WO2015170710A1 - 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法 - Google Patents

硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法 Download PDF

Info

Publication number
WO2015170710A1
WO2015170710A1 PCT/JP2015/063218 JP2015063218W WO2015170710A1 WO 2015170710 A1 WO2015170710 A1 WO 2015170710A1 JP 2015063218 W JP2015063218 W JP 2015063218W WO 2015170710 A1 WO2015170710 A1 WO 2015170710A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
curable
polysilsesquioxane compound
curable polysilsesquioxane
region
Prior art date
Application number
PCT/JP2015/063218
Other languages
English (en)
French (fr)
Inventor
優美 松井
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2015559062A priority Critical patent/JP5976963B2/ja
Priority to US15/309,145 priority patent/US10113035B2/en
Priority to CN201580025191.XA priority patent/CN106414558B/zh
Priority to MYPI2016704039A priority patent/MY190128A/en
Priority to EP15789000.5A priority patent/EP3141572A4/en
Priority to KR1020167031366A priority patent/KR102244168B1/ko
Publication of WO2015170710A1 publication Critical patent/WO2015170710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable polysilsesquioxane compound that has a high adhesive force, is excellent in heat resistance, peel resistance (delamination resistance), and has a reduced occurrence of cracks, a method for producing the same, and curing
  • the present invention relates to an adhesive composition, a cured product obtained by curing the composition, and a method of using the composition as an optical element fixing agent.
  • the optical element examples include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit.
  • LD semiconductor laser
  • LED light emitting diode
  • a composite optical element a composite optical element
  • an optical integrated circuit an optical integrated circuit.
  • blue and white light optical elements having a shorter peak emission wavelength have been developed and widely used.
  • Such a light emitting element with a short peak wavelength of light emission has been dramatically increased in brightness, and accordingly, the amount of heat generated by the optical element tends to be further increased.
  • curable compositions compositions for optical element fixing agents
  • the cured product of the optical element fixing agent composition is exposed to higher energy light or higher temperature heat generated from the optical element for a long time, and deteriorates and peels off. And problems such as cracking occurred.
  • Patent Documents 1 to 3 propose a composition for an optical element fixing agent containing a polysilsesquioxane compound as a main component.
  • the polysilsesquioxane compound is a compound represented by the formula: (RSiO 3/2 ) n (wherein R represents an alkyl group, an aryl group, etc., which may have a substituent), It is a substance having intermediate properties between inorganic silica [SiO 2 ] and organic silicone [(R 2 SiO) n ].
  • a cured product of a composition for optical element fixing agents mainly composed of a polysilsesquioxane compound described in Patent Documents 1 to 3 heat resistance and peeling resistance are maintained while maintaining sufficient adhesive strength. In some cases, it was difficult to obtain the properties (delamination resistance). Therefore, development of a curable composition having a high adhesive force, excellent heat resistance and peel resistance, and capable of obtaining a cured product with few cracks has been eagerly desired.
  • Patent Document 4 discloses that in a solid Si-nuclear magnetic resonance spectrum, the peak top position is in the region of a chemical shift of ⁇ 40 ppm or more and 0 ppm or less, a peak having a specific half width, and a peak The top position is in a region where the chemical shift is ⁇ 80 ppm or more and less than ⁇ 40 ppm, has at least one peak selected from the group consisting of a peak having a half width of a specific peak, and a silicon content of 20% by weight or more
  • a semiconductor light-emitting device member having a silanol content of 0.1 wt% or more and 10 wt% or less is described.
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A JP 2007-1212975 A (US2009 / 0008673 A1)
  • the present invention has been made in view of the above circumstances, has a high adhesive force, is excellent in heat resistance and peel resistance, and can provide a cured product with less cracking.
  • Curable compound and curable composition It is an object of the present invention to provide a product, a method for producing the curable compound, a cured product obtained by curing the curable composition, and a method for using the curable composition.
  • curable polysilsesquioxane compounds (1) to (3) the method for producing curable polysilsesquioxane compounds (4) to (6), and the curing of (7)
  • a method for using the cured product of (8) and the optical element fixing agent of (9) the following curable polysilsesquioxane compounds (1) to (3), the method for producing curable polysilsesquioxane compounds (4) to (6), and the curing of (7).
  • a curable polysilsesqui having one or more of the structural units represented by the formula: R 1 SiO 3/2 (wherein R 1 represents an alkyl group having 1 to 10 carbon atoms)
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • An oxan compound, 29 Si nuclear magnetic resonance spectrum having a first peak top in a region from ⁇ 60 ppm to less than ⁇ 54 ppm, a second peak top in a region from ⁇ 70 ppm to less than ⁇ 61 ppm, and from ⁇ 53 ppm to less than ⁇ 45 ppm
  • a curable polysilsesquioxane compound characterized by having substantially no peak in the region.
  • the integrated value (P2) of the peak in the region of ⁇ 70 ppm or more and less than ⁇ 61 ppm is 60 to less than the integrated value (P1) of the peak in the region of ⁇ 60 ppm or more and less than ⁇ 54 ppm.
  • the curable polysilsesquioxane compound according to (1) which is 90%.
  • the curable polysilsesquioxane compound according to (1) which is a compound having a mass average molecular weight of 1000 to 50,000.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • a plurality of R 2 may be the same or different.
  • the curable polysilsesquioxane compound according to (1) which has a step (I) of polycondensing one or two or more of the compounds represented by the formula (1) in the presence of a polycondensation catalyst.
  • Method. The curable polysilsesqui described in (4), wherein the polycondensation catalyst is at least one acid catalyst selected from the group consisting of hydrochloric acid, boric acid, citric acid, acetic acid, sulfuric acid, and methanesulfonic acid.
  • a method for producing an oxan compound (6) Further, an organic solvent is added to the reaction solution obtained in the step (I) to dissolve the polycondensate of the compound represented by the formula (1), and then the acid catalyst is used.
  • a curable composition containing the curable polysilsesquioxane compound according to (1) and a silane coupling agent (8) A cured product obtained by heating the curable composition according to (7).
  • the curable polysilsesquioxane compound of the present invention and the curable composition of the present invention containing at least this compound and a silane coupling agent it has high adhesive strength, heat resistance, and peel resistance (anti-resistance).
  • a cured product having excellent delamination and few cracks can be obtained.
  • the method for producing a curable polysilsesquioxane compound of the present invention the curable polysilsesquioxane compound of the present invention can be efficiently produced.
  • the cured product of the present invention has high adhesive force even when irradiated with high energy light or in a high temperature state, and can seal the optical element well over a long period of time.
  • the curable polysilsesquioxane compound of the present invention and the curable composition of the present invention can be used as an optical element fixing agent. In particular, it can be suitably used as an optical element adhesive and an optical element sealant.
  • FIG. 2 is a 29 Si-NMR spectrum chart of the curable polysilsesquioxane compound of Example 1.
  • FIG. 2 is a 29 Si-NMR spectrum chart of a curable polysilsesquioxane compound of Comparative Example 1.
  • the present invention is divided into 1) a curable polysilsesquioxane compound, 2) a method for producing a curable polysilsesquioxane compound, 3) a curable composition, 4) a cured product, and 5) an optical element fixing.
  • the method used as an agent will be described in detail.
  • Curable polysilsesquioxane compound of the present invention is a curable polysilsesquioxane compound having one or more structural units represented by the formula: R 1 SiO 3/2.
  • An oxan compound, 29 Si nuclear magnetic resonance spectrum having a first peak top in a region from ⁇ 60 ppm to less than ⁇ 54 ppm, a second peak top in a region from ⁇ 70 ppm to less than ⁇ 61 ppm, and from ⁇ 53 ppm to less than ⁇ 45 ppm The region has substantially no peak.
  • “curability” means to include all forms that are cured using heat.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, s-butyl group, n-pentyl group, n- Examples include hexyl group, n-octyl group, n-decyl group and the like.
  • an alkyl group having 1 to 6 carbon atoms is preferable from the viewpoint of easily obtaining the effects of the present invention and being excellent in economic efficiency.
  • the polysilsesquioxane compound is a silicon-based polymer obtained by polycondensation reaction of a trifunctional organosilane compound.
  • the polysilsesquioxane compound has the inorganic characteristics indicated by the main chain siloxane bond (Si—O—Si) and the side chain. the organic group (R 1) having organic characteristics indicated.
  • the structure of the curable polysilsesquioxane compound of the present invention is not particularly limited.
  • a ladder type structure a double decker type structure, a saddle type structure, a partially cleaved type structure, a ring type structure, or a random type structure can be mentioned.
  • the curable polysilsesquioxane compound of the present invention is a structural unit represented by the formula: R 1 SiO 3/2 (wherein R 1 has the same meaning as described above, and the same applies hereinafter). It is a polymer having two or more types.
  • R 1 SiO 3/2 When the curable polysilsesquioxane compound of the present invention is a copolymer having two or more structural units represented by the formula: R 1 SiO 3/2 , the form is not particularly limited, and the random copolymer Although it may be a polymer or a block copolymer, it is preferably a random copolymer from the viewpoint of availability.
  • the structural unit represented by the formula: R 1 SiO 3/2 of the curable polysilsesquioxane compound of the present invention is generally referred to as a T site, and three oxygen atoms are bonded to a silicon atom. It has a structure in which one group (R 1 ) is bonded. Specific examples of the structure of the T site include those represented by the following formulas (a) to (c).
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms of R 2 include the same as those exemplified for R 1 above.
  • the plurality of R 2 may be all the same or different.
  • a Si atom is bonded to *.
  • the curable polysilsesquioxane compound of the present invention includes a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; It is soluble in various organic solvents such as ester solvents; and mixed solvents composed of two or more of these. Therefore, the curable polysilsesquioxane compound of the present invention can measure 29 Si-NMR in a solution state.
  • T0 is a silicon atom having no siloxane bond
  • T1 is a silicon atom having one siloxane bond (a silicon atom in the structure represented by the formula (c))
  • T2 has two siloxane bonds.
  • Silicon atoms (silicon atoms in the structure represented by the formula (b)) and T3 correspond to silicon atoms having three siloxane bonds (silicon atoms in the structure represented by the formula (a)), respectively. It is considered a peak.
  • the curable polysilsesquioxane compound of the present invention has a first peak top (corresponding to T2) in the region of ⁇ 60 ppm to less than ⁇ 54 ppm, and a second peak top (corresponding to T3 in the region of ⁇ 70 ppm to less than ⁇ 61 ppm). (Applicable), but does not substantially have a peak (corresponding to T1) in the region of ⁇ 53 ppm or more and less than ⁇ 45 ppm.
  • “having no substantial peak (corresponding to T1) in the region of ⁇ 53 ppm or more and less than ⁇ 45 ppm” was measured for the 29 Si-NMR spectrum of the curable polysilsesquioxane compound of the present invention.
  • the peak (corresponding to T1) is not observed in the region of ⁇ 53 ppm or more and less than ⁇ 45 ppm, or even if it is observed, the integrated value of the peak (corresponding to T1) in the region of ⁇ 53 ppm or more and less than ⁇ 45 ppm is , Which is less than 0.5% of the integrated value of the peak (corresponding to T2) in the region of ⁇ 60 ppm or more and less than ⁇ 54 ppm.
  • the integrated value (P2) of the peak (corresponding to T3) in the region of ⁇ 70 ppm or more and less than ⁇ 61 ppm is obtained from the viewpoint of obtaining the superior effect of the present invention. It is preferably 60 to 90% with respect to the integrated value (P1) of the peak (corresponding to T2) in the region of ⁇ 60 ppm or more and less than ⁇ 54 ppm.
  • the peak top is substantially absent in the region of ⁇ 53 ppm or more and less than ⁇ 45 ppm
  • the first peak top is in the region of ⁇ 60 ppm or more and less than ⁇ 54 ppm
  • the second peak top is ⁇ 70 ppm.
  • Each of the curable polysilsesquioxane compounds present in the region of less than -61 ppm has a high adhesive force even at high temperatures, has excellent heat resistance and peel resistance, and is a cured product with less cracking. The reason can be considered as follows.
  • the curable polysilsesquioxane compound in which T1 is present has many sites that are desorbed by dehydration or dealcohol condensation when heated and cured, voids due to desorbed components are likely to occur.
  • the adhesive strength is low.
  • a large amount of T3 is present, a cured product having a relatively dense structure is generated, so that the adhesive strength is considered to be sufficient.
  • the 29 Si-NMR spectrum can be measured, for example, as follows.
  • Measurement is performed using dimethyl sulfoxide (DMSO) as a measurement solvent and Fe (acac) 3 as a relaxation reagent for shortening the relaxation time.
  • DMSO dimethyl sulfoxide
  • Fe (acac) 3 as a relaxation reagent for shortening the relaxation time.
  • the intensity of each peak is normalized with the area of the internal standard tetramethylsilane as 1, and the influence of errors for each measurement is excluded.
  • Measurement is performed using a nuclear magnetic resonance spectrometer (for example, AV-500 manufactured by Bruker BioSpin). 29 Si resonance frequency: 99.352 MHz Probe: 5 mm ⁇ solution probe Measurement temperature: 25 ° C. Sample rotation speed: 20 kHz Measurement method: Inverse gate decoupling method 29 Si flip angle: 90 ° 29 Si 90 ° pulse width: 8.0 ⁇ s Repeat time: 5s Integration count: 9200 times Observation width: 30 kHz
  • the mass average molecular weight (Mw) of the curable polysilsesquioxane compound of the present invention is preferably in the range of 1000 to 50,000, and more preferably in the range of 5000 to 40,000.
  • the mass average molecular weight (Mw) can be determined, for example, as a standard polystyrene equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • the molecular weight distribution (Mw / Mn, hereinafter referred to as PDI) of the curable polysilsesquioxane compound of the present invention is not particularly limited, but is usually in the range of 1.0 to 6.0. By being in the said range, the hardened
  • the method for producing the curable polysilsesquioxane compound of the present invention is not particularly limited, but the method for producing the curable polysilsesquioxane compound of the present invention described later is preferable.
  • R 1 and R 2 represent the same meaning as described above.
  • a plurality of R 2 may be the same or different from each other). It has a step (I) of polycondensation in the presence.
  • Step (I) is a step of polycondensing the silane compound represented by the formula (1) (hereinafter sometimes referred to as “silane compound (1)”) in the presence of a polycondensation catalyst.
  • the silane compound (1) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, Examples thereof include n-pentyltriethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, decyltrimethoxysilane, methyldimethoxyethoxysilane, and methyldiethoxymethoxysilane. These can be used individually by 1 type or in combination of 2 or more types.
  • Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid; methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, citric acid, etc. Organic acids; and the like.
  • At least one selected from the group consisting of hydrochloric acid, boric acid, citric acid, acetic acid, sulfuric acid, and methanesulfonic acid is preferable, and hydrochloric acid is particularly preferable.
  • the amount of the polycondensation catalyst used depends on the silane compound (1) and the type of polycondensation catalyst used, but is usually 0.05 mol% to 30 mol% with respect to the total molar amount of the silane compound (1).
  • the range is preferably from 0.1 mol% to 10 mol%, more preferably from 0.2 mol% to 5 mol%.
  • the solvent to be used can be suitably selected according to the silane compound (1), the type of polycondensation catalyst, the amount used, and the like.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; methyl alcohol And alcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; These solvents can be used alone or in combination of two or more. Among these, water and alcohols are preferable and water is more preferable from the viewpoint of easily obtaining the target product.
  • the amount of the solvent to be used is generally 1 ml to 1000 ml, preferably 10 ml to 500 ml, more preferably 50 ml to 200 ml, per mole of silane compound (1).
  • the temperature and reaction time for polycondensation (reaction) of the silane compound (1) are selected depending on the silane compound (1) used, the type of polycondensation catalyst and solvent, the amount used, and the like.
  • the reaction temperature is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation.
  • the reaction time is usually several minutes to 10 hours. In particular, it is preferable to carry out the reaction at a reaction temperature of 5 to 35 ° C. for several minutes to several hours, and then at 35 to 100 ° C. for several tens of minutes to several hours.
  • step (II) when the polymerization reaction is performed in the presence of an acid catalyst in step (I), it is preferable to further include step (II) described later.
  • An organic solvent is added to the reaction solution obtained in the step (I) to dissolve the polycondensate, and then an acid catalyst is used in the step (I), and a step (II) described later is further provided.
  • the curable polysilsesquioxane compound of the present invention having the intended 29 Si-NMR spectrum pattern can be easily obtained.
  • an organic solvent is added to the reaction solution obtained in the step (I) to dissolve the polycondensate of the compound represented by the formula (1), and then the acid catalyst used.
  • a polycondensation reaction is carried out by adding an equimolar equivalent or more of a base.
  • the organic solvent to be used is not particularly limited as long as it can dissolve the produced polycondensate. Among these, a water-immiscible organic solvent having a boiling point of about 60 to 100 ° C. is preferable because of easy post-treatment. A water-immiscible organic solvent has a solubility in water at 25 ° C.
  • organic solvent that separates from water and forms two layers.
  • organic solvents include aromatic compounds such as benzene; esters such as ethyl acetate and propyl acetate; ketones such as methyl isobutyl ketone; aliphatic hydrocarbons such as heptane and cyclohexane; ethers such as tetrahydrofuran. And the like.
  • the organic solvent may be used in an amount that can dissolve the produced polycondensate, and is usually 0.5 to 5 parts by mass, preferably 1 to 1 part by mass with respect to 1 part by mass of the silane compound (1) used. 3 parts by mass.
  • ammonia As the base to be added, it is preferable to use ammonia; or an organic base such as pyridine or triethylamine; since it is easy to obtain the target product of the present invention. From the viewpoint of easy handling, it is more preferable to use ammonia. preferable. Ammonia may be used in a gaseous state or may be used as ammonia water.
  • the amount of the base used is usually in the range of 1.2 to 5 equivalents, preferably 1.5 to 2.5 equivalents, relative to the acid catalyst used in step (I).
  • the temperature of the polycondensation reaction after adding the base is usually from 50 to 100 ° C., and the reaction time is usually from 30 minutes to 10 hours, depending on the reaction scale and the like.
  • the reaction in step (II) is carried out, so that there is no substantial peak in the region having a large molecular weight and not less than ⁇ 53 ppm and less than ⁇ 45 ppm.
  • the curable polysilsesquioxane compound of the invention can be easily obtained.
  • the target curable polysilsesquioxane compound can be obtained by washing the reaction mixture with purified water and then concentrating and drying the organic layer.
  • the resulting curable polysilsesquioxane compound of the present invention has the following formula ( a-1).
  • R a represents one type of R 1 and R b represents one type of R 2.
  • q is substantially 0, and m and o each independently represent a positive integer.
  • R a and R c represent one type of R 1
  • R b and R d represent one type of R 2
  • q and r are substantially 0, and m to p are each independently, Indicates a positive integer.
  • Curable composition of this invention is characterized by containing the curable polysilsesquioxane compound of this invention, and a silane coupling agent.
  • the content of the curable polysilsesquioxane compound of the present invention is usually preferably 60% by mass to 99.7% by mass with respect to the entire composition.
  • the mass is more preferably from 95% by mass, and even more preferably from 80% to 90% by mass.
  • the composition containing the curable polysilsesquioxane compound of the present invention and containing the silane coupling agent has high adhesive strength, excellent heat resistance and peel resistance, and cracks. It becomes a cured product with less occurrence of.
  • silane compounds having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, p-styryltrimethoxysilane, vinyltriacetoxysilane; ⁇ -chloropropyltrimethoxysilane, chloromethyltrimethoxysilane, Silane compounds having halogen atoms such as chloromethylphenethyltrimethoxysilane; having (meth) acryloxy groups such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane Silane compounds; silane compounds having a mercapto group such as ⁇ -mercaptopropyltrimethoxysilane; silane compounds having a ureido group such as 3-ureidopropyltriethoxy
  • Silane coupling agents having an acid anhydride structure such as 2-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride; bis (triethoxysilylpropyl) tetra And sulfide; octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride; and the like.
  • These silane coupling agents can be used alone or in combination of two or more.
  • a silane compound having an isocyanurate group and a silane coupling agent having an acid anhydride structure can be obtained because a cured product having excellent heat resistance and transparency and higher adhesion can be obtained. Is preferable, and it is more preferable to use both in combination.
  • the use ratio is a mass ratio of the silane compound having an isocyanurate group and the silane coupling agent having an acid anhydride structure. In the range of 10: 0.5 to 10:10.
  • a silane coupling agent at such a ratio, it is possible to obtain a curable composition capable of obtaining a cured product that is excellent in transparency and adhesiveness, is further excellent in heat resistance, and does not easily deteriorate even at high temperatures. Can do.
  • the curable composition of the present invention may further contain other components as long as the object of the present invention is not impaired.
  • other components include an antioxidant, an ultraviolet absorber, a light stabilizer, and a diluent.
  • the usage-amount of another component is 10 mass% or less normally with respect to the whole curable composition.
  • the antioxidant is added to prevent oxidative deterioration during heating.
  • the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
  • phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
  • sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate. These antioxidants can be used alone or in combination of two or more. The usage-amount of antioxidant is 10 mass% or less normally with respect to the whole curable composition.
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like. These light stabilizers can be used alone or in combination of two or more.
  • a diluent is added in order to adjust the viscosity of the curable composition.
  • the diluent include glycerin diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, polypropylene glycol diglycidyl ether, and trimethylol.
  • the curable composition of the present invention is a mixture of the curable polysilsesquioxane compound of the present invention, a silane coupling agent, and other components as required in a predetermined ratio, and mixed and defoamed by a known method. Can be obtained.
  • the curable composition of the present invention obtained as described above, a cured product having high adhesive force can be obtained even when irradiated with high energy light or in a high temperature state. Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to the deterioration of the optical element fixing agent accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as a composition for an optical element fixing agent. it can.
  • cured material The hardened
  • the heating temperature is usually 100 to 250 ° C., preferably 150 to 200 ° C., and the heating time is usually 10 minutes to 15 hours, preferably 30 minutes to 8 hours.
  • the cured product of the present invention has a high adhesive force even when irradiated with high energy light or in a high temperature state. Therefore, the cured product of the present invention can solve the problem relating to the deterioration of the optical element fixing agent accompanying the increase in luminance of the optical element, and therefore can be suitably used as the optical element fixing agent.
  • it is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
  • the cured product obtained by heating the curable composition of the present invention has high adhesive strength. That is, the curable composition is applied to the mirror surface of the silicon chip, and the coated surface is placed on the adherend and pressure-bonded, and then heated and cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 ⁇ m high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
  • the adhesive strength of the cured product is preferably 120 N / 2 mm ⁇ or more at 23 ° C. and 70 N / 2 mm ⁇ or more at 100 ° C.
  • the cured product obtained by heating the curable composition of the present invention is excellent in peel resistance.
  • the sapphire chip is pressure-bonded and cured by heat treatment at 170 ° C. for 2 hours, and then the sealant is poured into the cup and heated at 150 ° C. for 1 hour.
  • Process to obtain a cured specimen This test piece was exposed to an environment of 85 ° C. and 85% RH for 168 hours, then pre-heated at 160 ° C. and treated by IR reflow with a maximum temperature of 260 ° C. for 1 minute, and then a heat cycle tester The test is allowed to stand at ⁇ 40 ° C. and + 100 ° C. for 30 minutes for one cycle, and 300 cycles are performed. Thereafter, the sealing material is removed, and it is examined whether or not the elements are peeled off together. In the cured product of the present invention, the probability of peeling is usually 25% or less.
  • the method used as the optical element fixing agent of the present invention is the optical element fixing agent of the curable polysilsesquioxane compound of the present invention or the curable composition of the present invention. It is a method to use as.
  • Use as an optical element fixing agent includes use as an optical element adhesive or optical element sealant.
  • optical elements include light emitting elements such as LEDs and semiconductor lasers (LD), light receiving elements, composite optical elements, and optical integrated circuits.
  • the curable polysilsesquioxane compound or curable composition of the present invention can be suitably used as an adhesive for optical elements.
  • an adhesive for an optical element one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate) are used.
  • Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals , Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , Synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin, etc. .
  • the heating temperature depends on the type of curable polysilsesquioxane compound used, the curable composition, etc., but is usually 100 to 250 ° C., preferably 150 to 200 ° C., and the heating time is usually from 10 minutes. 15 hours, preferably 30 minutes to 8 hours.
  • the curable polysilsesquioxane compound or curable composition of the present invention can be suitably used as a sealant for an optical element sealing body.
  • a method of using the curable polysilsesquioxane compound or curable composition of the present invention as an optical element sealing agent for example, molding the composition into a desired shape and encapsulating the optical element
  • examples thereof include a method for producing an optical element sealing body by heating and curing the body after obtaining the body.
  • the method for molding the curable polysilsesquioxane compound or curable composition of the present invention into a desired shape is not particularly limited, and is a known mold such as a normal transfer molding method or a casting method. The law can be adopted.
  • the heating temperature depends on the type of curable polysilsesquioxane compound used, the curable composition, etc., but is usually 100 to 250 ° C., preferably 150 to 200 ° C., and the heating time is usually from 10 minutes. 15 hours, preferably 30 minutes to 8 hours.
  • the obtained optical element encapsulant is excellent in adhesiveness because it uses the curable polysilsesquioxane compound or the curable composition of the present invention.
  • Example 1 A 300 ml eggplant-shaped flask was charged with 71.37 g (400 mmol) of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13), and then 0.10 g of 35% hydrochloric acid (silane) in 21.6 ml of distilled water. An aqueous solution (21.7 g) in which 0.25 mol% of the total amount of the compound was dissolved was added with stirring. The whole volume was heated at 30 ° C. for 2 hours, then heated to 70 ° C. and stirred for 5 hours, and then 140 g of propyl acetate was added and stirred.
  • methyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13
  • FIG. 1 shows a 29 Si-NMR spectrum measurement chart.
  • the horizontal axis represents the chemical shift value (ppm), and the vertical axis represents the peak intensity.
  • Example 2 A 300 ml eggplant-shaped flask was charged with 71.37 g (400 mmol) of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13), and then 0.10 g of 35% hydrochloric acid (silane) in 21.6 ml of distilled water. An aqueous solution (21.7 g) in which 0.25 mol% of the total amount of the compound was dissolved was added with stirring, and the whole volume was stirred at 30 ° C. for 2 hours, then heated to 70 ° C. and stirred for 5 hours.
  • methyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13
  • Example 1 (Comparative Example 1) In Example 1, 40.2g of curable polysilsesquioxane compounds (A3) were obtained like Example 1 except not having added 28% ammonia water. M W of this thing is 2280, PDI was 2.1. As a result of 29 Si-NMR spectrum measurement, the peak integrated value ratios of T1, T2, and T3 were as shown in Table 1 below.
  • FIG. 2 shows a 29 Si-NMR spectrum measurement chart. In FIG. 2, the horizontal axis represents the chemical shift value (ppm), and the vertical axis represents the peak intensity.
  • Example 3 To 100 parts (parts by mass, the same applies hereinafter) of the curable polysilsesquioxane compound (A1) obtained in Example 1, 1,3,5-N-tris [3- (trimethoxy (Silyl) propyl] isocyanurate (referred to as “(B1)” in Table 1 below) and 3-trimethoxysilylpropyl succinic anhydride (referred to as “(B2)” in Table 1 below). 1 part was added, diethylene glycol monoethyl acetate was added to make the solid content 80%, and the entire volume was sufficiently mixed and defoamed to obtain the curable composition 1 of Example 3.
  • 1,3,5-N-tris [3- (trimethoxy (Silyl) propyl] isocyanurate referred to as “(B1)” in Table 1 below
  • 3-trimethoxysilylpropyl succinic anhydride referred to as “(B2)” in Table 1 below.
  • Example 4 Comparative Examples 2 to 4
  • Example 3 Curable compositions 2-6 and 1r-3r were obtained.
  • the cured products of the curable compositions 1 to 6 and 1r to 3r obtained in Examples 3 to 8 and Comparative Examples 2 to 4 were subjected to the following adhesive strength measurement, crack generation test, and peel resistance test to determine cracks. The occurrence rate and the peeling occurrence rate were calculated.
  • Each of the curable compositions 1 to 6 and 1r to 3r was diluted with diethylene glycol monobutyl ether acetate to a solid content of 80% by mass. It apply
  • the width of the resin part (fillet part) protruding from the silicon chip was measured. Fifteen pieces each having a fillet portion of 80 nm to 120 nm and having fillets on all four sides of the silicon chip were selected as evaluation samples. The fillet part of the selected sample is observed with an electron microscope (manufactured by Keyence Corporation), the number of samples having cracks is counted, the crack occurrence rate is 0% or more and less than 25% "A", 25% or more and less than 50% “B” and 50% or more and 100% were evaluated as “C”.
  • the LED lead frame (product name: 5050 D / G PKG LEADFRAME, manufactured by Enomoto Co., Ltd.) is coated with curable compositions 1-6, 1r-3r about 0.4 mm ⁇ , and then a 0.5 mm square sapphire chip is applied. Crimped. Thereafter, after being cured by heat treatment at 170 ° C. for 2 hours, a sealant (manufactured by Shin-Etsu Chemical Co., Ltd., product name: EG6301) is poured into the cup, and heat treatment is performed at 150 ° C. for 1 hour to obtain a test piece. It was. This test piece is exposed to an environment of 85 ° C.
  • the cured products of the curable compositions 1 to 6 obtained using the curable polysilsesquioxane compounds (A1) and (A2) of Examples 1 and 2 have an adhesive strength of 23 ° C. It was 130 N / 2 mm ⁇ or more, and it was found that the adhesive strength was extremely excellent. Further, it was 79 N / 2 mm ⁇ or more even at 100 ° C., and it was found to be excellent in heat resistance. In the crack generation test, no cracks were observed, and all were A evaluations. Furthermore, it was found from the peel resistance test that the film has excellent peel resistance. On the other hand, the cured products of the curable compositions 1r to 3r of Comparative Examples 2 to 4 obtained using the curable polysilsesquioxane compound (A3) had a high crack generation rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、式:RSiO3/2(式中、Rは、炭素数1~10のアルキル基を表す。)で表される構成単位の一種又は二種以上を有する硬化性ポリシルセスキオキサン化合物であって、29Si核磁気共鳴スペクトルにおいて、-60ppm以上-54ppm未満の領域に第1のピークトップ、-70ppm以上-61ppm未満の領域に第2のピークトップを有し、かつ、-53ppm以上-45ppm未満の領域に、実質的にピークを有しないことを特徴とする硬化性ポリシルセスキオキサン化合物;前記化合物及びシランカップリング剤を含有する硬化性組成物;前記硬化性化合物の製造方法;前記組成物を硬化してなる硬化物;並びに、前記組成物等の使用方法である。

Description

硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法
 本発明は、高い接着力を有し、耐熱性、耐剥離性(耐デラミネーション)に優れ、かつクラックの発生の少ない硬化物が得られる硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、該組成物を硬化してなる硬化物、及び、前記組成物等の光素子固定剤として使用する方法に関する。
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
 近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。
 また、このような光素子の接着剤や封止材として、硬化性組成物(光素子固定剤用組成物)が利用されてきている。
 ところが、近年における光素子の高輝度化に伴い、光素子固定剤用組成物の硬化物が、より高いエネルギーの光や光素子から発生する より高温の熱に長時間さらされ、劣化して剥離したり、クラックが発生する等の問題が生じた。
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定剤用組成物が提案されている。
 ポリシルセスキオキサン化合物は、式:(RSiO3/2(式中、Rは置換基を有していてもよい、アルキル基、アリール基等を表す)で表される化合物であり、無機シリカ[SiO]と有機シリコーン[(RSiO)]の中間的な性質を有する物質である。
 しかしながら、特許文献1~3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定剤用組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性や耐剥離性(耐デラミネーション)を得るのが困難な場合があった。
 従って、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物が得られる硬化性組成物の開発が切望されている。
 本発明に関連して、特許文献4には、固体Si-核磁気共鳴スペクトルにおいて、ピークトップの位置がケミカルシフト-40ppm以上0ppm以下の領域にあり、特定の半値幅を有するピーク、及び、ピークトップの位置がケミカルシフト-80ppm以上-40ppm未満の領域にあり、特定のピークの半値幅を有するピーク、からなる群より選ばれるピークを、少なくとも1つ有するとともに、ケイ素含有率が20重量%以上であり、シラノール含有率が0.1重量%以上10重量%以下である半導体発光デバイス部材が記載されている。
特開2004-359933号公報 特開2005-263869号公報 特開2006-328231号公報 特開2007-112975号公報(US2009/0008673 A1)
 本発明は、上記実情に鑑みてなされたものであり、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物が得られる、硬化性化合物及び硬化性組成物、前記硬化性化合物の製造方法、前記硬化性組成物を硬化してなる硬化物、並びに、前記硬化性組成物等の使用方法を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討した結果、式:RSiO3/2(式中、Rは、炭素数1~10のアルキル基を表す。)で表される構成単位の一種又は二種以上を有する硬化性ポリシルセスキオキサン化合物であって、29Si核磁気共鳴スペクトルにおいて、-60ppm以上-54ppm未満の領域に第1のピークトップ、-70ppm以上-61ppm未満の領域に第2のピークトップを有し、かつ、-53ppm以上-45ppm未満の領域に、実質的にピークを有しない硬化性ポリシルセスキオキサン化合物は、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物を与えることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(3)の硬化性ポリシルセスキオキサン化合物、(4)~(6)の硬化性ポリシルセスキオキサン化合物の製造方法、(7)の硬化性組成物、(8)の硬化物、及び、(9)の光素子固定剤として使用する方法が提供される。
(1)式:RSiO3/2(式中、Rは、炭素数1~10のアルキル基を表す。)で表される構成単位の一種又は二種以上を有する硬化性ポリシルセスキオキサン化合物であって、
29Si核磁気共鳴スペクトルにおいて、-60ppm以上-54ppm未満の領域に第1のピークトップ、-70ppm以上-61ppm未満の領域に第2のピークトップを有し、かつ、-53ppm以上-45ppm未満の領域に、実質的にピークを有しないことを特徴とする硬化性ポリシルセスキオキサン化合物。
(2)29Si核磁気共鳴スペクトルにおいて、-70ppm以上-61ppm未満の領域におけるピークの積分値(P2)が、-60ppm以上-54ppm未満の領域におけるピークの積分値(P1)に対し、60~90%である、(1)に記載の硬化性ポリシルセスキオキサン化合物。
(3)質量平均分子量が1000~50,000の化合物である、(1)に記載の硬化性ポリシルセスキオキサン化合物。
(4)下記式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、炭素数1~10のアルキル基を表し、Rは、水素原子又は炭素数1~10のアルキル基を表す。複数のRはすべて同じでも相異なっていてもよい。)で表される化合物の一種又は二種以上を、重縮合触媒の存在下に、重縮合させる工程(I)を有する、(1)に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
(5)前記重縮合触媒が、塩酸、ホウ酸、クエン酸、酢酸、硫酸、及びメタンスルホン酸からなる群から選ばれる酸触媒の少なくとも一種である、(4)に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
(6)さらに、前記工程(I)で得られた反応液に有機溶媒を添加して、前記式(1)で表される化合物の重縮合物を溶解させた後、前記酸触媒に対して等モル当量以上の塩基を添加して、さらに重縮合反応を行う工程(II)を有する、(5)に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
(7)(1)に記載の硬化性ポリシルセスキオキサン化合物、及びシランカップリング剤を含有する硬化性組成物。
(8)(7)に記載の硬化性組成物を加熱することにより得られる硬化物。
(9)(1)に記載の硬化性ポリシルセスキオキサン化合物、又は、(7)に記載の硬化性組成物を、光素子固定剤として使用する方法。
 本発明の硬化性ポリシルセスキオキサン化合物、及び、この化合物とシランカップリング剤を少なくとも含む本発明の硬化性組成物によれば、高い接着力を有し、耐熱性、耐剥離性(耐デラミネーション)に優れ、かつ、クラックの発生の少ない硬化物を得ることができる。
 本発明の硬化性ポリシルセスキオキサン化合物の製造方法によれば、本発明の硬化性ポリシルセスキオキサン化合物を効率よく製造することができる。
 本発明の硬化物は、高エネルギーの光が照射される場合や高温状態であっても、高い接着力を有し、光素子を長期にわたって良好に封止することができる。
 本発明の硬化性ポリシルセスキオキサン化合物、及び、本発明の硬化性組成物は、光素子固定剤として使用することができる。特に、光素子用接着剤、及び光素子用封止剤として好適に使用することができる。
実施例1の硬化性ポリシルセスキオキサン化合物の29Si-NMRスペクトルチャート図である。 比較例1の硬化性ポリシルセスキオキサン化合物の29Si-NMRスペクトルチャート図である。
 以下、本発明を、1)硬化性ポリシルセスキオキサン化合物、2)硬化性ポリシルセスキオキサン化合物の製造方法、3)硬化性組成物、4)硬化物、及び、5)光素子固定剤として使用する方法、に項分けして詳細に説明する。
1)硬化性ポリシルセスキオキサン化合物
 本発明の硬化性ポリシルセスキオキサン化合物は、式:RSiO3/2で表される構成単位の一種又は二種以上を有する硬化性ポリシルセスキオキサン化合物であって、
29Si核磁気共鳴スペクトルにおいて、-60ppm以上-54ppm未満の領域に第1のピークトップ、-70ppm以上-61ppm未満の領域に第2のピークトップを有し、かつ、-53ppm以上-45ppm未満の領域に、実質的にピークを有しないことを特徴とする。
 なお、本明細書中において「硬化性」とは、熱を用いて硬化する全ての形態を包含することを意味する。
 前記式中、Rは炭素数1~10のアルキル基を表す。
 炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、s-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 これらの中でも、本発明の効果が得られやすく、経済性に優れる観点から、炭素数1~6のアルキル基であるのが好ましい。
 ポリシルセスキオキサン化合物は、3官能性オルガノシラン化合物の重縮合反応により得られるケイ素系重合体であり、主鎖のシロキサン結合(Si-O-Si)が示す無機の特性と、側鎖の有機基(R)が示す有機の特性を有する。
 本発明の硬化性ポリシルセスキオキサン化合物の構造は特に限定されない。例えば、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のものが挙げられる。
 本発明の硬化性ポリシルセスキオキサン化合物は、式:RSiO3/2(式中、Rは前記と同じ意味を表す。以下にて同じ。)で表される構成単位の一種又は二種以上を有する重合体である。本発明の硬化性ポリシルセスキオキサン化合物が、式:RSiO3/2で表される構成単位の二種以上を有する共重合体である場合、その形態は特に限定されず、ランダム共重合体であっても、ブロック共重合体であってもよいが、入手容易性などの観点から、ランダム共重合体であることが好ましい。
 本発明の硬化性ポリシルセスキオキサン化合物が有する式:RSiO3/2で表される構成単位は、一般にTサイトと総称され、ケイ素原子に酸素原子が3つ結合し、それ以外の基(R)が1つ結合している構造を有する。
 Tサイトの構造としては、具体的には、下記式(a)~(c)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、水素原子又は炭素数1~10のアルキル基を表す。Rの炭素数1~10のアルキル基としては、前記Rで例示したのと同様のものが挙げられる。複数のR同士は、すべて同一であっても相異なっていてもよい。また、上記式(a)~(c)中、*にはSi原子が結合している。
 本発明の硬化性ポリシルセスキオキサン化合物は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;及び、これらの二種以上からなる混合溶媒;等の各種有機溶媒に可溶である。
 そのため、本発明の硬化性ポリシルセスキオキサン化合物は、溶液状態での29Si-NMRの測定が可能である。
 29Si-NMRスペクトルを測定した場合、Tサイトに由来するピークとして、通常、-85ppm~-45ppmに、T0~T3の4種が観測される。
 ここで、T0はシロキサン結合を持たないケイ素原子、T1は1個のシロキサン結合を有するケイ素原子(前記式(c)で表される構造中のケイ素原子)、T2は2個のシロキサン結合を有するケイ素原子(前記式(b)で表される構造中のケイ素原子)、T3は3個のシロキサン結合を有するケイ素原子(前記式(a)で表される構造中のケイ素原子)にそれぞれ対応するピークであると考えられている。
 本発明の硬化性ポリシルセスキオキサン化合物は、-60ppm以上-54ppm未満の領域に第1のピークトップ(T2に該当)、-70ppm以上-61ppm未満の領域に第2のピークトップ(T3に該当)が存在するが、-53ppm以上-45ppm未満の領域に、実質的にピーク(T1に該当)を有しないものである。
 ここで、「-53ppm以上-45ppm未満の領域に、実質的にピーク(T1に該当)を有しない」とは、本発明の硬化性ポリシルセスキオキサン化合物の29Si-NMRスペクトルを測定した場合、-53ppm以上-45ppm未満の領域においてピーク(T1に該当)が観測されないか、観測された場合であっても、-53ppm以上-45ppm未満の領域におけるピーク(T1に該当)の積分値が、-60ppm以上-54ppm未満の領域におけるピーク(T2に該当)の積分値の0.5%未満であることをいう。
 本発明の硬化性ポリシルセスキオキサン化合物においては、本発明のより優れた効果が得られる観点から、-70ppm以上-61ppm未満の領域におけるピーク(T3に該当)の積分値(P2)が、-60ppm以上-54ppm未満の領域におけるピーク(T2に該当)の積分値(P1)に対し、60~90%であるのが好ましい。
 29Si-NMRスペクトルにおいて、ピークトップが-53ppm以上-45ppm未満の領域に実質的に存在せず、第1のピークトップが-60ppm以上-54ppm未満の領域に、第2のピークトップが-70ppm以上-61ppm未満の領域に、それぞれ存在する硬化性ポリシルセスキオキサン化合物が、高温においても高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物となる理由については、次のように考えることができる。
 すなわち、T1が存在する硬化性ポリシルセスキオキサン化合物は、加熱硬化した際に脱水や脱アルコール縮合にて脱離する部位が多いため、脱離成分に起因するボイドが発生し易くなり、その接着強度は低いものとなる。一方、T3が多く存在すると、比較的密な構造を有する硬化物が生成するため、その接着強度は十分なものとなる、と考えられる。
 29Si-NMRスペクトルの測定は、例えば、以下のようにして行うことができる。
〔試料条件例〕
 測定溶媒としてジメチルスルホキシド(DMSO)、及び、緩和時間短縮のため緩和試薬としてFe(acac)を用いて測定する。
 なお、各ピークの強度は内部標準テトラメチルシランの面積を1として規格化し、測定毎の誤差の影響を除く。
〔装置条件例〕
 核磁気共鳴分光装置(例えば、ブルカー・バイオスピン社製、AV-500)を用いて測定する。
29Si共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:25℃
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Siフリップ角:90°
29Si90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
〔波形処理解析〕
 フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行なう。
 本発明の硬化性ポリシルセスキオキサン化合物の質量平均分子量(Mw)は、1000~50,000の範囲であるのが好ましく、5000~40,000の範囲であるのがより好ましい。
 質量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
 本発明の硬化性ポリシルセスキオキサン化合物の分子量分布(Mw/Mn、以下PDIという。)は、特に制限されないが、通常1.0~6.0の範囲である。当該範囲内にあることで、接着性により優れる硬化物が得られる。
 本発明の硬化性ポリシルセスキオキサン化合物の製造方法としては、特に制約はないが、後述する本発明の硬化性ポリシルセスキオキサン化合物の製造方法が好ましい。
2)硬化性ポリシルセスキオキサン化合物の製造方法
 本発明の硬化性ポリシルセスキオキサン化合物の製造方法は、下記式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは前記と同じ意味を表す。複数のRはすべて同じでも相異なっていてもよい。)で表される化合物の一種又は二種以上を、重縮合触媒の存在下に、重縮合させる工程(I)を有することを特徴とする。
(工程(I))
 工程(I)は、前記式(1)で表されるシラン化合物(以下、「シラン化合物(1)」ということがある。)を、重縮合触媒の存在下に、重縮合させる工程である。
 シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン、デシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン等が挙げられる。
 これらは、一種単独で、或いは二種以上を組み合わせて用いることができる。
 ここで用いる重縮合触媒としては、特に制限はないが、本発明の硬化性ポリシルセスキオキサン化合物が得られやすいことから、酸触媒が好ましい。酸触媒としては、塩酸、硫酸、硝酸、リン酸、ホウ酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸、クエン酸等の有機酸;等が挙げられる。
 これらの中でも、目的物が得られ易い観点から、塩酸、ホウ酸、クエン酸、酢酸、硫酸、及びメタンスルホン酸からなる群から選ばれる少なくとも一種であるのが好ましく、塩酸が特に好ましい。
 重縮合触媒の使用量は、用いるシラン化合物(1)、重縮合触媒の種類等にもよるが、シラン化合物(1)の総モル量に対して、通常、0.05モル%~30モル%、好ましくは0.1モル%~10モル%、より好ましくは0.2モル%~5モル%の範囲である。
 用いる溶媒は、シラン化合物(1)、重縮合触媒の種類、使用量等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。
 これらの中でも、目的物が得られ易い観点から、水、アルコール類が好ましく、水がより好ましい。
 溶媒の使用量は、シラン化合物(1)1モルにつき、通常1ml~1000ml、好ましくは10ml~500ml、より好ましくは50ml~200mlである。
 シラン化合物(1)を重縮合(反応)させるときの温度、反応時間は、用いるシラン化合物(1)、重縮合触媒及び溶媒の種類、使用量等によって選択される。
 反応温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。
 反応時間は、通常数分から10時間である。
 なかでも、反応温度5~35℃で、数分から数時間、次いで、35~100℃にて、数十分から数時間反応させるのが好ましい。
 本発明においては、工程(I)を酸触媒の存在下で重合反応を行った場合、後述する工程(II)をさらに有するのが好ましい。
前記工程(I)で得られた反応液に有機溶媒を添加して、重縮合物を溶解させた後、前記
 工程(I)において酸触媒を使用し、さらに後述する工程(II)を設けることにより、目的とする29Si-NMRスペクトルパターンを有する本発明の硬化性ポリシルセスキオキサン化合物を容易に得ることができる。
(工程(II))
 工程(II)は、工程(I)で得られた反応液に有機溶媒を添加して、前記式(1)で表される化合物の重縮合物を溶解させた後、用いた酸触媒に対して等モル当量以上の塩基を添加して、重縮合反応を行う工程である。
 用いる有機溶媒としては、生成した重縮合物を溶解し得るものであれば特に制約はない。これらの中でも、後処理の容易性から、沸点が60~100℃程度の水非混和性有機溶媒が好ましい。水非混和性有機溶媒は、25℃における水に対する溶解度が10g/L以下であり、一般的に、水と分離して二層となる有機溶媒である。
 このような有機溶媒としては、ベンゼン等の芳香族化合物類;酢酸エチル、酢酸プロピル等のエステル類;メチルイソブチルケトン等のケトン類;ヘプタン、シクロヘキサン等の脂肪族炭化水素類;テトラヒドロフラン等のエーテル類;等が挙げられる。
 有機溶媒の使用量は、生成した重縮合物を溶解し得る量であればよく、用いたシラン化合物(1)1質量部に対して、通常、0.5~5質量部、好ましくは1~3質量部である。
 次いで、添加する塩基としては、本発明の目的物を得られやすいことから、アンモニア;又は、ピリジン、トリエチルアミン等の有機塩基;を用いるのが好ましく、取扱いの容易性から、アンモニアを用いるのがより好ましい。アンモニアは、気体状態で用いてもよいし、アンモニア水として用いてもよい。
 塩基の使用量は、工程(I)で用いた酸触媒に対して、通常、1.2~5当量、好ましくは1.5~2.5当量の範囲である。
 塩基を添加した後の重縮合反応の温度は、通常、50~100℃、反応時間は、反応規模等にもよるが、通常、30分から10時間である。
 このように、工程(I)の重縮合反応に加えて、工程(II)の反応を行うことで、分子量の大きい、-53ppm以上-45ppm未満の領域に、実質的にピークを有しない、本発明の硬化性ポリシルセスキオキサン化合物を容易に得ることができる。
 反応終了後は、有機合成における通常の後処理操作を行えばよい。具体的には、反応混合物を精製水で洗浄した後、有機層を濃縮し、乾燥することにより、目的とする硬化性ポリシルセスキオキサン化合物を得ることができる。
 以上のように、本発明においては、用いるシラン化合物(1)、触媒の種類等に応じて、反応条件を適宜設定することにより、目的とする29Si-NMRスペクトルパターンを有する硬化性ポリシルセスキオキサン化合物を得ることができる。
 本発明において、前記シラン化合物(1)として、式:RSi(ORで表される化合物を用いた場合、得られる本発明の硬化性ポリシルセスキオキサン化合物は、下記式(a-1)で表されると考えられる。
Figure JPOXMLDOC01-appb-C000005
(式中、RはRの一種を表し、RはRの一種を表す。qは実質的に0であり、m、oはそれぞれ独立して、正の整数を示す。)
 また、シラン化合物(1)として、式:RSi(ORで表される化合物、及び、式:RSi(ORで表される化合物を用いた場合、得られる本発明の硬化性ポリシルセスキオキサン化合物は、下記式(a-2)で表されると考えられる。
Figure JPOXMLDOC01-appb-C000006
(式中、R、RはRの一種を表し、R、RはRの一種を表す。q、rは実質的に0であり、m~pはそれぞれ独立して、正の整数を示す。)
3)硬化性組成物
 本発明の硬化性組成物は、本発明の硬化性ポリシルセスキオキサン化合物、及びシランカップリング剤を含有することを特徴とする。本発明の硬化性組成物において、本発明の硬化性ポリシルセスキオキサン化合物の含有量は、通常、組成物全体に対して、60質量%~99.7質量%であることが好ましく、70質量%~95質量%であることがより好ましく、80質量%~90質量%であることがさらに好ましい。
 このような範囲で本発明の硬化性ポリシルセスキオキサン化合物を含有し、かつシランカップリング剤を含有する組成物は、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物となる。
 用いるシランカップリング剤としては、特に制約はない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、p-スチリルトリメトキシシラン、ビニルトリアセトキシシラン等のビニル基を有するシラン化合物;γ-クロロプロピルトリメトキシシラン、クロロメチルトリメトキシシラン、クロロメチルフェネチルトリメトキシシラン等のハロゲン原子を有するシラン化合物;γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基を有するシラン化合物;γ-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するシラン化合物;3-ウレイドプロピルトリエトキシシラン等のウレイド基を有するシラン化合物;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン化合物;1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート等のイソシアヌレート基を有するシラン化合物;
N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン等のアミノ基を有するシラン化合物;
2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のエポキシ基を有するシラン化合物;
2-トリメトキシシリルエチル無水コハク酸、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸等の酸無水物構造を有するシランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィド;オクタデシルジメチル〔3-(トリメトキシシリル)プロピル〕アンモニウムクロライド;等が挙げられる。
 これらのシランカップリング剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、本発明においては、耐熱性、透明性に優れ、より高い接着力を有する硬化物を得ることができることから、イソシアヌレート基を有するシラン化合物、酸無水物構造を有するシランカップリング剤を用いるのが好ましく、両者を併用するのがより好ましい。
 イソシアヌレート基を有するシラン化合物と酸無水物構造を有するシランカップリング剤を併用する場合、その使用割合は、イソシアヌレート基を有するシラン化合物と酸無水物構造を有するシランカップリング剤との質量比で、10:0.5~10:10の範囲である。
 シランカップリング剤は、本発明の硬化性ポリシルセスキオキサン化合物との質量比で、(硬化性ポリシルセスキオキサン化合物):(シランカップリング剤)=100:0.3~100:30、好ましくは、100:10~100:20の割合で含有するのが好ましい。
 このような割合でシランカップリング剤を用いることにより、透明性、接着性により優れ、さらに耐熱性に優れ、高温にしても接着力が低下しにくい硬化物が得られる硬化性組成物を得ることができる。
 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、さらに他の成分を含有させてもよい。他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。他の成分の使用量は、硬化性組成物全体に対して、通常、10質量%以下である。
 前記酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、硬化性組成物全体に対して、通常、10質量%以下である。
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 希釈剤は、硬化性組成物の粘度を調整するため添加される。
 希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、ジグリシジルアニリン;等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 本発明の硬化性組成物は、本発明の硬化性ポリシルセスキオキサン化合物、シランカップリング剤、及び所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。
 以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態であっても、高い接着力を有する硬化物を得ることができる。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定剤の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定剤用組成物として好適に使用することができる。
4)硬化物
 本発明の硬化物は、本発明の硬化性組成物を加熱することにより得られる。
 加熱する温度は、通常、100~250℃、好ましくは150~200℃であり、加熱時間は、通常10分から15時間、好ましくは30分から8時間である。
 本発明の硬化物は、高エネルギーの光が照射される場合や高温状態であっても、高い接着力を有する。
 したがって、本発明の硬化物は、光素子の高輝度化に伴う光素子固定剤の劣化に関する問題を解決することができることから、光素子固定剤として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
 本発明の硬化性組成物を加熱して得られる硬化物が高い接着力を有することは、例えば、次のようにして確認することができる。
 すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃において120N/2mm□以上であり、かつ、100℃において70N/2mm□以上であることが好ましい。
 本発明の硬化性組成物を加熱して得られる硬化物が耐剥離性に優れることは、例えば、次のようにして確認することができる。
 LEDリードフレームに、硬化性組成物を塗布した上に、サファイアチップを圧着し、170℃で2時間加熱処理して硬化させた後、封止剤をカップ内に流し込み、150℃で1時間加熱処理して硬化物の試験片を得る。この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフローにて処理を行い、次いで、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施する。その後、封止材を除去し、その際に素子が一緒に剥がれるか否かを調べる。本発明の硬化物においては、剥離する確率は通常25%以下である。
5)光素子固定剤として使用する方法
 本発明の光素子固定剤として使用する方法は、本発明の硬化性ポリシルセスキオキサン化合物、又は、本発明の硬化性組成物を、光素子固定剤として使用する方法である。
 光素子固定剤としての使用としては、光素子用接着剤や光素子用封止剤としての使用等が挙げられる。
 光素子としては、LED、半導体レーザ(LD)等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
〈光素子用接着剤〉
 本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物は、光素子用接着剤として好適に使用することができる。
 本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
 加熱する温度は、用いる硬化性ポリシルセスキオキサン化合物の種類、硬化性組成物等にもよるが、通常、100~250℃、好ましくは150~200℃であり、加熱時間は、通常10分から15時間、好ましくは30分から8時間である。
〈光素子用封止剤〉
 本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物は、光素子封止体の封止剤として好適に用いることができる。
 本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を光素子用封止剤として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
 加熱する温度は、用いる硬化性ポリシルセスキオキサン化合物の種類、硬化性組成物等にもよるが、通常、100~250℃、好ましくは150~200℃であり、加熱時間は、通常10分から15時間、好ましくは30分から8時間である。
 得られる光素子封止体は、本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を用いているので、接着性に優れるものである。
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。
29Si-NMR測定条件〉
装置:ブルカー・バイオスピン社製 AV-500
29Si-NMR共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:室温(25℃)
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Si フリップ角:90°
29Si 90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
29Si-NMR試料作製方法〉
 緩和時間短縮のため、緩和試薬としてFe(acac)を添加し測定した。
ポリシルセスキオキサン濃度:15%
Fe(acac)濃度:0.6%
測定溶媒:DMSO
内部標準:TMS
[波形処理解析]
 フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行った。
(実施例1)
 300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業社製、製品名:KBE-13)71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25モル%)を溶解した水溶液(21.7g)を撹拌しながら加えた。全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌した後、酢酸プロピルを140g入れ撹拌し、さらに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5モル%)を撹拌しながら加え、全容を70℃に昇温して3時間撹拌した。反応液に精製水を加えて分液し、有機層を分取した。得られた有機層を水層がpH=7になるまで精製水にて洗浄した後、有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(A1)を55.7g得た。このものの質量平均分子量(M)は7800、分子量分布(PDI)は4.52であった。
 また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、下記第1表に示すとおりだった。
 図1に、29Si-NMRスペクトル測定チャートを示す。図1中、横軸はケミカルシフト値(ppm)、縦軸はピーク強度を表す。
(実施例2)
 300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業社製、製品名:KBE-13)71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25モル%)を溶解した水溶液(21.7g)を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌した後、酢酸プロピルを140g入れ撹拌し、さらに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5モル%)を撹拌しながら加え、全容を70℃に昇温して5時間撹拌した。反応液に精製水を加えて分液し、有機層を分取した。得られた有機層を、水層がpH=7になるまで精製水にて洗浄した後、有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(A2)を49.7g得た。このもののMは30,000、PDIは5.83であった。
 また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、下記第1表に示すとおりだった。
(比較例1)
 実施例1において、28%アンモニア水を添加しなかった以外は、実施例1と同様にして、硬化性ポリシルセスキオキサン化合物(A3)を40.2g得た。このもののMは2280、PDIは2.1であった。
 また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、下記第1表に示すとおりだった。
 図2に、29Si-NMRスペクトル測定チャートを示す。図2中、横軸はケミカルシフト値(ppm)、縦軸はピーク強度を表す。
(実施例3)
 実施例1で得た硬化性ポリシルセスキオキサン化合物(A1)100部(質量部、以下同じ)に、シランカップリング剤としての、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(下記第1表において、「(B1)」という。)10部、及び、3-トリメトキシシリルプロピル無水コハク酸(下記第1表において、「(B2)」という。)1部を加え、ジエチレングリコールモノエチルアセテートを添加して固形分80%として、全容を十分に混合、脱泡することにより実施例3の硬化性組成物1を得た。
(実施例4~8、比較例2~4)
 実施例3において、硬化性ポリシルセスキオキサン化合物の種類、シランカップリング剤の使用量(部)を、下記第1表に記載したものに変更した以外は、実施例3と同様にして、硬化性組成物2~6、1r~3rを得た。
 実施例3~8及び比較例2~4で得た硬化性組成物1~6、1r~3rの硬化物につき、下記に示す接着強度測定、クラック発生試験、及び耐剥離性試験を行い、クラック発生率、剥離発生率を算出した。
[接着強度試験]
 2mm角のシリコンチップのミラー面に、硬化性組成物1~6、1r~3rのそれぞれを、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着強度(N/2mm□)を測定した。測定結果を下記第1表に示す。
[耐クラック性]
 硬化性組成物1~6、1r~3rのそれぞれを、ジエチレングリコールモノブチルエーテルアセテートにて固形分80質量%になるよう希釈した。2mm角のシリコンチップのミラー面に、それぞれ厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させ、試験片付被着体を得た。デジタル顕微鏡(VHX-1000、キーエンス製)を用い、シリコンチップからはみ出している樹脂部(フィレット部)の幅を計測した。フィレット部が80nm~120nmかつシリコンチップの4辺すべてにフィレットがあるものを評価サンプルとして、それぞれ15個選定した。
 選定したサンプルのフィレット部を電子顕微鏡(キーエンス社製)にて観察し、クラックを有するサンプルの数を数え、クラック発生率が0%以上25%未満を「A」、25%以上50%未満を「B」、50%以上100%を「C」と評価した。
[耐剥離性試験]
 LEDリードフレーム(エノモト社製、製品名:5050 D/G PKG LEADFRAME)に、硬化性組成物1~6、1r~3rを、0.4mmφ程度塗布した上に、0.5mm角のサファイアチップを圧着した。その後、170℃で2時間加熱処理して硬化させた後、封止剤(信越化学工業社製、製品名:EG6301)をカップ内に流し込み、150℃で1時間加熱処理して試験片を得た。
 この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー(リフロー炉:相模理工社製、製品名「WL-15-20DNX型」)にて処理を行った。その後、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施した。その後、封止材を除去する操作を行い、その際に素子が一緒に剥がれるか否かを調べた。この試験を、各硬化性組成物につき12回行った。
 下記第1表に、素子が一緒に剥がれた回数を数え、剥離発生率が25%以下であれば「A」、25%より大きく50%以下であれば「B」、50%より大きければ「C」と評価した。
Figure JPOXMLDOC01-appb-T000007
 第1表から、実施例1、2の硬化性ポリシルセスキオキサン化合物(A1)、(A2)を用いて得られる硬化性組成物1~6の硬化物は、いずれも接着強度が23℃で130N/2mm□以上であり、接着強度に極めて優れていることがわかった。また、100℃においても79N/2mm□以上であり、耐熱性にも優れるものであることがわかった。また、クラック発生試験で、クラックの発生が全くみられず、すべてA評価だった。さらに、耐剥離性試験により、耐剥離性にも優れることがわかった。
 一方、硬化性ポリシルセスキオキサン化合物(A3)を用いて得られた比較例2~4の硬化性組成物1r~3rの硬化物は、クラックの発生率が高いものであった。

Claims (9)

  1.  式:RSiO3/2(式中、Rは炭素数1~10のアルキル基を表す。)で表される構成単位の一種又は二種以上を有する硬化性ポリシルセスキオキサン化合物であって、
    29Si核磁気共鳴スペクトルにおいて、-60ppm以上-54ppm未満の領域に第1のピークトップ、-70ppm以上-61ppm未満の領域に第2のピークトップを有し、かつ、-53ppm以上-45ppm未満の領域に、実質的にピークを有しないことを特徴とする硬化性ポリシルセスキオキサン化合物。
  2.  29Si核磁気共鳴スペクトルにおいて、-70ppm以上-61ppm未満の領域におけるピークの積分値(P2)が、-60ppm以上-54ppm未満の領域におけるピークの積分値(P1)に対し、60~90%である、請求項1に記載の硬化性ポリシルセスキオキサン化合物。
  3.  質量平均分子量が1000~50,000の化合物である、請求項1に記載の硬化性ポリシルセスキオキサン化合物。
  4.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数1~10のアルキル基を表し、Rは、水素原子又は炭素数1~10のアルキル基を表す。複数のRはすべて同じでも相異なっていてもよい。)で表される化合物の一種又は二種以上を、重縮合触媒の存在下に、重縮合させる工程(I)を有する、請求項1に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
  5.  前記重縮合触媒が、塩酸、ホウ酸、クエン酸、酢酸、硫酸、及びメタンスルホン酸からなる群から選ばれる酸触媒の少なくとも一種である請求項4に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
  6.  さらに、前記工程(I)で得られた反応液に有機溶媒を添加して、前記式(1)で表される化合物の重縮合物を溶解させた後、前記酸触媒に対して等モル当量以上の塩基を添加して、さらに重縮合反応を行う工程(II)を有する、請求項5に記載の硬化性ポリシルセスキオキサン化合物の製造方法。
  7.  請求項1に記載の硬化性ポリシルセスキオキサン化合物、及びシランカップリング剤を含有する硬化性組成物。
  8.  請求項7に記載の硬化性組成物を加熱することにより得られる硬化物。
  9.  請求項1に記載の硬化性ポリシルセスキオキサン化合物、又は、請求項7に記載の硬化性組成物を、光素子固定剤として使用する方法。
PCT/JP2015/063218 2014-05-07 2015-05-07 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法 WO2015170710A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015559062A JP5976963B2 (ja) 2014-05-07 2015-05-07 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法
US15/309,145 US10113035B2 (en) 2014-05-07 2015-05-07 Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
CN201580025191.XA CN106414558B (zh) 2014-05-07 2015-05-07 固化性聚倍半硅氧烷化合物、其制备方法、固化性组合物、固化物和固化性组合物的使用方法
MYPI2016704039A MY190128A (en) 2014-05-07 2015-05-07 Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
EP15789000.5A EP3141572A4 (en) 2014-05-07 2015-05-07 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR1020167031366A KR102244168B1 (ko) 2014-05-07 2015-05-07 경화성 폴리실세스퀴옥산 화합물, 그 제조 방법, 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096256 2014-05-07
JP2014096256 2014-05-07

Publications (1)

Publication Number Publication Date
WO2015170710A1 true WO2015170710A1 (ja) 2015-11-12

Family

ID=54392560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063218 WO2015170710A1 (ja) 2014-05-07 2015-05-07 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法

Country Status (8)

Country Link
US (1) US10113035B2 (ja)
EP (1) EP3141572A4 (ja)
JP (1) JP5976963B2 (ja)
KR (1) KR102244168B1 (ja)
CN (1) CN106414558B (ja)
MY (1) MY190128A (ja)
TW (1) TWI700313B (ja)
WO (1) WO2015170710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178011A (ja) * 2017-04-17 2018-11-15 小西化学工業株式会社 ポリメチルシルセスキオキサンの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500552A (ja) * 2017-10-20 2021-01-07 ナントバイオ,インコーポレイテッド 膀胱癌免疫療法のモニタリング方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179811A (ja) * 2006-12-28 2008-08-07 Asahi Kasei Corp シロキサン誘導体及びその硬化物
WO2011111673A1 (ja) * 2010-03-09 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2012073988A1 (ja) * 2010-11-30 2012-06-07 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
JP2012197425A (ja) * 2011-03-10 2012-10-18 Lintec Corp 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2013141360A1 (ja) * 2012-03-23 2013-09-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2014069508A1 (ja) * 2012-10-30 2014-05-08 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741778A (en) * 1986-03-22 1988-05-03 Nippon Telegraph & Telephone Corporation Thermal control coating composition
JP3832554B2 (ja) * 2000-01-11 2006-10-11 信越化学工業株式会社 塗装物品
JP4734832B2 (ja) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 光素子用封止材
JP2005263869A (ja) 2004-03-16 2005-09-29 Nagase Chemtex Corp 光半導体封止用樹脂組成物
JP4882413B2 (ja) 2005-02-23 2012-02-22 三菱化学株式会社 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
TWI382077B (zh) 2005-02-23 2013-01-11 Mitsubishi Chem Corp 半導體發光裝置用構件及其製造方法,暨使用其之半導體發光裝置
JP2006328231A (ja) 2005-05-26 2006-12-07 Nagase Chemtex Corp 光素子用封止樹脂組成物
JP2007070600A (ja) * 2005-08-11 2007-03-22 Asahi Kasei Corp 封止材用組成物及び光学デバイス
JP4781780B2 (ja) * 2005-10-27 2011-09-28 信越化学工業株式会社 光関連デバイス封止用樹脂組成物およびその硬化物ならびに半導体素子の封止方法
JP2007169375A (ja) * 2005-12-20 2007-07-05 Konishi Kagaku Ind Co Ltd ポリオルガノシルセスキオキサンおよびその製造方法
JP5194563B2 (ja) * 2007-05-28 2013-05-08 信越化学工業株式会社 耐擦傷性コーティング組成物、及び被覆物品
BRPI0821556A2 (pt) * 2007-12-28 2015-06-16 Saint Gobain Performance Plast Tubo reforçado.
JP5400624B2 (ja) * 2008-02-14 2014-01-29 リンテック株式会社 ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
US8329849B2 (en) * 2008-05-16 2012-12-11 Nec Corporation Organic silicon compound and material for forming silica-based fine particle
JP5739418B2 (ja) * 2010-06-11 2015-06-24 株式会社Adeka ケイ素含有硬化性組成物、該ケイ素含有硬化性組成物の硬化物及び該ケイ素含有硬化性組成物より形成されるリードフレーム基板
KR101172900B1 (ko) * 2011-04-11 2012-08-10 주식회사 포스코건설 전로 고온공기 분사장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179811A (ja) * 2006-12-28 2008-08-07 Asahi Kasei Corp シロキサン誘導体及びその硬化物
WO2011111673A1 (ja) * 2010-03-09 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2012073988A1 (ja) * 2010-11-30 2012-06-07 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
JP2012197425A (ja) * 2011-03-10 2012-10-18 Lintec Corp 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2013141360A1 (ja) * 2012-03-23 2013-09-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2014069508A1 (ja) * 2012-10-30 2014-05-08 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3141572A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178011A (ja) * 2017-04-17 2018-11-15 小西化学工業株式会社 ポリメチルシルセスキオキサンの製造方法

Also Published As

Publication number Publication date
JPWO2015170710A1 (ja) 2017-04-20
MY190128A (en) 2022-03-30
KR20170008218A (ko) 2017-01-23
US20170058083A1 (en) 2017-03-02
US10113035B2 (en) 2018-10-30
JP5976963B2 (ja) 2016-08-24
CN106414558A (zh) 2017-02-15
CN106414558B (zh) 2019-09-20
TWI700313B (zh) 2020-08-01
EP3141572A1 (en) 2017-03-15
KR102244168B1 (ko) 2021-04-23
EP3141572A4 (en) 2018-01-03
TW201602169A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5550162B1 (ja) 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法
JP5744221B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6779235B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
JP5940456B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP2019090031A (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP5981668B2 (ja) 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法
JP5976963B2 (ja) 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法
JP6430388B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041343A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041344A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2021060562A1 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2021060561A1 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015559062

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167031366

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015789000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015789000

Country of ref document: EP