WO2015170734A1 - レジスト材料、レジスト組成物及びレジストパターン形成方法 - Google Patents
レジスト材料、レジスト組成物及びレジストパターン形成方法 Download PDFInfo
- Publication number
- WO2015170734A1 WO2015170734A1 PCT/JP2015/063272 JP2015063272W WO2015170734A1 WO 2015170734 A1 WO2015170734 A1 WO 2015170734A1 JP 2015063272 W JP2015063272 W JP 2015063272W WO 2015170734 A1 WO2015170734 A1 WO 2015170734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- acid
- resist
- compound
- formula
- Prior art date
Links
- GQDKQZAEQBGVBS-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1c1c3c2ccccc2c2c1cccc2 Chemical compound c(cc1)cc(c2c3cccc2)c1c1c3c2ccccc2c2c1cccc2 GQDKQZAEQBGVBS-UHFFFAOYSA-N 0.000 description 7
- 0 **(CC1)C=Cc2c1c(cccc1)c1c1c(cccc3)c3c(CCC=C3)c3c21 Chemical compound **(CC1)C=Cc2c1c(cccc1)c1c1c(cccc3)c3c(CCC=C3)c3c21 0.000 description 6
- ODHXBMXNKOYIBV-UHFFFAOYSA-N c(cc1)ccc1N(c1ccccc1)c1ccccc1 Chemical compound c(cc1)ccc1N(c1ccccc1)c1ccccc1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G10/00—Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
- C08G10/02—Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/02—Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/12—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/14—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with halogenated phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/16—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with amino- or nitrophenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/18—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenols substituted by carboxylic or sulfonic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/24—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0035—Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/0226—Quinonediazides characterised by the non-macromolecular additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0382—Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/162—Coating on a rotating support, e.g. using a whirler or a spinner
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/168—Finishing the coated layer, e.g. drying, baking, soaking
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2037—Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/325—Non-aqueous compositions
- G03F7/327—Non-aqueous alkaline compositions, e.g. anhydrous quaternary ammonium salts
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/38—Treatment before imagewise removal, e.g. prebaking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present invention relates to a resist material, a resist composition containing the material, and a resist pattern forming method using the composition.
- the conventional general resist material is a polymer material capable of forming an amorphous thin film.
- a resist thin film prepared by applying a solution of a polymer resist material such as polymethyl methacrylate, polyhydroxystyrene having an acid-dissociable reactive group or polyalkyl methacrylate on a substrate, ultraviolet rays, far ultraviolet rays, electron beams, extreme A line pattern of about 45 to 100 nm is formed by irradiating with ultraviolet rays (EUV), X-rays or the like.
- EUV ultraviolet rays
- polymer resists have a large molecular weight of about 10,000 to 100,000 and a wide molecular weight distribution. Therefore, in lithography using polymer resists, roughness is generated on the surface of fine patterns, making it difficult to control pattern dimensions. , Yield decreases. Therefore, there is a limit to miniaturization in conventional lithography using a polymer resist material. In order to produce a finer pattern, various low molecular weight resist materials have been proposed.
- Patent Document 1 an alkali developing negative radiation sensitive composition using a low molecular weight polynuclear polyphenol compound as a main component (see Patent Document 1 and Patent Document 2) has been proposed.
- Patent Document 3 As a candidate for a low molecular weight resist material having high heat resistance, an alkali developing negative radiation-sensitive composition (see Patent Document 3 and Non-Patent Document 1) using a low molecular weight cyclic polyphenol compound as a main component has been proposed. .
- Patent Documents 1 and 2 have the drawback that the resulting composition does not have sufficient heat resistance, and the resulting resist pattern has a poor shape.
- the alkali-developing negative radiation-sensitive composition using the low molecular weight cyclic polyphenol compound as a main component has high heat resistance, but has low solubility in a safe solvent used in a semiconductor manufacturing process and low sensitivity.
- the resulting resist pattern shape is bad. That is, the techniques described in Patent Document 3 and Non-Patent Document 1 have problems such as low solubility in a safety solvent used in a semiconductor manufacturing process, low sensitivity, and poor resist pattern shape. Thus, there is still room for improvement in the low molecular weight resist material obtained by the prior art.
- the present invention has been made in view of the above-described problems of the prior art, and has excellent heat resistance and etching resistance, high solubility in a safe solvent, high sensitivity, and a resist pattern that can provide a good resist pattern shape. It is an object to provide a material, a resist composition containing the material, and a resist pattern forming method using the composition.
- the present inventors have a compound having a specific structure in the resist composition, which has excellent heat resistance and etching resistance, high solubility in a safe solvent, and high sensitivity. And it discovered that a favorable resist pattern shape could be provided, and came to complete this invention.
- each R 0 is independently a monovalent group containing an oxygen atom, a monovalent group containing a sulfur atom, a monovalent group containing a nitrogen atom, a hydrocarbon group or a halogen atom.
- P are each independently an integer of 0-4.
- each R is independently a hydrogen atom or an acid dissociable reactive group, at least one of R is an acid dissociable reactive group, and each n is independently 0 to An integer of 4, where at least one n is an integer of 1 to 4.
- the acid dissociable reactive group is a substituted methyl group, 1-substituted ethyl group, 1-substituted-n-propyl group, 1-branched alkyl group, silyl group, acyl group, 1-substituted alkoxymethyl group, cyclic ether group,
- each R 0 is independently a monovalent group containing an oxygen atom, a monovalent group containing a sulfur atom, a monovalent group containing a nitrogen atom, a hydrocarbon group or a halogen atom.
- P are each independently an integer of 0-4.
- the resist material of the present invention is excellent in heat resistance and etching resistance, has high solubility in a safe solvent, is highly sensitive, and can impart a good resist pattern shape.
- the resist material of this embodiment contains a compound represented by the following formula (1).
- each R 0 is independently a monovalent group containing an oxygen atom, a monovalent group containing a sulfur atom, a monovalent group containing a nitrogen atom, a hydrocarbon group or a halogen atom.
- p is each independently an integer of 0 to 4.
- the resist material of this embodiment has excellent heat resistance and etching resistance, high solubility in a safe solvent, high sensitivity, and a good resist pattern shape.
- the resist material of this embodiment has high heat resistance derived from a polycyclic aromatic structure (dibenzo [g, p] chrysene skeleton), and can be used even under high temperature baking conditions. Moreover, since it can be baked at high temperature, it is highly sensitive and can provide a good resist pattern shape. Furthermore, since the resist material of this embodiment has the above-mentioned polycyclic aromatic structure, it has excellent etching resistance. Furthermore, although the resist material of the present embodiment has a polycyclic aromatic structure, it has high solubility in organic solvents, high solubility in safety solvents, and good product quality stability. It is.
- the monovalent group containing an oxygen atom is not limited to the following, but examples thereof include an acyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, and a straight chain having 1 to 6 carbon atoms.
- acyl group having 1 to 20 carbon atoms examples include, but are not limited to, for example, methanoyl group (formyl group), ethanoyl group (acetyl group), propanoyl group, butanoyl group, pentanoyl group, hexanoyl group, octanoyl group, decanoyl group And benzoyl group.
- alkoxycarbonyl group having 2 to 20 carbon atoms examples include, but are not limited to, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, octyloxycarbonyl group And decyloxycarbonyl group.
- linear alkyloxy group having 1 to 6 carbon atoms examples include, but are not limited to, for example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentyloxy group, n-hexyloxy group Etc.
- Examples of the branched alkyloxy group having 3 to 20 carbon atoms include, but are not limited to, an isopropoxy group, an isobutoxy group, a tert-butoxy group, and the like.
- Examples of the C3-C20 cyclic alkyloxy group include, but are not limited to, a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclooctyloxy group, and a cyclodecyloxy group. .
- linear alkenyloxy group having 2 to 6 carbon atoms examples include, but are not limited to, vinyloxy group, 1-propenyloxy group, 2-propenyloxy group, 1-butenyloxy group, 2-butenyloxy group and the like. It is done.
- Examples of the branched alkenyloxy group having 3 to 6 carbon atoms include, but are not limited to, an isopropenyloxy group, an isobutenyloxy group, an isopentenyloxy group, and an isohexenyloxy group.
- Examples of the cyclic alkenyloxy group having 3 to 10 carbon atoms include, but are not limited to, for example, cyclopropenyloxy group, cyclobutenyloxy group, cyclopentenyloxy group, cyclohexenyloxy group, cyclooctenyloxy group, cyclodecenyloxy group, and the like. Nyloxy group etc. are mentioned.
- aryloxy group having 6 to 10 carbon atoms examples include, but are not limited to, phenyloxy group (phenoxy group), 1-naphthyloxy group, 2-naphthyloxy group, and the like.
- acyloxy group having 1 to 20 carbon atoms examples include, but are not limited to, formyloxy group, acetyloxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, and benzoyloxy group.
- alkoxycarbonyloxy group having 2 to 20 carbon atoms examples include, but are not limited to, for example, methoxycarbonyloxy group, ethoxycarbonyloxy group, propoxycarbonyloxy group, butoxycarbonyloxy group, octyloxycarbonyloxy group, decyloxycarbonyl An oxy group etc. are mentioned.
- alkoxycarbonylalkyl group having 2 to 20 carbon atoms examples include, but are not limited to, for example, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, n-propoxycarbonylmethyl group, isopropoxycarbonylmethyl group, n-butoxycarbonylmethyl group Etc.
- Examples of the 1-substituted alkoxymethyl group having 2 to 20 carbon atoms include, but are not limited to, for example, 1-cyclopentylmethoxymethyl group, 1-cyclopentylethoxymethyl group, 1-cyclohexylmethoxymethyl group, 1-cyclohexylethoxymethyl group 1-cyclooctylmethoxymethyl group, 1-adamantylmethoxymethyl group and the like.
- Examples of the cyclic etheroxy group having 2 to 20 carbon atoms include, but are not limited to, tetrahydropyranyloxy group, tetrahydrofuranyloxy group, tetrahydrothiopyranyloxy group, tetrahydrothiofuranyloxy group, 4-methoxytetrahydro Examples include a pyranyloxy group and a 4-methoxytetrahydrothiopyranyloxy group.
- alkoxyalkyloxy group having 2 to 20 carbon atoms examples include, but are not limited to, methoxymethoxy group, ethoxyethoxy group, cyclohexyloxymethoxy group, cyclohexyloxyethoxy group, phenoxymethoxy group, phenoxyethoxy group, and the like. .
- the (meth) acryl group is not limited to the following, and examples thereof include an acryloyloxy group and a methacryloyloxy group.
- the glycidyl acrylate group is not particularly limited as long as it can be obtained by reacting glycidyloxy group with acrylic acid, and examples thereof include a substituent of the compound shown in Synthesis Example 11 in Examples described later.
- the glycidyl methacrylate group is not particularly limited as long as it can be obtained by reacting glycidyloxy group with methacrylic acid, and examples thereof include a substituent of the compound shown in Synthesis Example 12 in Examples described later.
- Examples of the monovalent group containing a sulfur atom include, but are not limited to, a thiol group.
- the monovalent group containing a sulfur atom is preferably a group in which a sulfur atom is directly bonded to a carbon atom constituting a dibenzo [g, p] chrysene skeleton.
- Examples of the monovalent group containing a nitrogen atom include, but are not limited to, a nitro group, an amino group, and a diazo group.
- the monovalent group containing a nitrogen atom is preferably a group in which a nitrogen atom is directly bonded to a carbon atom constituting a dibenzo [g, p] chrysene skeleton.
- hydrocarbon group examples include, but are not limited to, straight chain alkyl groups having 1 to 6 carbon atoms, branched alkyl groups having 3 to 6 carbon atoms, cyclic alkyl groups having 3 to 10 carbon atoms, and 2 carbon atoms. And a straight chain alkenyl group having 6 to 6 carbon atoms, a branched alkenyl group having 3 to 6 carbon atoms, a cyclic alkenyl group having 3 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
- linear alkyl group having 1 to 6 carbon atoms examples include, but are not limited to, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group and the like. It is done.
- Examples of the branched alkyl group having 3 to 6 carbon atoms include, but are not limited to, isopropyl group, isobutyl group, tert-butyl group, neopentyl group, and 2-hexyl group.
- Examples of the cyclic alkyl group having 3 to 10 carbon atoms include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group.
- straight chain alkenyl group having 2 to 6 carbon atoms examples include, but are not limited to, vinyl group, 1-propenyl group, 2-propenyl group (allyl group), 1-butenyl group, 2-butenyl group, 2 -Pentenyl group, 2-hexenyl group and the like.
- Examples of the branched alkenyl group having 3 to 6 carbon atoms include, but are not limited to, an isopropenyl group, an isobutenyl group, an isopentenyl group, and an isohexenyl group.
- Examples of the cyclic alkenyl group having 3 to 10 carbon atoms include, but are not limited to, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclohexenyl group, a cyclooctenyl group, and a cyclodecynyl group.
- aryl group having 6 to 10 carbon atoms examples include, but are not limited to, a phenyl group and a naphthyl group.
- halogen atom examples include, but are not limited to, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- At least one p in the above formula (1) is an integer of 1 to 4.
- At least one of R 0 in the above formula (1) is preferably a monovalent group containing an oxygen atom.
- the compound represented by the formula (1) is preferably a compound represented by the formula (2) from the viewpoint of combining high heat resistance and high solubility.
- m are each independently an integer of 0 to 4.
- at least one m is an integer of 1 to 4.
- the compound represented by the above formula (2) has high heat resistance in spite of its low molecular weight, has high sensitivity since it can be baked at high temperature, and can give a good resist pattern shape. Moreover, the solubility with respect to an organic solvent can further be improved by having a phenolic hydroxyl group. Furthermore, the effect of amplifying acid by the action of radiation can be expected.
- the resist material containing the compound represented by the above formula (2) is suitably used, for example, as a negative resist base material, and also as a positive and negative resist sensitivity adjuster.
- the compound represented by the formula (2) is at least one selected from the group of compounds represented by the formulas (2-1) to (2-6) from the viewpoint of providing a high sensitivity and good resist pattern shape. More preferably it is a seed.
- the compound represented by the above formula (1) is preferably a compound represented by the formula (3) from the viewpoint of combining high heat resistance and high solubility.
- each R is independently a hydrogen atom or an acid dissociable reactive group, at least one of R is an acid dissociable reactive group, and n is each independently 0-4 Is an integer.
- at least one n is an integer of 1 to 4.
- the acid dissociable reactive group refers to a characteristic group that is cleaved in the presence of an acid to cause a change such as an alkali-soluble group.
- alkali-soluble group include, but are not limited to, a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, and a hexafluoroisopropanol group.
- a phenolic hydroxyl group and a carboxyl group are preferable, and a phenolic hydroxyl group is more preferable.
- the acid-dissociable reactive group can be appropriately selected from hydroxystyrene-based resins, (meth) acrylic acid-based resins and the like used in chemically amplified resist compositions for KrF and ArF.
- Preferred examples of the acid dissociable reactive group include a substituted methyl group, 1-substituted ethyl group, 1-substituted n-propyl group, 1-branched alkyl group, silyl group, acyl group, 1-substituted alkoxymethyl group, Examples thereof include a group selected from the group consisting of a cyclic ether group, an alkoxycarbonyl group, and an alkoxycarbonylalkyl group.
- the acid dissociable reactive group preferably has no crosslinkable functional group.
- the substituted methyl group is not particularly limited, it can usually be a substituted methyl group having 2 to 20 carbon atoms, preferably a substituted methyl group having 4 to 18 carbon atoms, and preferably a substituted methyl group having 6 to 16 carbon atoms. More preferred.
- substituted methyl group examples include, but are not limited to, a methoxymethyl group, a methylthiomethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, a t-butoxymethyl group, 2-methylpropoxymethyl group, ethylthiomethyl group, methoxyethoxymethyl group, phenyloxymethyl group, 1-cyclopentyloxymethyl group, 1-cyclohexyloxymethyl group, benzylthiomethyl group, phenacyl group, 4-bromophenacyl group, 4 -Methoxyphenacyl group, piperonyl group, and a substituent represented by the following formula (13-1) can be exemplified.
- R 2 in the following formula (13-1) include, but are not limited to, methyl group, ethyl group, isopropyl group, n-propyl group, t-butyl group, n-butyl group and the like. Can be mentioned.
- R 2 is an alkyl group having 1 to 4 carbon atoms.
- the 1-substituted ethyl group is not particularly limited, it can usually be a 1-substituted ethyl group having 3 to 20 carbon atoms, preferably a 1-substituted ethyl group having 5 to 18 carbon atoms, 16 substituted ethyl groups are more preferred.
- 1-substituted ethyl group examples include, but are not limited to, 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl group, n-propoxyethyl group, isopropoxyethyl group, n-butoxyethyl group, t-butoxyethyl group, 2-methylpropoxyethyl group, 1-phenoxyethyl group, 1-phenylthioethyl Group, 1,1-diphenoxyethyl group, 1-cyclopentyloxyethyl group, 1-cyclohexyloxyethyl group, 1-phenylethyl group, 1,1-diphenylethyl group, and the following formula (13-2) And the like.
- R 2 is the same as described above.
- the 1-substituted-n-propyl group is not particularly limited, it can usually be a 1-substituted-n-propyl group having 4 to 20 carbon atoms, and a 1-substituted-n-group having 6 to 18 carbon atoms.
- a propyl group is preferred, and a 1-substituted n-propyl group having 8 to 16 carbon atoms is more preferred.
- Specific examples of the 1-substituted-n-propyl group include, but are not limited to, 1-methoxy-n-propyl group and 1-ethoxy-n-propyl group.
- the 1-branched alkyl group is not particularly limited, but can be usually a 1-branched alkyl group having 3 to 20 carbon atoms, preferably a 1-branched alkyl group having 5 to 18 carbon atoms, 16 branched alkyl groups are more preferred.
- Specific examples of the 1-branched alkyl group include, but are not limited to, isopropyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group. , 2-methyladamantyl group, 2-ethyladamantyl group and the like.
- the silyl group is not particularly limited, but can usually be a silyl group having 1 to 20 carbon atoms, preferably a silyl group having 3 to 18 carbon atoms, and more preferably a silyl group having 5 to 16 carbon atoms.
- Specific examples of the silyl group include, but are not limited to, trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, tert-butyldiethylsilyl group, tert-butyldiphenylsilyl. Group, tri-tert-butylsilyl group, triphenylsilyl group and the like.
- the acyl group is not particularly limited, but can usually be an acyl group having 2 to 20 carbon atoms, preferably an acyl group having 4 to 18 carbon atoms, and more preferably an acyl group having 6 to 16 carbon atoms.
- Specific examples of the acyl group include, but are not limited to, acetyl group, phenoxyacetyl group, propionyl group, butyryl group, heptanoyl group, hexanoyl group, valeryl group, pivaloyl group, isovaleryl group, laurylyl group, adamantylcarbonyl group, benzoyl group Groups and naphthoyl groups.
- the 1-substituted alkoxymethyl group is not particularly limited, but can be usually a 1-substituted alkoxymethyl group having 2 to 20 carbon atoms, preferably a 1-substituted alkoxymethyl group having 4 to 18 carbon atoms, A 1-substituted alkoxymethyl group having a number of 6 to 16 is more preferred.
- Specific examples of the 1-substituted alkoxymethyl group include, but are not limited to, 1-cyclopentylmethoxymethyl group, 1-cyclopentylethoxymethyl group, 1-cyclohexylmethoxymethyl group, 1-cyclohexylethoxymethyl group, 1-cyclooctyl. Examples thereof include a methoxymethyl group and a 1-adamantylmethoxymethyl group.
- the cyclic ether group is not particularly limited, but can usually be a cyclic ether group having 2 to 20 carbon atoms, preferably a cyclic ether group having 4 to 18 carbon atoms, and a cyclic ether group having 6 to 16 carbon atoms. More preferred. Specific examples of the cyclic ether group include, but are not limited to, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, a tetrahydrothiofuranyl group, a 4-methoxytetrahydropyranyl group, and a 4-methoxytetrahydrothiopyranyl group. And the like.
- the alkoxycarbonyl group can usually be an alkoxycarbonyl group having 2 to 20 carbon atoms, preferably an alkoxycarbonyl group having 4 to 18 carbon atoms, and more preferably an alkoxycarbonyl group having 6 to 16 carbon atoms.
- the alkoxycarbonylalkyl group is not particularly limited, but can usually be an alkoxycarbonylalkyl group having 2 to 20 carbon atoms, preferably an alkoxycarbonylalkyl group having 4 to 18 carbon atoms, and an alkoxycarbonyl group having 6 to 16 carbon atoms. More preferred is a carbonylalkyl group.
- R 3 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 4.
- a substituted methyl group, a 1-substituted ethyl group, a 1-substituted alkoxymethyl group, a cyclic ether group, an alkoxycarbonyl group, and an alkoxycarbonylalkyl group are preferable, and a viewpoint of expressing higher sensitivity.
- a substituted methyl group, a 1-substituted ethyl group, an alkoxycarbonyl group and an alkoxycarbonylalkyl group and an acid having a structure selected from a cycloalkane having 3 to 12 carbon atoms, a lactone and an aromatic ring having 6 to 12 carbon atoms.
- dissociative reactive groups More preferred are dissociative reactive groups.
- the cycloalkane having 3 to 12 carbon atoms may be monocyclic or polycyclic, but is preferably polycyclic. Specific examples of the cycloalkane having 3 to 12 carbon atoms include, but are not limited to, monocycloalkane, bicycloalkane, tricycloalkane, tetracycloalkane, and the like. More specifically, the cycloalkane is not limited to the following.
- Monocycloalkanes such as cyclopropane, cyclobutane, cyclopentane and cyclohexane, and polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane and tetracyclodecane.
- adamantane, tricyclodecane, and tetracyclodecane are preferable, and adamantane and tricyclodecane are more preferable.
- the cycloalkane having 3 to 12 carbon atoms may have a substituent.
- lactone examples include, but are not limited to, butyrolactone or a cycloalkane group having 3 to 12 carbon atoms having a lactone group.
- 6-12 aromatic ring examples include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and the like.
- a benzene ring and a naphthalene ring are preferable, and a naphthalene ring is more preferable.
- an acid dissociable reactive group selected from the group consisting of groups represented by the following formula (13-4) is preferable because of its high resolution.
- R 5 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
- R 6 is a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms or A branched alkyl group, a cyano group, a nitro group, a heterocyclic group, a halogen atom or a carboxyl group
- n 1 is an integer from 0 to 4
- n 2 is an integer from 1 to 5
- n 0 is from 0 to It is an integer of 4.
- the compound represented by the above formula (3) has high heat resistance in spite of its low molecular weight, has high sensitivity since it can be baked at high temperature, and can give a good resist pattern shape. Moreover, the solubility with respect to an organic solvent can further be improved by having an acid dissociable reactive group.
- the resist material containing the compound represented by the above formula (3) is suitably used, for example, as a positive resist base material, or as a sensitivity adjusting agent for positive and negative resists.
- the compound represented by the formula (3) is more preferably a compound represented by the formulas (3-1) to (3-6) from the viewpoint of providing a high sensitivity and good resist pattern shape. .
- the compound represented by the above formula (1) can be produced by a known method. Examples of the method include, but are not limited to, the method described in JP 2013-227307 A.
- the compound represented by the above formula (2) can be obtained by sulfonating dibenzo [g, p] chrysene and then hydroxylating the obtained dibenzo [g, p] chrysenesulfonate. .
- the obtained diazonium salt can be decomposed.
- the compound represented by the above formula (2) may be purified as necessary in order to improve purity and reduce the amount of residual metal. Further, when the acid catalyst and the co-catalyst remain, generally, the storage stability of the resist composition tends to be lowered, and when the basic catalyst remains, generally the sensitivity of the resist composition tends to be lowered. Purification for the purpose of reducing the residual amount of these catalysts may be performed. Purification can be performed by a known method as long as the compound represented by the formula (2) is not denatured, and is not particularly limited. For example, a method of washing with water, a method of washing with an acidic aqueous solution, and a washing with a basic aqueous solution.
- hydrochloric acid, nitric acid or acetic acid aqueous solution having a concentration of 0.01 to 10 mol / L is used as the acidic aqueous solution
- aqueous ammonia solution having a concentration of 0.01 to 10 mol / L is used as the ion exchange resin.
- Cation exchange resins for example, Amberlyst 15J-HG Dry manufactured by Organo
- the compound represented by the above formula (3) is produced by reacting the compound represented by the formula (2) with the acid dissociable reactive group introduction reagent (B) in the presence of a catalyst. Can do.
- the acid dissociable reactive group introduction reagent (B) is not particularly limited, and examples thereof include active carboxylic acid derivative compounds such as acid chlorides, acid anhydrides and dicarbonates, alkyl halides, vinyl alkyl ethers, dihydropyrans, and halocarboxylic acids. Known alkyl esters are used. Specific examples of the acid dissociable reactive group introduction reagent (B) include, but are not limited to, di-t-butyl dicarbonate, t-butyl bromoacetate, 2-methyl-2-adamantyl bromoacetate, 1-bromoacetic acid 1- Adamantyl. These can be easily obtained by synthesis by a known method or by using a reagent. Moreover, 1 type (s) or 2 or more types can be used as an acid dissociable reactive group introduction
- an acid dissociable reactive group when introducing an acid dissociable reactive group into at least one phenolic hydroxyl group of the compound represented by the above formula (2), for example, as follows, An acid dissociable reactive group can be introduced into at least one phenolic hydroxyl group of the compound represented by the formula (2).
- the compound represented by the formula (2) is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
- an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
- a vinyl alkyl ether such as ethyl vinyl ether or dihydropyran is added, and the reaction is carried out at 20 to 60 ° C. for 6 to 72 hours at atmospheric pressure in the presence of an acid catalyst such as pyridinium p-toluenesulfonate.
- the reaction solution is neutralized with an alkali compound and added to distilled water to precipitate a white solid, and then the separated white solid is washed with distilled water and dried to obtain the resist material of this embodiment.
- the resist material of this embodiment can be obtained by the following method.
- the compound represented by the formula (2) is dissolved or suspended in an aprotic solvent such as acetone, THF, propylene glycol monomethyl ether acetate or the like.
- an alkyl halide such as ethyl chloromethyl ether or a halocarboxylic acid alkyl ester such as methyl adamantyl bromoacetate is added, and the reaction is carried out in the presence of an alkali catalyst such as potassium carbonate at 20 to 110 ° C. for 6 to 72 hours.
- the reaction solution is neutralized with an acid such as hydrochloric acid and added to distilled water to precipitate a white solid, and then the separated white solid is washed with distilled water and dried to obtain the resist material of this embodiment. .
- purification may be performed as necessary. Purification can be carried out in the same manner as the compound represented by the formula (2).
- the resist material of the present embodiment includes a resin obtained by reacting at least a compound represented by the above formula (1) with a compound having a crosslinking reaction.
- the crosslinkable compound is not particularly limited as long as it can oligomerize or polymerize the compound represented by the above formula (1), and known compounds can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
- the resin is at least selected from the group consisting of a novolac resin, an aralkyl resin, a hydroxystyrene resin, a (meth) acrylic acid resin, and a copolymer thereof from the viewpoint of combining high heat resistance and high solubility.
- a novolac resin an aralkyl resin, a hydroxystyrene resin, a (meth) acrylic acid resin, and a copolymer thereof from the viewpoint of combining high heat resistance and high solubility.
- aralkyl resin a hydroxystyrene resin
- a hydroxystyrene resin a (meth) acrylic acid resin
- a copolymer thereof from the viewpoint of combining high heat resistance and high solubility.
- One type is preferable.
- the resin has at least one structure selected from the group consisting of structures represented by the above formulas (4-1) to (4-16) from the viewpoint of providing a high sensitivity and good resist pattern shape. It is preferable to have.
- R 0 and p are the same as those defined in the above formula (1).
- the resin having a structure represented by the above formulas (4-1) to (4-16) include, for example, a compound represented by the above formula (2) and an aldehyde that is a compound having a crosslinking reactivity. And a resin novolakized by the condensation reaction.
- aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
- aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
- Examples include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbald
- aldehydes can be used individually by 1 type or in combination of 2 or more types.
- the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the above formula (2). is there.
- a catalyst may be used.
- the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
- inorganic acids and organic acids are widely known.
- inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, and succinic acid.
- Adipic acid sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid
- Organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, or solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid
- Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, or solid acids
- silicotungstic acid phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid
- silicomolybdic acid phosphomoly
- organic acids and solid acids are preferred from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferred from the viewpoint of production such as availability and ease of handling.
- hydrochloric acid or sulfuric acid is preferred from the viewpoint of production such as availability and ease of handling.
- 1 type can be used individually or in combination of 2 or more types.
- the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
- Indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
- aldehydes are not necessarily used.
- reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
- the said reaction solvent can be used individually by 1 type or in combination of 2 or more types.
- the amount of these reaction solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. The range of parts is preferred.
- the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- the reaction method can be appropriately selected from known methods and is not particularly limited.
- the reaction method may be a method in which the compound represented by the above formula (2), aldehydes, and catalyst are charged all together, or the above formula. There is a method in which the compound or aldehyde represented by (2) is dropped in the presence of a catalyst.
- the obtained compound can be isolated according to a conventional method, and is not particularly limited.
- a general method is adopted such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg.
- a novolak resin as the target product can be obtained.
- the resin having the structure represented by the above formulas (4-1) to (4-16) may be a homopolymer of the compound represented by the above formula (2). It may be a copolymer.
- the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Examples include, but are not limited to, propylphenol, pyrogallol, thymol and the like.
- the resin having the structure represented by the above formulas (4-1) to (4-16) may be copolymerized with a polymerizable monomer other than the above-described phenols.
- the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
- the resin having the structure represented by the above formulas (4-1) to (4-16) is a binary or more (for example, 2) of the compound represented by the above formula (2) and the above-described phenols. Or a quaternary) copolymer, or a binary or more (eg, quaternary) copolymer of the compound represented by the above formula (2) and the above-mentioned copolymerization monomer.
- it may be a ternary or more (for example, ternary to quaternary) copolymer of the compound represented by the above formula (2), the above-described phenols, and the above-mentioned copolymerization monomer.
- the molecular weight of the resin having the structure represented by the above formulas (4-1) to (4-16) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 300,000. More preferably, it is 750 to 200,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formulas (4-1) to (4-16) has a degree of dispersion (weight average molecular weight Mw / number).
- the average molecular weight Mn) is preferably in the range of 1.1-7.
- said Mw, Mn, and dispersion degree (Mw / Mn) can be calculated
- the resist material of the present embodiment is preferably one having high solubility in a solvent from the viewpoint of easier application of a wet process. More specifically, when a resist material (compound and / or resin) uses 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is 10 It is preferable that it is mass% or more.
- the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”. For example, 10 g of the resist material is evaluated to be dissolved in 90 g of PGMEA when the solubility of the resist material in PGMEA is “10% by mass or more”. This is the case of “less than 10% by mass”.
- the resist composition of this embodiment contains the resist material of this embodiment and a solvent.
- Each content is preferably 1 to 80% by mass of a solid component (including the resist material of the present embodiment) and 20 to 99% by mass of a solvent, and more preferably 1 to 50% by mass of a solid component and 50 to 50% of a solvent. 99% by mass, more preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent, and still more preferably 2 to 10% by mass of the solid component and 90 to 98% by mass of the solvent.
- the amount of compound (A) used in the present embodiment is the total weight of the solid component.
- Total of solid components used arbitrarily such as compound (A), acid generator (C), acid crosslinking agent (G), acid diffusion controller (E) and other components (F), and so on) The content is preferably 5 to 99.4% by mass, more preferably 8 to 90% by mass. In the case of the above blending ratio, high resolution is obtained and the line edge roughness tends to be small.
- the amount of the compound (A ′) used in the present embodiment is a solid component. 5 to 99. of the total weight (compound (A ′), acid generator (C), acid diffusion controller (E) and other components (F), etc.)
- the content is preferably 4% by mass, more preferably 8 to 90% by mass. In the case of the above blending ratio, high resolution is obtained and the line edge roughness tends to be small.
- the resist composition of this embodiment generates an acid directly or indirectly by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray and ion beam. It is preferable to include one or more acid generators (C).
- the amount of the acid generator (C) used is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, still more preferably 3 to 30% by mass, and more preferably 10 to 25% by mass based on the total weight of the solid components. Even more preferred. When used within the above range, a pattern profile with higher sensitivity and lower edge roughness tends to be obtained.
- the method for generating an acid in the system is not particularly limited.
- the acid generator (C) is preferably at least one selected from the group consisting of compounds represented by the following formulas (7-1) to (7-8).
- R 13 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group.
- X ⁇ is a sulfonate ion or a halide ion having an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
- the compound represented by the formula (7-1) includes triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, diphenyltolylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n.
- R 14 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group.
- a group, a hydroxyl group or a halogen atom, X ⁇ is the same as defined above.
- the compound represented by the formula (7-2) includes bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4- t-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium p-toluenesulfonate, bis (4-t-butylphenyl) iodoniumbenzenesulfonate, bis (4-t-butylphenyl) ) Iodonium-2-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-4-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-2,4-
- Q represents an alkylene group, an arylene group or an alkoxylene group
- R 15 represents an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
- the compound represented by the formula (7-3) includes N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N— (Trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyloxy ) Succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene- 2,3-dicarboximide, N (10-camphorsulfonyloxy) naph
- R 16 s may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, optionally A substituted heteroaryl group or an optionally substituted aralkyl group.
- the compound represented by the formula (7-4) is diphenyl disulfone, di (4-methylphenyl) disulfone, dinaphthyl disulfone, di (4-tert-butylphenyl) disulfone, di (4-hydroxyphenyl). At least one selected from the group consisting of disulfone, di (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-trifluoromethylphenyl) disulfone Preferably there is.
- R 17 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, optionally A substituted heteroaryl group or an optionally substituted aralkyl group.
- the compound represented by the formula (7-5) is ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile, ⁇ - (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfonyloxyimino).
- R 18 s may be the same or different and each independently represents a halogenated alkyl group having one or more chlorine atoms and one or more bromine atoms.
- the number of carbon atoms is preferably 1 to 5.
- R 19 and R 20 are each independently an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or cyclopentyl.
- a cycloalkyl group such as a cyclohexyl group, an alkoxyl group having 1 to 3 carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group, or an aryl group such as a phenyl group, a toluyl group, and a naphthyl group, preferably a carbon An aryl group having 6 to 10 atoms.
- L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinonediazide group.
- Specific examples of the organic group having a 1,2-naphthoquinonediazide group include a 1,2-naphthoquinonediazide-4-sulfonyl group, a 1,2-naphthoquinonediazide-5-sulfonyl group, and a 1,2-naphthoquinonediazide- Preferred examples include 1,2-quinonediazidosulfonyl groups such as a 6-sulfonyl group.
- 1,2-naphthoquinonediazide-4-sulfonyl group and 1,2-naphthoquinonediazide-5-sulfonyl group are more preferable.
- p is an integer of 1 to 3
- q is an integer of 0 to 4
- 1 ⁇ p + q ⁇ 5 is more preferable.
- J 19 is a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (7-7-1), a carbonyl group, an ester group, an amide group or an ether group.
- Y 19 represents a hydrogen atom, an alkyl group or an aryl group
- X 20 each independently represents a group represented by the following formula (7-8-1).
- each of Z 22 independently represents an alkyl group, a cycloalkyl group, or an aryl group
- R 22 represents an alkyl group, a cycloalkyl group, or an alkoxyl group
- r represents 0 to 3 It is an integer.
- acid generators include, but are not limited to, bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n- Butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonyl) Azomethylsulfonyl) propane, 1,4-bis (phenylsulfonylazomethylsulfonyl) butan
- acid generators having an aromatic ring are preferable, and acid generators represented by formula (7-1) or (7-2) are more preferable.
- an acid generator having a sulfonate ion having an aryl group or a halogen-substituted aryl group as X ⁇ in the formula (7-1) or (7-2) is more preferable, and the formula (7-1) or ( X 7-2) - is, even more preferably acid generator is a sulfonate ion having an aryl group, diphenyl-trimethylphenyl sulfonium p- toluenesulfonate, triphenylsulfonium p- toluenesulfonate, triphenylsulfonium trifluoromethanesulfonate Triphenylsulfonium nonafluoromethanesulfonate is particularly preferred.
- LER tends to be further reduced.
- the resist composition of the present embodiment preferably contains one or more acid crosslinking agents (G).
- the acid crosslinking agent (G) is a compound that can crosslink the compound represented by the formula (1) within a molecule or between molecules in the presence of an acid generated from the acid generator (C).
- Examples of such an acid crosslinking agent (G) include compounds having one or more groups (hereinafter referred to as “crosslinkable groups”) capable of crosslinking the compound represented by the formula (1). .
- crosslinkable group examples include, but are not limited to, for example, (i) hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) ) Or a group derived therefrom; (ii) a carbonyl group such as formyl group or carboxy (C1-C6 alkyl group) or a group derived therefrom; (iii) dimethylaminomethyl group, diethylaminomethyl Group, nitrogen-containing group such as dimethylolaminomethyl group, diethylolaminomethyl group, morpholinomethyl group; (iv) glycidyl group-containing group such as glycidyl ether group, glycidyl ester group, glycidylamino group; (v) benzyl C1-C6 allyloxy such as oxymethyl group and benzoyloxymethyl group A group
- Examples of the acid crosslinking agent (G) having a crosslinkable group include, but are not limited to, for example, (i) a methylol group-containing melamine compound, a methylol group-containing benzoguanamine compound, a methylol group-containing urea compound, a methylol group-containing glycoluril compound, Methylol group-containing compounds such as methylol group-containing phenol compounds; (ii) alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing glycoluril compounds, alkoxyalkyl group-containing phenol compounds (Iii) carboxymethyl group-containing melamine compound, carboxymethyl group-containing benzoguanamine compound, carboxymethyl group-containing urea compound Carboxymethyl group-containing compounds such as carboxymethyl group-containing glycoluril compounds and carboxymethyl group
- the acid crosslinking agent (G) compounds having phenolic hydroxyl groups, and compounds and resins imparted with crosslinking properties by introducing the crosslinking groups into acidic functional groups in the alkali-soluble resin can be used.
- the introduction ratio of the crosslinkable group is usually 5 to 100 mol%, preferably 10 to 60 mol%, more preferably based on the total acidic functional group in the compound having a phenolic hydroxyl group and the alkali-soluble resin. Is adjusted to 15-40 mol%. Within the above range, the cross-linking reaction tends to proceed sufficiently, and a decrease in the remaining film rate, a pattern swelling phenomenon, and meandering tend to be avoided, which is preferable.
- the acid crosslinking agent (G) is preferably an alkoxyalkylated urea compound or a resin thereof, or an alkoxyalkylated glycoluril compound or a resin thereof. More preferred acid crosslinking agents (G) include compounds represented by the following formulas (8-1) to (8-3) and alkoxymethylated melamine compounds (acid crosslinking agent (G1)).
- R 7 each independently represents a hydrogen atom, an alkyl group or an acyl group
- R 8 to R 11 each independently represent a hydrogen atom, a hydroxyl group, Represents an alkyl group or an alkoxyl group
- X 2 represents a single bond, a methylene group or an oxygen atom
- the alkyl group represented by R 7 preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
- the acyl group represented by R 7 preferably has 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, and examples thereof include an acetyl group and a propionyl group.
- the alkyl group represented by R 8 to R 11 preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
- the alkoxyl group represented by R 8 to R 11 preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
- X 2 is preferably a single bond or a methylene group.
- R 7 to R 11 and X 2 may be substituted with an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a hydroxyl group, or a halogen atom.
- the plurality of R 7 and R 8 to R 11 may be the same or different.
- Specific examples of the compound represented by formula (8-2) include, but are not limited to, N, N, N, N-tetra (methoxymethyl) glycoluril, N, N, N, N-tetra (ethoxy Methyl) glycoluril, N, N, N-tetra (n-propoxymethyl) glycoluril, N, N, N, N-tetra (isopropoxymethyl) glycoluril, N, N, N, N-tetra ( and n-butoxymethyl) glycoluril, N, N, N, N-tetra (t-butoxymethyl) glycoluril, and the like.
- N, N, N, N-tetra (methoxymethyl) glycoluril is preferable.
- alkoxymethylated melamine compound examples include, but are not limited to, N, N, N, N, N, N-hexa (methoxymethyl) melamine, N, N, N, N, N-hexa ( Ethoxymethyl) melamine, N, N, N, N, N-hexa (n-propoxymethyl) melamine, N, N, N, N, N-hexa (isopropoxymethyl) melamine, N, N, Examples thereof include N, N, N, N-hexa (n-butoxymethyl) melamine, N, N, N, N, N-hexa (t-butoxymethyl) melamine and the like.
- the acid cross-linking agent (G1) is obtained by, for example, condensing a urea compound or glycoluril compound and formalin to introduce a methylol group, and then ether with lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol. Then, the reaction solution is cooled and the precipitated compound or its resin is recovered.
- the acid cross-linking agent (G1) can also be obtained as a commercial product such as CYMEL (trade name, manufactured by Mitsui Cyanamid) or Nicalac (manufactured by Sanwa Chemical Co., Ltd.).
- the molecule has 1 to 6 benzene rings, and has at least two hydroxyalkyl groups and / or alkoxyalkyl groups in the molecule.
- a phenol derivative in which an alkoxyalkyl group is bonded to any one of the benzene rings can be given (acid crosslinking agent (G2)). More preferably, the molecular weight is 1500 or less, the molecule has 1 to 6 benzene rings, and the hydroxyalkyl group and / or alkoxyalkyl group has 2 or more in total.
- Phenol derivatives formed by bonding to any one or a plurality of benzene rings can be exemplified.
- hydroxyalkyl group bonded to the benzene ring those having 1 to 6 carbon atoms such as hydroxymethyl group, 2-hydroxyethyl group, 2-hydroxy-1-propyl group and the like are preferable.
- the alkoxyalkyl group bonded to the benzene ring is preferably one having 2 to 6 carbon atoms. Specifically, methoxymethyl group, ethoxymethyl group, n-propoxymethyl group, isopropoxymethyl group, n-butoxymethyl group, isobutoxymethyl group, sec-butoxymethyl group, t-butoxymethyl group, 2-methoxyethyl Group or 2-methoxy-1-propyl group is preferred.
- L 1 to L 8 may be the same or different and each independently represents a hydroxymethyl group, a methoxymethyl group or an ethoxymethyl group.
- a phenol derivative having a hydroxymethyl group can be obtained by reacting a corresponding phenol compound having no hydroxymethyl group (a compound in which L 1 to L 8 are hydrogen atoms in the above formula) with formaldehyde in the presence of a base catalyst. it can.
- the reaction temperature is preferably 60 ° C. or lower. Specifically, it can be synthesized by the methods described in JP-A-6-282067, JP-A-7-64285 and the like.
- a phenol derivative having an alkoxymethyl group can be obtained by reacting a corresponding phenol derivative having a hydroxymethyl group with an alcohol in the presence of an acid catalyst.
- the reaction temperature is preferably 100 ° C. or lower. Specifically, it can be synthesized by the method described in EP632003A1 and the like.
- a phenol derivative having a hydroxymethyl group and / or an alkoxymethyl group synthesized in this manner is preferable in terms of stability during storage, but a phenol derivative having an alkoxymethyl group is particularly preferable from the viewpoint of stability during storage.
- the acid crosslinking agent (G2) may be used alone or in combination of two or more.
- Another particularly preferable acid crosslinking agent (G) is a compound having at least one ⁇ -hydroxyisopropyl group (acid crosslinking agent (G3)).
- the structure is not particularly limited as long as it has an ⁇ -hydroxyisopropyl group.
- the hydrogen atom of the hydroxyl group in the ⁇ -hydroxyisopropyl group is replaced with one or more acid dissociable reactive groups (R—COO— group, R—SO 2 — group, etc., R is a straight chain having 1 to 12 carbon atoms).
- a cyclic hydrocarbon group having 3 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a 1-branched alkyl group having 3 to 12 carbon atoms and an aromatic hydrocarbon group having 6 to 12 carbon atoms which represents a substituent selected from the group consisting of:
- the compound having an ⁇ -hydroxyisopropyl group include, but are not limited to, for example, a substituted or unsubstituted aromatic compound containing at least one ⁇ -hydroxyisopropyl group, a diphenyl compound, a naphthalene compound, and a furan compound. 1 type (s) or 2 or more types.
- benzene compound (1) a compound represented by the following general formula (9-1)
- benzene compound (2) a compound represented by the following general formula (9-3)
- naphthalene compound (3) a compound represented by the following general formula (9-4):
- furan compound (4) Compound (hereinafter referred to as “furan compound (4)”) and the like.
- each A 2 independently represents an ⁇ -hydroxyisopropyl group or a hydrogen atom, and at least one A 2 is an ⁇ -hydroxyisopropyl group.
- R 51 represents a hydrogen atom, a hydroxyl group, a linear or branched alkylcarbonyl group having 2 to 6 carbon atoms, or a linear or branched structure having 2 to 6 carbon atoms. An alkoxycarbonyl group is shown.
- R 52 represents a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, —O—, —CO— or —COO—.
- R 53 and R 54 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
- benzene compound (1) examples include, but are not limited to, ⁇ -hydroxyisopropylbenzene, 1,3-bis ( ⁇ -hydroxyisopropyl) benzene, 1,4-bis ( ⁇ -hydroxyisopropyl) benzene.
- ⁇ -hydroxyisopropylbenzenes such as 1,2,4-tris ( ⁇ -hydroxyisopropyl) benzene, 1,3,5-tris ( ⁇ -hydroxyisopropyl) benzene; 3- ⁇ -hydroxyisopropylphenol, 4- ⁇ - ⁇ -hydroxyisopropylphenols such as hydroxyisopropylphenol, 3,5-bis ( ⁇ -hydroxyisopropyl) phenol, 2,4,6-tris ( ⁇ -hydroxyisopropyl) phenol; 3- ⁇ -hydroxyisopropylphenyl methyl ketone , 4- ⁇ -Hydroxy Sopropylphenyl methyl ketone, 4- ⁇ -hydroxyisopropylphenyl ethyl ketone, 4- ⁇ -hydroxyisopropylphenyl-n-propyl ketone, 4- ⁇ -hydroxyisopropylphenyl isopropyl ketone, 4- ⁇ -hydroxyisopropylphenyl-n-butyl ketone 4-
- diphenyl compound (2) examples include, but are not limited to, 3- ⁇ -hydroxyisopropylbiphenyl, 4- ⁇ -hydroxyisopropylbiphenyl, 3,5-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3,3′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 4,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 2,4,6-tris ( ⁇ -hydroxyisopropyl) biphenyl, 3,3 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 3,4 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 2,3 ′, 4,6, -tetrakis ( ⁇ -hydroxyisopropyl) biphenyl, 2,4,4 ′, 6, -tetrakis ( ⁇ - Hydroxyisopropyl) biphenyl, 3,3
- naphthalene compound (3) examples include, but are not limited to, 1- ( ⁇ -hydroxyisopropyl) naphthalene, 2- ( ⁇ -hydroxyisopropyl) naphthalene, 1,3-bis ( ⁇ -hydroxy).
- furan compound (4) include, but are not limited to, 3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-4 -( ⁇ -hydroxyisopropyl) furan, 2-ethyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-propyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-isopropyl-4- ( ⁇ -hydroxyisopropyl) ) Furan, 2-n-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-t-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-pentyl-4- ( ⁇ -hydroxyisopropyl) furan 2,5-dimethyl-3- ( ⁇ -hydroxyisopropyl) furan, 2,5-diethyl-3- ( ⁇ -hydroxyiso Propyl) furan, 3,4-bis ( ⁇ -hydroxyisopropyl) furan, 2,5-di
- the acid crosslinking agent (G3) is preferably a compound having two or more free ⁇ -hydroxyisopropyl groups, the benzene compound (1) having two or more ⁇ -hydroxyisopropyl groups, and two or more ⁇ -hydroxyisopropyl groups.
- the diphenyl compound (2) having the above and the naphthalene compound (3) having two or more ⁇ -hydroxyisopropyl groups are more preferable, ⁇ -hydroxyisopropyl biphenyls having two or more ⁇ -hydroxyisopropyl groups, ⁇ -hydroxy A naphthalene compound (3) having two or more isopropyl groups is more preferred.
- the acid cross-linking agent (G3) is usually obtained by a method in which a acetyl group-containing compound such as 1,3-diacetylbenzene is reacted with a Grignard reagent such as CH 3 MgBr to be methylated and then hydrolyzed. It can be obtained by a method in which an isopropyl group-containing compound such as diisopropylbenzene is oxidized with oxygen or the like to generate a peroxide and then reduced.
- the amount of the acid crosslinking agent (G) used is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, and still more preferably 1 to 30% by mass, based on the total weight of the solid component. 2 to 20% by mass is even more preferable.
- the blending ratio of the acid crosslinking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in an alkaline developer tends to be improved. Since it tends to be able to suppress the occurrence of meandering, it is preferable to be 50% by mass or less, since it tends to be able to suppress a decrease in heat resistance as a resist.
- the blending ratio of at least one compound selected from the acid crosslinking agent (G1), the acid crosslinking agent (G2), and the acid crosslinking agent (G3) in the acid crosslinking agent (G) is not particularly limited. Various ranges can be used depending on the type of substrate used when forming the pattern.
- the alkoxymethylated melamine compound and / or the compounds represented by (9-1) to (9-3) is preferably 50 to 99% by mass, more preferably 60 to 99%. % By mass, more preferably 70 to 98% by mass, and still more preferably 80 to 97% by mass.
- the resolution tends to be further improved. It is preferable to set it to not more than mass% because it tends to be a rectangular cross-sectional shape as a pattern cross-sectional shape.
- the acid diffusion controller (E) has an action of controlling the diffusion of the acid generated from the acid generator by irradiation in the resist film to prevent an undesirable chemical reaction in the unexposed area. May be blended in the resist composition.
- the storage stability of the resist composition tends to be improved.
- the resolution is improved, and it is possible to suppress changes in the line width of the resist pattern due to fluctuations in the holding time before radiation irradiation and the holding time after radiation irradiation, which tends to be extremely excellent in process stability. .
- Examples of such an acid diffusion controller (E) include radiolytically decomposable basic compounds such as a nitrogen atom-containing basic compound, a basic sulfonium compound, and a basic iodonium compound.
- the acid diffusion controller (E) can be used alone or in combination of two or more.
- Examples of the acid diffusion controller include, but are not limited to, nitrogen-containing organic compounds and basic compounds that decompose upon exposure.
- the nitrogen-containing organic compound is not limited to the following, but for example, a compound represented by the following general formula (10) (hereinafter referred to as “nitrogen-containing compound (I)”), 2 nitrogen atoms in the same molecule.
- Diamino compound hereinafter referred to as “nitrogen-containing compound (II)”
- polyamino compound or polymer having three or more nitrogen atoms hereinafter referred to as “nitrogen-containing compound (III)”
- amide group-containing compound Urea compounds
- nitrogen-containing heterocyclic compounds and the like.
- an acid diffusion control agent (E) may be used individually by 1 type, and may use 2 or more types together.
- R 61 , R 62 and R 63 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group, an aryl group or an aralkyl group.
- the alkyl group, aryl group or aralkyl group may be unsubstituted or substituted with a hydroxyl group or the like.
- examples of the linear, branched or cyclic alkyl group include those having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include methyl groups, ethyl groups, and n- Propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, neopentyl group, n-hexyl group, texyl group, n-heptyl group, n-octyl group N-ethylhexyl group, n-nonyl group, n-decyl group and the like.
- Examples of the aryl group include those having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
- examples of the aralkyl group include those having 7 to 19 carbon atoms, preferably 7 to 13 carbon atoms, and specific examples include a benzyl group, an ⁇ -methylbenzyl group, a phenethyl group, and a naphthylmethyl group.
- nitrogen-containing compound (I) examples include, but are not limited to, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-dodecylamine, cyclohexylamine, etc.
- Mono- (cyclo) alkylamines di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di- Di (cyclo) alkylamines such as n-decylamine, methyl-n-dodecylamine, di-n-dodecylmethyl, cyclohexylmethylamine, dicyclohexylamine; triethylamine, tri-n-propylamine, tri-n-butylamine, Tri-n-pentylamine, tri-n-hexylamine, tri-n-he Tri (cyclo) alkyl such as tilamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, dimethyl-n-dodecylamine, di-n-dode
- nitrogen-containing compound (II) examples include, but are not limited to, ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxy Propyl) ethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis ( 4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4- Aminophenyl) -2- (4-hydroxyphenyl) propane, 1,4-bis [1- (4 Aminophenyl) -1-
- nitrogen-containing compound (III) examples include, but are not limited to, polyethyleneimine, polyallylamine, N- (2-dimethylaminoethyl) acrylamide polymer, and the like.
- amide group-containing compound examples include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, Examples include pyrrolidone and N-methylpyrrolidone.
- urea compound examples include, but are not limited to, urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenyl.
- examples include urea and tri-n-butylthiourea.
- nitrogen-containing heterocyclic compound examples include, but are not limited to, imidazoles such as imidazole, benzimidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, and 2-phenylbenzimidazole; pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenylpyridine, nicotine, nicotinic acid, nicotinamide, quinoline, Pyridines such as 8-oxyquinoline and acridine; and pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, morpholine, 4-methylmorpholine, piperazine, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2 .2. ] Octane and the like can be mentioned.
- imidazoles such as imi
- Examples of the radiation-decomposable basic compound include a sulfonium compound represented by the following general formula (11-1) and an iodonium compound represented by the following general formula (11-2). .
- R 71 , R 72 , R 73 , R 74 and R 75 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
- Z ⁇ represents HO ⁇ , R—COO ⁇ (wherein R represents an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 11 carbon atoms, or an alkaryl group having 7 to 12 carbon atoms) or
- An anion represented by the formula (11-3) is shown.
- radiolytic basic compound examples include, but are not limited to, triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, diphenyl-4 -Hydroxyphenylsulfonium acetate, diphenyl-4-hydroxyphenylsulfonium salicylate, bis (4-tert-butylphenyl) iodonium hydroxide, bis (4-tert-butylphenyl) iodonium acetate, bis (4-tert-butylphenyl) ) Iodonium hydroxide, bis (4-t-butylphenyl) iodonium acetate, bis (4-t-butylphenyl) iodonium salicylate, 4-t Butylphenyl-4-hydroxyphenyl iodonium hydroxide, 4-t-butyl
- the blending amount of the acid diffusion controller (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, based on the total weight of the solid component. More preferably, the content is 0.01 to 3% by mass. Within the above range, there is a tendency to prevent deterioration in resolution, pattern shape, dimensional fidelity, and the like. Furthermore, even if the holding time from electron beam irradiation to heating after radiation irradiation becomes longer, the shape deterioration of the pattern upper layer portion tends to be suppressed.
- the blending amount is 10% by mass or less, it tends to be possible to prevent a decrease in sensitivity, developability of an unexposed portion, and the like. Further, by using such an acid diffusion control agent, the storage stability of the resist composition is improved and the resolution is improved, and also due to fluctuations in the holding time before irradiation and the holding time after irradiation. Changes in the line width of the resist pattern can be suppressed, and the process stability tends to be extremely excellent.
- the resist composition of the present embodiment includes, as necessary, other components (F) as a dissolution accelerator, a dissolution controller, a sensitizer, a surfactant, and the like, as long as the purpose of the present embodiment is not impaired.
- Various additives such as organic carboxylic acids or phosphorus oxo acids or derivatives thereof can be added alone or in combination.
- the dissolution accelerator is a component having an action of increasing the dissolution rate of the compound at the time of development by increasing the solubility when the solubility of the compound represented by the formula (1) in the developer is too low. And can be used within a range not impairing the effects of the present embodiment.
- the dissolution promoter include, but are not limited to, low molecular weight phenolic compounds, and specific examples include bisphenols, tris (hydroxyphenyl) methane, calix resorcinarene, and the like. Can do. These dissolution promoters can be used alone or in admixture of two or more. The blending amount of the dissolution accelerator is appropriately adjusted according to the type of the compound used.
- the dissolution control agent is a component having an action of controlling the solubility of the compound represented by the formula (1) and appropriately reducing the dissolution rate during development when the solubility in the developer is too high.
- dissolution control agent examples include, but are not limited to, aromatic hydrocarbons such as phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenyl naphthyl ketone; methyl phenyl sulfone, diphenyl sulfone, dinaphthyl sulfone, and the like. And the like.
- These dissolution control agents can be used alone or in combination of two or more. The blending amount of the dissolution control agent is appropriately adjusted according to the type of the compound used.
- the sensitizer absorbs the energy of the irradiated radiation and transmits the energy to the acid generator (C), thereby increasing the amount of acid generated and improving the apparent sensitivity of the resist. It is a component to be made.
- Examples of such sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more. The compounding quantity of a sensitizer is suitably adjusted according to the kind of said compound to be used.
- the surfactant is a component having an action of improving the coating property and striation of the resist composition of the present embodiment, the developing property of the resist, and the like.
- a surfactant may be anionic, cationic, nonionic or amphoteric.
- a preferred surfactant is a nonionic surfactant.
- the nonionic surfactant has a good affinity with the solvent used in the production of the resist composition and is more effective.
- Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers and higher fatty acid diesters of polyethylene glycol, but are not particularly limited.
- F-top (manufactured by Gemco), Mega-Fac (manufactured by Dainippon Ink and Chemicals), Florard (manufactured by Sumitomo 3M), Asahi Guard, Surflon (manufactured by Asahi Glass Co., Ltd.)
- Examples include Pepol (manufactured by Toho Chemical Industry Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), polyflow (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), and the like.
- the blending amount of the surfactant is appropriately adjusted according to the type of the compound used.
- Organic carboxylic acid or phosphorus oxo acid or derivative thereof An organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be further added as an optional component for the purpose of preventing sensitivity deterioration or improving the resist pattern shape, retention stability, and the like. In addition, it can be used in combination with an acid diffusion controller, or may be used alone.
- the organic carboxylic acid is not particularly limited, but for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
- Examples of phosphorus oxo acids or derivatives thereof include, but are not limited to, for example, phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester and the like, derivatives such as phosphonic acid, phosphonic acid, and the like.
- Phosphonic acid such as acid dimethyl ester, phosphonic acid di-n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester or derivatives thereof such as phosphinic acid, phosphinic acid such as phenylphosphinic acid, and Examples thereof include derivatives such as esters, and among these, phosphonic acid is particularly preferable.
- the organic carboxylic acid or phosphorus oxo acid or derivative thereof may be used alone or in combination of two or more. The amount of the organic carboxylic acid or phosphorus oxo acid or derivative thereof is appropriately adjusted according to the type of the compound used.
- additives other than the above-mentioned additives dissolution accelerators, dissolution control agents, sensitizers, surfactants, organic carboxylic acids or phosphorus oxo acids or derivatives thereof
- the dissolution controller, sensitizer, surfactant, and organic carboxylic acid or phosphorus oxoacid or One or two or more additives other than the derivatives thereof can be blended.
- additives include dyes, pigments, and adhesion aids.
- it is preferable to add a dye or a pigment because the latent image in the exposed area tends to be visualized and the influence of halation during exposure tends to be reduced.
- an adhesion assistant because it tends to improve the adhesion to the substrate.
- examples of other additives include an antihalation agent, a storage stabilizer, an antifoaming agent, a shape improving agent, and the like, and specifically 4-hydroxy-4′-methylchalcone.
- the total amount of the optional component (F) is preferably 0 to 94% by mass of the total mass of the solid component.
- Formulation when using resist composition of this embodiment as negative resist (compound (A) / acid generator (C) / acid crosslinking agent (G) / acid diffusion controller (E) / optional component (F)) Is preferably 5 to 99.4 / 0.001 to 94 / 0.5 to 94 / 0.001 to 94/0 to 94, more preferably 8 to 90/1 to 50, in terms of mass% based on solids. /0.5 to 50 / 0.01 to 10/0 to 94.
- the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the above composition is used, it tends to be excellent in performance such as sensitivity, resolution and developability.
- composition when using the resist composition of this embodiment as a positive resist is based on solids. % By mass, preferably 5 to 99.4 / 0.001 to 94 / 0.001 to 94/0 to 94, more preferably 8 to 90/1 to 50 / 0.01 to 50/0 to 94. .
- the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the above composition is used, it tends to be excellent in performance such as sensitivity, resolution and developability.
- the resist composition of the present embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, if necessary. .
- Examples of the solvent used for preparing the resist composition of the present embodiment include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether.
- Ethylene glycol monoalkyl ether acetates such as acetate; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl Ether acetate, propylene glycol mono-n-butyl ether acetate Propylene glycol monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc.
- Lactic acid esters aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; 3-methoxypropion Acid methyl, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxy Other esters such as tilacetate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic carbonization such as toluene, xylene Hydrogens; ketones such as
- the resist composition of the present embodiment can contain a predetermined resin as long as the object of the present embodiment is not impaired.
- the predetermined resin is not particularly limited, and includes novolak resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, acrylic acid, vinyl alcohol, or vinylphenol as monomer units. Examples thereof include polymers and derivatives thereof.
- the blending amount of the predetermined resin is appropriately adjusted according to the type of the compound of the formula (1) to be used, but is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, per 100 parts by mass of the compound. More preferably, it is 5 mass parts or less, More preferably, it is 0 mass part.
- the method for forming a resist pattern according to the present embodiment includes a step of applying the resist composition of the present embodiment described above on a substrate to form a resist film, a step of exposing the formed resist film, and the step of exposing the resist film Developing a resist film to form a resist pattern.
- the resist pattern formed by the resist pattern forming method according to the present embodiment has an excellent shape, and can be formed as an upper resist in a multilayer process.
- a resist film is formed by applying the resist composition of the present embodiment on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like.
- the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given.
- the material for the wiring pattern is not particularly limited, and examples thereof include copper, aluminum, nickel, and gold. If necessary, an inorganic and / or organic film may be provided on the substrate.
- the inorganic film is not particularly limited, and examples thereof include an inorganic antireflection film (inorganic BARC). Although it does not specifically limit as an organic film
- the coated substrate is heated as necessary.
- the heating conditions vary depending on the composition of the resist composition, but are preferably 20 to 250 ° C., more preferably 20 to 150 ° C. Heating may improve the adhesion of the resist to the substrate, which is preferable.
- the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
- the exposure conditions and the like are appropriately selected according to the composition of the resist composition.
- heating is preferably performed after radiation irradiation.
- the heating conditions vary depending on the composition of the resist composition, but are preferably 20 to 250 ° C., more preferably 20 to 150 ° C.
- a predetermined resist pattern is formed by developing the exposed resist film with a developer.
- a solvent having a solubility parameter (SP value) close to the compound of the formula (1) it is preferable to select a solvent having a solubility parameter (SP value) close to the compound of the formula (1) to be used.
- SP value solubility parameter
- ketone solvents, ester solvents, alcohol solvents, amide solvents , Polar solvents such as ether solvents, hydrocarbon solvents, or aqueous alkali solutions can be used.
- ketone solvent examples include, but are not limited to, for example, 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methyl
- ester solvents include, but are not limited to, methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl.
- alcohol solvents include, but are not limited to, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol.
- Alcohols such as n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol and triethylene glycol, and ethylene glycol Monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl Mention may be made of ether, triethylene glycol monoethyl ether, glycol monoethyl ether and methoxymethyl butanol.
- ether solvent examples include, but are not limited to, dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
- amide solvent examples include, but are not limited to, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2 -Imidazolidone etc. can be used.
- hydrocarbon solvent examples include, but are not limited to, aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane, and decane.
- the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. It is more preferable that it is less than 10% by mass, and it is particularly preferable that it contains substantially no water. That is, the content of the organic solvent with respect to the developer is preferably 30% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, based on the total amount of the developer. More preferably, it is more than 90 mass% and 100 mass% or less, More preferably, it is 90 mass% or more and 100 mass% or less, Especially preferably, it is 95 mass% or more and 100 mass% or less.
- alkaline aqueous solution examples include, but are not limited to, mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), Examples include alkaline compounds such as choline.
- TMAH tetramethylammonium hydroxide
- the developer is a developer containing at least one solvent selected from ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents, such as resist pattern resolution and roughness.
- the resist performance tends to improve.
- the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and further preferably 2 kPa or less at 20 ° C.
- the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and further preferably 2 kPa or less at 20 ° C.
- the developer having a vapor pressure of 5 kPa or less include, but are not limited to, 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, Ketone solvents such as cyclohexanone, methylcyclohexanone, phenylacetone, methyl isobutyl ketone, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, lactic acid butyl , Ester
- the developer having a vapor pressure of 2 kPa or less include, but are not limited to, 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2- Ketone solvents such as hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl- Estes such as 3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate Solvent, n-but
- Glycol solvents such as alcohol solvents, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene glycol monoethyl Glycol ether solvents such as ether and methoxymethylbutanol, N-methyl-2-pyrrolidone, N, N-dimethyl Ruasetoamido, N, N-dimethylformamide amide solvents, aromatic hydrocarbon solvents such as xylene, octane, aliphatic hydrocarbon solvents decane.
- alcohol solvents such as alcohol solvents, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol
- the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
- fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
- Nonionic surfactant it is a nonionic surfactant.
- a fluorochemical surfactant or a silicon-type surfactant is more preferable to use.
- the amount of the surfactant used can usually be 0.001 to 5% by mass, preferably 0.005 to 2% by mass, more preferably 0.01 to 0.5% by mass, based on the total amount of the developer. %.
- the development method is not particularly limited.
- the substrate is immersed in a tank filled with a developer for a certain period of time (dip method), and the developer is raised on the surface of the substrate by surface tension and left stationary for a certain period of time.
- Development method (paddle method), spraying developer solution onto the substrate surface (spray method), developing solution is continuously applied to the substrate rotating at a constant speed while scanning the developer application nozzle at a constant speed.
- a method (dynamic dispensing method) or the like can be applied.
- the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
- a step of stopping development may be performed while substituting with another solvent.
- the rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used.
- a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents.
- a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents.
- a cleaning step is performed using a rinse solution containing an alcohol solvent or an ester solvent. More preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
- the time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
- examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols. Specific examples include, but are not limited to, 1-butanol, 2- Butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, Cyclopentanol, 2-heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used, and monohydric alcohols having 5 or more carbon atoms are not limited to the following. For example, 1-hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pepanol Pentanol, 3-methyl-1-butano
- a plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
- the water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics tend to be obtained.
- the vapor pressure of the rinse liquid used after development is preferably 0.05 kPa to 5 kPa at 20 ° C., more preferably 0.1 kPa to 5 kPa, and further preferably 0.12 kPa to 3 kPa.
- An appropriate amount of a surfactant can be added to the rinse solution.
- the developed wafer is cleaned using a rinsing solution containing the organic solvent.
- the method of the cleaning treatment is not particularly limited. For example, a method of continuously applying a rinse liquid onto a substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied.
- a cleaning process is performed by a spin coating method, and after cleaning, the substrate is rotated at a speed of 2000 rpm to 4000 rpm. It is preferable to rotate and remove the rinse liquid from the substrate.
- the pattern wiring board is obtained by etching.
- the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
- plating after forming the resist pattern.
- Examples of the plating method include, but are not limited to, copper plating, solder plating, nickel plating, and gold plating.
- the residual resist pattern after etching can be peeled off with an organic solvent.
- organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like.
- peeling method include a dipping method and a spray method.
- the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
- the wiring substrate obtained in the present embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
- the obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 6.4 g of the target resin (R-DBC).
- R-DBC target resin
- Resist compositions corresponding to Examples 1 to 3 were prepared using the compounds or resins obtained in Synthesis Examples 1 to 3 and the following materials so that the compositions shown in Table 1 were obtained.
- Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDPI) manufactured by Midori Chemical Co., Ltd.
- Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
- Organic solvent Propylene glycol monomethyl ether acetate (PGMEA)
- Etching device RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2min Etching gas
- Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
- Etching resistance was evaluated according to the following procedure. First, a novolak resist film was prepared under the same conditions as in Examples 1 to 3, except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound or resin in Examples 1 to 3. Then, the above-described etching test was performed on this novolac resist film, and the etching rate at that time was measured. Next, the etching test was similarly performed on the resist films of Examples 1 to 3, and the etching rate at that time was measured. Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak resist film.
- novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
- etching rate is less than ⁇ 10% compared to the novolak resist film.
- reddish brown liquid was taken out.
- this reddish brown solution was charged into a 100 mL three-necked flask equipped with a concentrating device, and the volume (tetrahydrofuran) was reduced to about half while reducing the volume (tetrahydrofuran) with an aspirator at an internal temperature of about 45 ° C. and concentrated. A reddish brown solution was obtained. Further, at room temperature, the reddish brown solution obtained so far was added dropwise to 120 g of distilled water stirred in a 300 mL capacity beaker. By this dripping, a yellowish red solid was deposited.
- the contents were solid-liquid separated using a Buchner funnel and Kiriyama filter paper to obtain a yellow-orange solid.
- the obtained solid was dried at a temperature of 60 ° C. and a reduced pressure of 10 mmHg for 12 hours to obtain 1.4 g of a yellow-orange powder.
- LC / MS analysis liquid chromatograph mass spectrometry (LC / MS analysis)
- the yellow-orange powder was confirmed to be diaminodibenzochrysene (NH2DBC-2) containing 4.0% monoaminodibenzochrysene (NH2DBC-1). It was.
- Synthesis Example 7 Synthesis of aminodiglycidyl dibenzochrysene Based on the description in JP-A-2013-227307, the amino acid obtained in Synthesis Example 6 was added to a four-necked flask with a capacity of 300 mL equipped with a magnetic stirrer and a reflux condenser. 10.85 g of a mixture of dibenzochrysene, 27 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and 67.2 g (0.726 mol) of epichlorohydrin (manufactured by Kanto Chemical Co., Ltd.) were used, and a hot water bath was used. The mixture was allowed to react while stirring at an internal temperature of 80 ° C.
- the yellow-orange powder is diaminodiglycidyl dibenzochrysene (AGDBC-2) containing 4.0% monoaminodiglycidyl dibenzochrysene (AGDBC-1). It was confirmed.
- DBCGE dibenzochrysene glycidyl ether
- MIBK methyl isobutyl ketone
- TAODBC tetraallyloxydibenzochrysene
- the reaction liquid was concentrated, 100 g of pure water was added to the concentrated liquid to precipitate a reaction product, cooled to room temperature, and then filtered to separate a solid.
- the obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 2 g of a target compound (HDBC-4-BOC) represented by the following formula (HDBC-4-BOC).
- the molecular weight was measured by the aforementioned method. As a result, it was 792.
- the obtained compound (HDBC-4-BOC) was subjected to NMR measurement under the above-mentioned measurement conditions. As a result, the following peak was found and confirmed to have the chemical structure of the following formula (HDBC-4-BOC) did.
- the reaction liquid was concentrated, 100 g of pure water was added to the concentrated liquid to precipitate a reaction product, cooled to room temperature, and then filtered to separate a solid.
- the obtained solid matter is filtered and dried, and then separated and purified by column chromatography to obtain 1.8 g of a target compound (HDBC-4-MeBOC) represented by the following formula (HDBC-4-MeBOC). It was.
- the obtained compound (HDBC-4-MeBOC) was measured to have a molecular weight of 848 by the above method.
- the obtained compound (HDBC-4-MeBOC) was subjected to NMR measurement under the above-mentioned measurement conditions.
- the chemical shift value ( ⁇ ppm, TMS standard) of 1 H-NMR in deuterated chloroform solvent is 1.0 to 1.6 (m, 10H), 2.6 (m, 1H), 7.4 (d , 2H), 7.8 (d, 2H), 10.0 (s, 1H).
- resorcinol 22 g, 0.2 mol
- Kanto Chemical Co., Ltd. was placed in a four-necked flask (1000 mL) equipped with a well-dried dropping funnel substituted with nitrogen, Jim Roth condenser, thermometer, and stirring blade.
- 4-cyclohexylbenzaldehyde 46.0 g, 0.2 mol
- dehydrated ethanol 200 mL
- This solution was heated to 85 ° C. with a mantle heater while stirring.
- 75 mL of concentrated hydrochloric acid (35%) was added dropwise over 30 minutes using a dropping funnel, followed by stirring at 85 ° C. for 3 hours.
- Example 4 What used the compound obtained by the synthesis example 2 and the synthesis example 18 by mass ratio 1: 9 was Example 4, and what used the compound obtained by the synthesis example 2 and synthesis example 18 by mass ratio 9: 1.
- the compounds obtained in Example 5, Synthesis Example 2 and Synthesis Example 18 in a mass ratio of 5: 5 were used in Example 6, and the compounds obtained in Synthesis Examples 4 to 16 were used in Examples 7 to 19 and Comparative Example 1 using the compound obtained in Synthesis Example 17 and Comparative Example 2 using the compound obtained in Synthesis Example 18 were subjected to the following tests.
- Acid generator (C) P-1 Triphenylbenzenesulfonium trifluoromethanesulfonate (Midori Chemical Co., Ltd.)
- Acid crosslinking agent (G) C-1 Nikarac MW-100LM (Sanwa Chemical Co., Ltd.)
- Q-1 Trioctylamine (Tokyo Chemical Industry Co., Ltd.)
- Solvent S-1 Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
- PB pre-exposure baking
- ELS-7500 electron beam drawing apparatus
- the obtained line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation). And about the pattern of each resolution, it evaluated whether the pattern shape, line edge roughness, and a sensitivity were favorable. When they were all good, they were evaluated as ⁇ , and when the resist pattern could not be formed, they were evaluated as x.
- Examples 4 to 19 and Comparative Examples 1 and 2 were all evaluated as ⁇ .
- Example 4, Comparative Example 1, and Comparative Example 2 were evaluated for patterns with a resolution of 25 nm. Table 2 shows the evaluation results. Note that the resolution of the pattern was the minimum line width of the formed pattern. Pattern is determined to be good if rectangular, line edge roughness is uneven pattern is determined less than 5nm good, and the dose at that time a ( ⁇ C / cm 2) and sensitivity, good than 150 ⁇ C / cm 2 It was judged.
- the resist of Example 4 was able to obtain a good resist pattern with a resolution of 25 nm with good sensitivity. Also, the roughness of the pattern was small and the shape was good. On the other hand, the resists of Comparative Examples 1 and 2 were able to obtain a good resist pattern with a resolution of 40 nm, but a resist pattern could not be obtained at 25 nm.
- the resist material of the present invention has higher solubility in a safe solvent than the comparative resist materials (TetP-1) and (CR-1), and the resist composition containing the resist material of the present invention is a comparative resist.
- the resist composition containing the resist material of the present invention is a comparative resist.
- resist compositions containing the materials (TetP-1) and (CR-1) it is possible to form a resist pattern with high sensitivity, low roughness, and good shape.
- resist materials other than those described in the examples also exhibit the same effect.
- the present invention is suitably used for a resist composition containing a compound represented by a specific chemical structural formula useful as a resist material and a resist pattern forming method using the resist composition.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials For Photolithography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、耐熱性及びエッチング耐性に優れ、安全溶媒に対する溶解性が高く、高感度で、かつ良好なレジストパターン形状を付与できるレジスト材料、該材料を含有するレジスト組成物、及び該組成物を用いるレジストパターン形成方法を提供することを目的とする。
[1]
下記式(1)で表される化合物を含有する、レジスト材料。
(式(1)中、R0は各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基又はハロゲン原子であり、pは、各々独立して、0~4の整数である。)
[2]
前記pの少なくとも1つが1~4の整数である、[1]に記載のレジスト材料。
[3]
前記R0の少なくとも1つが、酸素原子を含む1価の基である、[1]又は[2]に記載のレジスト材料。
[4]
前記式(1)で表される化合物が、下記式(2)で表される化合物である、[1]に記載のレジスト材料。
(式(2)中、mは、各々独立して、0~4の整数であり、ここで、少なくとも1つのmは1~4の整数である。)
[5]
前記式(2)で表される化合物が、下記式(2-1)~(2-6)で表される化合物群から選ばれる少なくとも1種である、[4]に記載のレジスト材料。
[6]
前記式(1)で表される化合物が、下記式(3)で表される化合物である、[1]に記載のレジスト材料。
(式(3)中、Rは、各々独立して、水素原子又は酸解離性反応基であり、Rの少なくとも一つは酸解離性反応基であり、nは、各々独立して、0~4の整数であり、ここで、少なくとも1つのnは1~4の整数である。)
[7]
前記式(3)で表される化合物が、下記式(3-1)~(3-6)で表される化合物群から選ばれる少なくとも1種である、[6]に記載のレジスト材料。
(式(3-1)~(3-6)中、Rは、前記式(3)において定義したものと同じである。)
[8]
前記酸解離性反応基が、置換メチル基、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基からなる群より選ばれる基である、[6]又は[7]に記載のレジスト材料。
[9]
前記酸解離性反応基が、下記式(13-4)で表される基からなる群より選ばれる基である、[6]又は[7]に記載のレジスト材料。
(式(13-4)中、R5は、水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、R6は、水素原子、炭素数1~4の直鎖状若しくは分岐状アルキル基、シアノ基、ニトロ基、複素環基、ハロゲン原子又はカルボキシル基であり、n1は0~4の整数であり、n2は1~5の整数であり、n0は0~4の整数である。)
[10]
少なくとも下記式(1)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂を含有する、レジスト材料。
(式(1)中、R0は各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基又はハロゲン原子であり、pは、各々独立して、0~4の整数である。)
[11]
前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート又は不飽和炭化水素基含有化合物である、[10]に記載のレジスト材料。
[12]
前記樹脂が、ノボラック系樹脂、アラルキル系樹脂、ヒドロキシスチレン系樹脂、(メタ)アクリル酸系樹脂及びそれらの共重合体からなる群より選ばれる少なくとも1種である、[10]又は[11]に記載のレジスト材料。
[13]
前記樹脂が下記式(4-1)~(4-16)で表される構造からなる群から選ばれる少なくとも1種の構造を有する、[10]~[12]のいずれかに記載のレジスト材料。
(式(4-1)~(4-16)中、R0、pは、前記式(1)において定義したものと同じである。)
[14]
[1]~[13]のいずれかに記載のレジスト材料と溶媒とを含有する、レジスト組成物。
[15]
酸発生剤をさらに含有する、[14]に記載のレジスト組成物。
[16]
酸架橋剤をさらに含有する、[14]又は[15]に記載のレジスト組成物。
[17]
[14]~[16]のいずれかに記載のレジスト組成物を基板上に塗布してレジスト膜を形成する工程と、
前記レジスト膜を露光する工程と、
露光した前記レジスト膜を現像する工程と、
を含む、レジストパターン形成方法。
本実施形態のレジスト材料は、下記式(1)で表される化合物を含有する。
特に下記式(13-4)で表される各基からなる群から選ばれる酸解離性反応基が、解像性が高く好ましい。
上記式(3)で表される化合物を含むレジスト材料は、例えば、ポジ型レジストの基材として好適に用いられる他、ポジ型及びネガ型レジストの感度調整剤として好適に用いられる。
本実施形態のレジスト組成物は、本実施形態のレジスト材料と溶媒とを含有する。それぞれの含有量としては、好ましくは固形成分(本実施形態のレジスト材料を含む)1~80質量%及び溶媒20~99質量%であり、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、よりさらに好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
(式(7-1)中、R13は、同一でも異なっていてもよく、それぞれ独立に、水素原子、直鎖状、分枝状若しくは環状アルキル基、直鎖状、分枝状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子であり;X-は、アルキル基、アリール基、ハロゲン置換アルキル基若しくはハロゲン置換アリール基を有するスルホン酸イオン又はハロゲン化物イオンである。)
(式(7-2)中、R14は、同一でも異なっていてもよく、それぞれ独立に、水素原子、直鎖状、分枝状若しくは環状アルキル基、直鎖状、分枝状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子を表す。X-は前記と同様である。)
(式(7-4)中、R16は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。)
(式(7-5)中、R17は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。)
上記酸発生剤(C)は、単独で又は2種以上を使用することができる。
前記酸架橋剤(G1)は、例えば尿素化合物又はグリコールウリル化合物、及びホルマリンを縮合反応させてメチロール基を導入した後、さらにメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコール類でエーテル化し、次いで反応液を冷却して析出する化合物又はその樹脂を回収することで得られる。また前記酸架橋剤(G1)は、CYMEL(商品名、三井サイアナミッド製)、ニカラック(三和ケミカル(株)製)のような市販品としても入手することができる。
アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールを酸触媒下で反応させることによって得ることができる。この際、樹脂化やゲル化を防ぐために、反応温度を100℃以下で行うことが好ましい。具体的には、EP632003A1等に記載されている方法にて合成することができる。
溶解促進剤は、式(1)で表される化合物の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の前記化合物の溶解速度を適度に増大させる作用を有する成分であり、本実施形態の効果を損なわない範囲で使用することができる。前記溶解促進剤としては、以下に限定されないが、例えば、低分子量のフェノール性化合物を挙げることができ、具体的には、ビスフェノール類、トリス(ヒドロキシフェニル)メタン、カリックスレゾルシナレーン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。溶解促進剤の配合量は、使用する前記化合物の種類に応じて適宜調節される。
溶解制御剤は、式(1)で表される化合物が現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。
溶解制御剤の配合量は、使用する前記化合物の種類に応じて適宜調節される。
増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。増感剤の配合量は、使用する前記化合物の種類に応じて適宜調節される。
界面活性剤は、本実施形態のレジスト組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤は、アニオン系、カチオン系、ノニオン系あるいは両性のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、レジスト組成物の製造に用いる溶媒との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定はされない。市販品としては、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。界面活性剤の配合量は、使用する前記化合物の種類に応じて適宜調節される。
感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、酸拡散制御剤と併用することも出来るし、単独で用いてもよい。有機カルボン酸としては、特に限定されないが、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、以下に限定されないが、例えば、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する前記化合物の種類に応じて適宜調節される。
さらに、本実施形態のレジスト組成物には、本実施形態の目的を阻害しない範囲で、必要に応じて、上記溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等)以外の添加剤を1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できる傾向にあるため好ましい。また、接着助剤を配合すると、基板との接着性を改善することができる傾向にあるため好ましい。さらに、他の添加剤としては、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
本実施形態によるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物を基板上に塗布してレジスト膜を形成する工程と、形成された上記レジスト膜を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を備える。本実施形態に係るレジストパターン形成方法により形成されたレジストパターンは、その形状に優れるものであり、多層プロセスにおける上層レジストとして形成することもできる。
界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがより好ましい。
LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
[ポリスチレン換算分子量]
ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
装置:Shodex GPC-101型(昭和電工(株)製)
カラム:KF-80M×3
溶離液:THF 1mL/min
温度:40℃
特開2013-227307号公報における実施例1の記載に基づいて合成することにより、ジベンゾ[g,p]クリセン(DBC)6.8gを褐色粉状固体として得た。液体クロマトグラフ分析の結果、得られた固体の純度は99.8%であった。
特開2013-227307号公報における実施例7の記載に基づき、同一スケールにてジベンゾ[g,p]クリセンをスルホン化した後、得られたジベンゾ[g,p]クリセンスルホン酸塩をヒドロキシル化することにより、ヒドロキシジベンゾクリセン(HDBC)1.6gを褐色粉状固体として得た。
液体クロマトグラフ質量分析(LC/MS分析)の結果、98%は4置換ヒドロキシジベンゾクリセン(HDBC-4)であり、残部は3置換ヒドロキシジベンゾクリセンで(HDBC-3)であった。なお、上記LC/MS分析には、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いた。
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、DBC 10g(30mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mLとPGME50mLとを仕込み、95%の硫酸8mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、目的樹脂(R-DBC)6.4gを得た。
得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:698、Mw:1563、Mw/Mn:2.24であった。
表1に示す組成となるように、上記合成例1~3で得られた化合物又は樹脂、及び次の材料を用いて、実施例1~3に対応するレジスト組成物を各々調製した。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
エッチング装置:サムコインターナショナル社製 RIE-10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
エッチング耐性の評価は、以下の手順で行った。
まず、実施例1~3における化合物又は樹脂に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1~3と同様の条件で、ノボラックのレジスト膜を作製した。そして、このノボラックのレジスト膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1~3のレジスト膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックのレジスト膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
A:ノボラックのレジスト膜に比べてエッチングレートが、-10%未満
B:ノボラックのレジスト膜に比べてエッチングレートが、-10%~+5%
C:ノボラックのレジスト膜に比べてエッチングレートが、+5%超
特開2013-227307の記載に基づき、メカニカル撹拌装置及び環流冷却管を備えた容量5Lの四つ口フラスコに、合成例1で得られたDBC30g(0.0913mol)と、クロロホルム900g(和光純薬工業株式会社製)と、を仕込み、室温で撹拌してDBCをクロロホルム中に溶解した。氷塩浴(-5℃)を用いて2℃まで冷却し、その状態において、5%I2-CHCl3溶液(ヨウ素のクロロホルム溶液)950gを、滴下ポンプ(PTFEダイヤフラムポンプ)を用いて1時間かけて滴下した。撹拌を継続しながら、滴下終了後から1時間毎にHPLC分析を用いて反応追跡を行い、1NのNaHSO3水溶液(1mol/LのNaHSO3水溶液)を620g添加して反応を停止した。その後、9%NaHCO3水溶液526.6gを加えて内容物を中和し、得られた内容物を三回水洗した。次いで、エバポレーターで減圧濃縮して、この有機相から溶媒を除去し、白色固体41.2gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、モノヨードジベンゾクリセン(IDBC-1)が7.0%、ジヨードジベンゾクリセン(IDBC-2)が80%、トリヨードジベンゾクリセン(IDBC-3)が13%含まれたヨードジベンゾクリセン混合物であった。
特開2013-227307の記載に基づき、メカニカル撹拌装置及び環流冷却管を備えた容量300mLの四つ口フラスコに、合成例1で得られたDBC6.67g(0.0203mol)と、クロロホルム200g(和光純薬工業株式会社製)と、を仕込み、水浴(26℃)中で撹拌してDBCをクロロホルム中に完全に溶解させた。その後、67.5%HNO3水溶液(硝酸水溶液)7.58g(HNO3を0.0812mol含有)を、ピペットで5分間かけて滴下した。この滴下で内容物は発熱し、液温は28℃に上昇した。更に、滴下終了から約10分間で液色は微黄色から黒褐色へと変化した。内容物の温度が26~27℃の状態で撹拌を継続し、滴下終了から約15分後には黄橙色固体が析出し始め、時間経過とともに析出物は増加し、滴下終了から2時間で内容物はスラリー状となった。次いで、水浴を温度65℃の湯浴に替え、還流反応(内温59℃)を4時間行った。内容物は、黄色のスラリー粒子が微細化とともに、LCMS分析により検出されるジニトロジベンゾクリセン(NO2DBC-2)の比率が増加し、生成が進行していることが確認された。
特開2013-227307の記載に基づき、マグネット式撹拌装置及び環流冷却管を備えた容量200mLの三つ口フラスコに、上記合成例5で得られたニトロジベンゾクリセンの混合物2.0gと、5%Pd/C(50%水湿潤パラジウム炭素)0.2g(乾燥質量換算)と、テトラヒドロフラン(THF)30gと、を仕込み、湯浴(65℃)中で撹拌して、内容物を60℃まで昇温させた。次いで、80%ヒドラジン水溶液2.39g、すなわち、ヒドラジン(NH2NH2)を0.0382mol含有する水溶液を、ピペットで5分間かけて滴下した。この滴下により、内容物は黄色スラリー状態から赤褐色の液体に緩やかに変化した。また、この際に窒素ガスの発生と、発熱(還流)が観測された。その後、内容物の温度が63℃の状態において、撹拌をしながら2時間還流を継続し、反応を終了した。その後、Pd/Cの除去を目的として、ブフナーロートとNo.5Cろ紙と少量のラヂオライト(ろ過助剤)と、を用い、温度約30℃で固液分離を行って、赤褐色の液体を取り出した。次いで、この赤褐色溶液を、濃縮装置を備えた容量100mLの三口フラスコに仕込み、内温約45℃においてアスピレ-ターで減圧しながら液量(テトラヒドロフラン)が約半分となるまで減容し、濃縮した赤褐色溶液を得た。更に、室温において、容量300mLのビーカー内で撹拌している蒸留水120gに、上記までに得られた赤褐色溶液をピペットで滴下した。この滴下によって黄赤色の固形分が析出された。内容物をブフナーロートと桐山ろ紙とを用いて固液分離し、黄橙色の固形分を得た。得られた固形分を、温度60℃且つ10mmHgの減圧下で12時間乾燥して黄橙色粉末1.4gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、上記黄橙色粉末はモノアミノジベンゾクリセン(NH2DBC-1)が4.0%含まれたジアミノジベンゾクリセン(NH2DBC-2)であることが確認された。
特開2013-227307の記載に基づき、マグネット式撹拌装置及び環流冷却管を備えた容量300mLの四つ口フラスコに、合成例6で得られたアミノジベンゾクリセンの混合物10.85gと、エタノール(和光純薬工業株式会社製)27gと、エピクロロヒドリン(関東化学株式会社製)67.2g(0.726mol)と、を仕込み、湯浴を用いて保温しながら、内温80℃で6時間撹拌を行いながら反応させた。これにより、内容物は赤褐色の溶液に変化した。次いで、湯浴中で撹拌を継続しながら内温を60℃まで降温させた後、50%NaOH水溶液(水酸化ナトリウム水溶液)10.67g(NaOHを0.267mol含有)を、ピペットで5時間かけて滴下した。その後、撹拌を3時間継続して停止した。次いで、アスピレ-ターで減圧しながら溶媒(エタノール+水)を除去した後、トルエン100gを添加して内容物を溶解して、蒸留水50gを用いた水洗を三回行い、水洗浄後の有機相を、温度100℃且つ1mmHgの減圧下で溶媒を除去して、赤褐色塊状物12.3gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、上記黄橙色粉末はモノアミノジグリシジルジベンゾクリセン(AGDBC-1)が4.0%含まれたジアミノジグリシジルジベンゾクリセン(AGDBC-2)であることが確認された。
特開2014-152164号公報の記載に基づき、合成例2で得られたヒドロキシジベンゾクリセン10g(約0.255mol)と、エタノール100gと、エピクロロヒドリン(関東化学株式会社製)300g(3.24mol)と、を仕込んで40℃で撹拌・混合した。内温40℃を維持しながら、先の内容物に水酸化ナトリウム粉末4.3g(0.11mol含有)を添加して溶液を得た。その後、溶媒(エタノール及びエピクロロヒドリン)を減圧除去した。次いで、溶媒が除去された内容物にメチルイソブチルケトン(MIBK)100gを添加・撹拌した後、不溶物を除去することによりジベンゾクリセングリシジルエーテル(DBCGE)1.2gを黄色油状物として得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表される3置換ジベンゾクリセングリシジルエーテル(DBCGE-3)が2.0%含まれた4置換ジベンゾクリセングリシジルエーテル(DBCGE-4)であることが確認された。
特開2014-152164号公報の記載に基づき、合成例2で得られたヒドロキシジベンゾクリセン10g(0.026mol、及び、フェノチアジン(関東化学株式会社)50mgをアセトニトリル(和光純薬工業株式会社製)200gに溶解した。その後、アクリロイルクロライド(和光純薬工業製)18.5g(0.2mol)及びトリエチルアミン(関東化学株式会社製)26g(0.26molを滴下し、25℃で6時間攪拌した。その後、メタノール10gを滴下した。反応液に酢酸エチル800g、及び、蒸留水150gを加えて洗浄した。蒸留水による洗浄を2回繰り返した後、減圧下エバポレーターにより溶媒を留去した。得られた油状物をトルエン/酢酸エチル=10/1の混合溶媒を用いてシリカゲルカラムクロマトグラフィーにより精製し、減圧乾燥を行って褐色粉状固体9.4gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表される4置換ジベンゾクリセンアクリル化合物(ACDBC-4)であることが確認された。
特開2014-152164号公報の記載に基づき、合成例2で得られたヒドロキシジベンゾクリセン10g(0.026mol、及び、フェノチアジン(関東化学株式会社)50mgをアセトニトリル(和光純薬工業株式会社製)200gに溶解した。その後、メタクリロイルクロライド(和光純薬工業製)20.9g(0.2mol)及びトリエチルアミン(関東化学株式会社製)26g(0.26mol)を滴下し、25℃で6時間攪拌した。その後、メタノール10gを滴下し、得られた反応液に酢酸エチル800g及び蒸留水150gを加えて洗浄した。蒸留水による洗浄を2回繰り返した後、減圧下エバポレーターにて溶媒を留去した。得られた油状物をトルエン/酢酸エチル=10/1の混合溶媒を用いてシリカゲルカラムクロマトグラフィーにより精製し、減圧乾燥を行って、褐色粉状固体11.3gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表される4置換ジベンゾクリセンメタクリル化合物(MCDBC-4)であることが確認された。
特開2014-152164号公報の記載に基づき、合成例8で得られたジベンゾクリセングリシジルエーテル5.0g(0.0081mol)、フェノチアジン(関東化学株式会社)30mg、及びトリフェニルホスフィン(和光純薬工業株式会社製)60mg、をアクリル酸(関東化学株式会社製)50.0g(0.7mol)に溶解した。その後、トルエン(和光純薬工業株式会社製)100gを加え、油浴上で90℃にて10時間反応させた。得られた反応液に、酢酸エチル400g及び飽和炭酸水素ナトリウム水溶液を加えた後、酢酸エチル相を分取した。次いで、不溶解物をろ別した後、酢酸エチル相を蒸留水100gで洗浄し、更に、減圧下濃縮後、乾燥させて茶褐色固体3.1gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表されるアクロイルオキシジベンゾクリセン(AODBC)の混合物であることが確認された。
特開2014-152164号公報の記載に基づき、合成例8で得られたジベンゾクリセングリシジルエーテル5.0g(0.0081mol)、フェノチアジン(関東化学株式会社)30mg及びトリフェニルホスフィン(和光純薬工業株式会社製)60mgをメタクリル酸(和光純薬工業株式会社製)60.3g(0.7mol)に溶解した後、トルエン(和光純薬工業株式会社製)100gを加えた。油浴上で90℃にて10時間反応させた。得られた反応液に、酢酸エチル400g及び飽和炭酸水素ナトリウム水溶液を加えた後、酢酸エチル相を分取した。次いで、不溶解物をろ別した後、酢酸エチル相を蒸留水100gで洗浄し、減圧下濃縮後、乾燥させて茶褐色固体3.6gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表されるメタクリロイルオキシジベンゾクリセン(MAODBC)の混合物であることが確認された。
特開2013-227307号公報の記載に基づき、ジベンゾクリセンをスルホン化した後、得られた化合物のスルホン酸基を、スルホニルハロゲン基(-SO2X)にし、更に、得られた化合物のスルホニルハロゲン基をチオール基にしてテトラチオールジベンゾクリセン8.6gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表されるテトラチオールジベンゾクリセン(SDBC-4)であることが確認された。
特開2014-152164号公報の記載に基づき、合成例2で得られたヒドロキシジベンゾクリセン5g(0.013mol)、アリルブロマイド(東京化成工業株式会社製)12.3g(0.10mol)をジメチルスルホキシド(和光純薬工業株式会社製)50gに溶解した。その後、水酸化ナトリウム(東ソー株式会社製 品名:東ソーパール)2.54g(0.064mol)、窒素気流下中、80℃で18時間撹拌した。反応終了後、酢酸エチル300g、及び、蒸留水80gを加えて洗浄した。蒸留水による洗浄を2回繰り返した後、減圧下エバポレーターにて溶媒を留去した。トルエンを用いたシリカゲルカラムクロマトグラフィーにより精製し、減圧乾燥を行って、褐色粉状固体4.6gを得た。液体クロマトグラフ質量分析(LC/MS分析)の結果、下記式で表されるテトラアリルオキシジベンゾクリセン(TAODBC)であることが確認された。
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、合成例2で得られた化合物(HDBC-4)4.9g(12.5mmol)とジ-t-ブチルジカーボネート(アルドリッチ社製)5.5g(25mmol)とをアセトン100mLに仕込み、炭酸カリウム(アルドリッチ社製)3.45g(25mmol)を加えて、内容物を20℃で6時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式(HDBC-4-BOC)で示される目的化合物(HDBC-4-BOC)を2g得た。
得られた化合物(HDBC-4-BOC)について、前記方法により分子量を測定した結果、792であった。
得られた化合物(HDBC-4-BOC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(HDBC-4-BOC)の化学構造を有することを確認した。
δ(ppm)7.0~10.0(12H,Ph-H)、1.6(36H,C-CH3)
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、合成例2で得られた化合物(HDBC-4)4.9g(12.5mmol)とブロモ酢酸t-ブチル(アルドリッチ社製)5.4g(27mmol)とをアセトン100mLに仕込み、炭酸カリウム(アルドリッチ社製)3.8g(27mmol)及び18-クラウン-6 0.8gを加えて、内容物を還流下で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式(HDBC-4-MeBOC)で示される目的化合物(HDBC-4-MeBOC)を1.8g得た。
得られた化合物(HDBC-4-MeBOC)について、前記方法により分子量を測定した結果、848であった。
得られた化合物(HDBC-4-MeBOC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(HDBC-4-MeBOC)の化学構造を有することを確認した。
δ(ppm)7.0~10.0(12H,Ph-H)、4.7~4.8(8H,C-CH2-C)、1.3~1.4(36H,C-CH3)
十分乾燥し、窒素置換した滴下漏斗、ジム・ロート氏冷却管、温度計、攪拌翼を設置した四つ口フラスコ(1000mL)に、窒素気流下で、本州化学工業社製2,3,6-トリメチルフェノール108.8g/0.8mol及び三菱瓦斯化学社製2,7-ナフタレンジカルボキシアルデヒド18.4g/0.1molを混合し、約60℃に加熱して溶解した後、硫酸0.1mL、3-メルカプトプロピオン酸0.8mL、トルエン10mLを加え、撹拌しながら反応した。
反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。1時間静置後、淡黄色の目的粗結晶が生成し、これを濾別した。その後60℃温水で撹拌洗浄し、再結晶を行うことで、下記式の目的生成物(TetP-1)を8.99g得た。
温度を制御できる内容積500mLの電磁撹拌装置付オートクレーブ(SUS316L製)に、無水HF 74.3g(3.71モル)、BF3 50.5g(0.744モル)を仕込み、内容物を撹拌し、液温を-30℃に保ったまま一酸化炭素により2MPaまで昇圧した。その後、圧力を2MPa、液温を-30℃に保ったまま、4-シクロヘキシルベンゼン57.0g(0.248モル)とn-ヘプタン50.0gとを混合した原料を供給し、1時間保った後、氷の中に内容物を採取し、ベンゼンで希釈後、中和処理をして得られた油層をガスクロマトグラフィーで分析して反応成績を求めたところ、4-シクロヘキシル)ベンゼン転化率100%、4-シクロヘキシルベンズアルデヒド選択率97.3%であった。
単蒸留により目的成分を単離し、GC-MSで分析した。すなわち、Agilent社製Agilent5975/6890Nを用いて測定した。その結果、下記式の4-シクロヘキシルベンズアルデヒド(CHBAL)の分子量188を示した。また重クロロホルム溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、1.0~1.6(m,10H)、2.6(m,1H)、7.4(d,2H)、7.8(d,2H)、10.0(s,1H)であった。
この生成物の構造LC-MSで分析した結果、分子量1121を示した。また、この生成物の重クロロホルム溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は0.8~1.9(m,44H)、5.5,5.6(d,4H)、6.0~6.8(m,24H)、8.4,8.5(m,8H)であった。これらの結果から、得られた生成物を目的化合物(CR-1)と同定した(収率91%)。
合成例2及び合成例18で得られた化合物を質量比1:9で用いたものを実施例4、合成例2及び合成例18で得られた化合物を質量比9:1で用いたものを実施例5、合成例2及び合成例18で得られた化合物を質量比5:5で用いたものを実施例6、合成例4~16で得られた化合物を用いたものを実施例7~19、合成例17で得られた化合物を用いたものを比較例1、合成例18で得られた化合物を用いたものを比較例2として、以下の試験を行った。
上記合成例2,4~18で得られた化合物のプロピレングリコールモノメチルエーテル(PGME)及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)への溶解度を試験し、評価を行った。
評価は、以下の規準に従って行われ、結果を表1に示す。
A:10.0wt% ≦ 溶解量
B:3.0wt%≦ 溶解量 <10.0wt%
C:溶解量 <3.0wt%
表1に従って各成分を調合し、均一溶液としたのち、孔径0.1μmのテフロン製メンブランフィルターで濾過して、レジスト組成物を調製した。
酸発生剤(C)
P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
酸架橋剤(G)
C-1:ニカラックMW-100LM(三和ケミカル(株))
酸拡散制御剤(E)
Q-1:トリオクチルアミン(東京化成工業(株))
溶媒
S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
その結果、いずれの膜も欠陥の無い良好な膜であり、耐熱性は良好であることを確認した(評価:○)。
レジストを清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。該レジスト膜を電子線描画装置(ELS-7500,(株)エリオニクス社製)を用いて、5μm、50nm、40nm及び25nm間隔の1:1のラインアンドスペース設定の電子線を照射した。照射後に、それぞれ所定の温度で、90秒間加熱し、TMAH2.38wt%アルカリ現像液に60秒間浸漬して現像を行った。その後、超純水で30秒間洗浄し、乾燥して、ネガ型のレジストパターンを形成した。
そして、各解像度のパターンについて、パターン形状、ラインエッジラフネス及び感度が良好であるか否かについて評価を行った。それらがいずれについても良好である場合には○、レジストパターンを形成できなかった場合は×と評価した。まず、解像度5μmのパターンについては、実施例4~19、比較例1~2のいずれもが○と評価された。次に、解像度25nmのパターンについて、実施例4、比較例1、比較例2の評価を行った。表2に評価結果を示す。
なお、パターンの解像度は形成できたパターンの最小線幅のものとした。パターン形状は矩形であれば良好と判断し、ラインエッジラフネスはパターンの凹凸が5nm未満を良好と判断し、その際のドーズ量(μC/cm2)を感度とし、150μC/cm2未満を良好と判断した。
一方、比較例1及び2のレジストは、解像度40nmの良好なレジストパターンを得ることができたが、25nmではレジストパターンを得ることはできなかった。
Claims (17)
- 前記pの少なくとも1つが1~4の整数である、請求項1に記載のレジスト材料。
- 前記R0の少なくとも1つが、酸素原子を含む1価の基である、請求項1又は2に記載のレジスト材料。
- 前記酸解離性反応基が、置換メチル基、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基からなる群より選ばれる基である、請求項6又は7に記載のレジスト材料。
- 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート又は不飽和炭化水素基含有化合物である、請求項10に記載のレジスト材料。
- 前記樹脂が、ノボラック系樹脂、アラルキル系樹脂、ヒドロキシスチレン系樹脂、(メタ)アクリル酸系樹脂及びそれらの共重合体からなる群より選ばれる少なくとも1種である、請求項10又は11に記載のレジスト材料。
- 請求項1~13のいずれか1項に記載のレジスト材料と溶媒とを含有する、レジスト組成物。
- 酸発生剤をさらに含有する、請求項14に記載のレジスト組成物。
- 酸架橋剤をさらに含有する、請求項14又は15に記載のレジスト組成物。
- 請求項14~16のいずれか1項に記載のレジスト組成物を基板上に塗布してレジスト膜を形成する工程と、
前記レジスト膜を露光する工程と、
露光した前記レジスト膜を現像する工程と、
を含む、レジストパターン形成方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167031104A KR20170005413A (ko) | 2014-05-08 | 2015-05-08 | 레지스트재료, 레지스트 조성물 및 레지스트 패턴형성방법 |
CN201580024204.1A CN106462059B (zh) | 2014-05-08 | 2015-05-08 | 抗蚀材料、抗蚀组合物和抗蚀图案形成方法 |
JP2015537851A JP5861955B1 (ja) | 2014-05-08 | 2015-05-08 | レジスト材料、レジスト組成物及びレジストパターン形成方法 |
US15/309,780 US10437148B2 (en) | 2014-05-08 | 2015-05-08 | Resist material, resist composition and method for forming resist pattern |
SG11201609176PA SG11201609176PA (en) | 2014-05-08 | 2015-05-08 | Resist material, resist composition and method for forming resist pattern |
EP15789185.4A EP3141957B1 (en) | 2014-05-08 | 2015-05-08 | Resist material, resist composition, and resist pattern formation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-096999 | 2014-05-08 | ||
JP2014096999 | 2014-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170734A1 true WO2015170734A1 (ja) | 2015-11-12 |
Family
ID=54392582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063272 WO2015170734A1 (ja) | 2014-05-08 | 2015-05-08 | レジスト材料、レジスト組成物及びレジストパターン形成方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10437148B2 (ja) |
EP (1) | EP3141957B1 (ja) |
JP (1) | JP5861955B1 (ja) |
KR (1) | KR20170005413A (ja) |
CN (1) | CN106462059B (ja) |
SG (1) | SG11201609176PA (ja) |
TW (1) | TWI679493B (ja) |
WO (1) | WO2015170734A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016125007A (ja) * | 2015-01-06 | 2016-07-11 | 三菱化学株式会社 | エポキシ樹脂組成物、硬化物、電気部品及び電子部品 |
JPWO2015170736A1 (ja) * | 2014-05-08 | 2017-04-20 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用膜、パターン形成方法及び精製方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102337564B1 (ko) * | 2018-09-28 | 2021-12-13 | 삼성에스디아이 주식회사 | 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 전자 소자 |
US20200209749A1 (en) * | 2018-12-27 | 2020-07-02 | Sumitomo Chemical Company, Limited | Resist composition and method for producing resist pattern |
CN110010367B (zh) * | 2019-03-15 | 2021-02-09 | 天津大学 | 一种二维金属有机框架半导体材料及制备方法及应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231450A (ja) * | 2001-01-30 | 2002-08-16 | Idemitsu Kosan Co Ltd | 蛍光変換膜、蛍光変換膜用樹脂組成物、及び、有機エレクトロルミネッセンス表示装置 |
JP2005321587A (ja) * | 2004-05-10 | 2005-11-17 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2006162858A (ja) * | 2004-12-06 | 2006-06-22 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2006178083A (ja) * | 2004-12-21 | 2006-07-06 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2009511732A (ja) * | 2006-07-05 | 2009-03-19 | ヨンセイ ユニバーシティ インダストリー‐アカデミック コーポレイション ファウンデーション | 光活性芳香族重合体及びその製造方法 |
JP2013227307A (ja) * | 2012-03-29 | 2013-11-07 | Kurogane Kasei Co Ltd | 新規な化合物及びこれを用いた重合体 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640718A (en) * | 1968-04-10 | 1972-02-08 | Minnesota Mining & Mfg | Spectral sentization of photosensitive compositions |
DE3588167T2 (de) * | 1984-06-12 | 1998-03-12 | Mitsubishi Chem Corp | Sekundärbatterien, die mittels Pyrolyse hergestelltes Pseudo-Graphit als Elektrodenmaterial enthalten |
US6416887B1 (en) * | 1998-11-11 | 2002-07-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Organic electroluminescent element |
JP3774668B2 (ja) | 2001-02-07 | 2006-05-17 | 東京エレクトロン株式会社 | シリコン窒化膜形成装置の洗浄前処理方法 |
JP3914493B2 (ja) | 2002-11-27 | 2007-05-16 | 東京応化工業株式会社 | 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法 |
US6830833B2 (en) * | 2002-12-03 | 2004-12-14 | Canon Kabushiki Kaisha | Organic light-emitting device based on fused conjugated compounds |
WO2004066377A1 (ja) | 2003-01-24 | 2004-08-05 | Tokyo Electron Limited | 被処理基板上にシリコン窒化膜を形成するcvd方法 |
JP3981030B2 (ja) | 2003-03-07 | 2007-09-26 | 信越化学工業株式会社 | レジスト下層膜材料ならびにパターン形成方法 |
JP4388429B2 (ja) | 2004-02-04 | 2009-12-24 | 信越化学工業株式会社 | レジスト下層膜材料ならびにパターン形成方法 |
CN1942825B (zh) | 2004-04-15 | 2010-05-12 | 三菱瓦斯化学株式会社 | 抗蚀剂组合物 |
JP4781280B2 (ja) | 2006-01-25 | 2011-09-28 | 信越化学工業株式会社 | 反射防止膜材料、基板、及びパターン形成方法 |
JP4638380B2 (ja) | 2006-01-27 | 2011-02-23 | 信越化学工業株式会社 | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP4858136B2 (ja) | 2006-12-06 | 2012-01-18 | 三菱瓦斯化学株式会社 | 感放射線性レジスト組成物 |
JP5446118B2 (ja) | 2007-04-23 | 2014-03-19 | 三菱瓦斯化学株式会社 | 感放射線性組成物 |
CN101889247B (zh) | 2007-12-07 | 2013-04-03 | 三菱瓦斯化学株式会社 | 用于形成光刻用下层膜的组合物和多层抗蚀图案的形成方法 |
KR101741285B1 (ko) | 2009-09-15 | 2017-06-15 | 미츠비시 가스 가가쿠 가부시키가이샤 | 방향족 탄화수소 수지 및 리소그래피용 하층막 형성 조성물 |
JP6221029B2 (ja) * | 2013-02-13 | 2017-11-01 | 黒金化成株式会社 | 新規な化合物、これを用いた重合体、硬化剤及び架橋剤 |
JP6447884B2 (ja) * | 2014-05-08 | 2019-01-09 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用膜、パターン形成方法及び精製方法 |
-
2015
- 2015-05-08 TW TW104114764A patent/TWI679493B/zh not_active IP Right Cessation
- 2015-05-08 EP EP15789185.4A patent/EP3141957B1/en active Active
- 2015-05-08 CN CN201580024204.1A patent/CN106462059B/zh not_active Expired - Fee Related
- 2015-05-08 WO PCT/JP2015/063272 patent/WO2015170734A1/ja active Application Filing
- 2015-05-08 JP JP2015537851A patent/JP5861955B1/ja active Active
- 2015-05-08 SG SG11201609176PA patent/SG11201609176PA/en unknown
- 2015-05-08 US US15/309,780 patent/US10437148B2/en not_active Expired - Fee Related
- 2015-05-08 KR KR1020167031104A patent/KR20170005413A/ko not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231450A (ja) * | 2001-01-30 | 2002-08-16 | Idemitsu Kosan Co Ltd | 蛍光変換膜、蛍光変換膜用樹脂組成物、及び、有機エレクトロルミネッセンス表示装置 |
JP2005321587A (ja) * | 2004-05-10 | 2005-11-17 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2006162858A (ja) * | 2004-12-06 | 2006-06-22 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2006178083A (ja) * | 2004-12-21 | 2006-07-06 | Nippon Synthetic Chem Ind Co Ltd:The | 感光性樹脂組成物及びそれを用いたフォトレジストフィルム、レジストパターン形成方法 |
JP2009511732A (ja) * | 2006-07-05 | 2009-03-19 | ヨンセイ ユニバーシティ インダストリー‐アカデミック コーポレイション ファウンデーション | 光活性芳香族重合体及びその製造方法 |
JP2013227307A (ja) * | 2012-03-29 | 2013-11-07 | Kurogane Kasei Co Ltd | 新規な化合物及びこれを用いた重合体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3141957A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015170736A1 (ja) * | 2014-05-08 | 2017-04-20 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用膜、パターン形成方法及び精製方法 |
JP2016125007A (ja) * | 2015-01-06 | 2016-07-11 | 三菱化学株式会社 | エポキシ樹脂組成物、硬化物、電気部品及び電子部品 |
Also Published As
Publication number | Publication date |
---|---|
KR20170005413A (ko) | 2017-01-13 |
JPWO2015170734A1 (ja) | 2017-04-20 |
EP3141957B1 (en) | 2021-03-24 |
CN106462059A (zh) | 2017-02-22 |
CN106462059B (zh) | 2020-07-28 |
SG11201609176PA (en) | 2016-12-29 |
US20170145142A1 (en) | 2017-05-25 |
TW201610566A (zh) | 2016-03-16 |
JP5861955B1 (ja) | 2016-02-16 |
EP3141957A4 (en) | 2018-01-10 |
EP3141957A1 (en) | 2017-03-15 |
US10437148B2 (en) | 2019-10-08 |
TWI679493B (zh) | 2019-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6948019B2 (ja) | レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物 | |
JP6217817B2 (ja) | レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物 | |
JP5446118B2 (ja) | 感放射線性組成物 | |
KR102159234B1 (ko) | 레지스트 조성물, 레지스트 패턴 형성방법 및 이것에 이용하는 폴리페놀 유도체 | |
JP6515919B2 (ja) | レジスト組成物及びレジストパターン形成方法 | |
JP6883291B2 (ja) | リソグラフィー用材料及びその製造方法、リソグラフィー用組成物、パターン形成方法、並びに、化合物、樹脂、及びこれらの精製方法 | |
JP6845991B2 (ja) | 化合物、レジスト組成物及びそれを用いるレジストパターン形成方法 | |
JP6156711B2 (ja) | レジスト基材、レジスト組成物及びレジストパターン形成方法 | |
JP5861955B1 (ja) | レジスト材料、レジスト組成物及びレジストパターン形成方法 | |
WO2017188452A1 (ja) | 光学部品形成組成物及びその硬化物 | |
JPWO2016158170A1 (ja) | 感放射線性組成物 | |
JP6519469B2 (ja) | レジスト組成物 | |
JP2013140342A (ja) | 感放射線性組成物 | |
JP5817524B2 (ja) | 感放射線性組成物及びレジストパターン形成方法 | |
JP2013018711A (ja) | 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法 | |
JP2012128346A (ja) | 包摂化合物および感放射線性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015537851 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15789185 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167031104 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15309780 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015789185 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015789185 Country of ref document: EP |