WO2015165354A1 - 一种功率时延谱pdp估计方法及装置 - Google Patents

一种功率时延谱pdp估计方法及装置 Download PDF

Info

Publication number
WO2015165354A1
WO2015165354A1 PCT/CN2015/077248 CN2015077248W WO2015165354A1 WO 2015165354 A1 WO2015165354 A1 WO 2015165354A1 CN 2015077248 W CN2015077248 W CN 2015077248W WO 2015165354 A1 WO2015165354 A1 WO 2015165354A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
determining
channel estimation
points
domain channel
Prior art date
Application number
PCT/CN2015/077248
Other languages
English (en)
French (fr)
Inventor
李晓皎
郭保娟
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2015165354A1 publication Critical patent/WO2015165354A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a power delay spectrum PDP estimation method and apparatus.
  • OFDM Orthogonal Frequency Division Multiplex
  • the Minimum Mean Square Error (MMSE) channel estimation algorithm can make full use of the OFDM time domain and frequency domain correlation information to obtain excellent performance.
  • the power delay profile (PDP) and the frequency domain correlation coefficient are mutually Fourier transform pairs, if the PDP can be accurately acquired, the frequency domain correlation coefficient can be accurately obtained, so that the channel rush can be obtained according to the partial frequency point.
  • the excitation response estimates the channel impulse response at a frequency point with high frequency domain correlation, and is used for frequency domain filtering and frequency domain channel estimation. It can be seen that the PDP is an important tool for channel estimation.
  • K represents the frequency-domain sample point intervals
  • the correlation coefficient r f [k] is the k th sampling point interval is frequency-domain channel data
  • L represents the number of multipath
  • l [tau] represents a delay of the transmission path l
  • l 2 represents the amplitude variance of the l-th path.
  • the power delay spectrum vector p of the channel is defined, it satisfies:
  • frequency domain filtering and frequency domain channel estimation are performed by adopting a preset spectrum type.
  • the first step is to estimate the maximum delay value ⁇ max ;
  • a rectangular power delay spectrum vector p is generated, which satisfies:
  • the frequency domain correlation coefficient of the channel is generated according to the power delay spectrum vector p, which is expressed as:
  • the PDP pattern is determined according to the preset spectrum and the maximum delay, the implementation is simple, but the actual PDP pattern includes information such as channel impact length, envelope shape, tap interval, relative power value, etc., which is not ideal.
  • Preset spectrum The preset spectrum can only meet the channel impact length information of the actual PDP spectrum.
  • the information about other aspects of the actual PDP spectrum is directly assumed to be the corresponding information contained in the preset spectrum.
  • Embodiments of the present invention provide a power delay spectrum PDP estimation method and apparatus for improving the accuracy of PDP estimation.
  • a power delay spectrum PDP estimation method includes:
  • a power delay spectrum PDP is determined based on the effective path and the position number.
  • the threshold value includes a power threshold value and a time limit threshold value
  • Determining the effective path according to the average value of the time domain channel estimation value and a preset threshold value including:
  • the path corresponding to the maximum value of the power values estimated by each of the time domain channels is obtained, and the effective path is determined according to the obtained path.
  • the power threshold is determined, including:
  • the first preset coefficient and the second preset coefficient are constants determined in advance by simulation.
  • determining the delay threshold value comprises:
  • the delay threshold value is determined according to the number of cyclic prefix CPs, the number of points received by the terminal in advance, and the number of points of the FFT in which the OFDM is performed.
  • determining the effective path according to the determined diameter comprises: determining the determined diameter and a diameter within the preset range as the effective path;
  • Determining the effective path according to the obtained diameter includes: obtaining the obtained path and a path having the path distance within a preset range as an effective path.
  • obtaining time domain channel estimation values of each pilot includes:
  • the frequency domain channel estimation values of the pilots are subjected to an inverse discrete Fourier transform IFFT of a predetermined number of points to obtain a time domain channel estimation value of each pilot.
  • obtaining an average of the time domain channel estimation values of the pilots according to the time domain channel estimation values of the pilots including:
  • determining the location number of the effective path in the number of points of the fast Fourier transform FFT of the Orthogonal Frequency Division Multiplexing (OFDM) OFDM includes:
  • Obtaining a position of the effective path in the predetermined number of points determining, according to the position of the effective path in the predetermined number of points, the predetermined number of points, and the number of points of FFT performing OFDM, determining the effective path in performing FFT of OFDM The position number in the number of points.
  • determining the power delay spectrum PDP according to the effective path and the position number includes:
  • the number of points N FFT FFT performing OFDM effective diameter in position number n delay, power P and the effective diameter of the normalized PDP is calculated using the following formula:
  • determining the normalized power of the effective path comprises:
  • the ratio of the power of the effective path to the sum of the powers of the effective paths is taken as the normalized power of the effective path.
  • determining the power delay spectrum PDP according to the effective path and the position number includes:
  • i n delay ⁇ , if there are multiple effective paths in the FFT for OFDM
  • the position number n delay in the number of points is equal to i, then only i is recorded in I, and the number N of elements included in the position number set I is determined;
  • the power of the position determined by each element in the position number set among the FFT points of the PDP is set to be one-N.
  • An obtaining module configured to obtain a time domain channel estimation value of each pilot
  • a processing module configured to obtain an average value of the time domain channel estimation values according to the time domain channel estimation values of the pilots, determine an effective path according to an average value of the time domain channel estimation values, and a preset threshold value, and Determining a position number of the effective path in a number of points of the fast Fourier transform FFT of the orthogonal frequency division multiplexing OFDM;
  • a determining module configured to determine a power delay spectrum PDP according to the effective path and the position number.
  • the threshold value includes a power threshold value and a time limit threshold value
  • the processing module is specifically configured to:
  • the path corresponding to the maximum value of the power values estimated by each of the time domain channels is obtained, and the effective path is determined according to the obtained path.
  • the processing module is specifically configured to:
  • the first preset coefficient and the second preset coefficient are constants determined in advance by simulation.
  • the processing module is specifically configured to:
  • the delay threshold value is determined according to the number of cyclic prefix CPs, the number of points received by the terminal in advance, and the number of points of the FFT in which the OFDM is performed.
  • the processing module is specifically configured to:
  • the determined diameter and the diameter of the radial distance within a preset range are taken as effective paths;
  • the obtained diameter and the diameter within the preset range from the radial distance are taken as effective paths.
  • the obtaining module is specifically configured to:
  • the frequency domain channel estimation value is subjected to an inverse discrete Fourier transform IFFT of a predetermined number of points to obtain the time domain channel estimation.
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • Obtaining a position of the effective path in the predetermined number of points determining, according to the position of the effective path in the predetermined number of points, the predetermined number of points, and the number of points of FFT performing OFDM, determining the effective path in performing FFT of OFDM The position number in the number of points.
  • the determining module is specifically configured to:
  • the number of points N FFT FFT performing OFDM effective diameter in position number n delay, power P and the effective diameter of the normalized PDP is calculated using the following formula:
  • the determining module is specifically configured to:
  • the ratio of the power of the effective path to the sum of the powers of the effective paths is taken as the normalized power of the effective path.
  • the determining module is specifically configured to:
  • i n delay ⁇ , if there are multiple effective paths in the FFT for OFDM
  • the position number n delay in the number of points is equal to i, then only i is recorded in I, and the number N of elements included in the position number set I is determined;
  • the power of the position determined by each element in the position number set among the FFT points of the PDP is set to be one-N.
  • the effective path and the effective path are determined by the actual channel estimation, and the position number in the FFT of the OFDM, that is, the tap interval of the PDP spectrum, and the OFDM is performed according to the effective path and the effective path.
  • the position number in the number of points of the FFT is obtained by the PDP, so that the PDP spectrum determined by the tap interval of the PDP spectrum can be combined, the accuracy of the PDP estimation is improved, and a more accurate frequency domain correlation coefficient can be obtained, thereby improving the throughput.
  • the channel estimation accuracy can be effectively improved, and the overall performance of the channel estimation algorithm is improved.
  • FIG. 1 is a schematic flowchart of a method for performing PDP estimation according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific estimation process of a PDP according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a PDP estimation apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another PDP estimation apparatus according to an embodiment of the present invention.
  • the detailed method for performing PDP estimation is as follows:
  • Step 101 Acquire a time domain channel estimation value of each pilot.
  • frequency domain channel estimation values of each antenna, each port, and each pilot are obtained, and the frequency domain channel estimation is zero-added to a predetermined number of points, and then an inverse discrete Fourier transform (IFFT) is performed to obtain a time domain channel estimation.
  • IFFT inverse discrete Fourier transform
  • the frequency domain channel is estimated to be zero by a predetermined number of points, and then IFFT is performed; if the predetermined number of points is smaller than the number of pilot points, the frequency domain channel estimation is equally sampled to a predetermined number of points and then IFFT is performed.
  • the predetermined number of points is greater than the number of pilots and is an integer power of two.
  • Step 102 Obtain an average value of the time domain channel estimation values according to the time domain channel estimation values of the pilots, determine an effective path according to the average value of the time domain channel estimation values and a preset threshold value, and determine that the effective path is The position number in the number of points of the Fast Fourier Transform (FFT) of OFDM.
  • FFT Fast Fourier Transform
  • the average value of the time domain channel estimation values is obtained by calculating an average value of the time domain channel estimation values of the antennas, ports, and pilots; or by calculating the antennas, ports, and The average of the portion of the pilot time domain channel estimate is obtained.
  • the average value of the time domain channel estimation values of the partial pilots is calculated, specifically:
  • the purpose of reducing the influence of noise is achieved by calculating the average value of the time domain channel estimation values.
  • the threshold value includes a power threshold value and a time limit threshold value.
  • the specific process of determining the effective path is as follows:
  • the path corresponding to the maximum value of the power values estimated by the time domain channels is obtained, and the effective path is determined according to the acquired path.
  • the determined diameter and the diameter of the determined diameter are within the preset range as the effective diameter; or the diameter of the acquired diameter and the distance from the acquired diameter within the preset range is taken as the effective diameter.
  • the specific process of determining the power threshold is as follows:
  • a larger of the first power threshold and the second power threshold is determined as a power threshold.
  • the noise power can be obtained in various ways, including but not limited to: the average value of the noise power of each antenna, each port, and each pilot obtained by the measurement is used as the noise power of the pilot; or, for measurement The noise power of a certain pilot; or, the average value of the noise power of one or more pilots obtained by the measurement is used as the noise power of the pilot.
  • the delay threshold is determined according to the number of Cyclic Prefix (CP), the number of points received by the terminal in advance, and the number of points of the FFT in which OFDM is performed.
  • CP Cyclic Prefix
  • the formula for calculating the delay threshold is:
  • N CP is the number of CPs
  • N Tao is the number of early reception points determined by the timing advance on the terminal side
  • N FFT is the number of points of the FFT for performing OFDM.
  • the specific process of determining the position number of the effective path in the number of points of the FFT of the OFDM is:
  • the number of points of the IFFT used in obtaining the time domain channel estimation is a predetermined number of points, and the position of the effective path in the predetermined number of points is obtained after determining the effective path, according to the position of the effective path in the predetermined number of points, the predetermined number of points, and the FFT for performing OFDM.
  • the number of points determines the position number of the effective path in the number of points in which the FFT of the OFDM is performed.
  • the effective path is the position number in the number of points of the FFT of the OFDM, and the calculation formula is as follows:
  • N FFT1 represents the number of points of the IFFT used to obtain the time domain channel estimation, that is, the predetermined number of points
  • N FFT represents the number of points of the FFT for performing OFDM
  • n delay1 represents the position of the effective path in the predetermined number of points
  • n delay represents the effective path at The position number in the number of points of the FFT of OFDM is performed.
  • Step 103 Determine the PDP according to the effective path and the position number of the effective path in the FFT points of the OFDM.
  • the PDP has two implementation modes, as follows:
  • the first implementation specifically:
  • the sum of the normalized powers of the effective paths having the same position number in the FFT points of the OFDM is calculated, and is the power of the position corresponding to the position number in the PDP including the number of points of the FFT in which the OFDM is performed.
  • determining the normalized power of the effective path is specifically: obtaining the power of the effective path, and calculating the sum of the powers of the effective paths; taking the ratio of the power of the effective path to the sum of the powers of the effective paths as the effective path Normalized power.
  • the power of the effective path is the power of the time domain channel corresponding to the effective path.
  • the second specific implementation is specifically:
  • the power of the position determined by each element in the position number set among the FFT points of the PDP is set to be one-N.
  • the PDP is subjected to Fast Fourier Transform (FFT) to obtain a frequency domain correlation coefficient.
  • FFT Fast Fourier Transform
  • an average value of frequency domain correlation coefficients of each subframe is calculated, and the average value is used as a final frequency domain correlation coefficient to improve the obtained frequency domain.
  • the accuracy of the obtained frequency domain correlation coefficient is a measure the average value of each subframe.
  • the specific process of performing PDP estimation is as follows:
  • Step 1 Acquire time domain channel estimation according to frequency domain channel estimation of each column pilot of each antenna port.
  • the frequency domain channel estimation H ka,p of the pilot points on each symbol is complemented by zero, and the NFFT 1 point IFFT transform is performed, where N FFT1 is larger than the number of pilot points in the frequency domain and is an integer of 2
  • Step 2 Calculate the average value h_mean of the time domain channel estimation corresponding to each column pilot of each antenna of each antenna, which is expressed as:
  • N ka the number of antennas
  • N p the number of antenna ports
  • N pilot the number of pilot columns.
  • Step 3 Determine a first power threshold according to the measured noise power of the pilot, and determine a second power threshold according to the maximum power value in each time domain channel estimation obtained in step 1, and select the first power gate The larger of the limit and the second power threshold is used as the power threshold.
  • the noise power can be obtained in various ways, including but not limited to: the average value of the noise power of each antenna, each port, and each pilot obtained by the measurement is used as the noise power of the pilot; or, for measurement a guide The noise power of the frequency; or, the average value of the noise power of one or more pilots obtained by the measurement is used as the noise power of the pilot.
  • the power, ⁇ is a coefficient determined by simulation.
  • Step 4 Calculate the delay threshold.
  • the specific calculation formula is as follows:
  • N CP is the number of CPs
  • N Tao is the number of early reception points determined by the timing advance on the terminal side
  • N FFT is the number of points of the FFT for performing OFDM.
  • Step 5 Select each path in the h_mean that meets the power greater than the power threshold G and the delay value in ⁇ as the effective path, and record the position of the effective path in the N FFT1 sample n delay1 , that is, record the effective path. Number k, and the power P 1 of the effective path is recorded.
  • the diameter of both sides of the effective diameter within a predetermined distance (in ⁇ ) is simultaneously taken as the effective diameter.
  • Step 6 If there is no path satisfying h_mean>G, then the time domain channel estimation h max corresponding to the power maximum in each time domain channel estimation obtained in step 1 and the distance between them are within a predetermined range (in ⁇ ) The path is taken as the effective path, and the position n delay1 of the effective path in the N FFT1 sample is recorded, that is, the number k of the effective path is recorded, and the power P 1 of the effective path is recorded.
  • Step 7 Convert to n delay and normalized power P in the N FFT sample.
  • the position number of the effective path in the N FFT sample of OFDM is calculated as follows:
  • the normalized normalized power is the ratio of the power of the effective path to the sum of the powers of the effective paths, and the calculation formula is as follows:
  • Step 8 Obtain a delay power spectrum PDP, perform zeroing on each path of the PDP power spectrum, and calculate an effective path power.
  • the power of each path of the PDP power spectrum is initialized to zero, and the specific formula is as follows:
  • the PDP is calculated according to the position number of the effective path in the N FFT sample of the OFDM and the normalized power of the effective path.
  • the specific formula is as follows:
  • Step 9 Perform FFT transformation of the N FFT point, and transfer the PDP to the frequency domain to obtain the frequency domain correlation coefficient.
  • r f FFT n (PDP)
  • n N FFT .
  • the steps 1 to 4 in the PDP estimation are the same as the steps 1 to 4 in the first embodiment, and are not repeated here. Only the subsequent steps in the specific embodiment are described below.
  • Step 5 Select each path in the h_mean that meets the power greater than the power threshold G and the delay value in ⁇ as the effective path, and record the position of the effective path in the N FFT1 sample n delay1 , that is, record the effective path. No. k.
  • the diameter of both sides of the effective diameter within a predetermined distance (in ⁇ ) is simultaneously taken as the effective diameter.
  • Step 6 If there is no path satisfying h_mean>G, then the time domain channel estimation h max corresponding to the power maximum in each time domain channel estimation obtained in step 1 and the distance between them are within a predetermined range (in ⁇ ) The path is taken as the effective path, and the position n delay1 of the effective path in the N FFT1 sample is recorded, that is, the number k of the effective path is recorded.
  • Step 7 Convert to the position number n delay in the N FFT sample.
  • the position number of the effective path in the N FFT sample of OFDM is calculated as follows:
  • Step 8 Obtain the delay power spectrum PDP.
  • the power of each path of the PDP power spectrum is initialized to zero, and the specific formula is as follows:
  • i n delay ⁇ , the element in I is unique. If there are multiple n delays equal to i, only one time is recorded, and the number of elements in I is N.
  • Step 9 Perform FFT transformation of the N FFT point, and transfer the delay power spectrum PDP to the frequency domain to obtain the frequency domain correlation coefficient.
  • an embodiment of the present invention further provides a PDP estimation apparatus.
  • the apparatus mainly includes:
  • the obtaining module 301 is configured to obtain a time domain channel estimation value of each pilot.
  • the processing module 302 is configured to obtain an average value of the time domain channel estimation values according to the time domain channel estimation values of the pilots, and determine an effective path according to an average value of the time domain channel estimation values and a preset threshold value. And determining a position number of the effective path in the number of points of the fast Fourier transform FFT of the orthogonal frequency division multiplexing OFDM;
  • the determining module 303 is configured to determine a power delay spectrum PDP according to the effective path and the position number.
  • the threshold value includes a power threshold value and a time limit threshold value
  • the processing module is specifically configured to:
  • the path corresponding to the maximum value of the power values estimated by each of the time domain channels is obtained, and the effective path is determined according to the obtained path.
  • the processing module is specifically configured to:
  • the first power threshold and the second power threshold are determined as the power threshold.
  • the processing module is specifically configured to:
  • the delay threshold value is determined according to the number of CPs, the number of points received by the terminal in advance, and the number of points of the FFT in which the OFDM is performed.
  • the processing module is specifically configured to:
  • the diameter of the obtained diameter and the distance from the obtained diameter within a preset range is taken as the effective diameter.
  • the acquiring module is specifically configured to: obtain frequency domain channel estimation values of each antenna, each port, and each pilot; perform zero-inverse discrete Fourier transform IFFT by adding the frequency domain channel estimation value to a predetermined number of points Obtaining the time domain channel estimate.
  • the acquisition module performs the IFFT after the frequency domain channel estimation is zeroed as a predetermined number of points; when the predetermined number of points is less than the number of pilot points, the frequency domain channel estimation is equally sampled to a predetermined number of points. IFFT.
  • the predetermined number of points is greater than the number of pilots and is an integer power of two.
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the position of the effective path in the predetermined number of points is obtained, and the position number of the effective path in the number of points of the FFT of the OFDM is determined based on the position of the effective path in the predetermined number of points, the predetermined number of points, and the number of points of the FFT in which the OFDM is performed.
  • the determining module determines that the PDP has the following two implementation modes:
  • the determining module is specifically configured to:
  • the sum of the normalized powers of the effective paths having the same position number is calculated as the power of the position corresponding to the position number in the PDP including the number of points of the FFT in which the OFDM is performed.
  • the determining module acquires the power of the effective path, and calculates a sum of powers of the effective paths; and compares a ratio of a power of the effective path to a sum of powers of the effective paths as the effective Normalized power of the path.
  • the determining module is specifically configured to:
  • an embodiment of the present invention further provides another PDP estimating apparatus.
  • the method includes:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • a power delay spectrum PDP is determined based on the effective path and the position number.
  • the threshold value includes a power threshold value and a time limit threshold value
  • the processor 500 is specifically configured to: when determining an effective path according to an average value of the time domain channel estimation value and a preset threshold value:
  • the path corresponding to the maximum value of the power values estimated by each of the time domain channels is obtained, and the effective path is determined according to the obtained path.
  • the processor 500 determines the power threshold, it is specifically used to:
  • a larger one of the first power threshold and the second power threshold is determined as the power threshold.
  • the processor 500 determines the delay threshold, it is specifically used to:
  • the delay threshold value is determined according to the number of cyclic prefix CPs, the number of points received by the terminal in advance, and the number of points of the FFT in which the OFDM is performed.
  • the method is specifically configured to: use the determined path and the determined distance of the path within a preset range as the effective path;
  • Determining the effective path according to the obtained diameter includes: taking the acquired path and the distance from the acquired path within a preset range as the effective path.
  • the processor 500 obtains the time domain channel estimation value of each pilot, it is specifically used to:
  • the frequency domain channel estimation values of the pilots are subjected to an inverse discrete Fourier transform IFFT of a predetermined number of points to obtain a time domain channel estimation value of each pilot.
  • the method is specifically configured to:
  • An average value of partial time domain channel estimation values of pilots of each pilot of each antenna is calculated.
  • the processor 500 determines, when the effective path is numbered in the number of points of the fast Fourier transform FFT of the Orthogonal Frequency Division Multiplexing (OFDM) OFDM, specifically for:
  • the processor 500 when determining the power delay spectrum PDP according to the effective path and the location number, is specifically configured to:
  • the processor 500 determines the normalized power of the effective path, it is specifically used to:
  • the ratio of the power of the effective path to the sum of the powers of the effective paths is taken as the normalized power of the effective path.
  • the processor 500 when determining the power delay spectrum PDP according to the effective path and the location number, is specifically configured to:
  • the power of the position determined by each element in the position number set among the FFT points of the PDP is set to be one-N.
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • Bus architecture Various other circuits, such as peripherals, voltage regulators, power management circuits, and the like, can be linked together, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the effective path and the effective path are determined by the actual channel estimation, and the position number in the FFT of the OFDM, that is, the tap interval of the PDP spectrum, and the OFDM is performed according to the effective path and the effective path.
  • the position number in the number of points of the FFT is obtained by the PDP, so that the PDP spectrum determined by the tap interval of the PDP spectrum can be combined, the accuracy of the PDP estimation is improved, and a more accurate frequency domain correlation coefficient can be obtained, thereby improving the throughput.
  • the channel estimation accuracy can be effectively improved, and the overall performance of the channel estimation algorithm is improved.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种功率时延谱PDP估计方法及装置,用以提高PDP估计的准确性。该方法为:获取各导频的时域信道估计值;根据所述各导频的时域信道估计值获得时域信道估计值的平均值,根据所述时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;根据所述有效径以及所述位置编号,确定功率时延谱PDP。

Description

一种功率时延谱PDP估计方法及装置
本申请要求在2014年4月28日提交中国专利局、申请号为201410175560.0、发明名称为“一种功率时延谱PDP估计方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种功率时延谱PDP估计方法及装置。
背景技术
在基于正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)多载波技术的新一代无线通信系统中,信道估计影响到整个系统的性能。
在最小均方误差(Minimum Mean Square Error,MMSE)信道估计算法能够充分利用OFDM时域以及频域的相关性信息,获得优良的性能。
由于功率时延谱(Power Delay Profile,PDP)与频域相关系数互为傅里叶变换对,如果能够准确的获取PDP就能够准确获取频域相关系数,从而可以根据部分频点上的信道冲激响应估计与该频点频域相关性较高的频点上的信道冲激响应,用于频域滤波和频域信道估计,可见,PDP是进行信道估计的重要工具。
PDP与频域相关系数的关系说明如下:
假设频域相关函数可表示为:
Figure PCTCN2015077248-appb-000001
    (公式1)
其中,K表示频域采样点间隔,rf[k]就是间隔为k个采样点的频域信道数据的相关系数,L表示多径个数,τl表示第l径的传输时延,σl 2表示第l径的幅度方差,假设有用符号时间表示为Tuse,则有△f=1/Tuse
假设多径时延为采样时间的整数倍(对于时延不是采样时间整数倍的情况,因为能量主要分散到其临近的整数倍采样时间抽头上,所以仍然可以采用该假设),即
Figure PCTCN2015077248-appb-000002
其中,il表示第l径的抽头位置,N表示有用符号时间总采样点数。 代入公式1可以得到:
Figure PCTCN2015077248-appb-000003
  (公式2)
进一步地,若定义信道的功率时延谱向量p,满足:
Figure PCTCN2015077248-appb-000004
   (公式3)
其中,m=0,1,2,...,N-1,将公式3代入公式2中,则有:
Figure PCTCN2015077248-appb-000005
  (公式4)。
实际应用中,由于PDP无法直接获得,通过采用预设谱型的方式进行频域滤波和频域信道估计。
下面以矩形谱为例,基于预设谱型生成rf[k]的过程如下:
第一步,估计最大时延值τmax
第二步,生成矩形功率时延谱向量p,满足:
Figure PCTCN2015077248-appb-000006
   (公式5);
第三步,根据功率时延谱向量p生成信道的频域相关系数,表示为:
Figure PCTCN2015077248-appb-000007
   (公式6)。
对于其他预设谱型仅在于第二步中生成的功率时延谱的公式不同,生成频域相关系数的过程相同,在此不做赘述。
虽然根据预设谱型和最大时延确定PDP谱型,实现简单,但实际的PDP谱型包括信道冲击长度、包络形状、抽头间隔、相对功率值等几个方面的信息,并不是理想的预设谱型。预设谱型实际上仅能够满足实际PDP谱型的信道冲击长度信息,对于实际PDP谱型的其它几个方面的信息则直接假设为预设谱型包含的相应信息。
可见,直接采用预设谱型为实际PDP谱型,会使得计算的频域相关系数与实际差异较大。并且,由于受到噪声和干扰的影响,通过估计PDP谱型包含的各方面的信息得到实际PDP谱型的方式,实现难度较大,且准确性也不高。
发明内容
本发明实施例提供了一种功率时延谱PDP估计方法及装置,用以提高PDP估计的准确性。
本发明实施例提供的具体技术方案如下:
一种功率时延谱PDP估计方法,包括:
获取各导频的时域信道估计值;
根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值,根据所述各导频的时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
根据所述有效径以及所述位置编号,确定功率时延谱PDP。
较佳地,所述门限值包括功率门限值和时限门限值;
根据所述时域信道估计值的平均值以及预先设定的门限值确定有效径,包括:
确定所述功率门限值和所述时限门限值;
判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
若存在,根据所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,确定有效径;
若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
较佳地,确定所述功率门限值,包括:
根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
计算各导频的时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
将所述第一功率门限和所述第二功率门限值中的较大值确定为所述功率门限值;
其中,所述的第一预设系数和第二预设系数均为预先通过仿真确定的常数。
较佳地,确定所述时延门限值,包括:
根据循环前缀CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确定所述时延门限值。
较佳地,根据确定的所述径确定有效径,包括:将确定的所述径以及与该径距离在预设范围内的径作为有效径;
根据获取的所述径确定有效径,包括:将获取的所述径以及与该径距离在预设范围内的径作为有效径。
较佳地,获取各导频的时域信道估计值,包括:
获取各天线的各端口的各导频的频域信道估计值;
将所述各导频的频域信道估计值进行预定点数的离散傅里叶逆变换IFFT,得到各导频的时域信道估计值。
较佳地,根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值,包括:
计算所述各天线的各端口的各导频的时域信道估计值的平均值;或者,
计算所述各天线的各端口的各导频的时域信道估计值中的一部分时域信道估计值的平均值。
较佳地,确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号,包括:
获取所述有效径在所述预定点数中的位置,根据所述有效径在所述预定点数中的位置、所述预定点数以及进行OFDM的FFT的点数,确定所述有效径在进行OFDM的FFT的点数中的位置编号。
较佳地,根据所述有效径以及所述位置编号,确定功率时延谱PDP,包括:
确定所述有效径的归一化功率为
Figure PCTCN2015077248-appb-000008
其中P1表示有效径的功率;
根据有效径在进行OFDM的FFT的点数NFFT中的位置编号ndelay,以及有效径的归一化后的功率P,采用如下公式计算PDP为:
Figure PCTCN2015077248-appb-000009
其中i=1,2,…,NFFT,k为所述预订点数内有效径的编号。
较佳地,确定所述有效径的归一化功率,包括:
获取所述有效径的功率,并计算各所述有效径的功率之和;
将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
较佳地,根据所述有效径以及所述位置编号,确定功率时延谱PDP,包括:
将PDP各FFT点的功率初始化为零;
确定包含各所述有效径的所述位置编号的位置编号集合I,其中,该位置编号集合I表示为:I={i|i=ndelay},如果有多个有效径在进行OFDM的FFT的点数中的位置编号ndelay等于i,则在I中只记录一次i,并确定所述位置编号集合I中包含的元素个数N;
将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N分之一。
本发明实施例提供的一种功率时延谱PDP估计装置,包括:
获取模块,用于获取各导频的时域信道估计值;
处理模块,用于根据所述各导频的时域信道估计值获得时域信道估计值的平均值,根据所述时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
确定模块,用于根据所述有效径以及所述位置编号,确定功率时延谱PDP。
较佳地,所述门限值包括功率门限值和时限门限值;
所述处理模块具体用于:
确定所述功率门限值和所述时限门限值;
判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
若存在,根据所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,确定有效径;
若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
较佳地,所述处理模块具体用于:
根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
计算各导频的时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
将所述第一功率门限和所述第二功率门限值确定为所述功率门限值;
其中,所述的第一预设系数和第二预设系数均为预先通过仿真确定的常数。
较佳地,所述处理模块具体用于:
根据循环前缀CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确定所述时延门限值。
较佳地,所述处理模块具体用于:
将确定的所述径以及与该径距离在预设范围内的径作为有效径;
或者,
将获取的所述径以及与该径距离在预设范围内的径作为有效径。
较佳地,所述获取模块具体用于:
获取各天线、各端口、各导频的频域信道估计值;
将所述频域信道估计值进行预定点数的离散傅里叶逆变换IFFT,获得所述时域信道估计。
较佳地,所述处理模块具体用于:
计算所述各天线、各端口、各导频的时域信道估计值的平均值;或者,
计算所述各天线、各端口、各导频的时域信道估计值中的一部分时域信道估计值的平均值。
较佳地,所述处理模块具体用于:
获取所述有效径在所述预定点数中的位置,根据所述有效径在所述预定点数中的位置、所述预定点数以及进行OFDM的FFT的点数,确定所述有效径在进行OFDM的FFT的点数中的位置编号。
较佳地,所述确定模块具体用于:
确定所述有效径的归一化功率为
Figure PCTCN2015077248-appb-000010
其中P1表示有效径的功率;
根据有效径在进行OFDM的FFT的点数NFFT中的位置编号ndelay,以及有效径的归一化后的功率P,采用如下公式计算PDP为:
Figure PCTCN2015077248-appb-000011
其中i=1,2,…,NFFT,k为所述预订点数内有效径的编号。
较佳地,所述确定模块具体用于:
获取所述有效径的功率,并计算各所述有效径的功率之和;
将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
较佳地,所述确定模块具体用于:
将PDP各FFT点的功率初始化为零;
确定包含各所述有效径的所述位置编号的位置编号集合I,其中,该位置编号集合I表示为:I={i|i=ndelay},如果有多个有效径在进行OFDM的FFT的点数中的位置编号ndelay等于i,则在I中只记录一次i,并确定所述位置编号集合I中包含的元素个数N;
将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N分之一。
基于上述技术方案,本发明实施例中,通过实际信道估计确定有效径以及有效径在进行OFDM的FFT的点数中的位置编号,即PDP谱的抽头间隔,根据有效径以及有效径在进行OFDM的FFT的点数中的位置编号得到PDP,使得能够结合PDP谱的抽头间隔确定的PDP谱型,提高了PDP估计的准确性,进而能够获得较为准确的频域相关系数,提高了吞吐量。并且,对于一些非理想的信道场景能够有效提高信道估计精度,提高信道估计算法的整体性能。
附图说明
图1为本发明实施例提供的一种进行PDP估计的方法流程示意图;
图2为本发明实施例提供的一种PDP具体估计过程示意图;
图3为本发明实施例提供的一种PDP估计装置结构示意图;
图4为本发明实施例提供的另一种PDP估计装置结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例中,如图1所示,进行PDP估计的详细方法流程如下:
步骤101:获取各导频的时域信道估计值。
优选地,获取各天线、各端口、各导频的频域信道估计值,将该频域信道估计补零为预定点数后进行离散傅里叶逆变换(IFFT),获得时域信道估计。
具体地,如果预定点数大于导频点数,将频域信道估计补零为预定点数后进行IFFT;如预定点数小于导频点数,将频域信道估计等间隔抽样为预定点数后进行IFFT。
优选地,该预定点数大于导频的个数且为2的整数次幂。
步骤102:根据各导频的时域信道估计值获得时域信道估计值的平均值,根据该时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定该有效径在OFDM的快速傅里叶变换(FFT)的点数中的位置编号。
具体地,时域信道估计值的平均值为通过计算所述各天线、各端口、各导频的所述时域信道估计值的平均值获得;或者通过计算所述各天线、各端口、各导频的部分所述时域信道估计值的平均值获得。
优选地,计算部分导频的时域信道估计值的平均值,具体为:
根据获取的各导频的时域信道估计值确定功率最大径,计算该功率最大径所在的天线以及天线端口的各列导频的时域信道估计值的平均值。
本发明实施例中,通过计算时域信道估计值的平均值达到降低噪声影响的目的。
优选地,门限值包括功率门限值和时限门限值。
优选地,确定有效径的具体过程如下:
确定功率门限值和时限门限值;
判断是否存在时域信道估计值的平均值大于功率门限值、且时延小于时延门限值的径;
若存在,确定时域信道估计值的平均值大于功率门限值、且时延小于时延门限值的径,根据确定的径确定有效径;
若不存在,获取各时域信道估计的功率值中的最大值所对应的径,根据获取的径确定有效径。
具体地,将确定的径以及与确定的径的距离在预设范围内的径作为有效径;或者,将获取的径以及与获取的径的距离在预设范围内的径作为有效径。
优选地,确定功率门限值的具体过程如下:
根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
计算各导频的时域信道估计值的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
将第一功率门限值和第二功率门限值中的较大值确定为功率门限值。
实际应用中,噪声功率可以有多种获取方式,包括但不限于:将测量获得的各天线、各端口、各导频的噪声功率的平均值作为导频的噪声功率;或者,为测量获得的某一个导频的噪声功率;或者,将测量获得的一个以上的导频的噪声功率的平均值作为导频的噪声功率。
优选地,根据循环前缀(Cyclic Prefix,CP)个数、终端提前接收的点数以及进行OFDM的FFT的点数,确定时延门限值。
具体地,时延门限值的计算公式为:
Figure PCTCN2015077248-appb-000012
其中,NCP为CP的个数,NTao为终端侧由定时提前量决定的提前接收点数,NFFT为进行OFDM的FFT的点数。
优选地,确定有效径在OFDM的FFT的点数中的位置编号的具体过程为:
假设获取时域信道估计时所采用的IFFT的点数为预定点数,确定有效径后获取该有效径在预定点数中的位置,根据该有效径在预定点数中的位置、预定点数以及进行OFDM的FFT的点数,确定该有效径在进行OFDM的FFT的点数中的位置编号。
具体地,有效径在进行OFDM的FFT的点数中的位置编号,计算公式如下:
Figure PCTCN2015077248-appb-000013
其中,NFFT1表示获取时域信道估计时所采用的IFFT的点数,即预定点数,NFFT表示进行OFDM的FFT的点数,ndelay1表示有效径在预定点数中的位置,ndelay表示有效径在进行OFDM的FFT的点数中的位置编号。
步骤103:根据有效径以及有效径在OFDM的FFT点数中的位置编号,确定PDP。
其中,根据有效径以及有效径在OFDM的FFT点数中的位置编号,确定PDP有两种实现方式,具体如下:
第一种实现方式,具体为:
确定有效径的归一化功率;
计算在进行OFDM的FFT点数中的位置编号相同的各有效径的归一化功率之和,并作为包含有进行OFDM的FFT的点数的PDP中、与该位置编号对应的位置的功率。
其中,确定有效径的归一化功率,具体为:获取有效径的功率,并计算各有效径的功率之和;将有效径的功率与各有效径的功率之和的比值,作为该有效径的归一化功率。其中,有效径的功率为该有效径所对应的时域信道估计的功率。
第二种具体实现,具体为:
将PDP的FFT点的功率初始化为零;
确定包含各有效径在OFDM的FFT点数中的位置编号的位置编号集合,该位置编号集合中的元素唯一,并确定位置编号集合中包含的元素个数N;
将PDP各FFT点中、位置编号集合中的各元素所确定的位置的功率设置为N分之一。
优选地,确定PDP后,将该PDP进行快速傅里叶变换(FFT),获取频域相关系数。
较佳地,针对连续的多个子帧分别计算得到频域相关系数后,计算各子帧的频域相关系数的平均值,将该平均值作为最终的频域相关系数,以提高得到的频域相关系数的准确性;或者针对连续多个子帧分别计算得到PDP后,对各PDP进行合并归一化,将合并后的结果作为最终的PDP,以提高得到的PDP的准确性,进而提高根据PDP获得的频域相关系数的准确性。
以下通过两个具体实施例对本发明中PDP估计的过程进行完整、详细的说明。
第一具体实施例中,如图2所示,进行PDP估计的具体过程如下:
步骤1:根据各天线各端口的各列导频的频域信道估计获取时域信道估计。
具体为:对各符号上的导频点的频域信道估计Hka,p补零后进行NFFT1点的IFFT变换,其中,NFFT1大于频域上的导频点数、且为2的整数次幂,用公式表示为:hka,p=IFFTn-IFFT(Hka,p),其中,n_IFFT=NFFT1
步骤2:计算各天线各端口的各列导频对应的时域信道估计的平均值h_mean,用公式表示为:
Figure PCTCN2015077248-appb-000014
其中,k表示径的编号,且k={0,…,NFFT1-1},Nka表示天线数,Np表示天线端口数,Npilot表示导频列数。
步骤3:根据测量获得的导频的噪声功率确定第一功率门限值,以及根据步骤1获得的各时域信道估计中的功率最大值确定第二功率门限值,并选择第一功率门限值和第二功率门限值中的较大值作为功率门限值。
具体地,第一功率门限值表示为:G1=α·σ2,其中,σ2表示测量获得的导频的噪声功率,α为通过仿真预先确定的系数。
实际应用中,噪声功率可以有多种获取方式,包括但不限于:将测量获得的各天线、各端口、各导频的噪声功率的平均值作为导频的噪声功率;或者,为测量获得的某一个导 频的噪声功率;或者,将测量获得的一个以上的导频的噪声功率的平均值作为导频的噪声功率。
具体地,第二功率门限值表示为:G2=β·|hmax|2,其中,|hmax|2为步骤1获得的各时域信道估计中的功率最大值,即功率最大的径的功率,β为通过仿真预先确定的系数。
步骤4:计算时延门限值,具体计算公式如下:
Figure PCTCN2015077248-appb-000015
其中,NCP为CP的个数,NTao为终端侧由定时提前量决定的提前接收点数,NFFT为进行OFDM的FFT的点数。
步骤5:选择h_mean中满足功率大于功率门限值G且时延值在τ内的各径为有效径,并记录所有有效径在NFFT1样点内的位置ndelay1,也就是记录有效径的编号k,以及记录有效径的功率P1
较佳地,为了减小功率泄露带来的损失,将有效径两侧在预定距离范围内(△内)的径同时作为有效径。
步骤6:如果不存在满足h_mean>G的径,则将步骤1获得的各时域信道估计中的功率最大值对应的时域信道估计hmax及其两侧距离在预定范围内(△内)的径作为有效径,记录NFFT1样点内有效径的位置ndelay1,也就是记录有效径的编号k,以及记录有效径的功率P1
步骤7:换算为NFFT样点内的ndelay和归一化后的功率P。
具体地,有效径在OFDM的NFFT样点内的位置编号计算公式如下:
Figure PCTCN2015077248-appb-000016
具体地,有效经的归一化后的功率为:该有效径的功率与各有效径的功率之和的比值,计算公式如下:
Figure PCTCN2015077248-appb-000017
步骤8:获取时延功率谱PDP,对PDP功率谱各径进行归零再计算有效径功率。
具体为:对PDP功率谱各径功率初始化为零,具体公式如下:
PDP(i)=0,其中,i=1,2,…,NFFT
根据有效径在OFDM的NFFT样点内的位置编号以及有效径的归一化后的功率计算PDP,具体公式如下:
Figure PCTCN2015077248-appb-000018
步骤9:进行NFFT点的FFT变换,将PDP转到频域,获取频域相关系数。用公式表示为:rf=FFTn(PDP),n=NFFT
第二具体实施例中,进行PDP估计时步骤1~步骤4与第一具体实施例中的步骤1~步骤4相同,此处不再重复,以下仅描述该具体实施例中的后续步骤。
步骤5:选择h_mean中满足功率大于功率门限值G且时延值在τ内的各径为有效径,并记录所有有效径在NFFT1样点内的位置ndelay1,也就是记录有效径的编号k。
较佳地,为了减小功率泄露带来的损失,将有效径两侧在预定距离范围内(△内)的径同时作为有效径。
步骤6:如果不存在满足h_mean>G的径,则将步骤1获得的各时域信道估计中的功率最大值对应的时域信道估计hmax及其两侧距离在预定范围内(△内)的径作为有效径,记录NFFT1样点内有效径的位置ndelay1,也就是记录有效径的编号k。
步骤7:换算为NFFT样点内的位置编号ndelay
具体地,有效径在OFDM的NFFT样点内的位置编号计算公式如下:
Figure PCTCN2015077248-appb-000019
步骤8:获取时延功率谱PDP。
具体地,对PDP功率谱各径功率初始化为零,具体公式如下:
PDP(i)=0,其中,i=1,2,…,NFFT
确定包含各有效径在OFDM的FFT点数中的位置编号的位置编号集合I,该位置编 号集合中的元素唯一,并确定位置编号集合中包含的元素个数N,该位置编号集合可表示为:I={i|i=ndelay},I中元素唯一,如果有多个ndelay等于i,则只记录一次,I中元素个数为N。
根据位置编号集合中包含的元素以及元素个数获取PDP,用公式表示为:
Figure PCTCN2015077248-appb-000020
其中,i∈I。
步骤9:进行NFFT点的FFT变换,把时延功率谱PDP转到频域,获取频域相关系数。用公式表示为:rf=FFTn(PDP),其中,n=NFFT
基于同一发明构思,本发明实施例还提供了一种PDP估计装置,该装置的具体实施可参见上述方法部分的描述,重复之处不再赘述,如图3所示,该装置主要包括:
获取模块301,用于获取各导频的时域信道估计值;
处理模块302,用于根据所述各导频的时域信道估计值获得时域信道估计值的平均值,根据所述时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
确定模块303,用于根据所述有效径以及所述位置编号,确定功率时延谱PDP。
优选地,所述门限值包括功率门限值和时限门限值;
所述处理模块具体用于:
确定所述功率门限值和所述时限门限值;
判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
若存在,确定所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,根据确定的所述径确定有效径;
若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
优选地,所述处理模块具体用于:
根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
计算各导频的所述时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
将所述第一功率门限和所述第二功率门限值确定为所述功率门限值。
优选地,所述处理模块具体用于:
根据CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确定所述时延门限值。
优选地,所述处理模块具体用于:
将确定的所述径以及与确定的所述径的距离在预设范围内的径作为所述有效径;
或者,
将获取的所述径以及与获取的所述径的距离在预设范围内的径作为所述有效径。
优选地,所述获取模块具体用于:获取各天线、各端口、各导频的频域信道估计值;将所述频域信道估计值补零为预定点数后进行离散傅里叶逆变换IFFT,获得所述时域信道估计。
具体地,获取模块在预定点数大于导频点数时,将频域信道估计补零为预定点数后进行IFFT;在预定点数小于导频点数时,将频域信道估计等间隔抽样为预定点数后进行IFFT。
优选地,所述预定点数大于所述导频的个数且为2的整数次幂。
优选地,所述处理模块具体用于:
计算所述各天线、各端口、各导频的所述时域信道估计值的平均值;或者,
计算所述各天线、各端口、各导频的部分所述时域信道估计值的平均值。
优选地,处理模块具体用于:
获取有效径在预定点数中的位置,根据有效径在预定点数中的位置、预定点数以及进行OFDM的FFT的点数,确定该有效径在进行OFDM的FFT的点数中的位置编号。
其中,确定模块确定PDP有以下两种实现方式:
第一种,所述确定模块具体用于:
确定所述有效径的归一化功率;
计算所述位置编号相同的各所述有效径的归一化功率之和,作为包含有所述进行OFDM的FFT的点数的所述PDP中、与所述位置编号对应的位置的功率。
其中,所述确定模块获取所述有效径的功率,并计算各所述有效径的功率之和;将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
第二种,所述确定模块具体用于:
将所述PDP各FFT点的功率初始化为零;
确定包含各所述有效径的所述位置编号的位置编号集合,所述位置编号集合中的元素唯一,并确定所述位置编号集合中包含的元素个数N;
将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N 分之一。
基于同一发明构思,本发明实施例还提供了另一种PDP估计装置,参见图4,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
获取各导频的时域信道估计值;
根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值,根据所述各导频的时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
根据所述有效径以及所述位置编号,确定功率时延谱PDP。
较佳地,所述门限值包括功率门限值和时限门限值;
处理器500根据所述时域信道估计值的平均值以及预先设定的门限值确定有效径时,具体用于:
确定所述功率门限值和所述时限门限值;
判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
若存在,确定所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,根据确定的所述径确定有效径;
若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
较佳地,处理器500确定所述功率门限值时,具体用于:
根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
计算各导频的所述时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
将所述第一功率门限和所述第二功率门限值中的较大值确定为所述功率门限值。
较佳地,处理器500确定所述时延门限值时,具体用于:
根据循环前缀CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确定所述时延门限值。
较佳地,处理器500根据确定的所述径确定有效径时,具体用于:将确定的所述径以及与确定的所述径的距离在预设范围内的径作为所述有效径;
根据获取的所述径确定有效径,包括:将获取的所述径以及与获取的所述径的距离在预设范围内的径作为所述有效径。
较佳地,处理器500获取各导频的时域信道估计值时,具体用于:
获取各天线的各端口的各导频的频域信道估计值;
将所述各导频的频域信道估计值进行预定点数的离散傅里叶逆变换IFFT,得到各导频的时域信道估计值。
较佳地,处理器500根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值时,具体用于:
计算所述各天线的各端口的各导频的时域信道估计值的平均值;或者,
计算所述各天线的各端口的各导频的部分时域信道估计值的平均值。
较佳地,处理器500确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号时,具体用于:
获取所述有效径在所述预定点数中的位置,根据所述有效径在所述预定点数中的位置、所述预定点数以及进行OFDM的FFT的点数,确定所述有效径在所述进行OFDM的FFT的点数中的位置编号。
较佳地,处理器500根据所述有效径以及所述位置编号,确定功率时延谱PDP时,具体用于:
确定所述有效径的归一化功率;
计算所述位置编号相同的各所述有效径的归一化功率之和,将得到的和值作为包含有所述进行OFDM的FFT的点数的所述PDP中、与所述位置编号对应的位置的功率。
较佳地,处理器500确定所述有效径的归一化功率时,具体用于:
获取所述有效径的功率,并计算各所述有效径的功率之和;
将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
较佳地,处理器500根据所述有效径以及所述位置编号,确定功率时延谱PDP时,具体用于:
将所述PDP各FFT点的功率初始化为零;
确定包含各所述有效径的所述位置编号的位置编号集合,所述位置编号集合中的元素唯一,并确定所述位置编号集合中包含的元素个数N;
将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N分之一。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还 可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
基于上述技术方案,本发明实施例中,通过实际信道估计确定有效径以及有效径在进行OFDM的FFT的点数中的位置编号,即PDP谱的抽头间隔,根据有效径以及有效径在进行OFDM的FFT的点数中的位置编号得到PDP,使得能够结合PDP谱的抽头间隔确定的PDP谱型,提高了PDP估计的准确性,进而能够获得较为准确的频域相关系数,提高了吞吐量。并且,对于一些非理想的信道场景能够有效提高信道估计精度,提高信道估计算法的整体性能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种功率时延谱PDP估计方法,其特征在于,包括:
    获取各导频的时域信道估计值;
    根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值,根据所述各导频的时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
    根据所述有效径以及所述位置编号,确定功率时延谱PDP。
  2. 如权利要求1所述的方法,其特征在于,所述门限值包括功率门限值和时限门限值;
    根据所述时域信道估计值的平均值以及预先设定的门限值确定有效径,包括:
    确定所述功率门限值和所述时限门限值;
    判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
    若存在,根据所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,确定有效径;
    若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
  3. 如权利要求2所述的方法,其特征在于,确定所述功率门限值,包括:
    根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
    计算各导频的时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
    将所述第一功率门限和所述第二功率门限值中的较大值确定为所述功率门限值;
    其中,所述的第一预设系数和第二预设系数均为预先通过仿真确定的常数。
  4. 如权利要求2所述的方法,其特征在于,确定所述时延门限值,包括:
    根据循环前缀CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确定所述时延门限值。
  5. 如权利要求2所述的方法,其特征在于,根据确定的所述径确定有效径,包括:将确定的所述径以及与该径距离在预设范围内的径作为有效径;
    根据获取的所述径确定有效径,包括:将获取的所述径以及与该径距离在预设范围内的径作为有效径。
  6. 如权利要求1所述的方法,其特征在于,获取各导频的时域信道估计值,包括:
    获取各天线的各端口的各导频的频域信道估计值;
    将所述各导频的频域信道估计值进行预定点数的离散傅里叶逆变换IFFT,得到各导频的时域信道估计值。
  7. 如权利要求6所述的方法,其特征在于,根据所述各导频的时域信道估计值获得各导频的时域信道估计值的平均值,包括:
    计算所述各天线的各端口的各导频的时域信道估计值的平均值;或者,
    计算所述各天线的各端口的各导频的时域信道估计值中的一部分时域信道估计值的平均值。
  8. 如权利要求6所述的方法,其特征在于,确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号,包括:
    获取所述有效径在所述预定点数中的位置,根据所述有效径在所述预定点数中的位置、所述预定点数以及进行OFDM的FFT的点数,确定所述有效径在进行OFDM的FFT的点数中的位置编号。
  9. 如权利要求1-8任一项所述的方法,其特征在于,根据所述有效径以及所述位置编号,确定功率时延谱PDP,包括:
    确定所述有效径的归一化功率为
    Figure PCTCN2015077248-appb-100001
    其中P1表示有效径的功率;
    根据有效径在进行OFDM的FFT的点数NFFT中的位置编号ndelay,以及有效径的归一化后的功率P,采用如下公式计算PDP为:
    Figure PCTCN2015077248-appb-100002
    其中i=1,2,…,NFFT,k为所述预订点数内有效径的编号。
  10. 如权利要求9所述的方法,其特征在于,确定所述有效径的归一化功率,包括:
    获取所述有效径的功率,并计算各所述有效径的功率之和;
    将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
  11. 如权利要求1-8任一项所述的方法,其特征在于,根据所述有效径以及所述位置编号,确定功率时延谱PDP,包括:
    将PDP各FFT点的功率初始化为零;
    确定包含各所述有效径的所述位置编号的位置编号集合I,其中,该位置编号集合I表示为:I={i|i=ndelay},如果有多个有效径在进行OFDM的FFT的点数中的位置编号ndelay等于i,则在I中只记录一次i,并确定所述位置编号集合I中包含的元素个数N;
    将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N分之一。
  12. 一种功率时延谱PDP估计装置,其特征在于,包括:
    获取模块,用于获取各导频的时域信道估计值;
    处理模块,用于根据所述各导频的时域信道估计值获得时域信道估计值的平均值,根据所述时域信道估计值的平均值以及预先设置的门限值确定有效径,并确定所述有效径在进行正交频分复用OFDM的快速傅里叶变换FFT的点数中的位置编号;
    确定模块,用于根据所述有效径以及所述位置编号,确定功率时延谱PDP。
  13. 如权利要求12所述的装置,其特征在于,所述门限值包括功率门限值和时限门限值;
    所述处理模块具体用于:
    确定所述功率门限值和所述时限门限值;
    判断是否存在所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径;
    若存在,根据所述时域信道估计值的平均值大于所述功率门限值、且时延小于所述时延门限值的径,确定有效径;
    若不存在,获取各所述时域信道估计的功率值中的最大值所对应的径,根据获取的所述径确定有效径。
  14. 如权利要求13所述的装置,其特征在于,所述处理模块具体用于:
    根据测量的导频的噪声功率以及第一预设系数确定第一功率门限值;
    计算各导频的时域信道估计的功率,根据各功率中的最大值以及第二预设系数确定第二功率门限值;
    将所述第一功率门限和所述第二功率门限值确定为所述功率门限值;
    其中,所述的第一预设系数和第二预设系数均为预先通过仿真确定的常数。
  15. 如权利要求13所述的装置,其特征在于,所述处理模块具体用于:
    根据循环前缀CP个数、终端提前接收的点数以及所述进行OFDM的FFT的点数,确 定所述时延门限值。
  16. 如权利要求13所述的装置,其特征在于,所述处理模块具体用于:
    将确定的所述径以及与该径距离在预设范围内的径作为有效径;
    或者,
    将获取的所述径以及与该径距离在预设范围内的径作为有效径。
  17. 如权利要求12所述的装置,其特征在于,所述获取模块具体用于:
    获取各天线、各端口、各导频的频域信道估计值;
    将所述频域信道估计值进行预定点数的离散傅里叶逆变换IFFT,获得所述时域信道估计。
  18. 如权利要求17所述的装置,其特征在于,所述处理模块具体用于:
    计算所述各天线、各端口、各导频的时域信道估计值的平均值;或者,
    计算所述各天线、各端口、各导频的时域信道估计值中的一部分时域信道估计值的平均值。
  19. 如权利要求17所述的装置,其特征在于,所述处理模块具体用于:
    获取所述有效径在所述预定点数中的位置,根据所述有效径在所述预定点数中的位置、所述预定点数以及进行OFDM的FFT的点数,确定所述有效径在进行OFDM的FFT的点数中的位置编号。
  20. 如权利要求12-19任一项所述的装置,其特征在于,所述确定模块具体用于:
    确定所述有效径的归一化功率为
    Figure PCTCN2015077248-appb-100003
    其中P1表示有效径的功率;
    根据有效径在进行OFDM的FFT的点数NFFT中的位置编号ndelay,以及有效径的归一化后的功率P,采用如下公式计算PDP为:
    Figure PCTCN2015077248-appb-100004
    其中i=1,2,…,NFFT,k为所述预订点数内有效径的编号。
  21. 如权利要求20所述的装置,其特征在于,所述确定模块具体用于:
    获取所述有效径的功率,并计算各所述有效径的功率之和;
    将所述有效径的功率与各所述有效径的功率之和的比值,作为所述有效径的归一化功率。
  22. 如权利要求12-19任一项所述的装置,其特征在于,所述确定模块具体用于:
    将PDP各FFT点的功率初始化为零;
    确定包含各所述有效径的所述位置编号的位置编号集合I,其中,该位置编号集合I表示为:I={i|i=ndelay},如果有多个有效径在进行OFDM的FFT的点数中的位置编号ndelay等于i,则在I中只记录一次i,并确定所述位置编号集合I中包含的元素个数N;
    将所述PDP各FFT点中、所述位置编号集合中的各元素所确定的位置的功率设置为N分之一。
PCT/CN2015/077248 2014-04-28 2015-04-23 一种功率时延谱pdp估计方法及装置 WO2015165354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410175560.0A CN105024951B (zh) 2014-04-28 2014-04-28 一种功率时延谱pdp估计方法及装置
CN201410175560.0 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015165354A1 true WO2015165354A1 (zh) 2015-11-05

Family

ID=54358163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077248 WO2015165354A1 (zh) 2014-04-28 2015-04-23 一种功率时延谱pdp估计方法及装置

Country Status (2)

Country Link
CN (1) CN105024951B (zh)
WO (1) WO2015165354A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933703A (zh) * 2019-12-27 2020-03-27 京信通信系统(中国)有限公司 用户检测方法、装置、设备和存储介质
CN111935051A (zh) * 2020-07-16 2020-11-13 Oppo广东移动通信有限公司 同步信号块的序号检测方法、装置、终端及存储介质
CN113438189A (zh) * 2021-06-23 2021-09-24 上海擎昆信息科技有限公司 一种场景识别方法及装置
CN113541833A (zh) * 2021-06-28 2021-10-22 广州慧睿思通科技股份有限公司 信噪比估计方法、装置、通信设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818885B (zh) * 2017-11-22 2020-07-31 电信科学技术研究院 一种信道估计方法、装置、设备及计算机可读存储介质
CN111342919B (zh) * 2018-12-18 2022-04-05 大唐移动通信设备有限公司 一种信道的频域信道相关值估计的方法及设备
CN113225109B (zh) * 2020-01-19 2022-08-19 荣耀终端有限公司 一种信号处理系统及相关电子设备
CN114978822B (zh) * 2022-05-20 2024-05-10 Oppo广东移动通信有限公司 信号处理方法、装置、芯片及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388864A (zh) * 2007-09-11 2009-03-18 上海睿智通无线技术有限公司 一种正交频分复用通信系统信道估计方法与装置
WO2013121958A1 (ja) * 2012-02-16 2013-08-22 シャープ株式会社 受信装置、受信方法および受信プログラム
CN103457885A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 信道估计方法、信道估计装置和接收机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592434A (zh) * 2003-09-04 2005-03-09 华为技术有限公司 一种估计到达时间附加时延误差的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388864A (zh) * 2007-09-11 2009-03-18 上海睿智通无线技术有限公司 一种正交频分复用通信系统信道估计方法与装置
WO2013121958A1 (ja) * 2012-02-16 2013-08-22 シャープ株式会社 受信装置、受信方法および受信プログラム
CN103457885A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 信道估计方法、信道估计装置和接收机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933703A (zh) * 2019-12-27 2020-03-27 京信通信系统(中国)有限公司 用户检测方法、装置、设备和存储介质
CN111935051A (zh) * 2020-07-16 2020-11-13 Oppo广东移动通信有限公司 同步信号块的序号检测方法、装置、终端及存储介质
CN113438189A (zh) * 2021-06-23 2021-09-24 上海擎昆信息科技有限公司 一种场景识别方法及装置
CN113438189B (zh) * 2021-06-23 2023-03-14 上海擎昆信息科技有限公司 一种场景识别方法及装置
CN113541833A (zh) * 2021-06-28 2021-10-22 广州慧睿思通科技股份有限公司 信噪比估计方法、装置、通信设备和存储介质
CN113541833B (zh) * 2021-06-28 2023-04-11 广州慧睿思通科技股份有限公司 信噪比估计方法、装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN105024951A (zh) 2015-11-04
CN105024951B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2015165354A1 (zh) 一种功率时延谱pdp估计方法及装置
KR100967058B1 (ko) 무선통신 시스템에서의 개량된 채널 추정 방법 및 채널 추정기
US10809351B1 (en) Method and apparatus for positioning
US8509330B2 (en) Method for estimating time-varying and frequency-selective channels
JP5801883B2 (ja) ワイヤレス通信システムにおけるマルチパス信号の推測
CN102387115B (zh) 一种ofdm导频方案设计及信道估计方法
TWI488467B (zh) 用於全球互通微波存取之上行鏈路分域多重存取接收器
WO2016070687A1 (zh) 一种同步估计方法和接收端设备
JP6612254B2 (ja) スパース順序付け反復群マルチアンテナチャネル推定
CN113242191B (zh) 一种改进的时序多重稀疏贝叶斯学习水声信道估计方法
CN111342919B (zh) 一种信道的频域信道相关值估计的方法及设备
US20130051445A1 (en) Channel estimation method and device using the same
CN102215184A (zh) 一种上行定时偏差的估计方法及系统
EP3242453B1 (en) Method of compensating carrier frequency offset in receivers
WO2016165416A1 (zh) 一种信噪比确定方法及装置
CN104243124A (zh) 探测参考信号信道系数矩阵的计算方法及装置
US8659989B2 (en) Method and apparatus for waveform independent ranging
CN115051899A (zh) 频偏估计方法及装置、计算机可读存储介质
WO2019034145A1 (zh) 一种首径到达时差测量方法和装置
WO2015096716A1 (zh) 一种信道估计方法和装置
US10999105B2 (en) Channel estimation method and device
Fan et al. An improved DFT-based channel estimation algorithm for OFDM system in non-sample-spaced multipath channels
KR20180037448A (ko) 통신 시스템에서의 채널 추정 방법 및 장치
Si et al. Compressive sensing-based channel estimation for SC-FDE system
CN111131116A (zh) 一种频率偏移估计方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785428

Country of ref document: EP

Kind code of ref document: A1