WO2016165416A1 - 一种信噪比确定方法及装置 - Google Patents

一种信噪比确定方法及装置 Download PDF

Info

Publication number
WO2016165416A1
WO2016165416A1 PCT/CN2016/070077 CN2016070077W WO2016165416A1 WO 2016165416 A1 WO2016165416 A1 WO 2016165416A1 CN 2016070077 W CN2016070077 W CN 2016070077W WO 2016165416 A1 WO2016165416 A1 WO 2016165416A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal processing
time domain
noise
average
Prior art date
Application number
PCT/CN2016/070077
Other languages
English (en)
French (fr)
Inventor
孙颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016165416A1 publication Critical patent/WO2016165416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for determining a noise ratio.
  • the estimation methods of signal-to-noise ratio are roughly divided into two categories: one is based on non-data-assisted blind estimation method, and the other is based on pilot.
  • Data-assisted estimation method Blind estimation method requires a long time to observe the data due to high computational complexity, and may cause phase ambiguity, error propagation, slow convergence or local minimum. It limits its application in real-time communication to a certain extent.
  • the data-assisted estimation method is widely used because of its fast estimation speed and high accuracy.
  • the invention provides a method and a device for determining a noise ratio, which are used to solve the complicated problem that the OFDM antenna correction cannot be performed by using the data assisted estimation method.
  • a signal to noise ratio determination method including: dividing a time domain channel estimation of a received time domain correction sequence into a plurality of signal processing windows, searching for a maximum among a plurality of signal processing windows The position of the signal processing window corresponding to the signal path; taking the same number of signal paths on both sides adjacent to the position to calculate the average signal power; taking the same number of noise signal paths at the farthest ends from the position, and calculating The average noise power of the noise signal; the signal to noise ratio is determined based on the average signal power and the average noise power.
  • the same number of noise signal paths are taken at the farthest ends from the position, and the average noise power of the noise signal is calculated, including: taking (L-2T)/2 noise signals at the farthest distance from the position, the noise signal Average noise power is Where T is the maximum allowable time offset, L is the length of the signal processing window, Ni is the average noise power, and h l (j) is the signal value of the noise path taken in the signal processing window.
  • the method further includes: performing fast Fourier transform FFT on the received time domain correction sequence to obtain a frequency domain before dividing the time domain channel estimation of the received time domain correction sequence into a plurality of signal processing windows. Data; obtaining a channel frequency domain estimation sequence according to the frequency domain data and the pilot signal; performing an inverse fast Fourier transform IFFT on the channel frequency domain estimation sequence, A time domain channel estimation sequence of the corrected sequence is obtained.
  • the time domain channel estimation of the received time domain correction sequence is divided into a plurality of signal processing windows, including: dividing the time domain channel estimation sequence of the received time domain correction sequence into N signal processing windows, where N is receiving The number of time domain correction sequences to arrive.
  • N is the number of signal processing windows
  • L is time
  • the length of the signal processing window divided by the domain correction sequence; the position of the signal processing window corresponding to the maximum signal path is the relative position with respect to the plurality of signal processing windows.
  • a signal to noise ratio determining apparatus comprising: a search module configured to divide a time domain channel estimation of a received time domain correction sequence into a plurality of signal processing windows, in a plurality of Searching for the position of the signal processing window corresponding to the maximum signal path in the signal processing window; the first calculation module is configured to take the same number of signal paths on both sides adjacent to the position to calculate the average signal power; the second calculation module, It is set to take the same number of noise signal paths at the farthest ends from the position, and calculate the average noise power of the noise signal; the determining module is set to determine the signal to noise ratio according to the average signal power and the average noise power.
  • the second calculation module is configured to: (L-2T)/2 noise signals are obtained at the farthest and left distance from the position, and the average noise power of the noise signal is Where T is the maximum allowable time offset, L is the length of the signal processing window, Ni is the average noise power, and h l (j) is the signal value of the noise path taken in the processing window.
  • the foregoing apparatus further includes: a first transforming module, configured to perform fast time-preserving the received time domain correction sequence before dividing the time domain channel estimation of the received time domain correction sequence into a plurality of signal processing windows
  • the leaf transform FFT obtains frequency domain data
  • the estimation module is configured to obtain a channel frequency domain estimation sequence according to the frequency domain data and the pilot signal
  • the second transform module is configured to perform inverse fast Fourier transform IFFT on the channel frequency domain estimation sequence. , obtaining a time domain channel estimation sequence of the corrected sequence.
  • the first transform module is configured to: divide the time domain channel estimation sequence of the received time domain correction sequence into N signal processing windows, where N is the number of received time domain correction sequences.
  • N is the number of signal processing windows
  • L is time
  • the length of the signal processing window divided by the domain correction sequence; the position of the signal processing window corresponding to the maximum signal path is the relative position with respect to the plurality of signal processing windows.
  • the time domain channel estimation of the received time domain correction sequence is divided into multiple signal processing windows, and the positions of the signal processing windows corresponding to the maximum signal path are searched in the plurality of signal processing windows; Take the same number of signal paths on both sides adjacent to the position, calculate the average signal power according to the signal path; take the same number of noise signal paths at the farthest ends from the maximum diameter position in the signal processing window, and calculate the average of the noise signals.
  • Noise power; the signal-to-noise ratio is determined according to the average signal power and the average noise power.
  • the operation complexity is reduced and the operation is improved. Evaluate the efficiency of the signal-to-noise ratio and ensure a certain accuracy.
  • Embodiment 1 is a flowchart of a method for determining a signal to noise ratio according to Embodiment 1 of the present invention
  • Fig. 2 is a block diagram showing the configuration of a signal to noise ratio determining apparatus according to a third embodiment of the present invention.
  • the present invention provides a method and an apparatus for determining a noise ratio.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flowchart of a method for determining a signal to noise ratio according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Divide the time domain channel estimation of the received time domain correction sequence into a plurality of signal processing windows, and search for a position of the signal processing window corresponding to the maximum signal path in the plurality of signal processing windows;
  • the received time domain correction signal is subjected to fast Fourier transform FFT transform to obtain frequency domain data; according to the frequency domain data and
  • the pilot signal obtains a frequency domain channel estimation sequence.
  • the frequency domain data may be multiplied by a conjugate of the pilot signal, or the frequency domain data may be divided by the pilot signal to obtain a channel estimation sequence;
  • An inverse fast Fourier transform IFFT transform is performed to obtain a time domain channel estimation of the time domain correction sequence.
  • Step 102 taking the same number of signal paths on both sides adjacent to the position, and calculating an average signal power according to the signal path;
  • Step 103 taking the same number of noise signal paths at the farthest ends from the position, and calculating an average noise power of the noise signal;
  • each signal channel may have different delays. Estimating the effective signal-to-noise ratio within the allowable range of the delay can improve the accuracy of the estimated signal-to-noise ratio. Therefore, in calculating the noise
  • the average noise power of the signal can take into account the maximum allowable time offset. Based on this, the same number of noise signals are taken at both ends of the position, and the average noise power of the noise signal is calculated, including: -2T)/2 noise signals, the average noise power of the noise signal is Where T is the maximum allowable time offset, L is the length of the signal processing window divided by time domain, and Ni is the average noise power. This method can be applied to the case where the time offset is ⁇ T, the complexity is low, and it is suitable for fast The need to determine channel quality.
  • Step 104 Determine a signal to noise ratio based on the average signal power and the average noise power.
  • the SNR estimation method of the present embodiment is simpler than the existing SNR evaluation method, and can reduce the influence of signal leakage on the SNR estimation, and can adapt to a certain time lag, and the computational complexity is low, and the solution is solved.
  • the current technology has a low accuracy of the signal-to-noise ratio evaluation method.
  • the received correction sequence is 8 and the length of each correction sequence is 512.
  • antenna channel 0 the specific steps of signal-to-noise ratio estimation are explained:
  • Step 2 dividing the frequency domain data F(i) by the pilot signal S(i) to obtain an LS channel estimate H(i);
  • Step three then the channel estimate H(i) is IFFT transformed into the time domain to obtain h(i);
  • Power Ps, Ps 1/3 * (h l (A-1) + h l (A) + h l (A + 1));
  • the base station be 8 antennas, and perform downlink antenna correction.
  • the received correction sequence is the superposition of 8 different mother codes with different cyclic shifts after passing through the channel.
  • the length of the correction sequence is 512 points.
  • the channel 0 is taken as an example to illustrate the specific signal-to-noise ratio estimation. step:
  • Step 2 dividing the frequency domain data F(i) by the pilot signal S(i) to obtain an LS channel estimate H(i);
  • Step 3 then the channel estimate H(i) is IFFT transformed into the time domain to obtain h(i);
  • FIG. 2 is a structural block diagram of a signal-to-noise ratio determining apparatus according to Embodiment 3 of the present invention, as shown in FIG. Device 20 includes the following components:
  • the search module 21 is configured to divide the time domain channel estimation of the received time domain correction sequence into a plurality of signal processing windows, and search for a position of the signal processing window corresponding to the maximum signal path in the plurality of signal processing windows;
  • the length of the processing window; the position of the signal processing window corresponding to the maximum signal path is the position of the corresponding plurality of signal processing windows.
  • the first calculating module 22 is configured to take the same number of signal paths on both sides adjacent to the position, and calculate an average signal power according to the signal path;
  • the second calculating module 23 is configured to take the same number of noise signals at the farthest ends according to the position, and calculate an average noise power of the noise signal;
  • a determination module 24 is arranged to determine a signal to noise ratio based on the average signal power and the average noise power.
  • the second calculation module is set to: (L-2T)/2 noise signals are respectively taken around the position, and the average noise power of the noise signal is
  • T is the maximum allowable time offset
  • L is the length of the signal processing window in the time domain division
  • Ni is the average noise power.
  • the foregoing apparatus 20 further includes: a first transform module, configured to be in a time domain correction sequence to be received Before the domain channel estimation is divided into multiple signal processing windows, the received time domain correction signal is subjected to fast Fourier transform FFT transform to obtain frequency domain data; and the estimation module is configured to obtain the frequency domain according to the frequency domain data and the pilot signal. a channel estimation sequence; the second transform module is configured to perform an inverse fast Fourier transform IFFT transform on the frequency domain channel estimation sequence to obtain a time domain channel estimation of the time domain correction sequence.
  • the first transform module may be specifically configured to: divide the time domain channel estimation of the received time domain correction sequence into N signal processing windows, and the corrected time domain correction sequence is from the N antenna base station.
  • the time domain channel estimation of the received time domain correction sequence is divided into a plurality of signal processing windows, and the signal processing window corresponding to the maximum signal path is searched in the plurality of signal processing windows.
  • Position take the same number of signal paths on both sides adjacent to the position, calculate the average signal power according to the signal path; take the same number of noise signal paths at the farthest ends from the maximum diameter position in the signal processing window to calculate the noise
  • the average noise power of the signal the signal-to-noise ratio is determined according to the average signal power and the average noise power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

本发明提供一种噪比确定方法及装置,用以解决目前信噪比评估方式较为复杂的问题。其中信噪比确定方法包括:将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;在距位置相邻的两边各取相同个数的信号径,计算出平均信号功率;在距位置最远的两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;根据平均信号功率以及平均噪声功率确定出信噪比,该方案简化了信噪比评估过程,提高了信噪比评估的效率。

Description

一种信噪比确定方法及装置 技术领域
本发明涉及通讯领域,特别是涉及一种噪比确定方法及装置。
背景技术
对于通信领域来说,对信道质量进行估计是十分重要的,目前,信噪比的估计方法大致分为两大类:一类是基于非数据辅助的盲估计方法,另一类是基于导频的数据辅助估计方法。盲估计方法由于计算复杂度较高,且可能出现相位模糊、误差传播以及收敛慢或陷入局部极小等问题,需要长时间的观察数据,在一定程度上限制了它在实时通信领域的应用,而数据辅助估计方法由于其估计速度快,准确性较高应用较为广泛。然而,在OFDM的天线校正应用场景中,如果使用盲估计方法进行信噪比估计,则实现过程较为复杂,所以可以使用数据辅助的估计方法,但目前数据辅助估计方法仅仅提出了可以根据发送的数据以及接收到的数据来计算传输数据的通道中的未知量,而并未明确该方法在各种应用场景的如何来进行计算。故,基于现有技术目前还无法使用数据辅助估计方法来进行OFDM天线矫正。
发明内容
本发明提供一种噪比确定方法及装置,用以解决目前无法使用数据辅助估计方法进行OFDM天线校正的较为复杂的问题。
根据本发明的一个实施例,提供了一种信噪比确定方法,包括:将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;在距位置相邻的两边各取相同个数的信号径,计算出平均信号功率;在距位置最远的两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;根据平均信号功率以及平均噪声功率确定出信噪比。
其中,在距位置最远的两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率,包括:在距位置最远左右各取(L-2T)/2个噪声信号,噪声信号的平均噪声功率为
Figure PCTCN2016070077-appb-000001
其中,T为允许的最大时偏、L为信号处理窗的长度、Ni为平均噪声功率,hl(j)为信号处理窗内所取的噪声径的信号值。
进一步的,上述方法还包括:在将接收到的时域校正序列的时域信道估计分为多个信号处理窗之前,将接收到的时域校正序列进行快速傅里叶变换FFT,得到频域数据;根据频域数据以及导频信号得到信道频域估计序列;对信道频域估计序列进行逆快速傅里叶变换IFFT, 得到校正序列的时域信道估计序列。
其中,将接收到的时域校正序列的时域信道估计分为多个信号处理窗,包括:将接收到的时域校正序列的时域信道估计序列分为N个信号处理窗,N为接收到的时域校正序列的个数。
其中,多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中N为信号处理窗的个数,L为时域校正序列划分的信号处理窗的长度;最大信号径对应的信号处理窗的位置为相对于多个信号处理窗的相对位置。
根据本发明的另一个实施例,提供了一种信噪比确定装置,包括:搜索模块,设置为将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;第一计算模块,设置为在距位置相邻的两边各取相同个数的信号径,计算出平均信号功率;第二计算模块,设置为在距位置最远的两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;确定模块,设置为根据平均信号功率以及平均噪声功率确定出信噪比。
其中,第二计算模块设置为:在距位置最远左右各取(L-2T)/2个噪声信号,噪声信号的平均噪声功率为
Figure PCTCN2016070077-appb-000002
其中,T为允许的最大时偏、L为信号处理窗的长度、Ni为平均噪声功率,hl(j)为处理窗内所取的噪声径的信号值。
进一步的,上述装置还包括:第一变换模块,设置为在将接收到的时域校正序列的时域信道估计分为多个信号处理窗之前,将接收到的时域校正序列进行快速傅里叶变换FFT,得到频域数据;估计模块,设置为根据频域数据以及导频信号得到信道频域估计序列;第二变换模块,设置为对信道频域估计序列进行逆快速傅里叶变换IFFT,得到校正序列的时域信道估计序列。
其中,第一变换模块设置为:将接收到的时域校正序列的时域信道估计序列分为N个信号处理窗,N为接收到的时域校正序列的个数。
其中,多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中N为信号处理窗的个数,L为时域校正序列划分的信号处理窗的长度;最大信号径对应的信号处理窗的位置为相对于多个信号处理窗的相对位置。
本发明有益效果如下:
本发明实施例提供的方案,通过将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;在与位置相邻两边各取相同个数的信号径,根据信号径计算出平均信号功率;在信号处理窗内距最大径位置最远两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;根据平均信号功率以及平均噪声功率确定出信噪比,该方式与现有信噪比评估方法相比,降低了操作的复杂度,提高 了评估信噪比的效率,且保证一定的精度。
附图说明
图1是本发明实施例1的信噪比确定方法的流程图;
图2是本发明实施例3的信噪比确定装置的结构框图。
具体实施方式
为了解决现有技术目前信噪比评估方式准确性较低的问题,本发明提供了一种噪比确定方法及装置,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
实施例1
本实施例提供了一种基于校正序列信噪比确定方法,图1是本发明实施例1的信噪比确定方法的流程图,如图1所示,该方法包括如下步骤:
步骤101:将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;
在该步骤101之前,还可以包括对接收到的时域校正序列的如下处理:
在将接收到的时域校正序列的时域信道估计分为多个信号处理窗之前,将接收到的时域校正信号进行快速傅里叶变换FFT变换,得到频域数据;根据频域数据以及导频信号得到频域信道估计序列,具体的,可以是将频域数据与导频信号的共轭做乘法计算,或用将频域数据除以导频信号得到信道估计序列;对信道估计序列进行逆快速傅里叶变换IFFT变换,得到时域校正序列的时域信道估计。
对接收到的时域校正序列的划分信号处理窗具体可以是将接收到的时域校正序列的时域信道估计分为n个信号处理窗,校正的时域校正序列来自于n天线基站,例如,如果时域校正序列来自于8天线基站,则将接收到的时域矫正序列划分为8个信号处理窗,其中,多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中N为信号处理窗的个数,L为时域划分的信号处理窗的长度;最大信号径对应的信号处理窗的位置为相对应的多个信号处理窗的位置。
步骤102:在与位置相邻两边各取相同个数的信号径,根据信号径计算出平均信号功率;
步骤103:在距位置最远两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;
由于信号通道的不均衡性,每个信号通道都可能有不同的时延,在时延允许的范围内估计有效的信噪比能够提高估计得到的信噪比的准确性,故,在计算噪声信号的平均噪声功率时可以将可允许的最大的时偏考虑进来,基于此,在位置两端取相同个数的噪声信号,计算 噪声信号的平均噪声功率,包括:在位置左右各取(L-2T)/2个噪声信号,噪声信号的平均噪声功率为
Figure PCTCN2016070077-appb-000003
其中,为T为允许的最大时偏、L为时域划分的信号处理窗的长度、Ni为平均噪声功率,该方法能够适用于时偏为±T时的情况,复杂度低,适用于快速判断信道质量的需要。
步骤104:根据平均信号功率以及平均噪声功率确定出信噪比。
本实施例的信噪比估计方法较现有信噪比评估方法操作简单,同时可减少信号泄漏对于信噪比估计的影响,且能适应一定大小的时偏,且计算复杂度低,解决了现有技术目前信噪比评估方式准确性较低的问题。
实施例2
本实施例通过两个实施例来对上述信噪比确定方法进行进一步说明:
实例1
设基站为8天线,进行上行天线校正,则接收到的校正序列为8个,每个校正序列长度为512点,以其中的天线通道0为例,说明信噪比估计具体步骤:
步骤一,将接收到的512点时域校正序列进行512点FFT变换,得到频域数据F(i),i=1,2,…,512;
步骤二,将频域数据F(i)除以导频信号S(i)得到LS信道估计H(i);
步骤三,再将信道估计H(i)进行IFFT变换到时域,得到h(i);
步骤四,以导频长度的1/8作为窗长L=64,由于上行校正且只选取通道0,所以时域峰值只有一个,时域窗的中心位置为0,整个窗内的信号h1(k),k=[512-32+1:512,1:32];
步骤五,在窗h1(k)内搜索最大径的位置,记为A,A=max(h1(k)),取与A相邻的左右各1条径作为信号径,平均求出其信号功率Ps,Ps=1/3*(hl(A-1)+hl(A)+hl(A+1));
步骤六,取h1(k)窗内远离A的左边(64-2*16)/2和右边(64-2*16)/2个共(64-2*16)=32个点作为噪声信号,平均求出其噪声功率Ni,
Figure PCTCN2016070077-appb-000004
步骤七,求出通道0的信噪比,SNR=Ps/Ni。
实例2
设基站为8天线,进行下行天线校正,接收到的校正序列为8个同一母码不同循环位移经过信道后的叠加,校正序列长度为512点,同样以通道0为例说明信噪比估计具体步骤:
步骤一,将接收到的512点时域校正序列进行512点FFT变换,得到频域数据F(i),i=1, 2,…,512;
步骤二,将频域数据F(i)除以导频信号S(i)得到LS信道估计H(i);
步骤三,再将信道估H(i)进行IFFT变换到时域,得到h(i);
步骤四,以导频长度的1/8作为窗长L=64,由于为下行校正接收序列,下行每天线发送的为同一母码的不同循环移位序列,所以时域峰值每天线对应一个,位置不同,共有八个,时域窗的中心位置为0,448,384,320,256,192,128,64,通道0对应的窗内信号为h1(k),k=[512-32+1:512,1:32];
步骤五,在窗hl(k)内搜索最大径的位置,记为A,A=max(hl),取与A相邻的左右各1条径作为信号径,平均求出其信号功率Ps,Ps=1/3*(hl(A-1)+hl(A)+hl(A+1));
步骤六,取窗h1(k)内远离A的左边(64-2*16)/2和右边(64-2*16)/2个共(64-2*16)=32个点作为噪声信号,平均求出其噪声功率Ni,
Figure PCTCN2016070077-appb-000005
步骤七,求出通道0的信噪比,SNR=Ps/Ni。
实施例3
本实施例提供了一种信噪比确定装置,该装置用于实现上述信噪比确定方法,图2是本发明实施例3的信噪比确定装置的结构框图,如图2所示,该装置20包括如下组成部分:
搜索模块21,设置为将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;其中,多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中N为信号处理窗的个数,L为时域划分的信号处理窗的长度;最大信号径对应的信号处理窗的位置为相对应的多个信号处理窗的位置。
第一计算模块22,设置为在与位置相邻两边各取相同个数的信号径,根据信号径计算出平均信号功率;
第二计算模块23,设置为在据位置最远两端取相同个数的噪声信号,计算噪声信号的平均噪声功率;
确定模块24,设置为根据平均信号功率以及平均噪声功率确定出信噪比。
其中,第二计算模块设置为:在位置左右各取(L-2T)/2个噪声信号,噪声信号的平均噪声功率为
Figure PCTCN2016070077-appb-000006
其中,为T为允许的最大时偏、L为时域划分的信号处理窗的长度、Ni为平均噪声功率。
进一步的,上述装置20还包括:第一变换模块,设置为在将接收到的时域校正序列的时 域信道估计分为多个信号处理窗之前,将接收到的时域校正信号进行快速傅里叶变换FFT变换,得到频域数据;估计模块,设置为根据频域数据以及导频信号得到频域信道估计序列;第二变换模块,设置为对频域信道估计序列进行逆快速傅里叶变换IFFT变换,得到时域校正序列的时域信道估计。
其中,上述第一变换模块具体可以设置为:将接收到的时域校正序列的时域信道估计分为N个信号处理窗,校正的时域校正序列来自于N天线基站。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。
工业实用性
基于本发明实施例提供的上述技术方案,通过将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;在与位置相邻两边各取相同个数的信号径,根据信号径计算出平均信号功率;在信号处理窗内距最大径位置最远两端取相同个数的噪声信号径,计算噪声信号的平均噪声功率;根据平均信号功率以及平均噪声功率确定出信噪比,该方式与现有信噪比评估方法相比,降低了操作的复杂度,提高了评估信噪比的效率,且保证一定的精度。

Claims (10)

  1. 一种信噪比确定方法,包括:
    将接收到的时域校正序列的时域信道估计分为多个信号处理窗,在所述多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;
    在距所述位置相邻的两边各取相同个数的信号径,计算出平均信号功率;
    在距所述位置最远的两端取相同个数的噪声信号径,计算所述噪声信号的平均噪声功率;
    根据所述平均信号功率以及所述平均噪声功率确定出信噪比。
  2. 如权利要求1所述的方法,其中,所述在距所述位置最远的两端取相同个数的噪声信号径,计算所述噪声信号的平均噪声功率,包括:
    在距所述位置最远左右各取(L-2T)/2个噪声信号,所述噪声信号的平均噪声功率为
    Figure PCTCN2016070077-appb-100001
    其中,所述T为允许的最大时偏、所述L为所述信号处理窗的长度、所述Ni为平均噪声功率,所述hl(j)为所述信号处理窗内所取的噪声径的信号值。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    在将接收到的时域校正序列的时域信道估计分为多个信号处理窗之前,将接收到的时域校正序列进行快速傅里叶变换FFT,得到频域数据;
    根据所述频域数据以及导频信号得到信道频域估计序列;
    对所述信道频域估计序列进行逆快速傅里叶变换IFFT,得到所述校正序列的时域信道估计序列。
  4. 如权利要求3所述的方法,其中,所述将接收到的时域校正序列的时域信道估计分为多个信号处理窗,包括:
    将接收到的时域校正序列的时域信道估计序列分为N个信号处理窗,所述N为接收到的时域校正序列的个数。
  5. 如权利要求1~4任意一项所述的方法,其中,所述多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中所述N为所述信号处理窗的个数,所述L为所述时域校正序列划分的信号处理窗的长度;
    所述最大信号径对应的信号处理窗的位置为相对于所述多个信号处理窗的相对位置。
  6. 一种信噪比确定装置,包括:
    搜索模块,设置为将接收到的时域校正序列的时域信道估计分为多个信号处理窗, 在所述多个信号处理窗中搜索最大信号径对应的信号处理窗的位置;
    第一计算模块,设置为在距所述位置相邻的两边各取相同个数的信号径,计算出平均信号功率;
    第二计算模块,设置为在距所述位置最远的两端取相同个数的噪声信号径,计算所述噪声信号的平均噪声功率;
    确定模块,设置为根据所述平均信号功率以及所述平均噪声功率确定出信噪比。
  7. 如权利要求6所述的装置,其中,所述第二计算模块设置为:
    在距所述位置最远左右各取(L-2T)/2个噪声信号,所述噪声信号的平均噪声功率为
    Figure PCTCN2016070077-appb-100002
    其中,所述T为允许的最大时偏、所述L为所述信号处理窗的长度、所述Ni为平均噪声功率,所述hl(j)为所述处理窗内所取的噪声径的信号值。
  8. 如权利要求6所述的装置,其中,所述装置还包括:
    第一变换模块,设置为在将接收到的时域校正序列的时域信道估计分为多个信号处理窗之前,将接收到的时域校正序列进行快速傅里叶变换FFT,得到频域数据;
    估计模块,设置为根据所述频域数据以及导频信号得到信道频域估计序列;
    第二变换模块,设置为对所述信道频域估计序列进行逆快速傅里叶变换IFFT,得到所述校正序列的时域信道估计序列。
  9. 如权利要求8所述的装置,其中,所述第一变换模块设置为:
    将接收到的时域校正序列的时域信道估计序列分为N个信号处理窗,所述N为接收到的时域校正序列的个数。
  10. 如权利要求6~9任意一项所述的装置,其中,所述多个信号处理窗的中心位置为(n-1)*L/2+(n-1)*L,n=1,2…N,其中所述N为所述信号处理窗的个数,所述L为所述时域校正序列划分的信号处理窗的长度;
    所述最大信号径对应的信号处理窗的位置为相对于所述多个信号处理窗的相对位置。
PCT/CN2016/070077 2015-04-16 2016-01-04 一种信噪比确定方法及装置 WO2016165416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510180535.6A CN106161324A (zh) 2015-04-16 2015-04-16 一种信噪比确定方法及装置
CN201510180535.6 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016165416A1 true WO2016165416A1 (zh) 2016-10-20

Family

ID=57125595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070077 WO2016165416A1 (zh) 2015-04-16 2016-01-04 一种信噪比确定方法及装置

Country Status (2)

Country Link
CN (1) CN106161324A (zh)
WO (1) WO2016165416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117279013A (zh) * 2023-11-17 2023-12-22 芯迈微半导体(上海)有限公司 一种端口识别方法和端口识别装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030762B (zh) * 2019-12-23 2021-10-29 北京华力创通科技股份有限公司 chirp信号功率测量方法及装置
CN113411273B (zh) * 2021-05-17 2022-06-24 杭州红岭通信息科技有限公司 一种基于srs信号的信道估计响应降噪优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997804A (zh) * 2009-08-21 2011-03-30 大唐移动通信设备有限公司 一种同步定时偏差估计方法和装置
CN102291349A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 正交频分复用系统的信噪比估计方法和装置
US20120250801A1 (en) * 2011-03-30 2012-10-04 Himax Media Solutions, Inc. Intersymbol Interference Removal Method
CN103916340A (zh) * 2014-04-04 2014-07-09 电信科学技术研究院 一种噪声功率估计方法及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997804A (zh) * 2009-08-21 2011-03-30 大唐移动通信设备有限公司 一种同步定时偏差估计方法和装置
CN102291349A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 正交频分复用系统的信噪比估计方法和装置
US20120250801A1 (en) * 2011-03-30 2012-10-04 Himax Media Solutions, Inc. Intersymbol Interference Removal Method
CN103916340A (zh) * 2014-04-04 2014-07-09 电信科学技术研究院 一种噪声功率估计方法及网络侧设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117279013A (zh) * 2023-11-17 2023-12-22 芯迈微半导体(上海)有限公司 一种端口识别方法和端口识别装置
CN117279013B (zh) * 2023-11-17 2024-02-02 芯迈微半导体(上海)有限公司 一种端口识别方法和端口识别装置

Also Published As

Publication number Publication date
CN106161324A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US8422595B2 (en) Channel estimation for communication systems with multiple transmit antennas
WO2018202038A1 (zh) 一种确定上行同步定时偏差的方法及装置
WO2015165354A1 (zh) 一种功率时延谱pdp估计方法及装置
US10034191B2 (en) Ambiguity resolution in positioning measurements
CN102075486A (zh) 一种ofdm系统的同步方法
WO2017097053A1 (zh) 一种定时偏差的估计方法、装置及终端
TWI587642B (zh) A synchronization estimation method and a receiving device
TWI488467B (zh) 用於全球互通微波存取之上行鏈路分域多重存取接收器
WO2008049714A1 (en) Robust and low-complexity combined signal power estimation for ofdm
WO2016165416A1 (zh) 一种信噪比确定方法及装置
CN111131114A (zh) 前导符号的接收方法及装置
CN111342919B (zh) 一种信道的频域信道相关值估计的方法及设备
CN116056201A (zh) 一种基于同步信号的频偏估计方法
WO2019052297A1 (zh) 频偏估计方法、装置、设备及计算机可读存储介质
CN106878213B (zh) 一种lte上行频偏估计的方法
CN114598584A (zh) 一种无线通信系统中的细频偏估计方法及装置
WO2015066866A1 (en) Method and device for detecting secondary synchronous signal, computer program and storage medium
EP3242453B1 (en) Method of compensating carrier frequency offset in receivers
CN115552851A (zh) Ofdm系统中的信道估计和均衡
CN111131119B (zh) 一种正交频分复用系统高精度定时偏移估计的方法及装置
CN110798416A (zh) OFDM系统中基于局部搜索Capon的CFO估计算法
CN108989261B (zh) 一种通信系统的定时同步方法、装置及相关设备
CN104684071B (zh) Lte上行定时同步跟踪方法
WO2016119457A1 (zh) 一种频偏估计方法及装置、计算机存储介质
WO2015096716A1 (zh) 一种信道估计方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779391

Country of ref document: EP

Kind code of ref document: A1