WO2019034145A1 - 一种首径到达时差测量方法和装置 - Google Patents

一种首径到达时差测量方法和装置 Download PDF

Info

Publication number
WO2019034145A1
WO2019034145A1 PCT/CN2018/101050 CN2018101050W WO2019034145A1 WO 2019034145 A1 WO2019034145 A1 WO 2019034145A1 CN 2018101050 W CN2018101050 W CN 2018101050W WO 2019034145 A1 WO2019034145 A1 WO 2019034145A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
threshold
correlation function
oversampling
arrival time
Prior art date
Application number
PCT/CN2018/101050
Other languages
English (en)
French (fr)
Inventor
陈诗军
王园园
陈大伟
陈强
武世勇
袁泉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18845653.7A priority Critical patent/EP3672179B1/en
Publication of WO2019034145A1 publication Critical patent/WO2019034145A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • Orthogonal Frequency Division Multiplexing is adopted in 4G and 5G wireless systems, which is a Fast Fourier Transformation (FFT) based communication system.
  • FFT Fast Fourier Transformation
  • CP Cyclic Prefix
  • the length of the cyclic prefix is mainly determined according to the coverage radius of the base station.
  • the related communication network is located with a cell ID (CID), a Received Signal Strength Indicator (RSSI), and a Time Difference of Arrival (TDOA), but the high-precision positioning generally adopts the TDOA method. .
  • CID cell ID
  • RSSI Received Signal Strength Indicator
  • TDOA Time Difference of Arrival
  • a related communication network-based TDOA method includes: after determining a frame header, defining an OFDM symbol, and then removing a fixed number of sampling points according to a CP length from a defined time point, obtaining OFDM symbol time domain data, and then directly performing mathematical sequence correlation.
  • the operation takes the first largest correlation peak as the Time of Arrival (TOA), and then obtains the TDOA according to the TOA, and then calculates the position information of the receiving end according to the TDOA.
  • TOA Time of Arrival
  • This kind of scheme has no problem in the direct path environment, but in indoor and multi-path complex environments, the related method can not avoid the influence of multipath, and introduces a very large error. Moreover, the correlation method is also affected by OFDM symbols. The influence of interference, sampling period, etc., results in the positioning accuracy of the receiving end cannot meet the high precision requirements of the indoor environment.
  • the embodiments herein provide a first-path arrival time difference measurement method and apparatus, which can meet the high-precision positioning requirements of the indoor environment.
  • the embodiment of the present disclosure provides a first-path arrival time difference measurement method, including: receiving, by a receiving end, orthogonal OFDM-multiplexed OFDM positioning symbol data, and generating a local over-sampling signal; and receiving, by the receiving end, positioning symbol data according to the OFDM.
  • the local oversampling signal is calculated to obtain an oversampling cycle correlation function sequence, and the oversampling cycle correlation function sequence is subjected to trailing edge detection and leading edge completion; the receiving end performs oversampling cycle after trailing edge detection and leading edge completion
  • the correlation function sequence performs a first-path arrival time difference TDOA estimation.
  • the embodiment of the present invention further provides a first-path arrival time difference measuring apparatus, including: a data acquiring module, configured to acquire orthogonal frequency division multiplexing OFDM positioning symbol data, and generate a local over-sampling signal; and an over-sampling loop correlation function sequence processing module, And configured to calculate an oversampling cycle correlation function sequence according to the OFDM positioning symbol data and the local oversampling signal, and perform trailing edge detection and leading edge completion on the oversampling cycle correlation function sequence; and the estimation module is set to The first-path arrival time difference TDOA estimation is performed on the sequence of the oversampling cycle correlation function after trailing edge detection and leading edge completion.
  • a data acquiring module configured to acquire orthogonal frequency division multiplexing OFDM positioning symbol data, and generate a local over-sampling signal
  • an over-sampling loop correlation function sequence processing module And configured to calculate an oversampling cycle correlation function sequence according to the OFDM positioning symbol data and the local oversampling signal, and perform trailing edge detection and leading edge completion
  • Embodiments of the present disclosure also provide a mobile terminal, including a memory, a processor, and a processing program stored on the memory and executable on the processor, the processing program being implemented by the processor to implement the foregoing Path arrival time difference measurement method.
  • the embodiment of the present invention further provides a computer readable storage medium, wherein the computer readable storage medium stores a processing program, and the processing program is implemented by a processor to implement the first path arrival time difference measurement method.
  • FIG. 1 is a schematic flow chart of a method for measuring a first-path arrival time difference provided by an embodiment of the present disclosure
  • Embodiment 2 is a schematic flow chart of a method for measuring a first-path arrival time difference provided in Embodiment 1 of the present invention
  • FIG. 3a is a schematic diagram showing a delay spread length of a time domain sequence autocorrelation function of a transmit signal in a first path arrival time difference measurement method provided by an embodiment of the present invention
  • FIG. 3b and FIG. 3c are schematic diagrams of performing trailing edge detection and leading edge complement in the first path arrival time difference measurement method provided by the embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for measuring a first-path arrival time difference provided in Embodiment 2 of the present invention.
  • FIG. 5 is a schematic flow chart of a method for measuring a first-path arrival time difference provided in Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a first-path arrival time difference measuring device provided by an embodiment of the present invention.
  • the embodiment of the present invention provides a first-path arrival time difference measurement method, which is based on an orthogonal frequency division multiplexing signal system, as shown in FIG. 1, and includes step 101, step 102, and step 103.
  • step 101 the receiving end acquires orthogonal frequency division multiplexing OFDM positioning symbol data and generates a local oversampling signal.
  • the transmitting end may be a positioning base station, that is, a base station for transmitting a positioning signal.
  • the receiving end may be a positioning terminal, that is, a mobile terminal for receiving a signal transmitted by the base station and performing positioning. After receiving the positioning signal, the receiving end may extract the OFDM positioning symbol data therein.
  • the OFDM positioning symbol data refers to OFDM symbol data in which the CP is removed in 4G and 5G and only the positioning signal is reserved, and is an OFDM signal in which multipath intersymbol interference has been removed and inter-base station symbol interference is removed.
  • Retaining only the positioning signal means performing FFT transformation on the received data, then removing the non-positioning signal in the frequency domain, leaving only the positioning signal, and then performing an inverse fast Fourier transform (IFFT) to the time domain.
  • IFFT inverse fast Fourier transform
  • the signal configuration of the transmitting end of the positioning signal includes parameters used by the transmitting end to generate the positioning signal.
  • the receiving end locally generates the same time domain transmission signal sequence as the transmitting end according to the signal configuration, and performs interpolation processing on the time domain transmitting signal sequence to obtain a local oversampling signal.
  • Interpolation methods include, but are not limited to, linear interpolation, cubic spline interpolation methods, and the like.
  • the multiples of interpolation include, but are not limited to, 2 times, 4 times, 8 times, 16 times, 32 times.
  • the number of interpolations between two adjacent numbers is (the multiple of the interpolation minus one).
  • the oversampled local data can also be subjected to 1x oversampling, and then mathematically correlated with the received OFDM positioning symbol data, and then the correlation sequence obtained by performing the mathematical correlation operation is interpolated to obtain an oversampling cycle correlation function sequence.
  • the same time domain transmit signal sequence as the transmit end refers to a sequence in which the time domain transmit signal is generated without a CP, and then the data of the subsequent cyclic prefix length CPSIZE is deleted and moved to the front of the sequence to form the same time domain as the transmit end.
  • a sequence of transmitted signals refers to a sequence in which the time domain transmit signal is generated without a CP, and then the data of the subsequent cyclic prefix length CPSIZE is deleted and moved to the front of the sequence to form the same time domain as the transmit end.
  • step 102 the receiving end calculates an oversampling cycle correlation function sequence according to the OFDM positioning symbol data and the local oversampling signal, and performs trailing edge detection and leading edge completion on the oversampling cycle correlation function sequence.
  • the calculations performed are mathematical correlation calculations.
  • the process of performing mathematical correlation calculations to obtain an oversampling cycle correlation function sequence may include:
  • the value is predetermined FFTSIZE by the communication system, M being a multiple of the interpolation, a i is inserted after the data is 0 OFDM symbol, b is oversampled data, n-integers.
  • the receiving end performs trailing edge detection on the sequence of the oversampling cycle correlation function, and determines a trailing edge compensation search interval of the sequence of the oversampling cycle correlation function.
  • the trailing edge detection operation can be implemented as follows:
  • threshold 1 is the noise power threshold
  • CPSIZE is the cyclic prefix length
  • threshold 2 the value of threshold 2 is determined by the actual application, usually greater than 3;
  • T2 [K,FFTSIZE*M]
  • T2 is the trailing edge compensation search interval, if there is no K, then
  • T2 [K,FFTSIZE*M), T2 is the trailing edge compensation search interval; if there is no K, then
  • the receiving end performs correlation function leading edge completion, and shifts function data in the trailing edge compensation search interval to the front end of the oversampling cycle correlation function sequence.
  • the data of the n ⁇ T2 interval of x n n ⁇ [0, FFTSIZE*M) may be deleted, and the deleted data is transplanted to the front end of the sequence to form the oversampling cycle related after the leading edge is completed.
  • step 103 the receiving end performs a first-path arrival time difference TDOA estimation for the over-sampling cycle correlation function sequence after the trailing edge detection and the leading edge completion.
  • the receiving end performs TOA estimation according to the sequence of the oversampling cycle correlation function after performing the correlation function front edge completion processing, and then performs TDOA estimation according to the TOA estimation result.
  • the operations in which the TOA estimation is performed include, but are not limited to:
  • the TOA of the measured bit signal is ((k+1)+(k+R))/2, otherwise, the TOA of the measured bit signal is K+(signaltimesize/2), where signaltimesize is The delay spread length of the autocorrelation function of the time domain sequence of the transmitted signal.
  • the signaltimesize is a delay spread length of the auto-correlation function of the time-domain sequence of the transmit signal, as shown in FIG. 3a, and 31 is signaltimesize.
  • the value can be obtained according to the actual modeling, and is generally taken from the main peak width of the correlation function. For example, in the case of 20M LTE, including but not limited to taking 3.6 to 4 TS.Ts as the sampling period under the lte20M bandwidth, that is, the period of 30.72M frequency. .
  • the receiving end can perform TOA estimation on the signals of the multiple transmitting ends and calculate the difference, and obtain the first-path arrival time difference TDOA estimation.
  • TOA measurement is performed on at least 4 received positioning signals, and then one is selected as a reference, and the other at least 3 TOA times and the selected reference TOA time are made worse to obtain at least 3 TDOAs. Subsequently, the location information can be determined based on the at least three TDOAs.
  • an oversampling signal is locally generated at the receiving end, and the trailing edge detection and the leading edge complement are performed on the signal, and then the TOA and TDOA estimation are performed to avoid the influence of the multipath and improve the positioning accuracy even in the indoor environment. Underneath, high-precision positioning information can still be obtained.
  • the first path arrival time difference measurement method provided by the embodiments herein is described below by the following embodiments.
  • the first-path arrival time difference measurement method provided in this embodiment includes steps 201 to 207.
  • step 201 a positioning signal is received to acquire OFDM positioning symbol data.
  • 15 zeros can be interleaved between adjacent sample data.
  • a local time domain signal is generated according to the configuration of the transmitting end of the transmitting positioning signal, and 16 times interpolation is performed to generate a local oversampling signal.
  • step 203 a mathematical correlation calculation is performed on the OFDM positioning symbol data and the local oversampling signal in the positioning signal to obtain an oversampling cycle correlation function sequence.
  • step 204 trailing edge detection is performed on the sequence of oversampled loop correlation functions.
  • FIG. 3b is a schematic diagram of performing trailing edge detection and leading edge completion for an oversampling cycle correlation function sequence.
  • threshold 1 is the threshold for noise calculation.
  • K is B in Figure 3b.
  • T2 [K, FFTSIZE*M), T2 is the trailing edge compensation search interval, if there is no K, then
  • T2 is the [BC] segment in Figure 3b.
  • step 205 a leading edge completion is performed on the sequence of oversampling cycle correlation functions.
  • the BC end is copied to the EF segment.
  • step 206 an arrival time TOA estimate is performed.
  • step 207 the difference is calculated from the TOA estimates performed by the signals of the plurality of transmitters to obtain a TDOA estimate.
  • the first path arrival time difference measurement method provided in this embodiment includes steps 401 to 407.
  • step 401 a positioning signal is received to acquire OFDM positioning symbol data.
  • 15 zeros can be interleaved between adjacent sample data.
  • a local time domain signal is generated according to the configuration of the transmitting end of the transmitting positioning signal, and 16 times interpolation is performed to generate a local oversampled signal.
  • step 403 a mathematical correlation calculation is performed on the OFDM positioning symbol data and the local oversampling signal in the positioning signal to obtain an oversampling cycle correlation function sequence.
  • step 404 trailing edge detection is performed on the sequence of oversampling cycle correlation functions.
  • FIG. 3b a schematic diagram of performing trailing edge detection and leading edge completion for a sequence of oversampling cycle correlation functions.
  • K is B in Figure 3b.
  • T2 [K, FFTSIZE*M), T2 is the trailing edge compensation search interval, if there is no K, then
  • T2 is the [BC] segment in Figure 3b.
  • step 405 a leading edge completion is performed on the sequence of the oversampling cycle correlation function, and with reference to Figure 3b, the BC terminal is copied to the EF segment.
  • step 406 an arrival time TOA estimate is performed.
  • step 407 the difference is calculated from the TOA estimates performed by the signals of the plurality of transmitters to obtain a TDOA estimate.
  • the first path arrival time difference measurement method provided by this embodiment includes:
  • step 501 a positioning signal is received to acquire OFDM positioning symbol data.
  • a local time domain signal is generated according to the configuration of the transmitting end of the positioning signal, and 16 times interpolation is performed to generate a local oversampling signal.
  • step 503 mathematical correlation calculation is performed on the OFDM positioning symbol data and the local oversampling signal in the positioning signal to obtain an oversampling cycle correlation function sequence.
  • step 504 trailing edge detection is performed on the sequence of oversampled loop correlation functions.
  • is obtained according to the model and is generally taken as 1.
  • T2 is the [AC] segment in Figure 3c.
  • the data obtaining module 601 is configured to acquire orthogonal frequency division multiplexing OFDM positioning symbol data and generate a local oversampling signal.
  • the oversampling cycle correlation function sequence processing module 602 is configured to calculate an oversampling cycle correlation function sequence according to the OFDM positioning symbol data and the local oversampling signal, and perform trailing edge detection on the oversampling cycle correlation function sequence The frontier is complete.
  • the estimation module 603 is configured to perform a first path arrival time TOA estimation for the oversampling cycle correlation function sequence after trailing edge detection and leading edge completion, and perform a first path arrival time difference TDOA estimation.
  • the data acquiring module 601 is configured to: receive a signal configuration of the transmitting end of the positioning signal, generate a local time domain signal according to the signal configuration, and generate a local oversampling signal according to the local time domain signal by using an interpolation method. .
  • FFTSIZE The value of FFTSIZE is determined in advance by the communication system, M is an interpolation multiple, a i is the OFDM symbol data after the insertion 0, b is the oversampled data, and n is an integer.
  • threshold 1 is the noise power threshold
  • CPSIZE is the cyclic prefix length
  • threshold 2 the value of threshold 2 is determined by the actual application.
  • T2 [K,FFTSIZE*M), T2 is the trailing edge compensation search interval; if there is no K, then

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本文实施例公开了一种首径到达时差测量方法和装置,该方法包括:接收端获取正交频分复用OFDM定位符号数据,并生成本地过采样信号;所述接收端根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,对所述过采样循环相关函数序列进行后沿检测和前沿补全;所述接收端对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。

Description

一种首径到达时差测量方法和装置
本申请要求在2017年08月18日提交中国专利局、申请号为201710713045.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本文涉及通信领域技术,例如一种首径到达时差测量方法和装置。
背景技术
4G和5G无线系统中采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),是一种基于快速傅里叶变换(Fast Fourier Transformation,FFT)的通信系统。为了避免OFDM符号间干扰的情况,4G和5G无线系统中引入了循环前缀(Cyclic Prefix,CP),循环前缀的长度主要根据基站的覆盖半径而定。
相关通信网定位有小区ID(Cell ID,CID)、接收信号强度指标(Receive Signal Strength Indicator,RSSI)、到达时差(Time Difference of Arrival,TDOA)等多种方法,但高精度定位一般采用TDOA方法。
相关的基于通信网的TDOA方法包括:在确定帧头后,界定OFDM符号,然后从界定的时间点按照CP长度,去掉固定的采样点数目,得到OFDM符号时域数据,然后直接进行数学序列相关运算,取首个最大相关峰作为到达时间(Time ofArrival,TOA),而后根据TOA得到TDOA,再依据TDOA进行计算得到接收端的位置信息。
这种方案在直射径环境下是没有问题的,但在室内等多径复杂环境下,相关方法不能避免多径带来的影响,会引入非常大的误差;而且,相关方法还受OFDM符号间干扰、采样周期等的影响,导致对接收端的定位精度无法满足室内环境高精度的要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的 保护范围。
本文实施例提供了一种首径到达时差测量方法和装置,能够满足室内环境高精度的定位要求。本文实施例提供了一种首径到达时差测量方法,包括:接收端获取正交频分复用OFDM定位符号数据,并生成本地过采样信号;所述接收端根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,对所述过采样循环相关函数序列进行后沿检测和前沿补全;所述接收端对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。
本文实施例还提供一种首径到达时差测量装置,包括:数据获取模块,设置为获取正交频分复用OFDM定位符号数据,并生成本地过采样信号;过采样循环相关函数序列处理模块,设置为根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,并对所述过采样循环相关函数序列进行后沿检测和前沿补全;估计模块,设置为对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。
本文实施例还提供一种移动终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现上述的首径到达时差测量方法。
本文实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有处理程序,所述处理程序被处理器执行时实现上述的首径到达时差测量方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本文实施例提供的首径到达时差测量方法的流程示意图;
图2为本文实施例一提供的首径到达时差测量方法的流程示意图;
图3a为本文实施例提供的首径到达时差测量方法中发射信号时域序列自相关函数的时延扩展长度的示意图;
图3b和图3c为本文实施例提供的首径到达时差测量方法中执行后沿检测和前沿补全的示意图;
图4为本文实施例二提供的首径到达时差测量方法的流程示意图;
图5为本文实施例三提供的首径到达时差测量方法的流程示意图;
图6为本文实施例提供的首径到达时差测量装置的结构示意图。
具体实施方式
下文中将结合附图对本文的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本文实施例提供一种首径到达时差测量方法,基于正交频分复用信号制式,如图1所示,包括步骤101,步骤102和步骤103。
在步骤101中,接收端获取正交频分复用OFDM定位符号数据,并生成本地过采样信号。
其中,发射端可以为定位基站,即用于发射定位信号的基站。接收端可以为定位终端,即用于接收基站发送的信号并进行定位的移动终端。接收端接收到定位信号后,可以提取其中的OFDM定位符号数据。
OFDM定位符号数据是指在4G和5G中去掉CP且只保留定位信号的OFDM符号数据,并且是已经去掉多径符号间干扰和去掉基站间符号干扰的OFDM信号。只保留定位信号是指对接收数据进行FFT变换,然后在频域去掉非定位信号,只剩下定位信号,然后进行快速傅里叶逆变换IFFT变换到时域。
所述定位信号的发射端的信号配置包括所述发射端生成所述定位信号所采用的参数。
本步骤中,所述接收端根据所述信号配置在本地生成与所述发射端相同的时域发射信号序列,并对所述时域发射信号序列进行插值处理后,得到本地过采样信号。
插值方法包括但不限于线性插值、三次样条插值方法等。插值的倍数包括但不限于2倍,4倍,8倍,16倍,32倍。时域发射信号序列中,相邻两个数之间的插值个数为(插值的倍数减1)。过采样的本地数据也可以采用1倍过采样, 然后和接收到的OFDM定位符号数据进行数学相关运算,然后对进行数学相关运算得到的相关序列进行插值得到过采样循环相关函数序列。
与发射端相同的时域发射信号序列是指本地产生时域发射信号不带CP的序列,然后把后面循环前缀长度CPSIZE的数据删除,并移到序列的前面,形成与发射端相同的时域发射信号序列。
在步骤102中,所述接收端根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,并对所述过采样循环相关函数序列进行后沿检测和前沿补全。
其中,进行的计算为数学相关计算。
进行数学相关计算,获得过采样循环相关函数序列的过程可以包括:
在时域每两个相邻正交频分复用OFDM符号数据之间插入A个0,得到插0后的OFDM符号数据,其中A=插值倍数-1;
根据下式获得过采样循环相关函数序列x n
Figure PCTCN2018101050-appb-000001
其中,FFTSIZE的值由通信系统预先确定,M为插值倍数,a i所述插0后的OFDM符号数据,b为过采样数据,n为整数。
所述接收端对过采样循环相关函数序列进行后沿检测,确定所述过采样循环相关函数序列的后沿补偿搜索区间。后沿检测操作可以通过下述方式实现:
1)如果x FFTSIZE*M-CPSIZE<门限1,门限1为噪声功率门限,CPSIZE为循环前缀长度;
则L=FFTSIZE*M-CPSIZE*M;
否则
Figure PCTCN2018101050-appb-000002
x L≤门限1,
Figure PCTCN2018101050-appb-000003
x n>门限1;
Figure PCTCN2018101050-appb-000004
x k≤门限1,且
Figure PCTCN2018101050-appb-000005
Figure PCTCN2018101050-appb-000006
x n>门限1,R>门限2,且对
Figure PCTCN2018101050-appb-000007
x k≤门限1,门限2的值由实际应用确定,通常大于3;
T2=[K,FFTSIZE*M],T2为后沿补偿搜索区间,如果不存在K,则
Figure PCTCN2018101050-appb-000008
或者,2)从FFTSIZE*M的数据开始向前寻找;
Figure PCTCN2018101050-appb-000009
x k≤门限1,门限1为噪声功率门限,且对
Figure PCTCN2018101050-appb-000010
则x n>门限1;
T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间;如果不存在K,则
Figure PCTCN2018101050-appb-000011
或者,3)K=FFTSIZE*M-μ*CPSIZE
μ为预设值,可以在建模时获得,一般为1;T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间。
所述接收端进行相关函数前沿补全,将所述后沿补偿搜索区间内的函数数据平移到所述过采样循环相关函数序列的前端。
本步骤中,可以将x n n∈[0,FFTSIZE*M)的n∈T2区间的数据删掉,并将删除的数据移植到数列的前端,形成前沿补全后的所述过采样循环相关函数序列y n n∈[0,FFTSIZE*M)。
在步骤103中,所述接收端对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。
其中,所述接收端根据执行所述相关函数前沿补全处理后的所述过采样循环相关函数序列执行TOA估计,然后根据TOA估计结果再执行TDOA估计。其中执行TOA估计的操作包括但不限于:
Figure PCTCN2018101050-appb-000012
x k≤门限1,且
Figure PCTCN2018101050-appb-000013
Figure PCTCN2018101050-appb-000014
则y n>门限1,R>≥门限2,,且对
Figure PCTCN2018101050-appb-000015
y k≤门限1;
如果R<<signaltimesize,则被测定位信号的TOA为((k+1)+(k+R))/2,否则,被测定位信号的TOA为K+(signaltimesize/2),其中,signaltimesize为发射信号时域序列自相关函数的时延扩展长度。
所述signaltimesize为发射信号时域序列自相关函数的时延扩展长度,如图3a所示,31所示即为signaltimesize。其值可以根据实际建模获得,一般取自相关函数主峰宽度,如在20M LTE情况下,包括但不限于取3.6~4个TS.Ts为lte20M带宽下的采样周期,即30.72M频率的周期。
接收端可以对多个发射端的信号执行TOA估计并计算差值,得到首径到达时差TDOA估计。
例如,对至少4个接收的定位信号进行TOA测量,然后选择一个作为参考,其他至少3个TOA时间和选择的参考TOA时间做差,获得至少3个TDOA。随后,可以依据该至少3个TDOA确定位置信息。
本文实施例中在接收端本地生成过采样信号,并对该信号进行后沿检测和前沿补全,而后再进行TOA和TDOA估计,避免多径带来的影响,提高定位精度,即使在室内环境下,依然能够得到高精度的定位信息。
下面通过以下实施例描述本文实施例提供的首径到达时差测量方法。
在一实施例中,如图2所示,本实施例提供的首径到达时差测量方法包括步骤201至步骤207。
在步骤201中,接收定位信号,获取OFDM定位符号数据。
本步骤中,可以对相邻的采样数据间插15个0。
在步骤202中,根据发射定位信号的发射端的配置,生成本地时域信号,并进行16倍插值生成本地过采样信号。
在步骤203中,对定位信号中的OFDM定位符号数据和本地过采样信号进行数学相关计算,获得过采样循环相关函数序列。
在步骤204中,对过采样循环相关函数序列执行后沿检测。
参考图3b,图3b为对过采样循环相关函数序列执行后沿检测和前沿补全的示意图。
如果x FFTSIZE*M-CPSIZE<门限1,
则L=FFTSIZE*M-CPSIZE*M。
否则
Figure PCTCN2018101050-appb-000016
x L≤门限1,门限1为噪声计算得到的门限。
Figure PCTCN2018101050-appb-000017
x n>门限1,L为图3b中A。
Figure PCTCN2018101050-appb-000018
x k≤门限1,且
Figure PCTCN2018101050-appb-000019
Figure PCTCN2018101050-appb-000020
则x n>门限1,R>≥门限2,且对
Figure PCTCN2018101050-appb-000021
x k≤门限1。
门限2包括但不限于:门限2>=3。
K为图3b中的B。
T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间,如果不存在K,则
Figure PCTCN2018101050-appb-000022
T2为图3b中的[BC]段。
在步骤205中,对过采样循环相关函数序列执行前沿补全。
参考图3b,将BC端拷贝到EF段。
在步骤206中,执行达到时间TOA估计。
在步骤207中,根据多个发射端的信号执行的TOA估计计算差值,得到TDOA估计。
在一实施例中,如图4所示,本实施例提供的首径到达时差测量方法包括 步骤401至步骤407。
在步骤401中,接收定位信号,获取OFDM定位符号数据。
本步骤中,可以对相邻的采样数据间插15个0。
在步骤402中,根据发射定位信号的发射端的配置,生成本地时域信号,并进行16倍插值生成本地过采样信号。
在步骤403中,对定位信号中的OFDM定位符号数据和本地过采样信号进行数学相关计算,获得过采样循环相关函数序列。
在步骤404中,对过采样循环相关函数序列执行后沿检测。
参考图3b,其为对过采样循环相关函数序列执行后沿检测和前沿补全的示意图。
从FFTSIZE*M的数据开始,向前寻找。
Figure PCTCN2018101050-appb-000023
x k≤门限1,且对
Figure PCTCN2018101050-appb-000024
则x n>门限1。
K为图3b中的B。
T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间,如果不存在K,则
Figure PCTCN2018101050-appb-000025
T2为图3b中的[BC]段。
在步骤405中,对过采样循环相关函数序列执行前沿补全,参考图3b,将BC端拷贝到EF段。
在步骤406中,执行达到时间TOA估计。
在步骤407中,根据多个发射端的信号执行的TOA估计计算差值,得到TDOA估计。
在一实施例中,如图5所示,本实施例提供的首径到达时差测量方法包括:
在步骤501中,接收定位信号,获取OFDM定位符号数据。
本步骤中,对相邻的采样数据间插15个0。
在步骤502中,根据定位信号发射端的配置,生成本地时域信号,并进行16倍插值生成本地过采样信号。
在步骤503中,对定位信号中的OFDM定位符号数据和本地过采样信号进行数学相关计算,获得过采样循环相关函数序列。
在步骤504中,对过采样循环相关函数序列执行后沿检测。
参考图3c,其为对过采样循环相关函数序列执行后沿检测和前沿补全的示 意图。
K=FFTSIZE*M-μ*CPSIZE
μ根据建模获得,一般取1。
K为图3c中的A。
T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间。
T2为图3c中的[AC]段。
在步骤505中,对过采样循环相关函数序列执行前沿补全,参考图3c,将AC端拷贝到HF段。
在步骤506中,执行达到时间TOA估计。
在步骤507中,根据多个发射端的信号执行的TOA估计计算差值,得到TDOA估计。
基于与上述方法相同的技术构思,本文实施例还提供一种首径到达时差测量装置,基于正交频分复用信号制式,如图6所示,包括数据获取模块601、过采样循环相关函数序列处理模块602和估计模块603。该装置可以是例如移动终端,从基站等设备接收定位信号。数据获取模块601、过采样循环相关函数序列处理模块602和估计模块603可以通过终端内的处理器实现,或者通过终端内不同硬件分别实现。
数据获取模块601,设置为获取正交频分复用OFDM定位符号数据,并生成本地过采样信号。
过采样循环相关函数序列处理模块602,设置为根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,并对所述过采样循环相关函数序列进行后沿检测和前沿补全。
估计模块603,设置为对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时间TOA估计,并执行首径到达时差TDOA估计。
在一实施例中,所述数据获取模块601设置为:接收定位信号发射端的信号配置,根据所述信号配置生成本地时域信号,并采用插值方法根据所述本地时域信号生成本地过采样信号。
在一实施例中,所述定位信号的发射端的信号配置包括所述发射端生成所述定位信号所采用的参数;所述数据获取模块601设置为:根据所述信号配置在本地生成与所述发射端相同的时域发射信号序列,并对所述时域发射信号序 列进行插值,得到本地过采样信号。
在一实施例中,所述过采样循环相关函数序列处理模块602设置为通过下述方式获得过采样循环相关函数序列。
在时域每两个相邻正交频分复用OFDM符号数据之间插入A个0,得到插0后的OFDM符号数据,其中A=插值倍数-1;
根据下式获得过采样循环相关函数序列x n
Figure PCTCN2018101050-appb-000026
其中,FFTSIZE的值由通信系统预先确定,M为插值倍数,a i为所述插0后的OFDM符号数据,b为过采样数据,n为整数。
在一实施例中,所述过采样循环相关函数序列处理模块602还设置为:通过下述方式执行所述后沿检测,确定后沿补偿搜索区间。
1)如果x FFTSIZE*M-CPSIZE<门限1,门限1为噪声功率门限,CPSIZE为循环前缀长度;
则L=FFTSIZE*M-CPSIZE*M;
否则
Figure PCTCN2018101050-appb-000027
x L≤门限1,
Figure PCTCN2018101050-appb-000028
x n>门限1;
Figure PCTCN2018101050-appb-000029
x k≤门限1,且
Figure PCTCN2018101050-appb-000030
Figure PCTCN2018101050-appb-000031
x n>门限1,R>门限2,且对
Figure PCTCN2018101050-appb-000032
x k≤门限1,门限2的值由实际应用确定。
T2=[K,FFTSIZE*M],T2为后沿补偿搜索区间,如果不存在K,则
Figure PCTCN2018101050-appb-000033
或者,2)
Figure PCTCN2018101050-appb-000034
x k≤门限1,门限1为噪声功率门限,且对
Figure PCTCN2018101050-appb-000035
则x n>门限1;
T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间;如果不存在K,则
Figure PCTCN2018101050-appb-000036
或者,3)K=FFTSIZE*M-μ*CPSIZE
μ为预设值;T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间。
在一实施例中,所述过采样循环相关函数序列处理模块602还设置为通过下述方式执行所述前沿补全:
将x n n∈[0,FFTSIZE*M)的n∈T2区间的数据删掉,并移植到数列的前端,形成前沿补全后的所述过采样循环相关函数序列y n n∈[0,FFTSIZE*M)。
在一实施例中,所述估计模块603设置为:通过下述方式确定所述定位信 号的TOA。
Figure PCTCN2018101050-appb-000037
x k≤门限1,且
Figure PCTCN2018101050-appb-000038
Figure PCTCN2018101050-appb-000039
则y n>门限1,R>≥门限2,且对
Figure PCTCN2018101050-appb-000040
y k≤门限1。
如果R<<signaltimesize,则被测定位信号的TOA为((k+1)+(k+R))/2,否则,被测定位信号的TOA为K+(signaltimesize/2),其中,signaltimesize为发射信号时域序列自相关函数的时延扩展长度,根据得到的TOA执行TDOA估计。
在接收端本地生成过采样信号,并对该信号进行后沿检测和前沿补全,而后再进行TOA和TDOA估计,去除多径带来的影响,提高定位精度,即使在室内环境下,依然能够得到高精度的定位信息。
本文实施例还提供一种移动终端,包括上述实施例中首径到达时差测量装置。
本文实施例还提供一种移动终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现本文各实施例中所述的首径到达时差测量方法。
本文实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有处理程序,所述处理程序被处理器执行时实现本文各实施例中所述的首径到达时差测量方法。
计算机可读存储介质可以被配置在例如上述移动终端等设备中。
上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。在其他实施例中,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本文不限制于任何特定形式的硬件和软件的结合。

Claims (15)

  1. 一种首径到达时差测量方法,包括:
    接收端获取正交频分复用OFDM定位符号数据,并生成本地过采样信号;
    所述接收端根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,对所述过采样循环相关函数序列进行后沿检测和前沿补全;
    所述接收端对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。
  2. 根据权利要求1所述的首径到达时差测量方法,其中,所述生成本地过采样信号包括:
    所述接收端接收定位信号发射端的信号配置,根据所述信号配置生成本地时域信号,并采用插值方法根据所述本地时域信号生成本地过采样信号。
  3. 根据权利要求2所述的首径到达时差测量方法,其中,所述定位信号发射端的信号配置包括所述发射端生成定位信号所采用的参数;所述本地时域信号是所述接收端根据所述信号配置在本地生成的与所述发射端相同的时域发射信号序列。
  4. 根据权利要求1所述的首径到达时差测量方法,其中,所述接收端根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列包括:
    在时域每两个相邻正交频分复用OFDM定位符号数据之间插入A个0,得到插0后的OFDM定位符号数据,其中A=插值倍数-1;
    根据下式获得过采样循环相关函数序列x n
    Figure PCTCN2018101050-appb-100001
    其中,FFTSIZE的值由通信系统预先确定,M为插值倍数,a i为所述插0后的OFDM符号数据,b为本地过采样信号,n为整数。
  5. 根据权利要求4所述的首径到达时差测量方法,其中,所述对所述过采样循环相关函数序列进行后沿检测包括通过下述方式确定后沿补偿搜索区间:
    1)如果x FFTSIZE*M-CPSIZE<门限1,门限1为噪声功率门限,CPSIZE为循环前缀长度;
    则L=FFTSIZE*M-CPSIZE*M;
    否则
    Figure PCTCN2018101050-appb-100002
    Figure PCTCN2018101050-appb-100003
    Figure PCTCN2018101050-appb-100004
    Figure PCTCN2018101050-appb-100005
    Figure PCTCN2018101050-appb-100006
    R>门限2,且对
    Figure PCTCN2018101050-appb-100007
    x k≤门限1,门限2的值由实际应用确定;
    T2=[K,FFTSIZE*M],T2为后沿补偿搜索区间,如果不存在K,则
    Figure PCTCN2018101050-appb-100008
    或者,2)
    Figure PCTCN2018101050-appb-100009
    门限1为噪声功率,且对
    Figure PCTCN2018101050-appb-100010
    则x n>门限1;
    T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间;
    如果不存在K,则
    Figure PCTCN2018101050-appb-100011
    或者,3)K=FFTSIZE*M-μ*CPSIZE
    μ为预设值;
    T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间。
  6. 根据权利要求5所述的首径到达时差测量方法,其中,所述对所述过采样循环相关函数序列进行前沿补全包括:
    将所述后沿补偿搜索区间内的函数数据平移到所述过采样循环相关函数序列的前端,包括:
    将x n n∈[0,FFTSIZE*M)的n∈T2区间的数据删掉,并将删除的数据移植到数列的前端,形成前沿补全后的所述过采样循环相关函数序列y n n∈[0,FFTSIZE*M)。
  7. 根据权利要求6所述的首径到达时差测量方法,其中,所述执行首径到达时差TDOA估计包括:
    通过下述方式确定定位信号的首径到达时间TOA:
    Figure PCTCN2018101050-appb-100012
    Figure PCTCN2018101050-appb-100013
    Figure PCTCN2018101050-appb-100014
    则y n>门限1,R>≥门限2,,且对
    Figure PCTCN2018101050-appb-100015
    y k≤门限1;
    如果R<<signaltimesize,则被测定位信号的TOA为((k+1)+(k+R))/2,否则,被测定位信号的TOA为K+(signaltimesize/2),其中,signaltimesize为发射信号时域序列自相关函数的时延扩展长度;
    根据得到的TOA执行TDOA估计。
  8. 一种首径到达时差测量装置,包括:
    数据获取模块,设置为获取正交频分复用OFDM定位符号数据,并生成本地过采样信号;
    过采样循环相关函数序列处理模块,设置为根据所述OFDM定位符号数据和所述本地过采样信号计算得到过采样循环相关函数序列,对所述过采样循环相关函数序列进行后沿检测和前沿补全;
    估计模块,设置为对进行后沿检测和前沿补全之后的过采样循环相关函数序列执行首径到达时差TDOA估计。
  9. 根据权利要求8所述的首径到达时差测量装置,其中,所述数据获取模块设置为:
    接收定位信号发射端的信号配置,根据所述信号配置生成本地时域信号,并采用插值方法根据所述本地时域信号生成本地过采样信号。
  10. 根据权利要求8所述的首径到达时差测量装置,其中,所述过采样循环相关函数序列处理模块设置为通过下述方式获得过采样循环相关函数序列:
    在时域每两个相邻正交频分复用OFDM定位符号数据之间插入A个0,得到插0后的OFDM定位符号数据,其中A=插值倍数-1;
    根据下式获得过采样循环相关函数序列x n
    Figure PCTCN2018101050-appb-100016
    其中,FFT SIZE的值由通信系统预先确定,M为插值倍数,a i为所述插0后的OFDM符号数据,b为本地过采样信号,n为整数。
  11. 根据权利要求10所述的首径到达时差测量装置,其中,所述过采样循环相关函数序列处理模块还设置为:通过下述方式执行所述后沿检测,确定后沿补偿搜索区间:
    1)如果x FFTSIZE*M-CPSIZE<门限1,门限1为噪声功率门限,CPSIZE为循环前缀长度;
    则L=FFTSIZE*M-CPSIZE*M;
    否则
    Figure PCTCN2018101050-appb-100017
    Figure PCTCN2018101050-appb-100018
    Figure PCTCN2018101050-appb-100019
    Figure PCTCN2018101050-appb-100020
    Figure PCTCN2018101050-appb-100021
    R>门限2,且对
    Figure PCTCN2018101050-appb-100022
    x k≤门限1,门限2的值由实际应用确定;
    T2=[K,FFTSIZE*M],T2为后沿补偿搜索区间,如果不存在K,则
    Figure PCTCN2018101050-appb-100023
    或者,2)
    Figure PCTCN2018101050-appb-100024
    门限1为噪声功率门限,且对
    Figure PCTCN2018101050-appb-100025
    则 x n>门限1;
    T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间;
    如果不存在K,则
    Figure PCTCN2018101050-appb-100026
    或者,3)K=FFTSIZE*M-μ*CPSIZE
    μ为预设值;
    T2=[K,FFTSIZE*M),T2为后沿补偿搜索区间。
  12. 根据权利要求11所述的首径到达时差测量装置,所述过采样循环相关函数序列处理模块还设置为:通过下述方式执行所述前沿补全:
    将x n n∈[0,FFTSIZE*M)的n∈T2区间的数据删掉,并移植到数列的前端,形成前沿补全后的所述过采样循环相关函数序列y n n∈[0,FFTSIZE*M)。
  13. 根据权利要求12所述的首径到达时差测量装置,其中,所述估计模块设置为:
    通过下述方式确定定位信号的首径到达时间TOA:
    Figure PCTCN2018101050-appb-100027
    Figure PCTCN2018101050-appb-100028
    Figure PCTCN2018101050-appb-100029
    则y n>门限1,R>≥门限2,,且对
    Figure PCTCN2018101050-appb-100030
    y k≤门限1;
    如果R<<signaltimesize,则被测定位信号的TOA为((k+1)+(k+R))/2,否则,被测定位信号的TOA为K+(signaltimesize/2),其中,signaltimesize为发射信号时域序列自相关函数的时延扩展长度;
    根据得到的TOA执行TDOA估计。
  14. 一种移动终端,包括:
    存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现如权利要求1-7中任一项所述的首径到达时差测量方法。
  15. 一种计算机可读存储介质,所述计算机可读存储介质上存储有处理程序,所述处理程序被处理器执行时实现如权利要求1-7中任一项所述的首径到达时差测量方法。
PCT/CN2018/101050 2017-08-18 2018-08-17 一种首径到达时差测量方法和装置 WO2019034145A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18845653.7A EP3672179B1 (en) 2017-08-18 2018-08-17 Method and device for measuring time difference of arrival of first path

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710713045.7 2017-08-18
CN201710713045.7A CN109412990B (zh) 2017-08-18 2017-08-18 一种首径到达时差测量方法和装置

Publications (1)

Publication Number Publication Date
WO2019034145A1 true WO2019034145A1 (zh) 2019-02-21

Family

ID=65362776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101050 WO2019034145A1 (zh) 2017-08-18 2018-08-17 一种首径到达时差测量方法和装置

Country Status (3)

Country Link
EP (1) EP3672179B1 (zh)
CN (1) CN109412990B (zh)
WO (1) WO2019034145A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348540A (zh) * 2022-08-16 2022-11-15 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248310B (zh) * 2019-06-14 2020-10-13 华东师范大学 一种基于多路径建模的室内定位tdoa处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541078A (zh) * 2008-03-17 2009-09-23 华为技术有限公司 一种tdoa的估计方法、系统和装置
US20120082255A1 (en) * 2006-12-01 2012-04-05 Trueposition, Inc. Location of Wideband OFDM Transmitters with Limited Receiver Bandwidth
US20120269122A1 (en) * 2011-04-21 2012-10-25 Ki Dong Lee Method and apparatus for performing radio access with delay in a wireless communication system
CN102833849A (zh) * 2012-08-21 2012-12-19 华为技术有限公司 定位的方法和用户设备
CN104833952A (zh) * 2015-04-24 2015-08-12 电子科技大学 一种测定多个时频混叠信号到达时差的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075999B (zh) * 2007-05-31 2011-06-29 西安电子科技大学 室内ofdm系统toa训练符号构建及toa估计方法与装置
US8023595B2 (en) * 2007-08-17 2011-09-20 Ntt Docomo, Inc. Method and system of time-of-arrival estimation for ultra wideband multi-band orthogonal frequency division multiplexing signals
CN103163386B (zh) * 2013-02-28 2015-07-29 清华大学 一种脉冲信号到达时差的测量方法
CN104198991B (zh) * 2014-08-10 2017-01-25 北方工业大学 基于改进Sinc插值的小范围高精度定位方法
US10749778B2 (en) * 2015-07-28 2020-08-18 Acorn Technologies, Inc. Communication system determining time of arrival using matching pursuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120082255A1 (en) * 2006-12-01 2012-04-05 Trueposition, Inc. Location of Wideband OFDM Transmitters with Limited Receiver Bandwidth
CN101541078A (zh) * 2008-03-17 2009-09-23 华为技术有限公司 一种tdoa的估计方法、系统和装置
US20120269122A1 (en) * 2011-04-21 2012-10-25 Ki Dong Lee Method and apparatus for performing radio access with delay in a wireless communication system
CN102833849A (zh) * 2012-08-21 2012-12-19 华为技术有限公司 定位的方法和用户设备
CN104833952A (zh) * 2015-04-24 2015-08-12 电子科技大学 一种测定多个时频混叠信号到达时差的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3672179A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348540A (zh) * 2022-08-16 2022-11-15 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法
CN115348540B (zh) * 2022-08-16 2023-05-16 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法

Also Published As

Publication number Publication date
CN109412990B (zh) 2021-11-09
EP3672179A4 (en) 2021-06-16
CN109412990A (zh) 2019-03-01
EP3672179B1 (en) 2023-12-20
EP3672179A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
CN102457870A (zh) 主同步信号检测方法、装置及小区搜索方法、系统
CN108494518B (zh) 一种lte系统小区搜索方法
WO2015139590A1 (zh) 一种频偏估计和补偿的方法及装置
CN102413079A (zh) 3gpp-lte系统下行链路初始分数频偏估计方法
WO2017211212A1 (zh) 干扰源小区的定位方法、装置及基站
CN101510869A (zh) 一种整数频偏估计方法和装置
WO2015165354A1 (zh) 一种功率时延谱pdp估计方法及装置
WO2016070687A1 (zh) 一种同步估计方法和接收端设备
CN109428847B (zh) NB-IoT系统中下行次同步信号的检测与同步方法及装置
CN104254100A (zh) 一种上行定时提前量的测量方法
WO2019034145A1 (zh) 一种首径到达时差测量方法和装置
TW200926656A (en) Method and device for detecting a synchronization signal in a communication system
CN111342919B (zh) 一种信道的频域信道相关值估计的方法及设备
CN117320046B (zh) Crs搜索方法、lte时间对齐误差测定方法和用户设备
CN108989259B (zh) 无线综测仪窄带物理上行共享信道的时偏估计方法及系统
WO2021143644A1 (zh) 一种载波相位跟踪方法及装置
WO2017181352A1 (en) Timing offset estimation in an ofdm-based system by sinr measurement
CN108738124B (zh) 一种定时同步方法和装置
CN105187353B (zh) 一种ofdm系统中的符号定时同步方法及装置
CN110022604A (zh) 无线通讯装置及其时频同步方法
WO2013040772A1 (zh) 一种基于信道估计的定位方法及装置
WO2015096716A1 (zh) 一种信道估计方法和装置
US9860861B2 (en) Timing offset estimation in an OFDM-based system by SINR measurement
KR20090028727A (ko) 블록 송신 신호를 위한 프리엠블 구조의 설계 및 그것을 위한 수신기
KR20150025972A (ko) 무선 통신의 수신기를 위한 자기 타이밍 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845653

Country of ref document: EP

Effective date: 20200318