小于100GΩ时 即可实现最优的红外探测性能,优选的匹配电阻值为20GΩ,有效降低了探测器的制备成本。
在本发明中,所述电流模式放大电路的反馈电容Cf≤10pF、反馈电阻远小于100GΩ即可获得最优的红外探测性能,优选的反馈电阻Rf为20GΩ,有效降低了探测器的制备成本。
在本发明中,可以只包含一个所述热释电弛豫铁电单晶敏感元,也可以包含多个所述热释电弛豫铁电单晶敏感元,不同的热释电弛豫铁电单晶敏感元可以进行串联或并联补偿,也可单独作为红外探测灵敏元件。
在本发明中,采用特定弛豫铁电单晶材料的热释电单晶敏感元可以制备出各种结构的高性能热释电红外探测器,具有超高比探测率、低噪声、高灵敏度等特性。
在本发明中,采用特定弛豫铁电单晶材料的热释电单晶敏感元具有高热释电系数、低介电损耗、适中介电常数的特点,以及吸收层如多壁碳纳米管的高红外吸收率的优势,制备具有高响应率、低噪声和高探测率的热释电弛豫铁电单晶红外探测器。
在本发明中,采用特定弛豫铁电单晶材料的热释电单晶敏感元的热释电红外探测器,可极大提高探测器在热释电红外领域的探测水平。所述吸收层可以为多壁碳纳米管(短),其吸收率≥90%,可有效提高探测器的响应率。
本发明的热释电弛豫铁电单晶红外探测器具有超高探测率、低噪声和高响应率的优点,在气体探测、火警监控等非制冷红外探测领域具有广泛的应用价值。
附图说明
图1(a)给出了Mn掺杂0.29PbIn1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元厚度随腐蚀时间的变化规律;
图1(b)给出了Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元热释电、介电性能随腐蚀时间的变化规律。
图2给出了不同处理工艺下Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元介电性能的对比。
图3示出了根据本申请实施例的多壁碳纳米管吸收层及其红外吸收性能。
图4示出了根据本申请实施例所制备的热释电弛豫铁电单晶探测器的结构示意图。
图5示出了根据本申请实施例的电压模式下红外探测器响应率和比探测率的频率响应。
图6示出了根据本申请实施例的电流模式下红外探测器响应率和比探测率的变化关系。
图7是根据本申请实施例的灵敏元分布式电极结构示意图。
图8示出了根据本申请实施例的包含分布式电极的红外探测器的比探测率的频率响应。
图9给出了本申请实施例单晶的介电性能随温度和频率的变化关系。
发明内容
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
实施例中涉及的材料介电性能测试是用Agilent 4294A型阻抗分析仪(安捷伦科技有限公司)测得样品电容,根据平板电容器近似计算得到的;单晶极化后的热释电系数是通过动态法热释电系数测量系统测得的,其中将单晶沿自发极化方向升温极化后,交流驱动温度幅度为1℃,频率为45mHz; 单晶敏感元芯片是通过对单晶敏感元进行极化处理得到的;电极是通过磁控溅射沉积得到的;热释电探测器的响应率是通过黑体红外响应测试系统测得的,器件噪声通过Agilent 35670 A动态信号分析仪(安捷伦科技有限公司)测得,探测率是根据黑体探测率的理论公式,由测得的响应率和噪声计算得到。
材料的制备:
制备一种1mol%Mn掺杂的0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3单晶敏感元,晶体学取向<111>,尺寸为20×20mm2,厚度为15±1μm。溅射异构电极并极化后的性能如下:居里温度为135℃,三方-四方相变温度为108℃,介电常数εr≤750,热释电系数p≥12.0×10-4C/m2K。
制备一种1mol%掺杂的四方相Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3高应用温度单晶敏感元,晶体学取向<001>,尺寸为20×20mm2,厚度为20±1μm。上异构电极极化后的性能如下:居里温度为216℃,较Mn掺杂PMNT单晶敏感元的使用温度(低温相变温度)提高近110℃,介电常数εr≤450,较Mn掺杂PMNT单晶敏感元降低近一半,热释电系数p≥6.0×10-4C/m2K。其中,制备四方相Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3的方法为:
按照1%mol Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3的化学式,准确称取纯度均大于99.99%的Pb(Mn1/3Nb2/3)O3、MgNb2O6、TiO2、InNbO4、PbO原料,配成混合原料;球磨24小时以得到混合均匀的粉料;将混合均匀的粉料在1300℃预烧8小时,以作为晶体生长的起始物料;将预烧好的晶体生长的起始物料置于铂金坩埚中,以<001>取向的PIMNT作为籽晶,装入晶体生长炉中进行晶体生长。
为了防止PbO的挥发和In2O3的升华,装好籽晶和原料的铂金坩埚需要进行适当密封。对坩埚的厚度和形状都没有严格限制,在能够承受熔体的前 提下厚度越薄越好,以便尽可能地降低成本。坩埚的数量和形状同样没有严格限制,为降低成本,优选一炉多个坩埚特别是异型坩埚,亦即用户所要求晶体形状的异型坩埚。这方面中国科学院上海硅酸盐所的多个专利已经公开,例如CN1113970A,其内容本发明结合参照。所用的晶体生长炉也没有严格限制,一般的温梯法装置都可使用。这方面上海硅酸盐所的多个专利已经公开,例如CN1113970A,其内容本发明结合参照。
炉温控制在1400℃,为保证原料的充分熔化和各组分均匀扩散,坩埚下降方向的最大温度梯度不小于50℃/cm。将坩埚在接种位置熔化并保温5小时以后,开始生长,下降速率为7mm/天,生长结束后即可得到与籽晶方向一致且形状与坩埚相同的完整四方相Mn掺杂29Pb(In1/2Nb1/2)O3-31Pb(Mg1/3Nb2/3)O3–40PbTiO3单晶。
随后对前述Mn掺杂0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3或Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3热释电弛豫铁电单晶单晶敏感元,采用了化学机械减薄抛光技术对弛豫铁电单晶进行减薄抛光,化学抛光液为酸性(pH=3-4)硅溶胶,硅溶胶的粒径一般为50-80nm。制备了大尺寸(20×20mm2)热释电弛豫铁电单晶敏感元,单晶敏感元厚度可控制在5μm至15μm,然后根据需要使用划片机将之划切为小片,以制备热释电弛豫铁电单晶探测器灵敏元芯片。由于化学机械抛光的作用,会引入表面应力和损伤层,当单晶敏感元厚度减小至微米级别时,该表面效应的作用更加凸显,使得单晶芯片的整体介电损耗明显增大,影响单晶探测器的探测性能,因此通过本发明所采取的后处理工艺技术,在获得极薄热释电弛豫铁电单晶敏感元的同时,也尽可能降低表面损伤及缺陷对单晶敏感元热释电、介电性能的影响,实现高性能高质量热释电弛豫铁电单晶敏感元的制备。
以上制备方法,仅是作为举例,以方便公众获得本申请所涉及的材料,但是,本领域技术人员根据本领域的常规技术手段,也可通过其他方式,甚至可从市场上获得相应材料,上述制备方式并不是对材料获取方式的特殊限 制。
首先采用了配比(重量比)为8.3:33:58.7的HF:NH4F:H2O缓蚀液,对制备的Mn掺杂PMNT单晶敏感元表面进行湿法腐蚀。图1(a)给出了Mn掺杂0.29PbIn1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元厚度随腐蚀时间的变化规律,可以得出该配比下的腐蚀液对Mn掺杂PMNT单晶的腐蚀速率约为20.8nm/min。图1(b)给出了Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元热释电、介电性能随腐蚀时间的变化规律,可以看出热释电系数随腐蚀时间的增加,先逐渐增大,然后趋于平稳;介电损耗则随腐蚀时间的增加,先降低后增大。这说明湿法腐蚀可在一定程度上优化材料的热释电系数,且腐蚀时间控制在15-20分钟能有效降低材料的介电损耗。
其后,对腐蚀后的热释电弛豫铁电单晶敏感元进行退火处理,以进一步去除表面残余的机械应力以及单晶的内部缺陷。退火温度为500℃,退火气氛为氧气(富氧氛围),退火时间为10小时。图2给出了不同处理工艺下Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元介电性能的对比,从该图中可以看出热释电弛豫铁电单晶敏感元在减薄抛光至微米尺度时,相比于体材料,其介电损耗明显增大,但是通过湿法腐蚀和氧气退火后,热释电弛豫铁电单晶敏感元的介电损耗得到有效改善。
探测器的制备:
将1mol%Mn掺杂0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3单晶敏感元放入电极掩膜版,利用磁控溅射在其上下表面溅射沉积Ni-Cr电极和Ni-Cr/Au电极(异构电极),采用升温极化的方式对敏感元进行极化,极化条件:温度为120±2℃,极化电场为2±0.2kV/mm,极化时间为15±1min。采用多壁碳纳米管与酒精通过超声振荡形成均匀溶液,并通过喷涂的方式在上述热释 电弛豫铁电单晶敏感元芯片表面制备红外吸收层,如图3(a)所示。图3(b)示出了该多壁碳纳米管吸收层在波长2.5-25μm范围内的红外吸收性能,可以看出其红外吸收率达到99%。将不同厚度的单晶敏感元芯片单点支撑,分别以电压模式和电流模式集成电路形式封装于金属管壳内,从而得到高探测率热释电弛豫铁电单晶红外单元探测器,如图4所示,图4示出了所制备的热释电弛豫铁电单晶探测器的结构示意图,包括:电路板1,电极引脚2a、2b,氧化铝绝热支撑3,导电电极4,金电极(下)5,Ni-Cr电极(下)6,热释电弛豫铁电单晶敏感元7,Ni-Cr电极(上)8,红外吸收层9和金丝引线10。使用性能测试电路对探测器进行性能表征,利用黑体辐射源系统以及动态信号分析仪等建立了红外响应测试系统,黑体的温度由温度控制仪精确控制,选为500K,红外辐射通过机械调制盘调制为不同频率的方波输出,探测器置于距离黑体辐射源出光孔10cm处,出光孔径为φ10mm。
图5给出了所制备的电压模式下15μm热释电弛豫铁电单晶敏感元探测器响应率和比探测率在0.5Hz-100Hz范围内的频率响应。10Hz下的电压响应率为27710mV,比探测率达到1.17×109cm(Hz)1/2/W。图6(a)-(c)给出了所制备的电流模式下15μm单晶敏感元探测器响应率和比探测率的变化关系,从图中可以看出,通过上述腐蚀和氧气退火处理后,可使得单晶敏感元的介电损耗从2%降至0.5%,进而极大地提高了探测器的探测水平,可从1.2×109cm(Hz)1/2/W提升至2.17×109cm(Hz)1/2/W。另外,随着热释电弛豫铁电单晶敏感元厚度的减小,探测器电压响应率和比探测率大幅提高。8μm时,电压响应率为2.0×105V/W,达到20μm单晶敏感元探测器的近2倍;10μm时,比探测率达到2.63×109cm(Hz)1/2/W,明显优于20μm单晶敏感元探测器(2.04×109cm(Hz)1/2/W),是目前商用LiTaO3红外探测器的5倍。
将处理后的1mol%Mn掺杂的0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3单晶敏 感元放入电极掩模板中,并磁控溅射分布式电极,下表面溅射沉积Ni-Cr/Au电极,电极面积为0.5×2mm2,间距分别为0.1mm、0.5mm、1mm和1.5mm;上表面Ni-Cr电极为Φ2.5mm圆型电极。
灵敏元两端电极分别在2kV/mm和-2kV/mm下极化,形成反向极化,如图7所示,包括:红外吸收黑层11,Ni-Cr电极12,热释电弛豫铁电13,Ni-Cr/Au电极14,P代表极化取向。灵敏元两下电极通过金线引出信号,与场效应管和20GΩ电阻组成电压模式放大电路封装于TO39管座(上海科发精密合金材料销售有限公司)中。将多壁碳纳米管与酒精混合液喷涂在上述灵敏元芯片表面制备吸收层,从而得到高频用热释电弛豫铁电单晶红外探测器。采用自主建立的电调制红外响应测试系统对探测器进行性能表征。图8给出了基于该电极结构所制备的电压模式下20μm高频用热释电红外探测器比探测率的频率响应关系,在电极间距为0.5mm、10Hz下的比探测率为1.39×109cm(Hz)1/2/W。探测性能优于上述电压模式下的20μm Mn掺杂PMNT单晶敏感元探测器,并在频率较高的情况(100Hz)下仍保持较高的比探测率,且明显优于目前商用LiTaO3红外探测器,满足较高频使用的需求。
该结构的热释电探测器灵敏元上表面无需引出电极,可全部用于吸收红外光,增加了红外光的吸收效率;另外,该结构在热释电系数基本保持不变的情况下,大大降低了灵敏元的电容,也即降低了灵敏元的等效介电常数,使介电噪声相比电阻噪声小了一个数量级,发挥了弛豫铁电单晶高热释电系数的优势,同时减小了其高介电常数的劣势,在一定程度上提高了探测器的比探测率,并在较高频率下仍然保持较高的比探测率。该结构提供了一种新的热释电探测器的结构,易于小型化和集成化,满足现代探测器低成本,低功耗,易于与集成电路相兼容的要求。
采用高居里温度的1mol%Mn掺杂0.29Pb(In1/2Nb1/2)O3- 0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3热释电弛豫铁电单晶,沿[001]晶向,按尺寸4×4×0.5mm3对晶片进行划切,溅射电极并极化以用于性能测试,极化条件:温度为150±2℃,极化电场为4±0.2kV/mm,极化时间为15±1min。图9给出了单晶的介电性能随温度和频率的变化关系。从图9(a)可以看出该组分单晶的居里温度达到216℃,较二元Mn掺杂PMNT(71/29)单晶,可操作温度上限提高近110℃,显著提高了器件在使用过程中的温度稳定性。从图9(b)可以看出该组分单晶的介电常数较二元Mn掺杂PMNT(71/29)单晶下降近一半,1kHz下为350,弥补了由于高PT含量所引起的单晶热释电系数的降低,从而使得该单晶的探测率优值可与二元Mn掺杂PMNT(71/29)单晶相比拟。
采用了化学机械减薄抛光技术进行减薄抛光,化学抛光液为碱性(pH=9-10)硅溶胶,硅溶胶的粒径一般为50-80nm。制备了四方相Mn掺杂PIMNT热释电弛豫铁电单晶敏感元,单晶敏感元厚度控制在20μm,然后使用划片机将该极薄的单晶敏感元划切为2.5×2.5mm2,以制备热释电红外探测器灵敏元芯片。同样采用配比(重量比)为8.3:33:58.7的HF:NH4F:H2O缓蚀液,对制备的高居里温度四方相Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3单晶敏感元表面进行湿法腐蚀。腐蚀结束后,对单晶敏感元灵敏元进行氧气(富氧氛围)退火处理,退火温度为600℃,退火时间为20小时,以去除表面损伤层、残余机械应力以及单晶的内部缺陷。
利用磁控溅射在Mn掺杂0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3热释电弛豫铁电单晶敏感元其上下表面分别溅射沉积例如Ni-Cr电极和Ni-Cr/Au电极以作为上电极和下电极,本实施例采用了上电极φ2.5mm,下电极φ2.0mm的电极尺寸。同样采用升温极化的方式对敏感元进行极化,极化条件:温度为150±2℃,极化电场为 4±0.2kV/mm,极化时间为15±1min。将多壁碳纳米管与酒精混合液,喷涂在上述单晶敏感元芯片表面制备吸收层。采用电压模式和电流模式集成电路形式将该单晶敏感元芯片与电子元器件封装于金属管壳内,从而得到高居里温度热释电红外单元探测器,图7给出了自主设计的电压模式和电流模式集成电路板示意图。同样采用自主建立的红外响应测试系统对探测器进行性能表征。所制备的电压模式下20μm高居里温度热释电弛豫铁电单晶敏感元探测器在10Hz下的电压响应率和比探测率分别达到30020V/W、1.15×109cm(Hz)1/2/W,所制备的电流模式下20μm高居里温度单晶敏感元探测器在10Hz下的电压响应率和比探测率分别达到78500V/W、1.74×109cm(Hz)1/2/W,且明显优于目前商用LiTaO3红外探测器,实现了高应用温度和高性能的结合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。

Claims (7)

  1. 一种热释电弛豫铁电单晶红外探测器,所述探测器包括:
    设有引脚的底座;
    与所述底座封装在一起以形成容纳空间的带有一个或多个窗口的管壳;
    设置于所述容纳空间中的由经过极化处理的一个或多个热释电弛豫铁电单晶敏感元构成的灵敏元芯片;
    分别设置于所述热释电弛豫铁电单晶敏感元的上表面和下表面的电极;
    覆盖所述热释电弛豫铁电单晶敏感元上表面的吸收层;
    对所述的热释电弛豫铁电单晶敏感元进行支撑的支架;以及
    采用了电压模式或电流模式的放大电路,其特征在于,所述热释电弛豫铁电单晶敏感元的材料为如下材料中的一种或多种:
    三方相Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3单晶,其中,0.26≤x≤0.29、且晶体学方向为[111],
    四方相Mn掺杂(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3单晶,其中,0.35≤x≤0.40、且晶体学方向为[001];
    三方相Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,其中0.15≤1-x-y≤0.38,0.36≤y≤0.57,0.26≤x≤0.30,且晶体学方向为[111];
    四方相Mn掺杂(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3–xPbTiO3,其中0.20≤1-x-y≤0.29、0.30≤y≤0.45、0.35≤x≤0.42,且晶体学方向为[001]。
  2. 如权利要求1所述的热释电弛豫铁电单晶红外探测器,其特征在于,所述热释电弛豫铁电单晶敏感元的上表面和下表面的电极具有非对称的结构。
  3. 如权利要求1所述的热释电弛豫铁电单晶红外探测器,其特征在于,所述热释电弛豫铁电单晶敏感元的上表面和下表面的电极具有不同构型或不同尺寸。
  4. 如权利要求3所述的热释电弛豫铁电单晶红外探测器,其特征在于,设于所述上表面的电极为单电极,设于所述下表面的电极包括互相分离的左电极及右电极,所述左电极和右电极互不连通将所述下电极成型为一分割电极。
  5. 如权利要求4所述的热释电弛豫铁电单晶红外探测器,其特征在于,所述左电极及右电极的间距为0.5mm-1mm间。
  6. 如权利要求1-5中任一项所述的热释电弛豫铁电单晶红外探测器,其特征在于,所述吸收层的配方为多壁碳纳米管、纳米四氧化三铁或纳米碳粉和酒精的混合液,并以间歇多次式喷涂的方式覆盖所述上表面,所述吸收层的红外吸收率≥90%;所述支架采用细的、低热导率的氧化铝陶瓷支架,其在所述热释电弛豫铁电单晶敏感元的中心位置进行支撑,以实现热释电弛豫铁电单晶红外探测灵敏元件的热悬空。
  7. 如权利要求1-5中任一项所述的热释电弛豫铁电单晶红外探测器,其特征在于,所述电压模式放大电路的匹配电阻RG降至远小于100GΩ,所述电流模式放大电路的反馈电容Cf≤10pF,反馈电阻Rf降至远小于100GΩ。
PCT/CN2015/071797 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶红外探测器 WO2015172590A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410199521.4 2014-05-12
CN201410199521.4A CN103943771A (zh) 2014-05-12 2014-05-12 一种弛豫铁电单晶热释电红外探测器及其制备方法
CNPCT/CN2014/083193 2014-07-29
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器

Publications (1)

Publication Number Publication Date
WO2015172590A1 true WO2015172590A1 (zh) 2015-11-19

Family

ID=51191353

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器
PCT/CN2015/071793 WO2015172586A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片
PCT/CN2015/071792 WO2015172585A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电红外探测器
PCT/CN2015/071794 WO2015172587A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片的极化方法
PCT/CN2015/071795 WO2015172588A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的减薄方法
PCT/CN2015/071796 WO2015172589A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的后处理方法
PCT/CN2015/071791 WO2016015462A1 (zh) 2014-05-12 2015-01-29 一种四方相热释电弛豫铁电单晶材料及其制备方法
PCT/CN2015/071797 WO2015172590A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶红外探测器

Family Applications Before (7)

Application Number Title Priority Date Filing Date
PCT/CN2014/083193 WO2015172434A1 (zh) 2014-05-12 2014-07-29 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器
PCT/CN2015/071793 WO2015172586A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片
PCT/CN2015/071792 WO2015172585A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电红外探测器
PCT/CN2015/071794 WO2015172587A1 (zh) 2014-05-12 2015-01-29 一种灵敏元芯片的极化方法
PCT/CN2015/071795 WO2015172588A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的减薄方法
PCT/CN2015/071796 WO2015172589A1 (zh) 2014-05-12 2015-01-29 一种热释电弛豫铁电单晶的后处理方法
PCT/CN2015/071791 WO2016015462A1 (zh) 2014-05-12 2015-01-29 一种四方相热释电弛豫铁电单晶材料及其制备方法

Country Status (2)

Country Link
CN (1) CN103943771A (zh)
WO (8) WO2015172434A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法
CN104458007A (zh) * 2014-12-12 2015-03-25 电子科技大学 一种热释电红外探测器
CN104716255A (zh) * 2015-03-13 2015-06-17 电子科技大学 一种厚膜热释电敏感元及其制备方法
CN105390604B (zh) * 2015-12-11 2017-12-08 上海德凯仪器有限公司 热释电传感器制作工艺
CN106784290B (zh) * 2016-11-30 2021-04-20 北立传感器技术(武汉)有限公司 一种热释电弛豫单晶超薄灵敏芯片及其制备方法
CN106768389A (zh) * 2017-01-16 2017-05-31 北立传感器技术(武汉)有限公司 一种基于电流式弛豫铁电单晶热释电探测器及其制备方法
CN107843571A (zh) * 2017-10-19 2018-03-27 中国科学院上海硅酸盐研究所 一种基于弛豫铁电单晶红外热释电探测器的VOCs监测控制系统
CN108165255A (zh) * 2017-12-27 2018-06-15 哈尔滨工业大学 一种全固态光色晶体材料激光卡及其制备和使用方法
CN108645521A (zh) * 2018-05-09 2018-10-12 东莞传晟光电有限公司 一种热释电传感器
WO2019227377A1 (zh) * 2018-05-31 2019-12-05 深圳通感微电子有限公司 一种热释电传感器
CN108562365A (zh) * 2018-05-31 2018-09-21 深圳通感微电子有限公司 一种热释电传感器
DE102018122550A1 (de) 2018-09-14 2020-03-19 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
CN111900244A (zh) * 2020-07-01 2020-11-06 上海烨映电子技术有限公司 绝缘板载热电堆传感器元器件及其制作方法
CN115480287A (zh) * 2021-06-16 2022-12-16 清华大学 能量束探测装置及探测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043065A (zh) * 2006-03-21 2007-09-26 同济大学 一种新型热释电红外探测器及其使用的复合薄膜探测元
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027534C (zh) * 1991-01-05 1995-02-01 清华大学 提高铅系弛豫铁电陶瓷机电性能的工艺
US6495828B1 (en) * 2000-04-17 2002-12-17 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/pyroelectric infrared detector with a colossal magneto-resistive electrode material and rock salt structure as a removable substrate
US6890874B1 (en) * 2002-05-06 2005-05-10 Corning Incorporated Electro-optic ceramic material and device
CN100521819C (zh) * 2004-10-15 2009-07-29 清华大学 硅基铁电微声学传感器畴极化区域控制和电极连接的方法
CN100429334C (zh) * 2004-12-03 2008-10-29 中国科学院上海硅酸盐研究所 一种铌镁酸铅-钛酸铅热释电单晶材料及其应用
CN101867011B (zh) * 2009-04-14 2012-08-22 中国科学院物理研究所 一种热释电薄膜材料及其制备方法
WO2011111309A1 (ja) * 2010-03-11 2011-09-15 パナソニック株式会社 焦電型温度センサを用いて温度を測定する方法
CN101834227B (zh) * 2010-04-27 2011-11-30 中国科学院上海微系统与信息技术研究所 一维光栅太赫兹量子阱光电探测器响应率的优化方法
US8907546B2 (en) * 2010-08-10 2014-12-09 Wesley S. Hackenberger Temperature and field stable relaxor-PT piezoelectric single crystals
CN101976697A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 具有AlGaN吸收层的热释电紫外探测器
CN102503422B (zh) * 2011-11-02 2014-05-07 宁波大学 一种钛铌镁铟酸铅热释电陶瓷及制备方法
JP2013113692A (ja) * 2011-11-28 2013-06-10 Murata Mfg Co Ltd 赤外線センサ
CN102721658A (zh) * 2012-07-05 2012-10-10 昆明斯派特光谱科技有限责任公司 一种热释电光谱探测器的制备方法
CN102925959A (zh) * 2012-10-14 2013-02-13 宁波大学 新型弛豫铁电单晶pimnt的生长工艺
CN102928089B (zh) * 2012-11-01 2014-08-13 中国科学院上海技术物理研究所 一种非制冷热释电线列焦平面及其制造方法
CN202885979U (zh) * 2012-11-01 2013-04-17 中国科学院上海技术物理研究所 一种非制冷热释电线列焦平面

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043065A (zh) * 2006-03-21 2007-09-26 同济大学 一种新型热释电红外探测器及其使用的复合薄膜探测元
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
CN103943771A (zh) * 2014-05-12 2014-07-23 中国科学院上海硅酸盐研究所 一种弛豫铁电单晶热释电红外探测器及其制备方法

Also Published As

Publication number Publication date
WO2015172585A1 (zh) 2015-11-19
WO2015172587A1 (zh) 2015-11-19
WO2015172588A1 (zh) 2015-11-19
WO2015172586A1 (zh) 2015-11-19
WO2015172589A1 (zh) 2015-11-19
WO2015172434A1 (zh) 2015-11-19
WO2016015462A1 (zh) 2016-02-04
CN103943771A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015172590A1 (zh) 一种热释电弛豫铁电单晶红外探测器
TW200426258A (en) Lithium tantalate substrate and method of manufacturing same
CN102181828B (zh) ZnFe2O4铁氧体薄膜制备方法
CN104876567A (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
Shyju et al. Comparative studies on conventional solution and Sankaranarayanan–Ramasamy (SR) methods grown potassium sodium tartrate tetrahydrate single crystals
Yamamoto et al. Piezoelectric properties of layered perovskite A 2Ti2O7 (A= La and Nd) single‐crystal fibers
TW201907030A (zh) 膜構造體及其製造方法
CN104458007A (zh) 一种热释电红外探测器
Ran et al. Effect of annealing temperature on optical properties of Er-doped ZnO films prepared by sol–gel method
JP3561238B2 (ja) 強誘電体単結晶およびその製造方法
Yang et al. Enhanced pyroelectric properties and application of tetragonal Mn-doped 0.29 Pb (In1/2Nb1/2) O3-0.31 Pb (Mg1/3Nb2/3) O3-0.40 PbTiO3 ternary single crystals
CN107293616B (zh) 一种基于铁电栅介质和CdSe纳米线的光电晶体管
CN102721658A (zh) 一种热释电光谱探测器的制备方法
Kao et al. Photoluminescence of ZnO thin films deposited at various substrate temperatures
CN109666909A (zh) 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法
CN101867011A (zh) 一种热释电薄膜材料及其制备方法
WO2016119158A1 (zh) 一种三方相热释电弛豫铁电单晶材料及其制备方法
CN109301002B (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
Tang et al. High-performance pyroelectric single crystals for uncooled infrared detection applications
CN102492991A (zh) 一种铌锌酸铅-钛酸铅单晶材料及其热释电应用
JPS59121119A (ja) 強誘電体薄膜の製造方法
WO2016119157A1 (zh) 一种热释电单晶的制备方法
CN106129144B (zh) 五氧化二钒光电探测器及其制备方法
Sun et al. Pyroelectric infrared detector based on LiTaO 3 crystal with novelty nanostructured amorphous carbon film
WO2016119159A1 (zh) 一种单晶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15793508

Country of ref document: EP

Kind code of ref document: A1