WO2015165167A1 - 基板蒸镀装置和蒸镀方法 - Google Patents

基板蒸镀装置和蒸镀方法 Download PDF

Info

Publication number
WO2015165167A1
WO2015165167A1 PCT/CN2014/084186 CN2014084186W WO2015165167A1 WO 2015165167 A1 WO2015165167 A1 WO 2015165167A1 CN 2014084186 W CN2014084186 W CN 2014084186W WO 2015165167 A1 WO2015165167 A1 WO 2015165167A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
evaporation source
evaporation
axis
movement
Prior art date
Application number
PCT/CN2014/084186
Other languages
English (en)
French (fr)
Inventor
马群
元裕太
贾敏慧
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/434,718 priority Critical patent/US20170152597A1/en
Publication of WO2015165167A1 publication Critical patent/WO2015165167A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Definitions

  • the present invention relates to the field of vapor deposition technology, and in particular to a substrate evaporation apparatus and a vapor deposition method.
  • OLED devices full name: Organic Light-Emitting Diode, Chinese name: organic light-emitting diode
  • evaporation is a key process, and OLED devices need to vaporize a photovoltaic film layer (metal material) and an organic film on a glass substrate. .
  • the evaporation source mainly has two kinds of evaporation sources and line evaporation sources. Since the temperature required for cathode vapor deposition of OLED devices is high, the industry generally uses a point evaporation source for evaporation. As shown in FIG. 1, in the evaporation process, the evaporation source 1 is placed in the upper open casing 2, the glass substrate 3 is placed on the upper part of the evaporation source, and the evaporation source 1 is fixed, according to the ion emission cosine law, If the glass substrate is relatively immobile, the substrate film after vapor deposition from the evaporation source is thick and thin in the middle. If the glass substrate moves simultaneously during the evaporation process, the thickness of the deposited film may be intermediate. Thin, peripheral thickness or irregular thickness distribution.
  • the glass substrate which is vapor-deposited by a point evaporation source has a poor uniformity of film thickness, which seriously affects the display effect.
  • the invention solves the problem that the film thickness of the prior art glass substrate is not uniform when vapor deposition is performed by using a point evaporation source.
  • the present invention provides a substrate evaporation apparatus, comprising: an evaporation source for performing vapor deposition on a substrate;
  • An X-axis moving mechanism for moving the evaporation source in the X-axis direction
  • a Y-axis moving mechanism for moving the evaporation source in the Y-axis direction
  • Z-axis moving mechanism for moving the evaporation source in the Z-axis direction.
  • the substrate evaporation apparatus further includes a controller, the controller being respectively connected to the X-axis moving mechanism, the Y-axis moving mechanism, and the Z-axis moving mechanism for controlling the evaporation source in X, ⁇ , The position and speed of the movement on the ⁇ axis.
  • the opening size of the ejection opening of the evaporation source is adjustable.
  • a baffle is provided at the injection port, and a lower end of the baffle is rotatably connected to an edge of the injection port, and the baffle can be outward with respect to a central axis of the injection port Or move inward to increase or decrease the opening of the injection port.
  • the baffle has a curved curved shape at an edge along the ejection opening.
  • the baffle is two pieces, respectively disposed on opposite sides of the injection port, and the two baffles are combined to form a port of eight bars; the baffle is opposite to the injection port. During the movement of the central axis outward or inward, the two baffles can slide relative to each other.
  • the invention also provides a substrate evaporation method, comprising:
  • the evaporation source movement trajectory is selected according to the measured thickness distribution of the film layer, and the film thickness of the substrate is adjusted by the movement of the evaporation source. If the distribution of the film on the substrate is thick in the middle and thin in the periphery, the movement path of the evaporation source on the X-axis and the Y-axis is controlled to make a circular motion; if the distribution of the film on the substrate is thin in the middle and thick around, Then controlling the movement trajectory of the evaporation source on the X-axis and the Y-axis to make a linear motion or a S-curve motion; if the membrane layer is irregularly distributed on the substrate, the evaporation source is controlled to perform a circular motion on the X-axis and the Y-axis. Movement combined with linear motion.
  • the opening size of the ejection opening of the evaporation source is simultaneously adjusted during the movement of the evaporation source.
  • the film thickness distribution of the substrate is not improved by the movement of the evaporation source, and the distance between the evaporation source and the substrate is adjusted by controlling the movement of the evaporation source on the Z axis.
  • the substrate evaporation device and the evaporation method provided by the invention are particularly suitable for a point evaporation source, the evaporation source is changed from static to mobile, and the movement trajectory of the evaporation source is set according to the thickness distribution of the film layer, so that the point evaporation source is evaporated. At the same time, it moves according to a certain trajectory, thereby solving the phenomenon of uneven film thickness. At the same time, since the distance between the substrate and the evaporation source is adjustable, the tempo time can be reduced and the material utilization can be improved by reducing the pitch.
  • FIG. 1 is a schematic diagram of evaporation of a conventional point evaporation source
  • Figure 2 is an exploded view of the vapor deposition device of the present invention
  • Figure 3 is a schematic structural view of an evaporation source of the present invention.
  • Figure 5 is a working principle diagram of the vapor deposition method 2 of the present invention
  • Fig. 6 is a schematic view showing the operation of the vapor deposition method 3 of the present invention.
  • a substrate evaporation apparatus of the present invention includes an evaporation source 10, an X-axis moving mechanism, a Y-axis moving mechanism, and a Z-axis moving mechanism.
  • the evaporation source 10 is used for vapor deposition on the substrate 20;
  • the X-axis moving mechanism is used to realize the movement of the evaporation source in the X-axis direction;
  • the Y-axis moving mechanism is used to realize the movement of the evaporation source in the Y-axis direction;
  • the Z-axis moving mechanism Used to achieve the movement of the evaporation source in the Z-axis direction.
  • the substrate evaporation apparatus of the present invention further includes a controller connected to the X-axis moving mechanism, the Y-axis moving mechanism, and the Z-axis moving mechanism, respectively, for controlling the movement of the evaporation source on the X, Y, and the x-axis Location and speed.
  • the X-axis moving mechanism includes an X-axis slide 31, an X-axis guide 32 and an X-axis drive motor respectively disposed on the X-axis slide 31, and the X-axis moving mechanism includes a X-axis slide 41 and is respectively disposed on the X-axis a cymbal guide rail 42 and a cymbal drive motor on the slider 41, the cymbal movement mechanism includes a cymbal slider 51, a cymbal guide rail 52 respectively disposed on the cymbal slider 51, and a cymbal drive motor, and the evaporation source 10 can be
  • the X-axis guide 32 is movably mounted on the x-axis guide 52
  • the X-axis slide 31 is movably mounted on the x-axis guide 42.
  • the x-axis drive motor is coupled to the evaporation source 10 via a cymbal drive mechanism to drive the evaporation source to move along the y-axis direction on the y-axis guide rail;
  • the X-axis drive motor is coupled to the y-axis slide 51 via the X-axis drive mechanism.
  • the driving x-axis slider 51 together with the evaporation source mounted thereon is along the driving X-axis slider 31 along with the x-axis slider 51 mounted on the X-axis slider 31 and the evaporation source 10 together with the evaporation source mounted thereon.
  • the crucible guide 42 is moved in the z-axis direction.
  • the X-axis, the ⁇ -axis or the ⁇ -axis transmission mechanism can be realized by, for example, a multi-gear transmission mechanism or a gear-and-pinion transmission structure.
  • the X-axis, ⁇ -axis or ⁇ -axis drive motor can be a stepper motor.
  • the X-axis moving mechanism, the y-axis moving mechanism and the y-axis moving mechanism can also be other structures to enable the movement of the evaporation source on the X, ⁇ , and ⁇ axes.
  • the opening size of the ejection opening 11 of the evaporation source 10 is adjustable.
  • spraying The opening of the opening 11 can be adjusted by: providing a baffle 60 at the ejection opening 11, the lower end of the baffle 60 being rotatably connected with the edge of the ejection opening 11, and the baffle 60 can be outward with respect to the central axis of the ejection opening 11 or Moving inward to increase or decrease the opening degree of the ejection opening 11, when the shutter 60 moves inward relative to the central axis of the ejection opening 11, the opening of the ejection opening 11 becomes small, when the shutter 60 is opposed to the ejection opening 11.
  • the opening of the ejection opening 11 becomes large as in the direction of the arrow in FIG.
  • the outward or inward movement of the baffle 60 relative to the central axis of the injection port 11 can be achieved, for example, by means of a hinge mechanism and/or a sliding rail mechanism.
  • the ejection direction of the ejection opening 11 may be, for example, perpendicular to the substrate, or the ejection direction of the ejection opening 11 may be at an angle with the substrate 3 to adjust the vapor deposition thickness.
  • the baffle has a curved curved shape at the edge along the ejection opening, which can better control the direction of vapor deposition steam and the shape of the vapor relative to the block-shaped baffle, so as to be vapor-deposited
  • the spray is more evenly hooked; on the other hand, the curved shape makes it easier to mount the baffle above the evaporation source.
  • the block-shaped baffle after evaporation, the film will be clearly divided on the substrate, the uniformity of the film thickness will be poor, and the curved baffle (flare type) can make the steam be a bell mouth. Shape emission, experiments show that film thickness uniformity will be better.
  • the baffle 60 is two pieces, which are respectively disposed on opposite sides of the injection port 11, and two baffles 60 are integrated into the bell mouth, as shown in FIG. 3; During the outward or inward movement of the central axis of the injection port 11, the two baffles 60 can be relatively slid by the sliding mechanism. After the positions of the two baffles 60 are adjusted, the connectors or the connectors can be used.
  • the latching member fixes the two baffles, and the plugging member and the latching member are disposed on the baffle plate, and have a plurality of adjusting points, and are fixed to the baffles of different opening sizes of the jetting ports.
  • the present invention also provides a vapor deposition method of a substrate evaporation apparatus according to the above aspect, which comprises:
  • the spacing is experimentally obtained.
  • the best uniformity of film thickness uniformity is generally 400-800 mm; and the ejection port of the evaporation source can be passed.
  • a baffle 60 at 11 to adjust the size of the opening The opening can be 5-30 mm.
  • the movement path of the evaporation source is selected, and the movement track of the evaporation source is preset in the controller, and the film thickness of the substrate is adjusted by controlling the movement track of the evaporation source.
  • the movement track of the evaporation source is preset in the controller, and the film thickness of the substrate is adjusted by controlling the movement track of the evaporation source.
  • the evaporation source 10 is controlled by the controller to perform circular motion on the X-axis and the Y-axis, and the Z-axis direction is fixed, that is, the appropriate X is set.
  • the Y coordinate adjusts the movement trajectory of the evaporation source 10 on the X-axis and the Y-axis, so that the evaporation source 10 makes a circular motion around the thin film layer (as shown by the arrow direction in FIG. 4) to compensate the insufficient thickness region, thereby
  • the film thickness of the substrate 20 is made uniform as shown in FIG.
  • the movement path of the evaporation source 10 on the X-axis and the Y-axis is controlled by the controller so that the line moves linearly, and the Z-axis direction is fixed, so that the evaporation source is made.
  • the controller 10 controls the movement of the evaporation source 10 in the combination of the circular motion and the linear motion on the X-axis and the Y-axis, and may select a circular motion or a linear motion as needed or The s-curve motion (as indicated by the arrow in Figure 6), the Z-axis direction of the process remains fixed, as shown in Figure 6.
  • the opening size of the ejection source of the evaporation source can be simultaneously adjusted, and the uniformity of the vapor deposition film thickness can be further achieved by adjusting the opening adjustment of the evaporation source and the adjustment of the movement trajectory.
  • the controller is controlled to slide the evaporation source on the Z-axis guide to adjust the distance between the evaporation source and the substrate. Moreover, by adjusting the distance between the substrate and the evaporation source, the tact time of the evaporation can be reduced and the utilization rate of the material can be improved.
  • the substrate evaporation apparatus and the vapor deposition method of the present invention are particularly suitable for a point evaporation source, the evaporation source is changed from stationary to moving, and the movement trajectory of the evaporation source is set according to the thickness distribution of the film layer, so that the point evaporation source is vapor-deposited. At the same time, it moves according to a certain trajectory, thereby solving the film thickness unevenness caused by the ion emission cosine law. At the same time, the distance between the substrate and the evaporation source can be adjusted and relatively flexible, and the tact time of the evaporation can be reduced and the utilization of the material can be improved by reducing the distance.
  • the above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements and substitutions without departing from the technical principles of the present invention. It should also be considered as the scope of protection of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及蒸镀技术领域,公开了一种基板蒸镀装置及蒸镀方法,该蒸镀方法包括:对基板进行预蒸镀并测量蒸镀后膜层的厚度分布情况,根据膜层厚度分布情况划分厚度区域;调节蒸发源和基板之间的间距;根据所测得的膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源的移动来调节基板的膜层厚度。本发明特别适用于点蒸发源,蒸发源由静止改为移动,并根据膜层的厚度分布情况设置蒸发源的运动轨迹,使点蒸发源在蒸镀的同时按一定轨迹运动,从而解决了膜厚不均现象。同时,由于基板和蒸发源之间的距离可调,可以通过减小该间距来减少节拍时间和提高材料的利用率。

Description

技术领域
本发明涉及蒸镀技术领域, 特别是涉及一种基板蒸镀装置和蒸镀方 法。
背景技术
在 OLED器件 (全称: Organic Light-Emitting Diode, 中文名: 有机 发光二极管)制造过程中, 蒸镀是关键的一个工艺, OLED器件需要在玻 璃基板上蒸镀光电薄膜层 (金属材料)和有机薄膜。
目前的蒸发源主要分点蒸发源和线蒸发源两种,由于 OLED器件阴极 蒸镀所需的温度较高, 业界一般都会采用点蒸发源来进行蒸镀。 如图 1所 示, 在蒸镀的过程中, 蒸发源 1置于上部开口的壳体 2内, 玻璃基板 3置 于蒸发源的上部, 蒸发源 1 固定不动, 根据离子发射余弦定律可知, 假如 玻璃基板也相对不动的话, 点蒸发源蒸镀后的基板薄膜中间厚、 周围薄, 假如玻璃基板在蒸镀的过程中同时移动的话,那么蒸镀后的薄膜的厚度则 有可能出现中间薄、 周边厚或者厚度分布不规则的情况。
综上, 现有采用点蒸发源进行蒸镀的玻璃基板, 其膜厚均一性较差, 严重影响了显示效果。
发明内容
本发明解决了现有技术玻璃基板在采用点蒸发源进行蒸镀时,膜厚不 均匀的问题。
为了解决上述技术问题, 本发明提供的一种基板蒸镀装置, 其包括: 蒸发源, 用于对基板进行蒸镀;
X轴移动机构, 用于实现蒸发源在 X轴方向的移动;
Y轴移动机构, 用于实现蒸发源在 Y轴方向的移动;
Z轴移动机构, 用于实现蒸发源在 Z轴方向的移动。
根据本发明的一个方面, 基板蒸镀装置还包括控制器, 所述控制器分 别与 X轴移动机构、 Y轴移动机构和 Z轴移动机构连接, 用于控制所述 蒸发源在 X、 Υ、 Ζ轴上移动的位置和速度。
根据本发明的一个方面, 所述蒸发源的喷射口的开口大小可调。
根据本发明的一个方面, 所述喷射口处设挡板, 所述挡板的下端与所 述喷射口的边沿可转动连接,所述挡板能够相对于喷射口的中心轴线向外 或向内移动以增大或缩小喷射口的开度。
根据本发明的一个方面,所述挡板在沿着所述喷射口的边沿处具有弯 曲的曲面形状。
根据本发明的一个方面, 所述挡板为两块, 分别设于所述喷射口相对 的两侧, 两块所述挡板围合成喇 P八口; 在所述挡板相对于喷射口的中心轴 线向外或向内移动的过程中, 两块所述挡板可相对滑动。
本发明还提供一种基板蒸镀方法, 其包括:
对基板进行预蒸镀并测量蒸镀后膜层的厚度分布情况,根据膜层厚度 分布情况划分厚度区域;
调节蒸发源和基板之间的间距;
根据所测得的膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源 的移动来调节基板的膜层厚度。如膜层在基板上的分布为中间厚、周围薄, 则控制蒸发源在 X轴和 Y轴上的运动轨迹使其做圆周运动; 如膜层在基 板上的分布为中间薄、 周围厚, 则控制蒸发源在 X轴和 Y轴上的运动轨 迹使其做直线运动或 S状曲线运动; 如膜层在基板上呈不规则分布, 则控 制蒸发源在 X轴和 Y轴上做圆周运动和直线运动相结合的运动。
根据本发明的一个方面, 在蒸发源的移动过程中, 同时调节蒸发源的 喷射口的开口大小。
根据本发明的一个方面 ,如通过蒸发源的移动还不能改善基板的膜层 厚度分布情况,则通过控制蒸发源在 Z轴上运动来调整蒸发源和基板之间 的距离。
本发明提供的基板蒸镀装置及蒸镀方法, 特别适用于点蒸发源, 蒸发 源由静止改为移动, 并根据膜层的厚度分布情况设置蒸发源的运动轨迹 , 使点蒸发源在蒸镀的同时按一定轨迹运动, 从而解决了膜厚不均现象。 同 时, 由于基板和蒸发源之间的距离可调, 可以通过减小该间距来减少节拍 时间和提高材料的利用率。
附图说明
图 1是现有点蒸镀源的蒸镀原理图;
图 2是本发明蒸镀装置的分解图;
图 3是本发明蒸发源的结构示意图;
图 4是本发明蒸镀方法一的工作原理图;
图 5是本发明蒸镀方法二的工作原理图; 图 6是本发明蒸镀方法三的工作原理图。
其中, 1、 蒸发源; 2、 壳体; 3、 玻璃基板; 10、 蒸发源; 1 1、 喷射 口; 20、 基板; 31、 X轴滑块; 32、 X轴导轨; 41、 Y轴滑块; 42、 Y轴导 轨; 51、 Z轴滑块; 52、 Z轴导轨; 60、 挡板。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细描述。以下实施 例用于说明本发明, 但不用来限制本发明的范围。
如图 2和图 4所示, 本发明的一种基板蒸镀装置, 其包括蒸发源 10、 X轴移动机构、 Y轴移动机构和 Z轴移动机构。 其中, 蒸发源 10用于对 基板 20进行蒸镀; X轴移动机构用于实现蒸发源在 X轴方向的移动; Y 轴移动机构用于实现蒸发源在 Y轴方向的移动; Z轴移动机构用于实现蒸 发源在 Z轴方向的移动。
本发明的基板蒸镀装置还包括控制器, 该控制器分别与 X轴移动机 构、 Y轴移动机构和 Z轴移动机构连接, 用于控制所述蒸发源在 X、 Y、 Ζ轴上移动的位置和速度。
优选地, X轴移动机构包括 X轴滑块 31、分别设于 X轴滑块 31上的 X轴导轨 32和 X轴驱动马达, Υ轴移动机构包括 Υ轴滑块 41、分别设于 Υ轴滑块 41上的 Υ轴导轨 42和 Υ轴驱动马达, Ζ轴移动机构包括 Ζ轴 滑块 51、 分别设于 Ζ轴滑块 51上的 Ζ轴导轨 52和 Ζ轴驱动马达, 蒸发 源 10可移动地安装在 Ζ轴导轨 52上, Ζ轴滑块 51可移动地安装 X轴导 轨 32上, X轴滑块 31可移动地安装在 Υ轴导轨 42上。 其中: Ζ轴驱动 马达通过 Ζ轴传动机构与蒸发源 10连接, 以驱动蒸发源在 Ζ轴导轨上沿 着 Ζ轴方向移动; X轴驱动马达通过 X轴传动机构与 Ζ轴滑块 51连接, 以驱动 Ζ轴滑块 51连同安装在其上的蒸发源一起在 X轴导轨 32上沿着 驱动 X轴滑块 31连同安装在 X轴滑块 31上的 Ζ轴滑块 51和蒸发源 10 一起在 Υ轴导轨 42上沿着 Υ轴方向移动。 其中, X轴、 Υ轴或 Ζ轴传动 机构例如可采用多齿轮传动机构或齿轮 -齿条传动结构等传动机构来实 现。 X轴、 Υ轴或 Ζ轴驱动马达可以是步进电机。
需要指出的, X轴移动机构、 Υ轴移动机构和 Ζ轴移动机构还可以为 其它结构, 以能够实现蒸发源在 X、 Υ、 Ζ轴上的运动为准。
如图 3所示, 蒸发源 10的喷射口 1 1的开口大小可调。 优选地, 喷射 口 11的开口调节方式可为: 在喷射口 11处设挡板 60, 该挡板 60的下端 与喷射口 11的边沿可转动连接, 挡板 60可相对于喷射口 11的中心轴线 向外或向内移动以增大或缩小喷射口 11的开度,当挡板 60相对于喷射口 11的中心轴线向内移动时, 喷射口 11的开口变小, 当挡板 60相对于喷 射口 11的中心轴线向外移动时, 如图 3中的箭头方向, 喷射口 11的开口 变大。 喷射口 11 的开口越大, 其喷射面积越大。 挡板 60相对于喷射口 11 的中心轴线的向外或向内移动例如可藉由铰链机构和 /或滑动导轨机构 等方式来实现。 喷射口 11的喷射方向例如可垂直于基板, 也可使喷射口 11的喷射方向与基板 3成一定的夹角以调节蒸镀厚度。
优选地,挡板在沿着喷射口的边沿处具有弯曲的曲面形状,相对于方 块状挡板, 这一方面可更好地控制蒸镀蒸汽的方向和蒸汽形状, 以使得蒸 镀时的喷射更加均勾;另一方面做成曲面形状可便于将挡板安装在蒸发源 上方。 再者, 用方块状挡板, 在蒸镀后, 薄膜在基板上会分块明显, 膜厚 均一性会不好, 而用曲面挡板(喇叭口型), 可使蒸汽以喇叭口的形状发 射, 实验证明膜厚均一性会更好。
为了方便喷射口的开口大小尺寸的调节, 挡板 60为两块, 分别设于 喷射口 11相对的两侧, 两块挡板 60围合成喇叭口, 如图 3所示; 在挡板 60相对于喷射口 11的中心轴线向外或向内移动的过程中,该两块挡板 60 可藉由滑动机构相对滑动, 在调节好该两块挡板 60的位置后, 可采用插 接件或卡扣件将这两块挡板进行固定, 该插接件和卡扣件设于挡板上, 具 有多个调节点, 适用于不同喷射口的开口大小的挡板固定。
本发明还提供一种上述技术方案的基板蒸镀装置的蒸镀方法, 其包 括:
S 1、对基板进行预蒸镀并测量蒸镀厚度后膜层的厚度分布情况,根据 膜层厚度分布情况划分厚度区域, 并进行标识; 对于点蒸发源而言, 其产 生的膜层厚度分布情况一般为以下三种情况: 中间厚、 周围薄; 中间薄、 周围厚; 不规则分布。
S2、调节蒸发源和基板之间的间距,对于蒸发源的喷射口的开口大小 可调的情况下, 可同时调节蒸发源的喷射口的开口大小; 具体地, 通过控 制蒸发源沿 Z轴导轨在 Z轴方向上进行移动, 来调节合适的蒸发源和基 板的间距, 该间距通过实验得出, 得出膜厚均一性最好的间距一般为 400-800mm;并可通过蒸发源的喷射口 11处的挡板 60来调节其开口大小 , 其开口可为 5-30mm。
S3、根据所测得的膜层厚度分布情况来选择蒸发源的移动轨迹, 通过 蒸发源的移动来调节基板的膜层厚度。
具体地: 根据步骤 S1所测得的膜层厚度分布情况, 来选择蒸发源移 动轨迹, 并在控制器中预先设置蒸发源的运动轨迹, 通过控制蒸发源的移 动轨迹来调节基板的膜层厚度, 以下为最常用到的几种情况。
当膜层在基板 20上的分布为中间厚、 周围薄时, 则通过控制器来控 制蒸发源 10在 X轴和 Y轴上做圆周运动, Z轴方向固定不动, 即设置合 适的 X、 Y坐标以调节蒸发源 10在 X轴和 Y轴上的运动轨迹, 使得蒸发 源 10在膜层较薄的周围做圆周运动 (如图 4中的箭头方向) , 以补偿厚 度不足的区域, 从而使得基板 20的膜厚均匀, 如图 4所示。
如膜层在基板 20上的分布为中间薄、 周围厚, 则通过控制器控制蒸 发源 10在 X轴和 Y轴的运动轨迹使其 #丈直线运动 , Z轴方向固定不动 , 使得蒸发源 10在膜层较薄的中间区域做直线运动(如图 5中的箭头方向) 或 S状曲线运动, 以补偿厚度不足的区域, 从而使得基板 20的膜厚均匀, 如图 5所示。
如膜层在基板 20上呈不规则分布,则通过控制器来控制蒸发源 10在 X轴和 Y轴做圆周运动和直线运动相结合的运动, 可根据需要选择做圆 周运动或是直线运动或 S状曲线运动(如图 6中的箭头方向) , 其过程 Z 轴方向依然保持固定不动, 如图 6所示。
在上述的蒸发源的移动过程中,可同时调节蒸发源的喷射源的开口大 小, 结合蒸发源的开口调节和移动轨迹的调节, 可进一步实现蒸镀膜厚的 均匀性。
如通过蒸发源的移动还不能改善基板的膜层厚度分布情况,则通过控 制器来控制蒸发源在 Z轴导轨上滑动以调整蒸发源和基板之间的距离。且 调节基板和蒸发源之间的距离 ,可以减少蒸镀的节拍时间和提高材料的利 用率。
本发明的基板蒸镀装置及蒸镀方法, 特别适用于点蒸发源, 蒸发源由 静止改为移动, 并根据膜层的厚度分布情况设置蒸发源的运动轨迹, 使点 蒸发源在蒸镀的同时按一定轨迹运动,从而解决了由离子发射余弦定律所 造成的膜厚不均现象。 同时,基板和蒸发源之间的距离可调节,相对灵活, 可以通过减 ' j、该间距来减少蒸镀的节拍时间和提高材料的利用率。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以 做出若干改进和替换, 这些改进和替换也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种基板蒸镀装置, 其特征在于, 其包括:
蒸发源, 用于对基板进行蒸镀;
X轴移动机构, 用于实现蒸发源在 X轴方向的移动;
γ轴移动机构, 用于实现蒸发源在 γ轴方向的移动;
z轴移动机构, 用于实现蒸发源在 Z轴方向的移动。
2、 如权利要求 1所述的基板蒸镀装置, 其特征在于, 还包括控制器, 所述控制器分别与 X轴移动机构、 Y轴移动机构和 Z轴移动机构连接, 用于控制所述蒸发源在 X、 Y、 Ζ轴上移动的位置和速度。
3、 如权利要求 1所述的基板蒸镀装置, 其特征在于, 所述蒸发源的 喷射口的开口大小可调。
4、 如权利要求 3所述的基板蒸镀装置, 其特征在于, 所述喷射口处 设挡板, 所述挡板的下端与所述喷射口的边沿可转动连接, 所述挡板能够 相对于喷射口的中心轴线向外或向内移动以增大或缩小喷射口的开度。
5、 如权利要求 4所述的基板蒸镀装置, 其特征在于, 所述挡板在沿 着所述喷射口的边沿处具有弯曲的曲面形状。
6、 如权利要求 4或 5所述的基板蒸镀装置, 其特征在于, 所述挡板 为两块, 分别设于所述喷射口相对的两侧, 两块所述挡板围合成喇叭口; 在所述挡板相对于喷射口的中心轴线向外或向内移动的过程中,两块所述 挡板可相对滑动。
7、 一种基板蒸镀方法, 其特征在于, 包括:
对基板进行预蒸镀并测量蒸镀后膜层的厚度分布情况,根据膜层厚度 分布情况划分厚度区域;
调节蒸发源和基板之间的间距;
根据所测得的膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源 的移动来调节基板的膜层厚度。
8、 如权利要求 7所述的基板蒸镀方法, 其特征在于, 根据所测得的 膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源的移动来调节基板 的膜层厚度包括: 如膜层在基板上的分布为中间厚、 周围薄, 则控制蒸发 源在 X轴和 Υ轴上的运动轨迹使其 #丈圆周运动。
9、 如权利要求 7所述的基板蒸镀方法, 其特征在于, 根据所测得的 膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源的移动来调节基板 的膜层厚度包括: 如膜层在基板上的分布为中间薄、 周围厚, 则控制蒸发
10、 如权利要求 7所述的基板蒸镀方法, 其特征在于, 根据所测得的 膜层厚度分布情况来选择蒸发源移动轨迹,通过蒸发源的移动来调节基板 的膜层厚度包括: 如膜层在基板上呈不规则分布, 则控制蒸发源在 X轴 和 Y轴上做圆周运动和直线运动相结合的运动。
11、 如权利要求 7-10任一项所述的基板蒸镀方法, 其特征在于, 在 蒸发源的移动过程中 , 同时调节蒸发源的喷射口的开口大小。
12、 如权利要求 7-10任一项所述的基板蒸镀方法, 其特征在于, 如通过蒸发源的移动还不能改善基板的膜层厚度分布情况, 则通过控 制蒸发源在 Z轴上运动来调整蒸发源和基板之间的距离。
PCT/CN2014/084186 2014-04-29 2014-08-12 基板蒸镀装置和蒸镀方法 WO2015165167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/434,718 US20170152597A1 (en) 2014-04-29 2014-08-12 Substrate evaporation-coating device and evaporation-coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410177653.7 2014-04-29
CN201410177653.7A CN103938161A (zh) 2014-04-29 2014-04-29 基板蒸镀装置和蒸镀方法

Publications (1)

Publication Number Publication Date
WO2015165167A1 true WO2015165167A1 (zh) 2015-11-05

Family

ID=51186023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084186 WO2015165167A1 (zh) 2014-04-29 2014-08-12 基板蒸镀装置和蒸镀方法

Country Status (3)

Country Link
US (1) US20170152597A1 (zh)
CN (1) CN103938161A (zh)
WO (1) WO2015165167A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
EP3268507B1 (en) * 2015-03-11 2019-01-09 Essilor International Vacuum deposition method
CN104911548B (zh) * 2015-06-30 2017-05-03 合肥鑫晟光电科技有限公司 一种真空蒸镀装置及蒸镀方法
CN105401125B (zh) * 2015-12-15 2018-09-04 深圳市华星光电技术有限公司 用于有机电激光显示的基板的蒸镀方法和蒸镀装置
CN105861991B (zh) * 2016-04-01 2019-01-18 京东方科技集团股份有限公司 一种线性加热源
CN106987810A (zh) * 2017-05-24 2017-07-28 昆山国显光电有限公司 蒸镀坩埚热场控制装置及蒸镀系统
CN109642314A (zh) * 2017-06-28 2019-04-16 深圳市柔宇科技有限公司 成膜设备及成膜方法
CN108342694B (zh) * 2018-01-31 2020-01-31 昆山国显光电有限公司 蒸镀方法及蒸镀装置
CN108823538A (zh) * 2018-08-22 2018-11-16 北京铂阳顶荣光伏科技有限公司 蒸镀设备及蒸镀方法
CN111455342A (zh) * 2019-01-18 2020-07-28 北京铂阳顶荣光伏科技有限公司 蒸发镀膜设备、蒸发镀膜系统及蒸发镀膜控制方法
CN110739285A (zh) * 2019-10-30 2020-01-31 北京工业大学 硅基金属中间层化合物半导体晶圆的结构及制备方法
CN111041441B (zh) * 2019-12-28 2021-04-13 中国科学院长春光学精密机械与物理研究所 一种均匀镀膜方法、镀膜设备及计算机可读存储介质
CN111394698A (zh) * 2020-05-06 2020-07-10 贵州省高新光电材料及器件研究院有限公司 一种均匀镀膜的方法
CN112501562B (zh) * 2020-11-30 2022-02-11 深圳恒泰克科技有限公司 一种多源的电子束蒸发镀膜装置及膜厚均匀性修正方法
CN113512700A (zh) * 2021-04-26 2021-10-19 睿馨(珠海)投资发展有限公司 一种梯度膜层的制备方法
CN215668183U (zh) * 2021-10-09 2022-01-28 华能新能源股份有限公司 一种蒸发镀膜设备及蒸发镀膜挡板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550568A (zh) * 2003-04-25 2004-12-01 ��ʽ����뵼����Դ�о��� 制造装置和发光装置
CN1621555A (zh) * 2003-04-10 2005-06-01 株式会社半导体能源研究所 掩模、容器和制造装置
KR100767036B1 (ko) * 2006-05-24 2007-10-12 세메스 주식회사 노즐부를 구비한 증발원
KR20080004816A (ko) * 2006-07-06 2008-01-10 세메스 주식회사 높이 조절 가능형 증발원
CN102959121A (zh) * 2010-08-30 2013-03-06 夏普株式会社 蒸镀方法、蒸镀装置以及有机el显示装置
US20130164437A1 (en) * 2011-12-22 2013-06-27 Semiconductor Energy Laboratory Co., Ltd. Film Formation Apparatus and Film Formation Method
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309269B2 (en) * 2002-04-15 2007-12-18 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
US20040040504A1 (en) * 2002-08-01 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
CN100519827C (zh) * 2002-11-08 2009-07-29 独立行政法人产业技术综合研究所 衬底上薄膜的制作方法
CN103194724B (zh) * 2013-04-08 2015-08-19 苏州大学 蒸镀遮罩、蒸镀系统及材料的提纯方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621555A (zh) * 2003-04-10 2005-06-01 株式会社半导体能源研究所 掩模、容器和制造装置
CN1550568A (zh) * 2003-04-25 2004-12-01 ��ʽ����뵼����Դ�о��� 制造装置和发光装置
KR100767036B1 (ko) * 2006-05-24 2007-10-12 세메스 주식회사 노즐부를 구비한 증발원
KR20080004816A (ko) * 2006-07-06 2008-01-10 세메스 주식회사 높이 조절 가능형 증발원
CN102959121A (zh) * 2010-08-30 2013-03-06 夏普株式会社 蒸镀方法、蒸镀装置以及有机el显示装置
US20130164437A1 (en) * 2011-12-22 2013-06-27 Semiconductor Energy Laboratory Co., Ltd. Film Formation Apparatus and Film Formation Method
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法

Also Published As

Publication number Publication date
US20170152597A1 (en) 2017-06-01
CN103938161A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015165167A1 (zh) 基板蒸镀装置和蒸镀方法
JP4286496B2 (ja) 蒸着装置及び薄膜作製方法
EP1803836B1 (en) Evaporation source and method of depositing thin film using the same
JP6513201B2 (ja) 材料堆積装置、真空堆積システム、及び材料堆積方法
WO2017067302A1 (zh) 蒸镀设备及蒸镀方法
US9150952B2 (en) Deposition source and deposition apparatus including the same
US20160010203A1 (en) Vacuum evaporation device
JP2014522914A (ja) 調整可能なマスク
WO2017173875A1 (zh) 一种线性蒸发源、蒸发源系统及蒸镀装置
US20160122866A1 (en) Evaporation system and evaporation method
US20170067144A1 (en) Vacuum evaporation source apparatus and vacuum evaporation equipment
KR20070012314A (ko) 유기 재료용 증발원 및 유기 증착 장치
TWI456080B (zh) 遮罩組件及使用其之有機氣相沉積裝置與熱蒸鍍裝置
TW201805455A (zh) 真空沈積腔室
KR20120113283A (ko) 성막장치 및 성막방법
KR101664187B1 (ko) 스퍼터링 장치를 이용한 증착 방법
US20210328147A1 (en) Carrier for supporting a substrate or a mask
KR102144790B1 (ko) 리니어 증착유닛 및 이를 포함하는 리니어 증착장치
KR101325481B1 (ko) 패턴 형성이 가능한 증착장치
US20130228121A1 (en) Adjustable mask for use in optical coating process
KR20170141230A (ko) 증착률을 측정하기 위한 방법 및 증착률 제어 시스템
TWI816883B (zh) 蒸鍍裝置
TWI835440B (zh) 蒸鍍裝置和蒸鍍方法
JP2014152365A (ja) 真空蒸着装置
CN108342694B (zh) 蒸镀方法及蒸镀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14434718

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC 8EPO FORM 1205A DATED 29-03 -2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 14890859

Country of ref document: EP

Kind code of ref document: A1