WO2015163734A1 - 보호층을 갖는 유기소재 - Google Patents
보호층을 갖는 유기소재 Download PDFInfo
- Publication number
- WO2015163734A1 WO2015163734A1 PCT/KR2015/004134 KR2015004134W WO2015163734A1 WO 2015163734 A1 WO2015163734 A1 WO 2015163734A1 KR 2015004134 W KR2015004134 W KR 2015004134W WO 2015163734 A1 WO2015163734 A1 WO 2015163734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic material
- ionic liquid
- purified
- sublimation
- purification
- Prior art date
Links
- 239000011368 organic material Substances 0.000 title claims abstract description 342
- 239000011241 protective layer Substances 0.000 title abstract description 6
- 239000002608 ionic liquid Substances 0.000 claims abstract description 216
- 238000000746 purification Methods 0.000 claims description 114
- 238000000859 sublimation Methods 0.000 claims description 103
- 230000008022 sublimation Effects 0.000 claims description 103
- 238000000034 method Methods 0.000 claims description 63
- 239000012535 impurity Substances 0.000 claims description 49
- 150000001450 anions Chemical class 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 6
- 239000007790 solid phase Substances 0.000 claims description 5
- 239000007792 gaseous phase Substances 0.000 claims description 2
- 239000002052 molecular layer Substances 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 230000000903 blocking effect Effects 0.000 abstract description 3
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 88
- 239000000463 material Substances 0.000 description 63
- 239000007788 liquid Substances 0.000 description 37
- 230000008569 process Effects 0.000 description 25
- 239000007787 solid Substances 0.000 description 25
- 238000011068 loading method Methods 0.000 description 24
- 238000001953 recrystallisation Methods 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 17
- 238000002156 mixing Methods 0.000 description 15
- 239000012159 carrier gas Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 239000011261 inert gas Substances 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000007670 refining Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000011084 recovery Methods 0.000 description 9
- 238000002061 vacuum sublimation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000009834 vaporization Methods 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000013014 purified material Substances 0.000 description 7
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- LRESCJAINPKJTO-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium Chemical compound CCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F LRESCJAINPKJTO-UHFFFAOYSA-N 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- VJGZHAZVCRGHQN-UHFFFAOYSA-N 1-N-(2-methylphenyl)-2-N,2-N-diphenylbenzene-1,2-diamine Chemical compound CC1=C(C=CC=C1)NC1=C(C=CC=C1)N(C1=CC=CC=C1)C1=CC=CC=C1 VJGZHAZVCRGHQN-UHFFFAOYSA-N 0.000 description 1
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- QNXWZWDKCBKRKK-UHFFFAOYSA-N 2-methyl-n-[4-[4-(n-(2-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C(=CC=CC=1)C)C1=CC=CC=C1 QNXWZWDKCBKRKK-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- FIMQDWPAUNOAIR-UHFFFAOYSA-N N-benzyl-N-[4-[4-[benzyl(naphthalen-1-yl)amino]phenyl]phenyl]naphthalen-1-amine Chemical compound C1(=CC=CC2=CC=CC=C12)N(C1=CC=C(C=C1)C1=CC=C(N(CC2=CC=CC=C2)C2=CC=CC3=CC=CC=C23)C=C1)CC1=CC=CC=C1 FIMQDWPAUNOAIR-UHFFFAOYSA-N 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical class C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/311—Purifying organic semiconductor materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the present invention relates to an organic material, and more particularly, to purify an organic material using an ionic liquid for high purity of the organic material, or to coat the surface of the purified organic material with an ionic liquid, thereby providing a protective layer on the surface. It relates to an organic material having.
- An organic EL device consists of several thin organic thin film layers between a large work function and a transparent anode and a low work function cathode metal.
- the emission principle is to inject holes from the anode electrode into the organic layer when voltage is applied to the device in the forward direction.
- In the cathode electrons are injected to recombine in the emission layer to emit light.
- Organic EL has all the high quality panel characteristics required in the information age, such as low power consumption, wide wide viewing angle, high speed response speed, and wide driving temperature range. It has the advantage that you can expect.
- the purity of organic materials is a factor that affects the luminescence properties of organic EL devices. If impurities are mixed in the organic material, the impurities become traps of carriers or cause quenching, and the luminous intensity and luminous efficiency are lowered. Therefore, it is necessary to purify the organic material to remove impurities.
- the organic material is subjected to a purification process using a chemical method after material synthesis, and the chemical purification process may include recrystallization, distillation, and column chromatography.
- This chemical purification process can increase the purity of the target compound to 99% or more.
- Recrystallization using a solvent has the advantage that the organic material can be purified in large quantities, but there is a disadvantage that the solvent tends to enter the organic crystal because the solvent is used. That is, there is a problem in that the solvent contained in the organic crystal acts as an impurity to lower the luminescence properties.
- HPLC High Performance Liquid Chromatography
- the organic light emitting material is usually purified using a sublimation purification method.
- Sublimate refers to the transition between solid and gas phases that occurs at temperatures and pressures below the triple point in phase equilibrium. Even if the material is pyrolyzed when heated at normal pressure, it is not decomposed even at a relatively high temperature at a low pressure below the triple point.
- the sublimation apparatus which can control the temperature gradient using this property, the operation of heating the synthesized material and separating the sublimation point from other impurities without decomposing the material is called vacuum sublimation method.
- the vacuum sublimation method is a pure physical method and does not depend on the use of auxiliary reagents or other chemical methods, it is known to be useful for the purification of organic materials for organic EL devices because it has the advantage of high purity purification without contamination of samples. .
- the ultra high purity purification method of organic materials which is widely used to date is a vacuum train sublimation purification method.
- a temperature gradient is formed by dividing a chamber in a state close to a vacuum in a long tube form into a plurality of heating zones, and heating them inclined from high temperature to low temperature for each heating zone.
- a method of taking only the material deposited in a constant heating region is adopted.
- the heating zone is divided into 3 to 9 zones.
- the method is simply a high temperature, a medium temperature, and a low temperature method.
- the heating temperature is set within the temperature gradient range of each area in addition to the area in which the sample is taken.
- the sample loading region is set opposite the vacuum pump.
- the initial chamber pressure is in the range of 10 -2 to 10 -6 torr, and the pressure at the side of the carrier gas is maintained in the range of 0.1 to several torr, although it varies depending on the characteristics of the material.
- Adjust The carrier gas uses inert, high purity nitrogen gas or argon gas.
- the loading of the sample should not exceed half of the tube diameter, preferably to allow the transport of carrier gas.
- a boat-shaped loading mechanism may be used.
- the purpose of using a carrier gas in the conventional vacuum sublimation purification method is to improve the flow of a sample in a vacuum sublimation state. That is, when there is no carrier gas near the vacuum, the flow of sublimed sample molecules is not good, and solid particles are deposited on the wall of the region too close to the sample loading region. Therefore, in the conventional vacuum sublimation purification process, using a carrier gas is a basic process condition.
- Carrier gases not only play a role in this process, but also overload the equipment when a large amount of sample is loaded, causing a part of the sublimed sample to contaminate the vacuum pump. Even if a trap device for preventing such a phenomenon is installed in a high capacity structure, the performance of the vacuum pump is still degraded.
- Another disadvantage of the conventional vacuum sublimation purification method is the scattering phenomenon during vacuum venting.
- the pressure is brought to normal pressure by placing nitrogen gas into the chamber.
- scattering may occur between samples in which the purification process is completed in the chamber. This phenomenon is further aggravated when both the glass tubes for purification (or quartz tubes) are open, which leads to contamination of the already purified material.
- the sublimation refining method has the advantage of using the difference in the sublimation point of the organic material to refine the raw material into a high purity organic material, while causing various problems as follows.
- the yield of the final purified material compared to the starting material is very low, and contaminates the vacuum pump.
- the inventors researched and developed the organic material purification technology using the ionic liquid which can easily purify and produce the organic material by using the stable ionic liquid as a liquid filter even in vacuum, thereby protecting the surface of the purified organic material. It was confirmed that a layer was formed.
- the present invention provides an organic material having a protective layer on its surface by purifying the organic material using an ionic liquid for high purity of the organic material, or by coating the surface of the purified organic material with the ionic liquid.
- an organic material having a protective layer on its surface by purifying the organic material using an ionic liquid for high purity of the organic material, or by coating the surface of the purified organic material with the ionic liquid.
- the organic material according to the present invention for achieving the above object is characterized in that the surface of the purified organic material is protected by an ionic liquid.
- the organic material according to the present invention for achieving the above object is characterized in that the surface of the purified organic material is protected by a component due to the ionic liquid.
- the organic material according to the present invention for achieving the above object is characterized in that the surface of the purified organic material is protected by ions constituting the ionic liquid.
- the organic material is characterized in that it is produced by dissolving the organic material for OLED containing impurities in the ionic liquid and recrystallization.
- the organic material for OLED containing the impurity is melted, vaporized or sublimed to be dissolved in the ionic liquid.
- the organic material of the solid, liquid or gaseous phase for the OLED containing the impurity is dissolved in an ionic liquid.
- the surface of the organic material is characterized by being protected by anion (anion) of the chemically bonded single molecule layer.
- the purified organic material is characterized in that the organic material for the OLED containing impurities are purified by the sublimation purification method.
- the present invention purifies the organic material using an ionic liquid for high purity of the organic material, or by coating the surface of the purified organic material with an ionic liquid to form a protective layer on the surface, the purified organic material in the air
- the organic material of the present invention has the advantage that the components due to the ionic liquid to protect the surface can be completely removed through the method of heat treatment or impinge the energy particles do not have any adverse effect in the device process.
- FIG. 1 is a conceptual diagram showing the configuration of the organic material purification apparatus using an ionic liquid according to a first embodiment of the present invention
- FIGS. 2 and 3 are an exploded perspective view and a combined perspective view showing the configuration of the vertical type organic material purification apparatus using the ionic liquid according to the second embodiment of the present invention
- FIG 4 is a perspective view of the cut portion of the organic material purification apparatus shown in Figure 2,
- FIG. 5 is a perspective view of a portion of the organic material purification apparatus having a modification of the collecting means shown in FIG.
- FIG. 6 is a perspective view of a cutout of a portion of an organic material purifying apparatus having another modified example of the collecting means illustrated in FIG. 2;
- FIG. 7 is a conceptual diagram showing the configuration of the horizontal type organic material purification apparatus using an ionic liquid according to a third embodiment of the present invention.
- FIG. 8 is a conceptual diagram showing the configuration of the spray type organic material purification apparatus using an ionic liquid according to a fourth embodiment of the present invention.
- FIG. 9 is a conceptual diagram showing the configuration of the roll-type organic material purification apparatus using an ionic liquid according to a fifth embodiment of the present invention.
- FIG. 10 is a schematic block diagram of an apparatus for refining a liquid organic material using an ionic liquid according to a sixth embodiment of the present invention.
- FIG. 11 is a schematic block diagram of an apparatus for purifying a gaseous organic material using an ionic liquid according to a seventh embodiment of the present invention.
- 12a to 12c is a plan view, a front view and a side view for manufacturing a horizontal organic material purification apparatus, respectively,
- FIG. 13 is a real photograph of a horizontal type organic material purifying apparatus manufactured according to the schematic shown in FIG. 12.
- 14A and 14B are graphs illustrating changes in Raman PL characteristics according to atmospheric exposure time for HTL materials before and after purification through the horizontal organic material purification apparatus shown in FIG. 13.
- 15A and 15B are graphs of changes in PL characteristics according to atmospheric exposure time for HTL materials before and after purification through the horizontal organic material purification apparatus illustrated in FIG. 13,
- 16a to 16d are SEM (x 1k) photographs showing the change in surface shape according to the atmospheric exposure time for the HTL material before and after purification through the horizontal organic material purification apparatus shown in FIG. 13;
- 17 is a graph of XPS showing the characteristics of the purified organic material through the horizontal organic material purification apparatus shown in FIG.
- Ionic liquids are salt-like substances consisting of ionic bonds of cations and anions. They exist in the liquid state below 100 ° C, are stable liquids even at high temperatures, and the vapor pressure is close to zero. It is called 'and receives much attention as an environmentally friendly solvent.
- the ionic liquid can be dissolved in a wide range of inorganic, organic, polymeric substance, hydrophobicity, solubility, viscosity, it is possible to easily change the physical and chemical properties, such as density bulriwoomyeo to as "Designer Solvent", in theory, 10 or 18 kinds of Synthesis is possible and has unlimited potential as a solvent.
- the ionic liquid not only exhibits various characteristics of the conventional organic solvent but also has a great advantage of selecting and synthesizing a solvent suitable for a user's purpose.
- ionic liquids are versatile 'designer solvents' because they can easily change physicochemical properties such as non-volatile, non-flammable, thermal stability, high ionic conductivity, electrochemical stability, and high boiling point by changing the structure of cation and anion. Is in the spotlight. These ionic liquids can increase the activity and stability of enzymes, can be easily realized in the separation process, and are desirable in terms of environmental and economical aspects. In the future, ionic liquids can be widely used in various fields. Thi Phuong Thuy Pham, Chul-Woong Cho, Yeoung-Sang Yun, "Environmental fate and toxicity of ionic liquids: A review", Water Research, 44, 2010, pp.352-372 )
- the ionic liquid according to this embodiment is 1-butyl-3-methyllimidazorium bis (trifluoromethyl sulfonyl) imide of formula (1) (BMIM) TFSI) or 1-octyl-3-methyllimidazorium bis (trifluoromethyl sulfonyl) imide (1-Octyl-3-methylimidazorium bis (trifluoromethyl sulfonyl) imide) of formula 2 (OMIM TFSI) Can be.
- BMIM 1-butyl-3-methyllimidazorium bis (trifluoromethyl sulfonyl) imide
- 1-octyl-3-methyllimidazorium bis (trifluoromethyl sulfonyl) imide (1-Octyl-3-methylimidazorium bis (trifluoromethyl sulfonyl) imide) of formula 2 (OMIM TFSI)
- 1-ethyl-3-methyllimidazorium bis (trifluoromethyl sulfonyl) imide (1-Etyl-3-methylimidazorium bis (trifluoromethyl sulfonyl) imide) (EMIM TFSI) may be used.
- ionic liquids are non-volatile organic solvents, which are faster in supersaturation in the process of repeating dissolution-recrystallization of organic substances and impurities in the ionic liquid. Due to the mechanism in which the arriving organic material is first recrystallized, it can be used to purify and recrystallize various organic materials.
- BMIM TFSI, OMIM TFSI, and EMIM TFSI include low melting point, low vapor pressure, nonflammable, consist of organic molecular ions, and negative-positive ion combinations. Controllable properties by combinations of anions and cations.
- the ionic liquid according to this embodiment is used to purify and recrystallize an organic material.
- the ionic liquid is stable in the liquid phase even at 100 to 120 ° C. and 10 ⁇ 7 Torr, and can be used as a solvent even in a vacuum process.
- the core materials constituting the OLED can be divided into charge transport material (hole injection layer, hole transport layer, electron injection layer, electron transport layer) and light emitting material (fluorescent material, phosphorescent material and respective dopants).
- charge transport material hole injection layer, hole transport layer, electron injection layer, electron transport layer
- light emitting material fluorescent material, phosphorescent material and respective dopants.
- the hole transport materials include NPB (N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) -benzidine) and TPD (N, N'-Bis- (2-methylphenyl) -N, N'-bis (phenyl) -benzidin), NPD (N, N'-Di (naphthalen-1-yl) -N, N'-dibenzylbenzidine), CuPc (Copper Phthalocyanine), MTDATA (4,4 ', 4' '-tris (2-methylphenylamino) triphenylamine) and the like, and electron transporting materials include Alq3 (Tri- (8-hydroxy-chinolinato) -aluminium) and DTVBi (4,4-Bis (2,2-diphenyethen-1-yl) -diphenyl) and the like, and the light emitting materials include Alq3, coumarine derivatives, quinacridone
- NPB material can be used as an organic material raw material according to this embodiment.
- NPB has a sublimation point of 180 degreeC or more. Therefore, the loading boat containing the organic material is sublimed when heated to 200 ° C or more.
- the deposition material (organic material raw material) used for the OLED device fabrication there are a variety of materials in addition to the above materials. That is, this invention can use the various kinds of organic materials which comprise the charge transport material or light emitting material of OLED as a raw material.
- the present invention can purify various kinds of organic materials for OLEDs as described above using various kinds of ionic liquids as liquid filters.
- organic materials include organic TFT materials, organic solar cell materials, organic semiconductor materials, and the like, in addition to the low molecular weight organic light emitting materials that can be used as the light emitting or transporting materials of OLED devices. Therefore, the present invention can be used both in the purification of the organic material applied to the various fields as described above, will be described below using the organic material for OLED as an example.
- the organic material for OLED containing impurities is purified using an ionic liquid, but the concept of refining organic material using various purification apparatuses using or not using a carrier gas (for example, inert gas) is attached. It will be described in detail with reference to the drawings.
- a carrier gas for example, inert gas
- the organic material purification apparatus 100 of this embodiment is disposed to communicate with a sublimation unit for subliming an organic material for OLED, which contains impurities, and the sublimation unit. It comprises a collecting portion for contacting the liquid to collect the sublimation gas.
- the collecting part serves to generate a high-purity organic material that is recrystallized by first supersaturating the organic material to be purified, which is a main component of the composition, among the sublimed gases collected and dissolved in the ionic liquid.
- the collecting unit comprises a collecting means for forcibly flowing the sublimed gas of the sublimed organic material into the ionic liquid to contact the ionic liquid to collect the sublimed gas, and the sublimation gas that is collected and dissolved in the ionic liquid by the collecting means.
- recrystallization means for first supersaturating the organic material to be purified, which is a main component of the, to produce a high purity organic material which is recrystallized.
- the sublimation unit includes sublimation means for heating and subliming the organic material raw material for OLED containing impurities.
- the organic material purification apparatus 100 of this embodiment preferably further includes a control means for controlling the operation of the sublimation means, collecting means and recrystallization means.
- the sublimation gas has a comprehensive concept of subliming the organic material to be purified from solid state to gas or evaporating from solid state to gel state and gas state.
- the sublimation means includes a loading boat 110 accommodating the organic material 111, a processing chamber 120 in which the loading boat 110 is installed, and having a predetermined internal volume, and the inside of the processing chamber 120 in a vacuum state. It comprises a vacuum pump 150 to make, and a first heater 112 for heating the loading boat (110).
- the collecting means includes an inert gas supply source 160 connected to one side of the processing chamber 120 to supply an inert gas.
- the recrystallization means is connected to the reservoir 140 containing the ionic liquid 141, one side is in communication with the interior of the processing chamber 120, the other side is immersed in the ionic liquid 141 in the reservoir 140 Conduit 130, the vacuum pump 150 to vacuum the interior of the reservoir 140, and the discharge pump for discharging the gas collected on the ionic liquid 141 of the reservoir 140 out of the reservoir 140 153 is configured.
- the processing chamber 120 and the reservoir 140 are connected to each other from the upper side, the vacuum pump 150 is installed on the connection portion.
- valves 151 and 152 selectively communicating with the processing chamber 120 and the reservoir 140 are respectively installed in the connection line of the vacuum pump 150.
- Loading boat 110 is installed on the bottom side of the processing chamber 120, it is configured to have a first heater 112 on the lower side.
- the loading boat 110 is configured to have a form that can contain the organic material raw material 111 to be purified therein.
- connection conduit 130 is arranged in such a way that one side is connected to the upper portion of the processing chamber 120, the other side is extended through the upper portion of the reservoir 140 to be immersed in the ionic liquid 141.
- a second heater 131 for heating the connection conduit 130 may be further installed around the connection conduit 130.
- the second heater 131 is connected to the mixed conduit 130 so that the mixed sublimation gas 113 can maintain the sublimation point in the process of mixing the mixed gas to be described later into the ionic liquid 141 through the connection conduit 130. ) Serves to heat the surroundings.
- a third heater 142 may be further installed below the reservoir 140.
- the third heater 142 serves to adjust the solubility of the mixed sublimation gas 113 dissolved in the ionic liquid 141 by heating the ionic liquid 141.
- the discharge pump 153 may be further installed on the upper side of the reservoir 140. At this time, it is preferable that the valve 154 is further installed in the installation line of the discharge pump 153.
- the following describes a method of purifying organic materials using the organic material purification apparatus of this embodiment configured as described above.
- the loading boat 110 containing the organic material 111 is installed in the processing chamber 120, an appropriate amount of the ionic liquid 141 is injected into the reservoir 140, and then the vacuum pump 150 is installed. To evacuate the treatment chamber 120 and the reservoir 140. Then, the loading boat 110 is heated to the sublimation point of the organic material using the first heater 112. This results in a mixed sublimation gas 113 of the organic material in which the organic material and some impurities are mixed.
- the inert gas is supplied from the inert gas supply source 160 into the processing chamber 120.
- the inert gas nitrogen or argon gas or the like which does not react with the material constituting the organic material purification apparatus 100 is used within a range in which the degree of vacuum does not drop significantly.
- the inert gas serves to flow the mixed sublimation gas 113 into the ionic liquid 141 in the reservoir 140 and is mixed with the mixed sublimation gas 113 to form a mixed gas.
- the mixed gas 114 thus formed is mixed into the ionic liquid 141 through the connection conduit 130 to form bubbles as the pressure inside the processing chamber 120 rises. Meanwhile, in the process of mixing the mixed gas 114 into the ionic liquid 141 through the connection conduit 130, the second heater 131 installed around the connection conduit 130 is surrounded by the connection conduit 130. By heating the mixed sublimation gas 113 may be mixed into the ionic liquid 141 while maintaining the sublimation point.
- the mixed gas mixed in the ionic liquid 141 forms bubbles, while the mixed sublimation gas 113 in the bubbles dissolves in the ionic liquid 141, and the inert gas is not dissolved in the ionic liquid 141.
- the inert gas collected on the upper portion of the reservoir 140 is discharged and recovered outside the reservoir 140 by the discharge pump 153.
- the inert gas discharged out of the storage tank 140 is returned to the inert gas supply source 160 through the inert gas return means may be recycled.
- the inert gas return means may be configured using a general pump or the like.
- the solubility in which the mixed sublimation gas 113 is dissolved in the ionic liquid 141 may be adjusted using the third heater 142 installed under the reservoir 140. Therefore, the solubility of the ionic liquid 141 in the mixed sublimation gas 113 can be adjusted to control the supersaturation of the organic material and the recrystallization rate of the organic material in the ionic liquid 141.
- the purified material 143 having high purity precipitated in the ionic liquid 141 may be appropriately recovered from the storage tank 140.
- the opening and closing port is formed on one side of the storage tank 140 to recover the purified material 143 through the place.
- the impurity content in the ionic liquid 141 increases, and at some point, the impurity component also reaches a degree of supersaturation, and impurities are mixed in the recrystallized organic material. At this point, it is preferable to replace the ionic liquid for the purification process with a high purity ionic liquid.
- FIG. 2 and 3 are an exploded perspective view and a combined perspective view showing the configuration of the vertical organic material purification apparatus using the ionic liquid according to a second embodiment of the present invention
- Figure 4 is an organic material purification shown in FIG. It is the combined perspective view which cut off a part of apparatus.
- the organic material purifying apparatus 200 is disposed to communicate with the sublimation unit to sublimate the sublimation unit and the sublimation unit for subliming the organic material for OLED, which contains impurities. And a collecting unit for collecting the sublimation gas by contacting the ionic liquid.
- the collecting part serves to generate a high-purity organic material that is recrystallized by first supersaturating the organic material to be purified, which is a main component of the composition, among the sublimed gases collected and dissolved in the ionic liquid.
- the collecting unit collects the sublimation gas by bringing the housing 210 of the vacuum atmosphere having a predetermined internal volume and the sublimation gas of the sublimed organic material into contact with the ionic liquid ( 230, and recrystallization means 240 for supersaturating the organic material to be purified, which is the main component of the composition, among the sublimed gases collected and dissolved in the ionic liquid by the collecting means 230 to produce a high-purity organic material that is recrystallized. It is configured to include.
- the sublimation unit is configured to include a plurality of sublimation means 220 communicating with the lower side of the housing 210 to heat and sublimate the organic material for OLED containing impurities.
- the organic material purification apparatus 200 of this embodiment preferably further includes a control means (not shown) for controlling the operation of the sublimation means 220, the collecting means 230 and the recrystallization means 240.
- the housing 210 has a predetermined internal volume that is sealed to the outside, and includes an upper housing 211 constituting an upper side, a lower housing 212 coupled to a lower portion of the upper housing 211, and a housing 210.
- the main vacuum pump 213 to make the interior a vacuum state, and the auxiliary vacuum pump 214 for finely adjusting the degree of vacuum inside the housing 210 is configured.
- Sublimation means 220 is a sublimation chamber 221 coupled to the lower housing 212, a loading boat (not shown) disposed inside the sublimation chamber 221 to accommodate the organic material raw material, and heating the loading boat And a heater (not shown).
- the collecting means 230 includes a hollow shaft 231 installed along the central axis of the housing 210, a blade 232 installed in a screw shape along the circumferential surface of the shaft 231, and the shaft 231.
- Drive motor 233 coupled to the top of the to provide power, a pump 234 for supplying ionic liquid to the inside of the shaft 231, and ionic along the upper and lower surfaces of the blade 232 And a plurality of supply holes (not shown) formed in the shaft 231 to supply liquid.
- the blade 232 is installed in the form of a screw along the circumferential surface of the shaft 231, and as the housing 210 has a conical shape, the width of the blade 232 gradually increases from the top to the bottom thereof. . That is, the blade 232 is disposed in the housing 210 across the path where the sublimation gas is scattered, and is disposed at an isometric angle about the vertical axis in the housing 210.
- the blade 232 may be configured of a plurality of turbine blades fixed to the shaft 231 at vertical intervals instead of the continuous screw type as described above. That is, as the blade 232 is configured in a discontinuous type, the ionic liquid can flow downward through the space therebetween.
- the organic material refining apparatus 200 includes a recovery means 250 for recovering the organic material precipitated and precipitated at the bottom of the storage tank 241, a new loading boat in which the organic material raw material is accommodated, and the organic material raw material sublimed. It may be configured to further have a replacement means 260 for replacing the empty loading boat.
- a loading boat containing organic material is installed in the sublimation chamber 221, and the pump 234 and the driving motor 233 are driven to drive the upper and lower surfaces of the blade 232 and the housing 210.
- the inner surface is entirely coated with an ionic liquid.
- the inside of the housing 210 and the sublimation chamber 221 is evacuated using the main vacuum pump 213.
- the loading boat is heated up to just before the sublimation point of the organic material using a heater, and then heated at a sublimation point after 1 to 5 minutes.
- the ionic liquid flows along the upper and lower surfaces of the blade 232 from the time when the sublimation gas of the organic material is formed. That is, the ionic liquid is supplied to the inside of the shaft 231 by the pump 234 at a predetermined pressure, and the ionic liquid opens a plurality of supply holes while the shaft 231 is rotated by the driving force of the driving motor 233. Through the blades 232 to flow along the upper and lower surfaces.
- the heater 210 is provided on the outer surface of the housing 210 to create a temperature atmosphere in which the organic material is easily recrystallized.
- the ionic liquid flows along the upper and lower surfaces of the blade 232, and the sublimation gas of the organic material flows into the housing 210 at the same time as the shutter is opened and passes through the blade 232 to the housing 210.
- the ionic liquid and the sublimation gas are in contact with the upper surface and the lower surface of the blade 232, and the like.
- the sublimation gas is collected in the ionic liquid, and then gradually dissolved and recrystallized and collected in the reservoir 241 under the housing 210.
- the organic material to be purified since the content of the organic material to be purified is absolutely high relative to the impurities, the organic material first reaches a supersaturated state and recrystallization is started first and precipitated as a high purity organic material.
- the purified organic material may be recovered through the recovery container 251 of the recovery means 250 connected to the storage tank 241.
- the mixed liquid and the recrystallized organic material in the storage tank 241 are stored in the storage tank 241.
- the recrystallized organic material is separated by a filtration or centrifugation method and recovered in the recovery container 237, and then the mixed liquid is recycled to the collecting means 230 using the circulation pump 238. Just do it.
- FIG. 5 is a perspective view of a portion of the organic material purification apparatus having a modified example of the collecting means shown in FIG.
- the collecting means 230A of the modification has a plurality of blades 232A which are installed along the circumferential surface of the shaft 231, but the other components are the same as the collecting means 230. It is composed.
- the blades 232A are arranged in the vertical direction and have a turning angle clockwise from top to bottom. That is, the blade 232A is configured such that the phase difference from one end to the other end has a turning angle of about 120 °, for example.
- the plurality of blades 232A are disposed in the housing 210 across the path where the sublimation gas is scattered, and are disposed at an isometric angle about the vertical axis in the housing 210.
- FIG. 6 is a perspective view of a portion of the organic material purification apparatus having another modified example of the collecting means illustrated in FIG. 2.
- the collecting means 230B of another modification includes a plurality of blades 232B and a plurality of supply holes 235 installed at equal intervals along the circumferential surface in the longitudinal direction of the shaft 231.
- a plurality of injection pipes 239 in communication with the ionic liquid supplied into the shaft 231 toward the inner surface of the upper housing and the surface of the blade 232B, the other components being collected It is configured similarly to 230.
- the blades 232B are installed at equal intervals along the circumferential surface in the longitudinal direction of the shaft 231 and are disposed and rotated on a path where the sublimation gas is scattered. That is, the plurality of blades 232B are disposed in the housing 210 across the path where the sublimation gas is scattered, and are disposed at an isometric angle about the vertical axis in the housing 210.
- the injection pipe 239 is disposed up and down between the blades 232B in a triangular shape so as to evenly spray the ionic liquid on the surface of the blade 232B and the inner surface of the upper housing 211.
- the injection pipe 239 is formed with a plurality of injection holes 239a for injecting the ionic liquid, respectively, in which the injection holes 239a face the inner surface of the upper housing and the surface of the blade 232B, It is preferable to configure such that the ionic liquid can be sprayed as shown.
- the organic material purification apparatus 300 of this embodiment is an organic material purification apparatus 200 according to the second embodiment except that a plurality of blades are disposed to rotate at an isometric angle about a horizontal axis in the housing. ) And the same concept. Therefore, in this embodiment, description of portions overlapping with the second embodiment will be omitted.
- the housing 310 has a predetermined internal volume that is sealed to the outside, and includes a vacuum pump 311 that makes the interior of the housing 310 into a vacuum state.
- Sublimation means 320 is configured to include a loading boat 321 for receiving the organic material raw material, and a heater (not shown) for heating the loading boat 321.
- the collecting means 330 includes a shaft 331 installed along a horizontal center axis of the housing 310, a plurality of blades 332 installed along a circumferential surface of the shaft 331, and one side of the shaft 331. It is configured to include a drive motor 333 coupled to the end to provide power.
- the organic material purification apparatus 300 of this embodiment is the injection means 350 for injecting the ionic liquid toward the lower side toward the side path through which the sublimation gas flows, and the recrystallization means 340 formed in the housing 310 Recovery means 360 for recovering the organic material precipitated and recrystallized in the storage tank 341 of the tank, and a replacement means 370 for replacing the new loading boat in which the organic material is accommodated and the empty loading boat in which the organic material is sublimated.
- the injection means 350 serves as an ionic liquid supply means for supplying an ionic liquid so as to fall across the path where the sublimation gas is scattered.
- the following describes a method for purifying organic materials using the horizontal organic material purifying apparatus of this embodiment configured as described above.
- the loading boat 321 containing the organic material is installed in the housing 310, and the pump 354, the circulation pump 356, and the driving motor 333 are driven to drive the surface and the housing of the blade 332.
- the inner side of 310 is entirely coated with an ionic liquid. After that, the inside of the housing 310 is evacuated using the vacuum pump 311.
- the loading boat 321 is heated up to just before the sublimation point of the organic material using a heater, and then is spaced for 1 to 5 minutes and then heated above the sublimation point.
- the pump 354 and the circulation pump 356 are operated to inject the ionic liquid through the communication hole 352, and the drive motor 333 is operated to operate the blade (
- the sublimation gas flows in the other direction of the housing 310 by rotating 332.
- the heater 315 provided on the outer surface of the housing 310 creates a temperature atmosphere in which the inside of the housing 310 is easily recrystallized.
- the surface of the blade 332 is in contact with the ionic liquid, and the ionic liquid is injected through the communication hole 352.
- the sublimation gas is collected in the ionic liquid, and then gradually dissolved and recrystallized, and collected in the reservoir 341 under the housing 310. That is, when the sublimation gas is dissolved in the ionic liquid, since the content of the organic material to be purified is absolutely high relative to the impurities, the organic material first reaches a supersaturated state and recrystallization is started first and precipitated as a high purity organic material.
- the solubility that the sublimation gas is dissolved in the ionic liquid can be adjusted by using the heater 315 provided on the outer surface of the housing 310. Therefore, by controlling the solubility of the ionic liquid in the sublimation gas, it is possible to control the supersaturation of the organic material and the recrystallization rate of the organic material in the ionic liquid. As a result, incorporation of impurities in the process of recrystallization can be minimized, and the high purity organic material precipitated in the ionic liquid may be appropriately recovered from the storage tank 341 of the housing 310.
- the purified organic material may be recovered through the recovery container 361 of the recovery means 360 connected to the reservoir 341.
- the recrystallized organic material does not precipitate under the ionic liquid but floats to the surface of the ionic liquid or is mixed in the ionic liquid
- the mixed liquid and the recrystallized organic material in the storage tank 341 are stored in the storage tank 341.
- recrystallized organic material is separated by a method such as filtration or centrifugation and recovered in the recovery container 355, and the mixed liquid is recycled to the collecting means 330 using the circulation pump 356. Just do it.
- the organic material purifying apparatus 400 of this embodiment is configured by the collecting means 430, which is a spraying means for injecting an ionic liquid in the form of a curtain or various forms across a path through which the sublimation gas is scattered. . That is, the injection means serves as the ionic liquid supply means for supplying the ionic liquid so as to fall across the path where the sublimation gas scatters. Therefore, the organic material purification apparatus 400 of this embodiment is configured in the same manner as the organic material purification apparatus 300 of the third embodiment except that the collecting means 330 is omitted and the injection means 350 is partially changed. Therefore, in this embodiment, description of the same components as in the third embodiment will be omitted.
- the collecting means 430 of this embodiment is composed of a plurality of injection pipes 431 each having a plurality of nozzles for injecting the ionic liquid.
- the plurality of injection pipes 431 are installed at regular intervals in the direction of the path in which the sublimation gas is scattered, so that the ionic liquid injected from the top to the bottom in the form of a curtain or various forms through each nozzle to contact the sublimation gas. It is made up.
- the plurality of injection pipes 431 is preferably configured such that a plurality of nozzles are arranged in a zigzag manner so that the sublimation gas scattered in contact with the ionic liquid is gradually collected.
- the organic material purification apparatus 500 of this embodiment includes one or more rotary rolls 531 in which the collecting means 530 is disposed in the housing 510 across a path through which the sublimation gas is scattered. And, the recrystallization means 540 is provided on one side of the rotary roll 531 is provided with a doctor blade 541 for peeling off the mixed liquid generated by dissolving the sublimation gas in the ionic liquid from the surface of the rotary roll 531 Except that configured to the organic material purification apparatus 300 of the third embodiment is configured in the same concept. Therefore, in this embodiment, description of the overlapping portion with the third embodiment is omitted.
- the collecting means 530 of this embodiment includes one or more rotary rolls 531 disposed in the housing 510 across the path where the sublimation gas is scattered, and is disposed below the rotary rolls 531 to rotate the ionic liquid.
- a reservoir 532 is supplied to the surface of 531.
- the rotary roll 531 is installed so that the lower side is rotated in the state immersed in the ionic liquid stored in the reservoir 532. Therefore, an ionic liquid is applied to the surface of the rotary roll 531, and a sublimation gas is contacted to the surface of the ionic liquid applied in this way, and is collected and dissolved. Therefore, a mixed liquid in which a sublimation gas is dissolved in an ionic liquid is produced on the surface of the rotary roll 531.
- the rotary roll 531 may be arranged in plurality in the housing 510 in parallel.
- the recrystallization means 540 of this embodiment is installed on one side of the rotary roll 531 to remove the mixed liquid from the surface of the rotary roll 531 and the doctor blade 541 and the collected by the doctor blade 541
- a collection tank 542 which collects the mixed solution and supersaturates the organic material to produce recrystallized organic material.
- the recrystallized organic material may be recovered through a separate recovery means 550 connected to the collection tank 542.
- the purification apparatus 600 of this embodiment includes a melting part 610 for melting a solid organic material S1 containing impurities to generate a liquid organic material L1, and a melting part.
- a liquid organic material (L1) and ionic liquids (ILs) (L2) supplied from 610 are mixed to form a mixture (S2 + L3), and a target organic material, which is a main component of the composition, is formed.
- the mixing unit 620 which supersaturates to produce a recrystallized solid organic material, and the mixture (S2 + L3) of the mixing unit 620 is discharged from the mixing unit 620 to separate the solid organic material S2.
- the circulation portion 630 for circulating the remaining mixed liquid (L3) to the mixing portion 620 is provided.
- One side of the mixing unit 620 is connected to the ionic liquid supply unit 640 for supplying an ionic liquid (L1).
- the solid organic material S1 containing impurities is melted to generate a liquid organic material L1.
- the liquid organic material L1 generated in the melting part 610 and the ionic liquid L2 of the ionic liquid supply part 640 are respectively supplied to the mixing part 620, and the liquid phase is mixed in the mixing part 620.
- the organic material (L1) and the ionic liquid (L2) are mixed to form a mixture (S2 + L3).
- the target organic material which is the main component of the composition, is first supersaturated and recrystallized into a solid organic material (S2).
- the mixture (S2 + L3) of the mixing unit 620 is discharged from the mixing unit 620 to separate the solid organic material (S2) and then the remaining mixed liquid (L3) using the circulation unit 630 mixing unit Return to the inside of the (620) to reuse.
- the purification apparatus 700 of this embodiment includes a melting part 710 for melting a solid organic material S1 containing impurities to generate a liquid organic material L1, and a melting part.
- Vaporizer 720 for generating a vaporization gas (V1) of the organic material by evaporating the liquid organic material (L1) supplied from the 710, and vaporization gas (V1) of the organic material supplied from the vaporizer 720 And a mixture (S2 + L3) generated in the collecting portion 730 for collecting and dissolving the vaporized gas V1 into the ionic liquid L2 by contacting the flowing ionic liquid L2. It is provided with a circulation unit 740 for separating the solid organic material (S2) and then circulating the remaining mixed liquid (L3) to the collecting unit 730.
- the collecting unit 730 first supersaturates the refining organic material, which is the main component of the composition, of the vaporized gas V1 that is collected and dissolved in the ionic liquid L2, thereby producing a recrystallized solid organic material S2. It plays a role.
- an ionic liquid supply unit 750 for supplying an ionic liquid L1 is connected to one side of the collecting unit 730.
- the following describes a method for purifying organic materials using the vapor phase organic material purification apparatus of this embodiment configured as described above.
- the solid organic material S1 containing impurities is melted to generate a liquid organic material L1, and the liquid organic material L1 thus produced is vaporized in the vaporization part 740.
- Vaporization produces a vaporized gas V1 of an organic material.
- the vaporization gas V1 of the organic material generated by the vaporization part 740 and the ionic liquid L2 of the ionic liquid supply part 750 are supplied to the collecting part 730, respectively.
- the mixed solution L3 and the solid organic material S2 are obtained by collecting and dissolving V1) with the ionic liquid L2.
- the organic material to be purified which is a main component of the composition, is first supersaturated and recrystallized into a solid organic material S2. Thereafter, the mixture L3 + S2 of the collecting unit 730 is circulated to separate the solid organic material S2, and the remaining mixed solution L3 is reused for the collection of the vaporized gas V1 of the organic material.
- the purification process of the present invention uses a process of recrystallizing the organic material for gas phase (sublimation gas, vaporization gas) or liquid phase OLED into a solid phase by the concentration gradient of the organic material for OLED in the ionic liquid, not the temperature gradient. Therefore, the target organic material and the impurities can be separated under conditions closer to the thermodynamic equilibrium.
- the ionic liquid may maintain a heated state at a constant temperature in a vacuum atmosphere.
- the ionic liquid has a very low vapor pressure, so that the liquid can be maintained in a liquid state without being volatilized even when heated to a certain temperature under vacuum, and this is used as a solvent for purifying organic materials.
- the target organic material that becomes the mainstream in the ionic liquid first reaches supersaturation.
- the target organic material is first recrystallized into a solid phase, and impurities remain in a dissolved state in the ionic liquid.
- the interfacial reaction between the solid and the liquid occurs constantly on the solid surface of the target organic material that is first recrystallized in the ionic liquid, and the solid organic material maintains a uniform composition in the solid phase and In order to lower the Gibbs energy, the reaction of discharging impurities to the outside of the solid organic material (ionic liquid) is spontaneously repeated. Through this mechanism, the recrystallized solid organic material maintains a pure single phase, and as a result, a high purity organic material is obtained through a single purification process.
- the organic material for OLED containing impurities is purified using an ionic liquid, and the organic material is purified by flowing a sublimation gas of the organic material into a carrier gas (for example, an inert gas).
- a carrier gas for example, an inert gas
- the second to fifth embodiments exemplarily describe a concept of refining the organic material without using a carrier gas for the sublimation gas of the organic material.
- the concept of refining the organic material for OLED containing impurities in a liquid state is exemplarily described.
- the organic material for OLED containing impurities is melted in a liquid state. Illustrates the concept of purifying the vaporized gas formed by evaporation after.
- organic materials for OLEDs containing impurities can be purified using an ionic liquid through various methods other than those described above.
- the organic light emitting material used in the OLED is rapidly deteriorated when exposed to the air, especially exhibits a property that is vulnerable to moisture. That is, when the water molecules are bonded to the hydrogen group of the organic light emitting material, the electrical properties of the organic material, in particular, the conductivity is sharply lowered to show the electrical insulation properties, the device characteristics are rapidly deteriorated. Therefore, the water blocking in the distribution stage of the organic light emitting material should be very strictly controlled, and water blocking in the device manufacturing process is also one of the very important issues.
- an organic luminescent material in the case of using an ionic liquid composed of cations of imidazolium and anions of alkylsulfonates, purified organic luminescence is used. After cleaning the material, it was confirmed that the alkylsulfurate group, an anion of the ionic liquid, existed on the surface of the organic light emitting material in the form of chemical bonds in a single molecular layer thickness.
- the anion of such an ionic liquid forms a surface having hydrophobic properties, and has an effect of preventing moisture from penetrating the surface of the organic light emitting material.
- the organic light emitting material can be blocked from the influence of moisture, and thus, the organic light emitting material is very easy to handle in the air, and the moisture is also contained in the OLED device manufacturing process. Penetration can be prevented at the source.
- the anion of the single molecule layer coated by chemical bonding on the surface of the organic material for OLED purified using an ionic liquid is subjected to secondary treatment technology (heat treatment or collision of energetic particles). Since it can remove, it can prevent mixing of an impurity in an element manufacturing process.
- an ion particle, a plasma, or an electron beam may be used as the energy particles, and as a thermal means for applying heat, a general heat source, a laser wave, or a pulse (ultraviolet (UV) light may be used. ), Visible light (Visible), infrared light (IR), and the like.
- a general heat source e.g., a laser wave, or a pulse (ultraviolet (UV) light
- Visible light e.
- IR infrared light
- the plasma equipment may be used argon plasma (Ar plasma), nitrogen plasma (N 2 plasma), but is not limited thereto.
- the following describes the characteristics of the purified organic material, including whether the organic material is purified through the organic material purification apparatus using the ionic liquid of the present invention as described above.
- FIGS. 12A to 12C are design diagrams for manufacturing a horizontal organic material purification device
- FIG. 13 is a real photograph and a photographing result of a horizontal organic material purification device manufactured according to the design diagram shown in FIGS. 12A to 12C. It is a magnified picture.
- the horizontal type organic material purifying apparatus is a sublimation part for subliming the organic material for OLED containing impurities, and an ionic flow disposed to communicate with the sublimation gas of the organic material. It consists of a collection part which collects a sublimation gas by contacting liquid.
- the sublimation part has the same concept as the sublimation part shown in FIG. 7, and the collecting part has the same concept as the collecting part shown in FIG. 7 while the blade rotates about a horizontal axis in the housing (chamber) while the sublimation gas is an ionic liquid. It is designed to be collected, dissolved and recrystallized in contact with.
- the process of performing the purification experiment using the horizontal organic material purification device as described above is as follows. First, the organic material to be purified is charged to a sublimation unit at atmospheric pressure, an ionic liquid is injected to the collection unit, and the chamber is pumped to 1 ⁇ 10 ⁇ 6 Torr. Then, the ionic liquid is heated, the blade of the collecting unit is rotated, and the organic material to be purified is heated to the sublimation point, and maintained for a predetermined time to sublimate the organic material to be purified. Subsequently, the sublimation gas of the organic material scatters, contacts, traps, and dissolves with the ionic liquid flowing along the blade to recrystallize. When the purification process is completed, the purified organic material is collected, the purified organic material and the ionic liquid are separated, and then the ionic liquid remaining on the surface of the purified organic material is washed.
- 15A to 15D are graphs of changes in PL characteristics according to atmospheric exposure time for HTL materials before and after purification through the horizontal organic material purification apparatus illustrated in FIG. 13.
- the change value of the peak position is ⁇ 1 nm or less and the change width of the full width at half maximum (FWHM) is 5 nm or less.
- 16A to 16D are SEM (x 1k) photographs illustrating a change in surface shape according to atmospheric exposure time for HTL material before and after purification through the horizontal organic material purification device shown in FIG. 13.
- the HTL material before purification is a material immediately after synthesis and has a purity of about 98.6%.
- FIGS. 16A to 16D no characteristic was observed in the surface shape.
- spherical shaped grains were observed in the HTL material purified through the horizontal organic material purifying apparatus of the present invention.
- the size of these grains had a very uniform size of 5 ⁇ m.
- the change of the surface shape with time was not observed significantly.
- 17 is a graph of XPS showing the characteristics of the purified organic material through the horizontal organic material purification apparatus shown in FIG.
- the present invention includes providing an organic material having the characteristics of such a purified product.
- FIG. 18 is a graph of the surface composition of XPS after heat treatment of the purified organic material at 120 ° C. for 1 minute. As can be seen in Figure 18, a very weak peak was detected at the position due to the F, S component, which means that most of the F, S components present on the surface of the purified organic material were removed by heat treatment. Through this, it was confirmed that the purified organic material could be handled stably in the distribution path until the purified organic material was introduced into the device process, and the ions protecting the surface of the organic material through proper pretreatment immediately before the device process. It was confirmed that the components due to the sex liquid can be completely removed, so that no adverse effects were caused in the device process.
- the surface of the purified organic material is an ionic liquid, a component due to the ionic liquid, or an ionic liquid. It was confirmed that it was protected by the ions constituting.
- the present invention coats the surface of the purified organic material with an ionic liquid by a conventional sublimation purification method and the like, and the surface of the purified organic material is coated with an ionic liquid, a component derived from the ionic liquid, or an ionic liquid. It can also be protected by constituent ions.
- various methods such as a method of coating the surface of the purified organic material with an ionic liquid, various methods such as general spray coating and immersion coding may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
이 발명의 유기소재는 정제된 유기소재의 표면을 이온성 액체, 이온성 액체에 기인하는 성분, 또는 이온성 액체를 구성하는 이온으로 보호된다. 이 발명은 유기소재의 고순도화를 위해 이온성 액체를 이용해 유기소재를 정제하거나, 정제된 유기소재의 표면을 이온성 액체로 코팅해, 표면에 보호층을 형성함으로써, 정제된 유기소재를 대기 중에서도 간편하게 안정화시킬 수 있는 장점이 있다. 즉, 이 발명은 정제된 유기소재를 수분의 영향으로부터 차단할 수가 있고, 그로 인해 유기소재를 대기 중에서 핸들링하는데 있어 매우 간편하다는 장점이 있다.
Description
이 발명은 유기소재에 관한 것으로서, 더욱 상세하게는 유기소재의 고순도화를 위해 이온성 액체를 이용해 유기소재를 정제하거나, 정제된 유기소재의 표면을 이온성 액체로 코팅함으로써, 표면에 보호층을 갖는 유기소재에 관한 것이다.
유기EL(electroluminescence) 소자는 일함수가 크고 투명한 양극과 일함수가 낮은 음극 금속 사이에 여러 개의 얇은 유기 박막층으로 구성되어 있고, 발광원리는 소자에 순방향으로 전압을 가하면 양극 전극에서 정공이 유기층으로 주입되고 음극에서는 전자가 주입되어 발광층에서 재결합하여 빛을 내는 디스플레이이다. 유기EL은 저소비전력, 넓은 광시야각, 고속의 응답속도, 넓은 구동 온도범위 등 정보화시대에서 요구하는 고품위 패널특성을 모두 가지고 있으며 또한 상대적으로 제작 공정이 단순하여 기존의 평판 디스플레이를 초월하는 저가격화 실현을 기대할 수 있는 장점을 가지고 있다.
유기EL 소자의 발광특성에 영향을 미치는 요인으로 유기소재의 순도가 있다. 유기소재 중에 불순물이 혼입되어 있으면 그 불순물이 캐리어의 트랩이 되거나 소광의 원인이 되거나 하여 발광 강도 및 발광 효율이 저하된다. 따라서, 불순물을 제거하기 위하여 유기소재를 정제할 필요가 있다.
유기소재는 소재 합성 후, 일단 화학적인 방법을 이용한 정제 공정을 거치게 되는데, 이러한 화학적인 정제 공정으로는 재결정(recrystallization), 증류(distillation) 및 컬럼크로마토그래피(column chromatography) 등을 예로 들 수 있다. 이러한 화학적인 정제 공정을 거치게 되면, 목표로 하는 화합물의 순도를 99% 이상으로 끌어 올릴 수 있다.
유기소재의 정제방법으로는 일반적으로 용매를 사용한 재결정 또는 승화에 의한 재결정이 사용된다. 용매를 사용한 재결정은 유기소재를 대량으로 정제할 수 있다는 이점이 있으나, 용매를 사용하기 때문에 용매가 유기 결정 중에 들어가 버리기 쉽다는 단점이 있다. 즉, 유기결정 중에 들어간 용매가 불순물로 작용하여 발광특성을 저하시키게 되는 문제점이 있다.
다른 정제 방식으로는 고성능 액체 크로마토그래피(HPLC : High Performance Liquid Chromatography)와 같은 크로마토그래피 방식이 있는데, 이와 같은 크로마토그래피 방식으로 정제를 하는 경우, 단순한 화학적 정제 공정에 비하여 더 높은 순도를 달성할 수 있다. 그러나, 이러한 크로마토그래피 방식은 대부분 분석용으로만 이용되고 있는 실정이고, 대량 생산의 재료 정제용으로 이용되기에는 부적합한 공정으로 여겨지고 있다.
유기 발광소재는 통상적으로 승화 정제법을 이용하여 정제된다. 승화(sublimate)는 상평형도에서 3중점 이하의 온도와 압력에서 발생하는 고체-기체상간의 전이 현상을 지칭한다. 상압에서 가열하면 열분해되는 물질이라 할지라도 3중점 이하의 낮은 압력에서는 비교적 높은 온도에서도 분해되지 않는 상태가 유지된다. 이러한 성질을 이용하여 온도 기울기의 제어가 가능한 승화 장치 내에서, 합성된 물질을 가열하여 물질이 분해되지 않은 상태로 승화점이 다른 불순물과 분리하는 조작을 진공 승화법(vacuum sublimation method)이라 한다. 이러한 진공 승화법은 순수한 물리적인 방법으로서 보조 시약의 사용이나 그 이외의 화학적 방법에 의하지 않으므로 시료의 오염이 없어 고순도 정제가 가능한 장점을 가지고 있어서 유기EL 소자용 유기소재의 정제에 유용한 방법으로 알려져 있다.
현재까지 가장 널리 쓰이는 유기소재의 초고순도 정제 방식으로는 경사가열식 진공 승화 정제법(vacuum train sublimation purification method)이 있다. 이 방식에서는, 긴 관 형태의 진공에 가까운 상태의 챔버를 다수의 가열영역으로 나누고, 각 가열 영역에 대하여 고온에서 저온으로 경사지게 가열함으로써 온도기울기를 형성시킨다. 이와 같은 챔버 내에서 승화되는 재료의 승화점의 차이를 이용하여 일정한 가열 영역에서 석출된 재료만을 취하는 방식을 채택하고 있다.
일반적으로, 종래의 진공 승화 정제법에서는 다음과 같은 공정 조건을 적용하고 있다.
첫째, 가열 영역은 3 내지 9 영역으로 나누고 있다. 적은 수의 영역 분할의 경우는 단순히 고온, 중온, 저온의 방식을 취하고 있고, 많은 수의 영역 분할의 경우는 시료를 취하는 영역 이외에 각 영역의 온도기울기 범위 내에서 가열 온도를 설정하고 있다.
둘째, 시료 로딩 영역은 진공펌프의 반대 위치에 설정한다.
셋째, 재료의 특성에 따라 편차를 보이기는 하나, 운반 기체를 흘리기 전 초기 챔버 압력은 10-2∼10-6torr 범위이고, 운반 기체를 흘려주는 측의 압력은 0.1 내지 수 torr 범위를 유지하도록 조절한다. 운반 기체는 반응성 없는 고순도의 질소 기체나 아르곤 기체를 사용한다.
넷째, 시료의 로딩은 운반 기체의 이동이 가능하도록, 가급적 관 직경의 1/2를 넘지 않도록 한다. 이때, 보트 모양의 로딩 기구를 사용하기도 한다.
종래의 진공 승화 정제법에서 운반 기체를 사용하는 목적은 진공 승화 상태의 시료의 흐름을 좋게 하기 위해서이다. 즉, 진공에 가까운 상태에서 운반 기체가 없는 경우에는 승화된 시료 분자들의 흐름이 좋지 않아, 시료 로딩 영역으로부터 너무 가까운 영역의 벽면에 고체 입자가 석출되는 현상을 보이게 된다. 따라서, 종래의 진공 승화 정제 공정에서는 운반 기체를 사용하는 것이 기본 공정 조건으로 되어 있다.
그러나, 이와 같은 종래의 진공 승화 정제법은 몇 가지의 단점을 나타내고 있다. 종래의 진공 승화 정제법의 가장 큰 문제점은 운반 기체로 인하여 초고순도 물질이 맺힌 일정 영역이 오염된다는 점이다. 즉, 운반 기체들은 시료가 로딩된 영역에 로딩되어 있는 원시료들을 흩날리게 하여, 실제로 형성된 초고순도 물질이 석출되는 영역의 오염을 야기시키는 경향이 있다. 또한, 이미 형성된 초고순도 물질의 석출영역을 점진적으로 제3 영역으로 이동시키는 현상도 일으키고 있다.
운반 기체는 이러한 공정상 좋지 않은 역할들 뿐만 아니라, 대량으로 시료를 로딩한 경우에는 장비에도 무리를 주어, 승화된 시료의 일부가 진공펌프를 오염시키는 현상을 야기시킨다. 이러한 현상을 방지하기 위한 트랩 장치를 고용량 구조로 설치하여도, 여전히 진공펌프의 성능을 저하시키곤 한다.
종래의 진공 승화 정제법의 다른 단점으로는 진공 벤팅(venting) 시의 흩날림 현상이다. 진공 벤팅 시에는 질소기체를 챔버 내에 넣어줌으로써 압력을 상압으로 만드는데, 이 경우 챔버 내에서 정제 공정이 완료된 각 시료 간의 흩날림 현상이 생길 수 있다. 이러한 현상은 정제용 유리관(또는, 수정관) 양쪽 모두가 열려 있는 경우 더욱 가중되는데, 이로 인해 이미 정제해 놓은 물질마저도 오염되는 일이 비일비재하다.
정리하면, 승화 정제법의 경우 유기소재의 승화점 차이를 이용해 원료물질을 순도가 높은 유기소재로 정제할 수 있는 장점이 있는 반면, 다음과 같이 다양한 문제점을 야기하였다.
첫째, 정제과정이 승화-역승화를 반복하는 과정 중에 유기물질의 상당량이 운반 기체와 함께 배기로 소실되므로, 출발물질 대비 최종 정제물질의 수율이 매우 낮을 뿐만 아니라 진공펌프를 오염시키는 문제가 생긴다.
둘째, 고진공하에서 운반 기체를 주입하는 과정에서 정제되지 않은 원시시료를 흩날리게하여 오염시킬 뿐만 아니라, 정제후 정제된 유기소재를 수거하기 위해 진공을 벤팅하는 과정에서 정제가 완료된 각 시료간에 흩날림 현상이 발생할 수 있어 얻고자하는 유기소재의 최종순도를 저하시키는 문제점이 있다.
셋째, 정제공정이 완료된 후 정제물질을 회수하기 위하여 전체시스템의 진공분위기를 상압으로 회복시킨 후 전체시스템을 정지시켜야 하므로 자동화가 어렵다.
넷째, 이 때문에 반복적인 정제공정이 필요하여 소비되는 에너지가 많고, 이는 최종적으로 유기소재의 원가가 상승하는 문제점으로 작용하게 된다.
이에, 이 발명자는 진공 중에서도 안정된 이온성 액체를 액체필터로 활용하여 유기소재를 간편하게 정제 생산할 수 있는 이온성 액체를 이용한 유기소재 정제기술에 대해 연구 개발하였고, 이를 통해 정제된 유기소재의 표면에 보호층이 형성됨을 확인하였다.
[특허문헌]
한국 특허등록 제10-0550942호
한국 특허등록 제10-0674680호
한국 특허등록 제10-1296430호
한국 특허등록 제10-1343487호
한국 공개특허 제10-2013-0096370호
따라서, 이 발명은 유기소재의 고순도화를 위해 이온성 액체를 이용해 유기소재를 정제하거나, 정제된 유기소재의 표면을 이온성 액체로 코팅함으로써, 표면에 보호층을 갖는 유기소재를 제공하는 데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 이 발명에 따른 유기소재는, 정제된 유기소재의 표면이 이온성 액체에 의해 보호되는 것을 특징으로 한다.
또한, 상기와 같은 목적을 달성하기 위한 이 발명에 따른 유기소재는, 정제된 유기소재의 표면이 이온성 액체에 기인하는 성분에 의해 보호되는 것을 특징으로 한다.
또한, 상기와 같은 목적을 달성하기 위한 이 발명에 따른 유기소재는, 정제된 유기소재의 표면이 이온성 액체를 구성하는 이온에 의해 보호되는 것을 특징으로 한다.
또한, 이 발명에 따르면, 상기 유기소재는 불순물이 함유된 OLED용 유기소재를 상기 이온성 액체에 용해하여 재결정화함으로써 생성되는 것을 특징으로 한다.
또한, 이 발명에 따르면, 상기 불순물이 함유된 OLED용 유기소재를 융해, 기화 또는 승화시켜 상기 이온성 액체에 용해시키는 것을 특징으로 한다.
또한, 이 발명에 따르면, 상기 불순물이 함유된 OLED용 고상, 액상 또는 기상의 유기소재를 이온성 액체에 용해시키는 것을 특징으로 한다.
또한, 이 발명에 따르면, 상기 유기소재의 표면은 화학적으로 결합된 단일 분자층의 음이온(anion)에 의해 보호되는 것을 특징으로 한다.
또한, 이 발명에 따르면, 상기 정제된 유기소재는 불순물이 함유된 OLED용 유기소재를 승화정제법으로 정제하여 생성한 것을 특징으로 한다.
이 발명은 유기소재의 고순도화를 위해 이온성 액체를 이용해 유기소재를 정제하거나, 정제된 유기소재의 표면을 이온성 액체로 코팅해, 표면에 보호층을 형성함으로써, 정제된 유기소재를 대기 중에서도 간편하게 안정화시킬 수 있는 장점이 있다. 즉, 이 발명은 정제된 유기소재를 수분의 영향으로부터 차단할 수가 있고, 그로 인해 유기소재를 대기 중에서 핸들링하는데 있어 매우 간편하다는 장점이 있다.
또한, 이 발명의 유기소재는 그 표면을 보호하는 이온성 액체에 기인하는 성분들을 열처리 또는 에너지 입자를 충돌시키는 방법을 통해 완전히 제거 가능하여 소자공정에서 어떠한 악영향을 미치지 않는 장점이 있다.
도 1은 이 발명의 제1 실시예에 따른 이온성 액체를 이용한 유기소재 정제장치의 구성관계를 도시한 개념도이고,
도 2 및 도 3은 이 발명의 제2 실시예에 따른 이온성 액체를 이용한 수직형 유기소재 정제장치의 구성관계를 도시한 분해 사시도 및 결합 사시도이고,
도 4는 도 2에 도시된 유기소재 정제장치의 일부를 절취한 결합 사시도이고,
도 5는 도 2에 도시된 포집수단의 변형예를 갖는 유기소재 정제장치의 일부를 절취한 결합 사시도이고,
도 6은 도 2에 도시된 포집수단의 다른 변형예를 갖는 유기소재 정제장치의 일부를 절취한 결합 사시도이고,
도 7은 이 발명의 제3 실시예에 따른 이온성 액체를 이용한 수평형 유기소재 정제장치의 구성관계를 도시한 개념도이고,
도 8은 이 발명의 제4 실시예에 따른 이온성 액체를 이용한 스프레이형 유기소재 정제장치의 구성관계를 도시한 개념도이고,
도 9는 이 발명의 제5 실시예에 따른 이온성 액체를 이용한 롤형 유기소재 정제장치의 구성관계를 도시한 개념도이고,
도 10은 이 발명의 제6 실시예에 따른 이온성 액체를 이용한 액상 유기소재의 정제장치의 개략적인 블록도이고,
도 11은 이 발명의 제7 실시예에 따른 이온성 액체를 이용한 기상 유기소재의 정제장치의 개략적인 블록도이고,
도 12a 내지 도 12c는 각각 수평형 유기소재 정제장치를 제작하기 위한 평면도, 정면도 및 측면도이고,
도 13은 도 12에 도시된 설계도에 따라 제작된 수평형 유기소재 정제장치의 실물 사진이고,
도 14a 및 도 14b는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 Raman PL 특성의 변화를 측정한 그래프이고,
도 15a 및 도 15b는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 PL 특성의 변화를 측정한 그래프이고,
도 16a 내지 도 16d는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 표면 형상의 변화를 촬영한 SEM(x 1k) 사진이고,
도 17은 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제된 유기소재의 특징을 나타낸 XPS의 그래프이며,
도 18은 정제된 유기소재를 120℃에서 1분간 열처리를 한 후 XPS로 표면 조성을 분석한 그래프이다.
이온성 액체(ionic liquid)는 양이온과 음이온의 이온결합으로 이루어진 소금과 같은 물질로서 100℃ 이하에서 액체상태로 존재하며, 고온에서도 안정적으로 액체로 존재하고, 증기압이 거의 0에 가깝기 때문에 'Green solvent'라 불리우면서 친환경 용매로 많은 관심을 받고 있다. 또한, 이온성 액체는 다양한 무기물, 유기물, 고분자 물질을 용해시킬 수 있고, 소수성, 용해도, 점도, 밀도 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 "Designer Solvent"로도 불리우며, 이론상으로 1018 가지 이상의 합성이 가능하여 용매로서의 무한한 잠재력을 지니고 있다. 즉, 이온성 액체는 기존의 유기용매가 지니지 못하는 다양한 특성을 나타낼 뿐 아니라 사용자의 목적에 맞는 용매를 선택하고 합성할 수 있다는 큰 장점을 지닌다. (이온성 액체의 최신 연구동향 1 - Overview, 인하대학교 초정밀생물분리기술연구소, 이상현, 하성호)
한편, 이온성 액체는 양이온과 음이온의 구조 변화를 통하여 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성 '디자이너 용매'로 각광받고 있다. 이러한 이온성 액체는 효소의 활성과 안정성을 증대시킬 수 있고, 분리과정도 쉽게 실현할 수 있고, 환경적/경제적인 측면에서도 바람직하여 향후, 이온성 액체는 여러 분야에 걸쳐서 널리 사용될 수 있을 것이다.(Thi Phuong Thuy Pham, Chul-Woong Cho, Yeoung-Sang Yun, "Environmental fate and toxicity of ionic liquids: A review", Water Research, 44, 2010, pp.352~372)
이 실시예에 따른 이온성 액체로는 화학식 1의 1-부틸-3-메틸리미다조리움 비스(트리플루오르메틸 술포닐)이미드(1-Butyl-3-methylimidazorium bis(trifluoromethyl sulfonyl)imide)(BMIM TFSI)를 이용하거나, 화학식 2의 1-옥틸-3-메틸리미다조리움 비스(트리플루오르메틸 술포닐)이미드(1-Octyl-3-methylimidazorium bis(trifluoromethyl sulfonyl)imide)(OMIM TFSI)를 이용할 수 있다. 또는, 1-에틸-3-메틸리미다조리움 비스(트리플루오르메틸 술포닐)이미드(1-Etyl-3-methylimidazorium bis(trifluoromethyl sulfonyl)imide)(EMIM TFSI)를 이용할 수도 있다.
상기와 같은 이온성 액체(BMIM TFSI, OMIM TFSI, EMIM TFSI)는 비휘발성 유기용매로서 이온성 액체 내에서 유기(organic)물질과 불순물이 용해-재결정화를 수 없이 반복하는 과정에서 과포화도에 더 빨리 도달하는 유기소재가 우선 재결정화되는 메카니즘으로 인해 다양한 유기소재를 정제 및 재결정화 하는데 사용이 가능하다.
한편, BMIM TFSI, OMIM TFSI, EMIM TFSI는 저융점(low melting point), 저증기압(low vapor pressure), 불연성(nonflammable), 유기분자이온의 구성(consist of organic molecular ions), 음-양이온간 조합비율의 조절성질(controllable properties by combinations of anions and cations) 등의 특성을 가지고 있다.
이 실시예에 따른 이온성 액체는 유기소재를 정제 및 재결정화를 하는데 사용되는 것으로서, 100~120℃, 10-7Torr에서도 액체상으로 안정하여 진공 공정에서도 용매로 이용이 가능하다.
한편, OLED를 구성하는 핵심재료로는 크게 전하수송용 소재(정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층)와 발광용 소재(형광재료, 인광재료 및 각각의 도펀트)로 나눌 수 있다. 이러한 OLED는 그 총 두께가 100~200nm 정도로 매우 극초박막으로 구성된다. 한편, 전하수송용 소재 중에서 정공 전달 물질로는 NPB(N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine), TPD(N,N'-Bis-(2-methylphenyl)-N,N'-bis(phenyl)-benzidin), NPD(N,N'-Di(naphthalen-1-yl)-N,N'-dibenzylbenzidine), CuPc(Copper Phthalocyanine), MTDATA(4,4',4''-tris(2-methylphenylamino)triphenylamine) 등과 같은 것들이 있고, 전자 전달 물질로는 Alq3(Tri-(8-hydroxy-chinolinato)-aluminium), DTVBi(4,4-Bis(2,2-diphenyethen-1-yl)-diphenyl) 등의 화합물이 있으며, 또한 발광용 물질로는 Alq3나, 쿠마린(coumarine) 유도체, 퀴나크리돈(quinacridone) 유도체, 루브렌(rubrene) 등이 있다.
따라서, 이 실시예에 따른 유기소재 원료로는 NPB 소재를 이용할 수 있다. 여기서, NPB는 승화점이 180℃ 이상이다. 따라서, 유기소재 원료를 수용하는 로딩보트를 200℃ 이상으로 가열시키면 승화된다.
한편, OLED 소자 제작을 위해 사용되는 증착물질(유기소재 원료)은 상기와 같은 물질 이외에도 여러 가지가 존재한다. 즉, 이 발명은 OLED의 전하수송용 소재 또는 발광용 소재를 구성하는 여러 종류의 유기소재를 원료로 이용할 수가 있다.
이렇듯, 이 발명은 상기와 같은 다양한 종류의 OLED용 유기소재 원료를 상기와 같은 다양한 종류의 이온성 액체를 액체필터로 정제할 수가 있다.
그런데, 유기소재로는 상기와 같은 OLED 소자의 발광체 혹은 수송체로 사용가능한 저분자 유기발광소재 이외에도 유기TFT소재, 유기태양전지소재, 유기반도체소재 등이 있다. 따라서, 이 발명은 상기와 같은 다양한 분야에 적용되는 유기소재의 정제에 모두 이용이 가능하지만, 아래에서는 OLED용 유기소재를 일례로 하여 설명하겠다.
아래에서는 불순물이 함유된 OLED용 유기소재를 이온성 액체를 이용해 정제하되, 캐리어가스(예를 들어, 불활성 기체)를 이용하거나 이용하지 않는 다양한 정제장치를 이용해 유기소재를 정제하는 개념에 대해 첨부한 도면을 참조하여 상세히 설명한다.
1. 캐리어타입의 유기소재 정제장치
<제1 실시예>
도 1은 이 발명의 제1 실시예에 따른 이온성 액체를 이용한 유기소재 정제장치의 구성관계를 도시한 개념도이다. 도 1에 도시된 바와 같이, 이 실시예의 유기소재 정제장치(100)는 크게 불순물이 함유된 OLED용 유기소재를 승화시키는 승화부와, 승화부와 연통하도록 배치되어 유기소재의 승화기체와 이온성 액체를 접촉시켜 승화기체를 포집하는 포집부를 포함하여 구성된다. 여기서, 포집부에서는 이온성 액체에 포집되어 용해되는 승화기체 중 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고순도 유기소재를 생성하는 역할을 한다.
상기 포집부는 승화된 유기소재의 승화기체를 이온성 액체 안으로 강제 유동시켜 이온성 액체에 접촉시켜 승화기체를 포집하는 포집수단, 및 포집수단에 의해 이온성 액체에 포집되어 용해되는 승화기체 중 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고순도 유기소재를 생성하는 재결정화수단을 포함하여 구성된다. 그리고, 승화부는 불순물이 함유된 OLED용 유기소재 원료를 가열하여 승화시키는 승화수단을 포함하여 구성된다.
한편, 이 실시예의 유기소재 정제장치(100)는 승화수단, 포집수단 및 재결정화수단의 작동을 제어하는 제어수단을 더 포함하는 것이 바람직하다. 여기서, 승화기체는 정제할 유기소재를 고체상태에서 기체로 승화시키거나 고체상태에서 겔상태로 그리고 기체상태로 증발시키는 것까지 포괄적인 개념을 갖는다.
승화수단은 유기소재 원료(111)를 수용하는 로딩보트(110)와, 로딩보트(110)가 설치되며 일정 내부 용적을 갖는 처리챔버(120)와, 처리챔버(120)의 내부를 진공상태로 만드는 진공펌프(150), 및 로딩보트(110)를 가열하는 제1 히터(112)를 포함하여 구성된다. 그리고, 포집수단은 처리챔버(120)의 일측에 연결되어 불활성 기체를 공급하는 불활성 기체공급원(160)을 포함하여 구성된다.
그리고, 재결정화수단은 이온성 액체(141)를 수용한 저장조(140)와, 일측이 처리챔버(120)의 내부와 연통하고 타측이 저장조(140) 내의 이온성 액체(141)에 침지되는 연결도관(130)과, 저장조(140)의 내부를 진공상태로 만드는 상기 진공펌프(150), 및 저장조(140)의 이온성 액체(141) 위에 수집된 기체를 저장조(140) 밖으로 배출하는 배출펌프(153)를 포함하여 구성된다.
한편, 처리챔버(120)와 저장조(140)는 상측에서 서로 연결되며, 그 연결부위에 진공펌프(150)가 설치된다. 그리고, 진공펌프(150)의 연결라인에는 처리챔버(120) 및 저장조(140)와 선택적으로 연통시키는 밸브(151, 152)가 각각 설치된다.
로딩보트(110)는 처리챔버(120)의 바닥 쪽에 설치되는 것으로서, 하부 쪽에 제1 히터(112)를 갖도록 구성된다. 또한, 로딩보트(110)는 그 내부에 정제대상의 유기소재 원료(111)를 담을 수 있는 형태를 갖도록 구성된다.
한편, 연결도관(130)은 그 일측이 처리챔버(120)의 상부에 연결되고, 타측이 저장조(140)의 상부를 통해 연장하여 이온성 액체(141)의 내부에 침지되는 형태로 배치된다. 이러한 연결도관(130)의 주위에는 연결도관(130)을 가열하는 제2 히터(131)가 더 설치될 수 있다. 여기서, 제2 히터(131)는 후술할 혼합기체가 연결도관(130)을 통해 이온성 액체(141) 안으로 혼입되는 과정에서, 혼합 승화기체(113)가 승화점을 유지할 수 있도록 연결도관(130) 주위를 가열하는 역할을 한다.
그리고, 저장조(140)의 하부에는 제3 히터(142)가 추가로 더 설치될 수 있다. 여기서, 제3 히터(142)는 이온성 액체(141)를 가열하여 혼합 승화기체(113)가 이온성 액체(141)에 용해되는 용해도를 조절하는 역할을 한다. 또한, 저장조(140)의 상부 쪽에는 배출펌프(153)가 더 설치될 수 있다. 이때, 배출펌프(153)의 설치라인에는 밸브(154)가 더 설치되는 것이 바람직하다.
아래에서는 상기와 같이 구성된 이 실시예의 유기소재 정제장치를 이용해 유기소재를 정제하는 방법에 대해 설명한다.
먼저, 처리챔버(120)의 내부에 유기소재 원료(111)가 담긴 로딩보트(110)를 설치하고, 저장조(140)에 이온성 액체(141)를 적당량 주입한 후, 진공펌프(150)를 이용해 처리챔버(120)와 저장조(140)를 진공화시킨다. 그런 다음, 제1 히터(112)를 이용해 로딩보트(110)를 유기소재의 승화점까지 가열시킨다. 그러면, 유기소재와 일부 불순물이 혼합된 유기소재의 혼합 승화기체(113)가 된다.
이 상태에서 불활성 기체공급원(160)에서 처리챔버(120)의 내부로 불활성 기체를 공급한다. 이때, 불활성 기체로는 진공도가 크게 떨어지지 않는 범위 내에서 유기소재 정제장치(100)를 구성하는 소재와 반응하지 않는 질소 또는 아르곤 가스 등을 사용한다. 이러한 불활성 기체는 혼합 승화기체(113)를 저장조(140) 내의 이온성 액체(141) 안으로 유동시키는 역할을 하는 것으로서, 혼합 승화기체(113)와 혼합되어 혼합기체가 된다.
이렇게 형성된 혼합기체(114)는 처리챔버(120) 내부에서의 압력이 상승함에 따라 연결도관(130)을 통해 이온성 액체(141) 안으로 혼입되어 기포를 형성한다. 한편, 혼합기체(114)가 연결도관(130)을 통해 이온성 액체(141) 안으로 혼입되는 과정에서, 연결도관(130)의 주위에 설치된 제2 히터(131)가 연결도관(130)의 주위를 가열함에 따라 혼합 승화기체(113)가 승화점을 유지한 상태로 이온성 액체(141) 안으로 혼입될 수 있다.
한편, 이온성 액체(141)에 혼입된 혼합기체는 기포를 형성하면서 기포 안의 혼합 승화기체(113)가 이온성 액체(141)에 용해되고, 불활성 기체는 이온성 액체(141)에 용해되지 않은 채 이온성 액체(141)의 밖으로 떠올라 저장조(140)의 상부에 수집된다. 이렇게 저장조(140)의 상부에 수집된 불활성 기체는 배출펌프(153)에 의해 저장조(140) 밖으로 배출되어 회수된다. 한편, 저장조(140) 밖으로 배출되어 회수된 불활성 기체는 불활성 기체 리턴수단을 통해 불활성 기체공급원(160)으로 리턴되어 재활용할 수도 있다. 여기서, 불활성 기체 리턴수단은 일반적인 펌프 등을 이용해 구성하면 된다.
이온성 액체(141)에 혼합 승화기체(113)가 용해될 때 불순물 대비 정제대상의 유기소재의 함량이 절대적으로 높기 때문에, 유기소재가 우선 과포화상태에 이르러 재결정화가 먼저 시작되어 고순도의 정제소재(143)로 석출된다. 이때, 저장조(140)의 하부에 설치되는 제3 히터(142)를 이용해 혼합 승화기체(113)가 이온성 액체(141)에 용해되는 용해도를 조절할 수가 있다. 그로 인해, 혼합 승화기체(113)에 대한 이온성 액체(141)의 용해도를 조절하여 이온성 액체(141) 내에서 유기소재의 과포화도 및 유기소재의 재결정화 속도 등의 제어가 가능하다. 이로 인해 재결정화되는 과정에서 불순물의 혼입을 최소화할 수 있으며, 이렇게 이온성 액체(141) 내에 석출되는 고순도의 정제소재(143)는 저장조(140)로부터 적절히 회수하면 된다. 예를 들어, 저장조(140)의 일측에 개폐구를 형성해 그 곳을 통해 정제소재(143)를 회수하면 된다.
상기와 같이 이온성 액체(141) 내에 석출되는 고순도의 정제소재(143)가 회수되고 나면, 이온성 액체(141) 내에는 혼합기체 내에 포함되어 있던 과포화도에 이르기 전까지 용해된 유기소재와 소량의 불순물이 일부 잔류하게 된다. 또한, 정제공정이 진행됨에 따라 이온성 액체(141) 내의 불순물 함량이 증가하게 되고, 일정 시점에서는 불순물 성분 또한 과포화도에 다다르게 되어 재결정화된 유기소재 내에 불순물의 혼입이 발생하게 된다. 이 시점에서 정제공정을 위한 이온성 액체를 고순도의 이온성 액체로 교환해 주는 것이 바람직하다.
2. 넌캐리어타입의 유기소재 정제장치
2-1. 유기소재의 승화기체 정제기술
<제2 실시예>
도 2 및 도 3은 이 발명의 제2 실시예에 따른 이온성 액체를 이용한 수직형 유기소재 정제장치의 구성관계를 도시한 분해 사시도 및 결합 사시도이고, 도 4는 도 2에 도시된 유기소재 정제장치의 일부를 절취한 결합 사시도이다.
도 2에 도시된 바와 같이, 이 실시예의 유기소재 정제장치(200)는 크게 불순물이 함유된 OLED용 유기소재를 승화시키는 승화부와, 승화부와 연통하도록 배치되어 유기소재의 승화기체와 유동하는 이온성 액체를 접촉시켜 승화기체를 포집하는 포집부를 포함하여 구성된다. 여기서, 포집부에서는 이온성 액체에 포집되어 용해되는 승화기체 중 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고순도 유기소재를 생성하는 역할을 한다.
도 2 내지 도 4에 도시된 바와 같이, 상기 포집부는 일정 내부 용적을 갖는 진공분위기의 하우징(210)과, 승화된 유기소재의 승화기체를 이온성 액체와 접촉시켜 승화기체를 포집하는 포집수단(230), 및 포집수단(230)에 의해 이온성 액체에 포집되어 용해되는 승화기체 중 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고순도 유기소재를 생성하는 재결정화수단(240)을 포함하여 구성된다.
그리고, 승화부는 하우징(210)의 하부 쪽에 각각 연통되어 불순물이 함유된 OLED용 유기소재 원료를 가열하여 승화시키는 다수개의 승화수단(220)을 포함하여 구성된다.
한편, 이 실시예의 유기소재 정제장치(200)는 승화수단(220), 포집수단(230) 및 재결정화수단(240)의 작동을 제어하는 제어수단(도시안됨)을 더 포함하는 것이 바람직하다.
하우징(210)은 외부와 밀폐되는 일정 내부 용적을 갖는 것으로서, 상부 쪽을 구성하는 상부 하우징(211)과, 상부 하우징(211)의 하부에 결합되는 하부 하우징(212)과, 하우징(210)의 내부를 진공상태로 만드는 메인 진공펌프(213), 및 하우징(210) 내부의 진공도를 미세하게 조절하는 보조 진공펌프(214)를 포함하여 구성된다.
승화수단(220)은 하부 하우징(212)에 결합되는 승화 챔버(221)와, 승화 챔버(221)의 내부에 배치되어 유기소재 원료를 수용하는 로딩보트(도시안됨), 및 로딩보트를 가열하는 히터(도시안됨)를 포함하여 구성된다.
그리고, 포집수단(230)은 하우징(210)의 중심축을 따라 설치되는 중공 형태의 샤프트(231)와, 샤프트(231)의 둘레면을 따라 스크루 형태로 설치되는 블레이드(232)와, 샤프트(231)의 상단에 결합되어 동력을 제공하는 구동모터(233)와, 샤프트(231)의 내부에 이온성 액체를 공급하는 펌프(234), 및 블레이드(232)의 상부면 및 하부면을 따라 이온성 액체를 공급하도록 샤프트(231)에 형성되는 다수개의 공급구멍(도시안됨)을 포함하여 구성된다.
상기 블레이드(232)는 샤프트(231)의 둘레면을 따라 스크루 형태로 설치되는 것으로서, 하우징(210)이 원뿔형 형태를 가짐에 따라 그에 대응하여 상부에서 하부 쪽으로 갈수록 그 너비가 점점 커지는 형태로 구성된다. 즉, 블레이드(232)는 승화기체가 비산하는 경로를 가로질러 하우징(210) 안에 배치되되, 하우징(210) 내의 수직축을 중심으로 등각도로 배치된다.
한편, 블레이드(232)는 상기와 같은 연속적인 스크루 타입 대신에 상하 간격을 두고 샤프트(231)에 고정되는 다수개의 터빈 블레이드로 구성할 수도 있다. 즉, 블레이드(232)를 불연속적인 타입으로 구성함에 따라 그 사이사이 공간을 통해 이온성 액체를 하부방향으로 유동시킬 수 있다.
이 실시예의 유기소재 정제장치(200)는 정제되어 저장조(241)의 하부에 석출되어 침전된 유기소재를 회수하는 회수수단(250)과, 유기소재 원료가 수용된 새로운 로딩보트와 유기소재 원료가 승화된 빈 로딩보트를 교체시키는 교체수단(260)을 더 갖도록 구성할 수 있다.
아래에서는 상기와 같이 구성된 이 실시예의 수직형 유기소재 정제장치를 이용해 유기소재를 정제하는 방법에 대해 설명한다.
먼저, 승화 챔버(221)의 내부에 유기소재 원료가 담긴 로딩보트를 설치하고, 펌프(234) 및 구동모터(233)를 구동시켜 블레이드(232)의 상부면 및 하부면과 하우징(210)의 내측면을 전체적으로 이온성 액체로 도포한다. 그 이후에, 메인 진공펌프(213)를 이용해 하우징(210) 및 승화 챔버(221)의 내부를 진공화시킨다.
그런 다음, 히터를 이용해 로딩보트를 유기소재 원료의 승화점 직전까지 가열시킨 다음, 1~5분간 간격을 둔 후 승화점 이상으로 가열시킨다. 그러면, 유기소재와 일부 불순물이 혼합된 유기소재의 승화기체가 된다. 한편, 유기소재의 승화기체가 형성될 시점부터 블레이드(232)의 상부면 및 하부면을 따라 이온성 액체가 유동하도록 한다. 즉, 펌프(234)에 의해 이온성 액체가 샤프트(231)의 내부에 일정 압력으로 공급되고, 구동모터(233)의 구동력에 의해 샤프트(231)가 회전하면서 이온성 액체가 다수개의 공급구멍을 거쳐 블레이드(232)의 상부면 및 하부면을 따라 유동하도록 한다. 또한, 하우징(210)의 외측면에 설치된 히터를 통해 하우징(210) 내부를 유기소재의 재결정화가 용이한 온도 분위기를 조성한다.
이렇게 이온성 액체는 블레이드(232)의 상부면 및 하부면을 따라 유동하고, 유기소재의 승화기체는 셔터가 개방됨과 동시에 하우징(210)의 내부로 유동하여 블레이드(232)를 경유해 하우징(210)의 상부 쪽으로 자연적으로 비산되면서, 이온성 액체와 승화기체가 블레이드(232)의 상부면 및 하부면 등에서 접촉하게 된다. 이러한 접촉에 의해 승화기체는 이온성 액체에 포집된 후 점점 용해되어 재결정화되면서 하우징(210) 하부의 저장조(241)에 모이게 된다. 즉, 이온성 액체에 승화기체가 용해될 때 불순물 대비 정제대상의 유기소재의 함량이 절대적으로 높기 때문에, 유기소재가 우선 과포화상태에 이르러 재결정화가 먼저 시작되어 고순도의 유기소재로 석출된다.
한편, 상부 하우징(211) 및 하부 하우징(212)의 외측면에 설치되는 히터를 이용해 승화기체가 이온성 액체에 용해되는 용해도를 조절할 수가 있다. 그로 인해, 승화기체에 대한 이온성 액체의 용해도를 조절하여 이온성 액체 내에서 유기소재의 과포화도 및 유기소재의 재결정화 속도 등의 제어가 가능하다. 이로 인해 재결정화되는 과정에서 불순물의 혼입을 최소화할 수 있으며, 이렇게 이온성 액체 내에 석출되는 고순도의 유기소재는 하우징(210)의 저장조(241)로부터 적절히 회수하면 된다.
예를 들어, 재결정화된 유기소재가 이온성 액체의 하부로 침전되는 경우에는, 저장조(241)에 연결된 회수수단(250)의 회수통(251)을 통해 정제된 유기소재를 회수하면 된다. 그런데, 재결정화된 유기소재가 이온성 액체의 하부로 침전되지 않고 이온성 액체의 표면으로 부상하거나 이온성 액체 내에 혼합되는 경우에는, 저장조(241) 내의 혼합액과 재결정화된 유기소재를 저장조(241)의 외부로 배출한 다음, 재결정화된 유기소재를 여과나 원심분리 등의 방식으로 분리하여 회수용기(237)에서 회수한 후, 혼합액을 순환펌프(238)를 이용해 포집수단(230) 쪽으로 재순환시키면 된다.
도 5는 도 2에 도시된 포집수단의 변형예를 갖는 유기소재 정제장치의 일부를 절취한 결합 사시도이다. 도 5에 도시된 바와 같이, 변형예의 포집수단(230A)은 샤프트(231)의 둘레면을 따라 설치되는 복수의 블레이드(232A)를 갖되, 그 이외의 구성요소들은 포집수단(230)과 동일하게 구성된다. 여기서, 블레이드(232A)는 수직방향으로 배열되어 상부에서 하부 쪽으로 시계방향의 선회각을 갖는다. 즉, 블레이드(232A)는 일측 단부에서 타측 단부까지의 위상차가 예를 들어 120°정도의 선회각을 갖도록 구성된다. 따라서, 복수의 블레이드(232A)는 승화기체가 비산하는 경로를 가로질러 하우징(210) 안에 배치되되, 하우징(210) 내의 수직축을 중심으로 등각도로 배치된다.
도 6은 도 2에 도시된 포집수단의 다른 변형예를 갖는 유기소재 정제장치의 일부를 절취한 결합 사시도이다. 도 6에 도시된 바와 같이, 다른 변형예의 포집수단(230B)은 샤프트(231)의 길이방향으로 둘레면을 따라 등간격으로 설치되는 다수의 블레이드(232B)와, 다수의 공급구멍(235)에 연통 연결되어 샤프트(231)의 내부로 공급되는 이온성 액체를 블레이드(232B)의 표면 및 상부 하우징의 내측면을 향해 분사하는 다수의 분사 파이프(239)를 갖되, 그 이외의 구성요소들은 포집수단(230)과 동일하게 구성된다. 여기서, 블레이드(232B)는 샤프트(231)의 길이방향으로 둘레면을 따라 등간격으로 설치되며 또한 승화기체가 비산하는 경로 상에 배치되어 회전한다. 즉, 다수의 블레이드(232B)는 승화기체가 비산하는 경로를 가로질러 하우징(210) 안에 배치되되, 하우징(210) 내의 수직축을 중심으로 등각도로 배치된다.
그리고, 분사 파이프(239)는 이온성 액체를 블레이드(232B)의 표면 및 상부 하우징(211)의 내측면에 골고루 분사하도록 삼각형 형태로 블레이드(232B)들 사이에 상하로 배치된다. 이러한 분사 파이프(239)에는 이온성 액체를 분사하는 다수의 분사구멍(239a)이 각각 형성되며, 이때 분사구멍(239a)은 블레이드(232B)의 표면 및 상부 하우징의 내측면을 향하되, 확산노즐과 같이 이온성 액체를 스프레이식으로 분사할 수 있도록 구성하는 것이 바람직하다.
<제3 실시예>
도 7은 이 발명의 제3 실시예에 따른 이온성 액체를 이용한 수평형 유기소재 정제장치의 구성관계를 도시한 개념도이다. 도 7에 도시된 바와 같이, 이 실시예의 유기소재 정제장치(300)는 다수의 블레이드가 하우징 내의 수평축을 중심으로 등각도로 배치되어 회전하도록 구성한 것을 제외하고는 제2 실시예의 유기소재 정제장치(200)와 동일 개념으로 구성한 것이다. 따라서, 이 실시예에서는 제2 실시예와 중복되는 부분에 대한 설명을 생략한다.
하우징(310)은 외부와 밀폐되는 일정 내부 용적을 갖는 것으로서, 하우징(310)의 내부를 진공상태로 만드는 진공펌프(311)를 포함하여 구성된다. 승화수단(320)은 유기소재 원료를 수용하는 로딩보트(321)와, 로딩보트(321)를 가열하는 히터(도시안됨)를 포함하여 구성된다. 그리고, 포집수단(330)은 하우징(310)의 수평 중심축을 따라 설치되는 샤프트(331)와, 샤프트(331)의 둘레면을 따라 설치되는 복수의 블레이드(332), 및 샤프트(331)의 일측 단부에 결합되어 동력을 제공하는 구동모터(333)를 포함하여 구성된다.
한편, 이 실시예의 유기소재 정제장치(300)는 승화기체가 유동하는 측방경로를 향해 하부 쪽으로 이온성 액체를 분사하는 분사수단(350)과, 하우징(310)에 형성되는 재결정화수단(340)의 저장조(341)에서 재결정화되어 침전된 유기소재를 회수하는 회수수단(360)과, 유기소재 원료가 수용된 새로운 로딩보트와 유기소재 원료가 승화된 빈 로딩보트를 교체시키는 교체수단(370)을 더 갖도록 구성할 수 있다. 여기서, 분사수단(350)은 승화기체가 비산하는 경로를 가로질러 낙하하도록 이온성 액체를 공급하는 이온성 액체 공급수단의 역할을 한다.
아래에서는 상기와 같이 구성된 이 실시예의 수평형 유기소재 정제장치를 이용해 유기소재를 정제하는 방법에 대해 설명한다.
먼저, 하우징(310)의 내부에 유기소재 원료가 담긴 로딩보트(321)를 설치하고, 펌프(354), 순환펌프(356) 및 구동모터(333)를 구동시켜 블레이드(332)의 표면과 하우징(310)의 내측면을 전체적으로 이온성 액체로 도포한다. 그 이후에, 진공펌프(311)를 이용해 하우징(310)의 내부를 진공화시킨다.
그런 다음, 히터를 이용해 로딩보트(321)를 유기소재 원료의 승화점 직전까지 가열시킨 다음, 1~5분간 간격을 둔 후 승화점 이상으로 가열시킨다. 그러면, 유기소재와 일부 불순물이 혼합된 유기소재의 승화기체가 된다. 한편, 유기소재의 승화기체가 형성될 시점부터 펌프(354) 및 순환펌프(356)를 작동시켜 연통구멍(352)을 통해 이온성 액체를 분사하고, 또한 구동모터(333)를 작동시켜 블레이드(332)를 회전시켜 승화기체를 하우징(310)의 타측방향으로 유동시킨다. 또한, 하우징(310)의 외측면에 설치된 히터(315)를 통해 하우징(310) 내부를 유기소재의 재결정화가 용이한 온도 분위기를 조성한다.
이렇게 승화기체가 하우징(310)의 타측방향으로 유동하면서 블레이드(332) 표면이 이온성 액체와 접촉하고, 또한 연통구멍(352)을 통해 분사되는 이온성 액체와 접촉하게 된다. 이러한 접촉에 의해 승화기체는 이온성 액체에 포집된 후 점점 용해되어 재결정화되면서 하우징(310) 하부의 저장조(341)에 모이게 된다. 즉, 이온성 액체에 승화기체가 용해될 때 불순물 대비 정제대상의 유기소재의 함량이 절대적으로 높기 때문에, 유기소재가 우선 과포화상태에 이르러 재결정화가 먼저 시작되어 고순도의 유기소재로 석출된다.
한편, 하우징(310)의 외측면에 설치되는 히터(315)를 이용해 승화기체가 이온성 액체에 용해되는 용해도를 조절할 수가 있다. 그로 인해, 승화기체에 대한 이온성 액체의 용해도를 조절하여 이온성 액체 내에서 유기소재의 과포화도 및 유기소재의 재결정화 속도 등의 제어가 가능하다. 이로 인해 재결정화되는 과정에서 불순물의 혼입을 최소화할 수 있으며, 이렇게 이온성 액체 내에 석출되는 고순도의 유기소재는 하우징(310)의 저장조(341)로부터 적절히 회수하면 된다.
예를 들어, 재결정화된 유기소재가 이온성 액체의 하부로 침전되는 경우에는, 저장조(341)에 연결된 회수수단(360)의 회수통(361)을 통해 정제된 유기소재를 회수하면 된다. 그런데, 재결정화된 유기소재가 이온성 액체의 하부로 침전되지 않고 이온성 액체의 표면으로 부상하거나 이온성 액체 내에 혼합되는 경우에는, 저장조(341) 내의 혼합액과 재결정화된 유기소재를 저장조(341)의 외부로 배출한 다음, 재결정화된 유기소재를 여과나 원심분리 등의 방식으로 분리하여 회수용기(355)에서 회수한 후, 혼합액을 순환펌프(356)를 이용해 포집수단(330) 쪽으로 재순환시키면 된다.
<제4 실시예>
도 8은 이 발명의 제4 실시예에 따른 이온성 액체를 이용한 스프레이형 유기소재 정제장치의 구성관계를 도시한 개념도이다. 도 8에 도시된 바와 같이, 이 실시예의 유기소재 정제장치(400)는 포집수단(430)이 승화기체가 비산하는 경로를 가로질러 커튼 상이나 다양한 형태로 이온성 액체를 분사하는 분사수단으로 구성된다. 즉, 분사수단이 승화기체가 비산하는 경로를 가로질러 낙하하도록 이온성 액체를 공급하는 이온성 액체 공급수단의 역할을 한다. 따라서, 이 실시예의 유기소재 정제장치(400)는 포집수단(330)이 생략되고 분사수단(350)이 일부 변경된 것을 제외하고는 제3 실시예의 유기소재 정제장치(300)와 동일하게 구성된다. 따라서, 이 실시예에서는 제3 실시예와 동일한 구성요소들에 대한 설명을 생략한다.
이 실시예의 포집수단(430)은 이온성 액체를 분사하는 다수개의 노즐을 각각 갖는 다수개의 분사배관(431)으로 구성된다. 이때, 다수개의 분사배관(431)은 승화기체가 비산하는 경로방향으로 일정 간격을 두고 설치되어, 각각의 노즐을 통해 커튼 상이나 다양한 형태로 상부에서 하부로 분사되는 이온성 액체가 승화기체와 접촉하도록 구성한 것이다. 여기서, 다수개의 분사배관(431)은 다수개의 노즐이 지그재그 방식으로 배치되어 비산하는 승화기체가 이온성 액체에 모두 접촉되어 점진적으로 포집되도록 구성하는 것이 바람직하다.
<제5 실시예>
도 9는 이 발명의 제5 실시예에 따른 이온성 액체를 이용한 롤형 유기소재 정제장치의 구성관계를 도시한 개념도이다. 도 9에 도시된 바와 같이, 이 실시예의 유기소재 정제장치(500)는 포집수단(530)이 승화기체가 비산하는 경로를 가로질러 하우징(510) 내에 배치되는 하나 이상의 회전롤(531)을 구비하고, 재결정화수단(540)이 회전롤(531)의 일측부에 설치되어 이온성 액체에 승화기체가 용해되어 생성된 혼합액을 회전롤(531)의 표면으로부터 벗겨내는 닥터블레이드(541)를 구비하도록 구성된 것을 제외하고는 제3 실시예의 유기소재 정제장치(300)와 동일 개념으로 구성한 것이다. 따라서, 이 실시예에서는 제3 실시예와 중복되는 부분에 대한 설명을 생략한다.
이 실시예의 포집수단(530)은 승화기체가 비산하는 경로를 가로질러 하우징(510) 내에 배치되는 하나 이상의 회전롤(531)과, 회전롤(531)의 하부에 배치되어 이온성 액체를 회전롤(531)의 표면에 공급하는 저장조(532)를 포함한다. 여기서, 회전롤(531)은 그 하부 쪽이 저장조(532)에 저장된 이온성 액체에 침지된 상태에서 회전하도록 설치된다. 따라서, 회전롤(531)의 표면에는 이온성 액체가 도포되고, 이렇게 도포된 이온성 액체의 표면에 승화기체가 접촉하여 포집되고 용해된다. 그로 인해, 회전롤(531)의 표면에는 이온성 액체에 승화기체가 용해된 혼합액이 생성된다. 한편, 회전롤(531)은 하우징(510) 내에 병렬로 다수개 배치할 수도 있다.
이 실시예의 재결정화수단(540)은 회전롤(531)의 일측부에 설치되어 상기 혼합액을 회전롤(531)의 표면으로부터 벗겨내는 닥터블레이드(541)와, 닥터블레이드(541)에 의해 수거된 혼합액을 수집해 유기소재를 과포화시켜 재결정화된 유기소재를 생성하는 수집조(542)를 포함한다. 한편, 재결정화된 유기소재는 수집조(542)와 연결된 별도의 회수수단(550)을 통해 회수하면 된다.
2-2. 액상 유기소재의 정제기술
<제6 실시예>
도 10은 이 발명의 제6 실시예에 따른 이온성 액체를 이용한 액상 유기소재의 정제장치의 개략적인 블록도이다. 도 10에 도시된 바와 같이, 이 실시예의 정제장치(600)는 불순물이 함유된 고상의 유기소재(S1)를 융해하여 액상의 유기소재(L1)를 생성하는 융해부(610)와, 융해부(610)로부터 공급받은 액상의 유기소재(L1)와 이온성 액체(ionic liquids; ILs)(L2)를 혼합하여 혼합물(S2+L3)을 형성함과 더불어 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고상의 유기소재를 생성하는 혼합부(620), 및 혼합부(620)의 혼합물(S2+L3)을 혼합부(620)로부터 배출하여 고상의 유기소재(S2)를 분리한 후 나머지 혼합액(L3)을 상기 혼합부(620)로 순환시키는 순환부(630)를 구비한다. 상기 혼합부(620)의 일측에는 이온성 액체(L1)를 공급하는 이온성 액체 공급부(640)가 연결된다.
아래에서는 상기와 같이 구성된 이 실시예의 액상 유기소재의 정제장치를 이용해 유기소재를 정제하는 방법에 대해 설명한다.
먼저, 융해부(610)에서 불순물이 함유된 고상의 유기소재(S1)를 융해하여 액상의 유기소재(L1)를 생성한다. 그런 다음, 융해부(610)에서 생성된 액상의 유기소재(L1)와 이온성 액체 공급부(640)의 이온성 액체(L2)를 혼합부(620)로 각각 공급해, 혼합부(620)에서 액상의 유기소재(L1)와 이온성 액체(L2)를 혼합하여 혼합물(S2+L3)을 형성한다. 한편, 상기와 같은 혼합과정을 통해 혼합부(620)에서는 조성 구성의 주성분인 정제대상 유기소재가 우선 과포화되어 고상의 유기소재(S2)로 재결정화된다. 그런 다음, 혼합부(620)의 혼합물(S2+L3)을 혼합부(620)로부터 배출하여 고상의 유기소재(S2)를 분리한 후 나머지 혼합액(L3)을 순환부(630)를 이용해 혼합부(620)의 내부로 복귀시켜 재이용하도록 한다.
2-3. 유기소재의 기화기체 정제기술
<제7 실시예>
도 11은 이 발명의 제7 실시예에 따른 이온성 액체를 이용한 기상 유기소재의 정제장치의 개략적인 블록도이다. 도 7에 도시된 바와 같이, 이 실시예의 정제장치(700)는 불순물이 함유된 고상의 유기소재(S1)를 융해하여 액상의 유기소재(L1)를 생성하는 융해부(710)와, 융해부(710)로부터 공급받은 액상의 유기소재(L1)를 증발시켜 유기소재의 기화기체(V1)를 생성하는 기화부(720)와, 기화부(720)로부터 공급받은 유기소재의 기화기체(V1)와 유동하는 이온성 액체(L2)를 접촉시켜 기화기체(V1)를 이온성 액체(L2)로 포집하여 용해시키는 포집부(730), 및 포집부(730)에서 생성된 혼합물(S2+L3)을 공급받아 고상의 유기소재(S2)를 분리한 후 나머지 혼합액(L3)을 포집부(730)로 순환시키는 순환부(740)를 구비한다.
한편, 포집부(730)에서는 이온성 액체(L2)에 포집되어 용해되는 기화기체(V1) 중 조성 구성의 주성분인 정제대상 유기소재를 우선 과포화시켜 재결정화된 고상의 유기소재(S2)를 생성하는 역할을 한다. 그리고, 포집부(730)의 일측에는 이온성 액체(L1)를 공급하는 이온성 액체 공급부(750)가 연결된다.
아래에서는 상기와 같이 구성된 이 실시예의 기상 유기소재의 정제장치를 이용해 유기소재를 정제하는 방법에 대해 설명한다.
먼저, 융해부(710)에서 불순물이 함유된 고상의 유기소재(S1)를 융해하여 액상의 유기소재(L1)를 생성하고, 이렇게 생성된 액상의 유기소재(L1)를 기화부(740)에서 기화시켜 유기소재의 기화기체(V1)를 생성한다. 그런 다음, 기화부(740)에서 생성된 유기소재의 기화기체(V1)와 이온성 액체 공급부(750)의 이온성 액체(L2)를 포집부(730)로 각각 공급해, 유기소재의 기화기체(V1)를 이온성 액체(L2)로 포집하여 용해시킴으로써 혼합액(L3)과 고상의 유기소재(S2)를 얻는다. 즉, 포집부(730)에서는 조성 구성의 주성분인 정제대상 유기소재가 우선 과포화되어 고상의 유기소재(S2)로 재결정화된다. 그런 다음, 포집부(730)의 혼합물(L3+S2)을 순환시켜 고상의 유기소재(S2)를 분리하고 나머지 혼합액(L3)을 유기소재의 기화기체(V1)의 포집에 재이용하도록 한다.
아래에서는 이 발명에 따른 유기소재의 재결정화 메카니즘에 대해 설명한다. 이 발명의 정제공정은 온도구배가 아닌 이온성 액체 내에서의 OLED용 유기소재의 농도구배에 의해 기상(승화기체, 기화기체) 또는 액상의 OLED용 유기소재가 고상으로 재결정화하는 프로세스를 이용하기 때문에, 보다 열역학적 평형상태에 가까운 조건에서 대상 유기소재와 불순물을 분리시킬 수 있다. 이때, 이온성 액체는 진공 분위기에서 일정 온도로 가열된 상태를 유지할 수 있다. 즉, 이온성 액체는 증기압이 매우 낮아, 진공하에서 일정 온도로 가열한 상태에서도 휘발하지 않고 액체상태를 유지할 수 있어, 이를 유기소재 정제를 위한 용매로 이용한 것이다.
불순물이 함유된 OLED용 유기소재의 기상(승화기체, 기화기체) 또는 액상을 일정 온도로 가열된 이온성 액체로 포집하여 용해시키면, 이온성 액체 내에서 주류를 이루는 대상 유기소재가 먼저 과포화에 이르고, 이때 대상 유기소재가 고상으로 우선 재결정화하게 되며, 불순물은 이온성 액체 내에 용해된 상태로 잔류하게 된다. 보다 미세한 영역에서의 반응을 고찰하면, 이온성 액체 내에서 우선 재결정화한 대상 유기소재의 고상 표면에서는 끊임없이 고체-액체 간의 계면 반응이 일어나는데, 이때 고상의 유기소재는 고상 내에 균일한 조성을 유지해 고상 내의 깁스 에너지를 낮추기 위해 불순물을 고상 유기소재의 외부(이온성 액체)로 토출하는 반응이 자발적으로 반복된다. 이러한 메카니즘을 통해 재결정화된 고상의 유기소재는 순수한 단일 상을 유지하게 되고, 결과적으로 1회의 정제공정을 통해서도 고순도의 유기소재가 얻어지게 된다.
상술한 제1 실시예에서는 불순물이 함유된 OLED용 유기소재를 이온성 액체를 이용해 정제하되, 유기소재의 승화기체를 캐리어가스(예를 들어, 불활성 기체)로 유동시켜 유기소재를 정제하는 개념에 대해 예시적으로 설명한 것이고, 제2 내지 제5 실시예에서는 유기소재의 승화기체를 캐리어가스를 이용하지 않으면서 유기소재를 정제하는 개념에 대해 예시적으로 설명한 것이다. 그리고, 제6 실시예에서는 불순물이 함유된 OLED용 유기소재를 액상으로 융해한 상태에서 정제하는 개념에 대해 예시적으로 설명한 것이고, 제7 실시예에서는 불순물이 함유된 OLED용 유기소재를 액상으로 융해한 후 증발시켜 형성된 기화기체를 정제하는 개념에 대해 예시적으로 설명한 것이다. 한편, 상기 실시예들에서는 불순물이 함유된 OLED용 액상 또는 기상의 유기소재를 이온성 액체로 정제하는 개념에 대해 설명했으나, 유기소재의 특성에 따라 고상의 유기소재를 이온성 액체로 정제하는 것 또한 가능하다.
따라서, 상기와 같은 실시예 이외의 다양한 방법을 통해 불순물이 함유된 OLED용 유기소재를 이온성 액체를 이용해 정제할 수가 있다.
그런데, OLED에 사용되는 유기발광소재는 대기 중에 노출되면 그 특성이 급격하게 열화되는데, 특히 수분에 취약한 특성을 보인다. 즉, 유기발광소재의 수소기에 물분자가 결합하게 되면 유기소재의 전기적 특성, 특히 전도성이 급격히 낮아져 전기적 절연 특성을 보이게 되어 소자 특성이 급격히 열화된다. 따라서, 유기발광소재의 유통단계에서 수분의 차단은 매우 엄격하게 관리되어야 하며, 소자 제제공정에 있어서의 수분 차단 또한 매우 중요한 이슈 중에 하나이다.
한편, 이 발명자가 이온성 액체를 액체필터로 활용하여 OLED용 유기소재를 정제한 후, 정제된 유기소재를 장시간 동안 대기 중에 노출시켰음에도 불구하고, 정제된 유기소재가 열화되지 않음을 확인하였다. 이는 이온성 액체의 특성에 기인한 것으로 판단된다.
예를 들어, 유기발광소재를 정제함에 있어서, 이미다졸기(imidazolium)의 양이온(cation)과 알킬설퍼네이트기(alkylsulfonates)의 음이온(anion)으로 구성된 이온성 액체를 이용한 경우에는, 정제된 유기발광소재의 세정 후 유기발광소재의 표면에 이온성 액체의 음이온인 알킬설퍼네이트기가 화학적 결합의 형태로 단일 분자층 두께로 존재함을 확인하였다. 이러한 이온성 액체의 음이온이 소수성 특성을 갖는 표면을 형성하여, 유기발광소재의 표면에 수분이 침투하는 것을 방지하는 효과를 갖는다.
따라서, 이러한 소수성 특성의 음이온을 단일 분자층으로 코팅하는 기술을 통해 유기발광소재를 수분의 영향으로부터 차단할 수가 있고, 그로 인해 유기발광소재를 대기 중에서 핸들링하는데 있어 매우 간편해, OLED 소자 제조공정에도 수분이 침투하는 것을 원천적으로 방지할 수가 있다.
상기와 같이 이온성 액체를 이용해 정제된 OLED용 유기소재의 표면에 화학적 결합으로 코팅된 단일 분자층의 음이온은 2차적인 처리기술(열처리, 또는 에너지 입자(energetic particle)를 충돌시키는 방법)을 통해 제거할 수 있으므로, 소자 제조공정에서의 불순물의 혼입을 방지할 수 있다.
여기서, 에너지 입자로는 이온빔(ion beam), 플라즈마(plasma) 또는 전자빔(electron beam) 등을 이용할 수 있고, 열을 가하는 열적 수단으로는 일반적인 열원, 레이저 웨이브(laser wave) 또는 펄스(자외선(UV), 가시광선(Visible), 적외선(IR)) 등을 이용할 수 있다. 한편, 플라즈마 장비로는 아르곤 플라즈마(Ar plasma), 질소 플라즈마(N2 plasma)를 이용할 수 있으나, 이에 한정되는 것은 아니다.
아래에서는 상술한 바와 같은 이 발명의 이온성 액체를 이용한 유기소재 정제장치를 통한 유기소재의 정제여부를 비롯한 정제된 유기소재의 특성 등에 대해 설명한다.
1. 유기소재 정제장치 및 정제방법
도 12a 내지 도 12c는 수평형 유기소재 정제장치를 제작하기 위한 설계도이고, 도 13은 도 12a 내지 도 12c에 도시된 설계도에 따라 제작된 수평형 유기소재 정제장치의 실물 사진 및 실험결과를 촬영한 부분 확대 사진이다.
도 12a 내지 도 13에 도시된 바와 같이, 수평형 유기소재 정제장치는 불순물이 함유된 OLED용 유기소재를 승화시키는 승화부와, 승화부와 연통하도록 배치되어 유기소재의 승화기체와 유동하는 이온성 액체를 접촉시켜 승화기체를 포집하는 포집부로 구성된다. 여기서, 승화부는 도 7에 도시된 승화부와 동일 개념으로 구성하고, 포집부는 도 7에 도시된 포집부와 동일 개념으로 블레이드가 하우징(챔버) 내의 수평축을 중심으로 회전하면서 승화기체가 이온성 액체에 접촉되어 포집 및 용해되어 재결정화되도록 구성한 것이다.
상기와 같은 수평형 유기소재 정제장치를 이용하여 정제실험을 수행하는 프로세스는 다음과 같다. 먼저, 대기압 상태에서 정제대상 유기소재를 승화부에 장입하고, 포집부에 이온성 액체를 주입한 다음, 챔버를 1x10-6 Torr로 펌핑한다. 그런 다음, 이온성 액체를 가열하고, 포집부의 블레이드를 회전시키며, 정제대상 유기소재를 승화점으로 가열하되 정제대상 유기소재가 승화되도록 일정시간 유지한다. 그러면, 유기소재의 승화기체가 비산하여 블레이드를 따라 유동하는 이온성 액체와 접촉, 포집 및 용해되어 재결정화된다. 이러한 정제공정이 완료되면, 정제된 유기소재를 수거하여 정제된 유기소재와 이온성 액체를 분리한 다음, 정제된 유기소재의 표면에 잔류하는 이온성 액체를 세정하는 과정을 수행한다.
2. 유기소재 정제장치의 실험 조건 및 실험 결과
이온성 액체로는 OMIN TFSI(1-Octyl-3-methylimidazorium bis(trifluoromethyl sulfonyl)imide) 1Kg을 사용하고, 유기소재로는 HTL 소재(DS 220) 20g을 사용하였다. 한편, 정제실험을 수행함에 있어서는, 유기소재의 승화온도는 280℃ 이상으로 설정하였고, 이온성 액체의 온도는 120℃로 설정하였다. 그리고, 압력은 1x10-6 Torr까지 감압한 후 승화를 개시하였으며, 공정시간은 5시간을 수행하였다.
위와 같은 조건에서 정제실험을 진행하는 동안 승화개시 후 30분이 경과된 후부터 이온성 액체의 표면에 부유물 형태의 유기소재 결정이 관찰되었으며, 이후 이러한 결정들의 양이 증가하는 것이 관찰되었다. 즉, 도 13의 부분 확대 사진의 실험결과에서 알 수 있듯이, 재결정화되어 정제된 유기소재가 이온성 액체의 표면에 부유물 형태로 존재함을 알 수 있다. 이는 이온성 액체를 이용해 유기소재에 대한 정제가 가능함을 의미한다.
상기와 같은 정제공정이 종료된 후 정제된 유기소재와 이온성 액체의 혼합물을 수거하여, 정제된 유기소재를 이온성 액체로부터 분리 세정한 후에 각종 분석을 수행하였다.
3. 정제된 유기소재의 특성 분석
표 1과 같은 분석기기를 이용해 다음과 같은 조건에서 정제된 유기소재의 특성을 분석하였다.
표 1
분석기기 | 장비 모델 | 제조사 | 측정 조건 |
FE-SEM | Quanta 200 | FEI Company | - HV:20kV- spot size:3mm- 배율:1k~30k |
Raman | LabRamHR | JOVIN YVON | - 514nm Ar laser- 온도:21℃- 습도:20%- scan range: 1000~3000cm-1 |
PL | RPM2000 | ACCENT | - 325nm He-Cd Laser- 온도:21℃- 습도:20%- scan range:350~810nm |
XPS | VG Multilab 2000 | ThermoVG Scientific | - 렌즈 모드:LAXPS- Survey pass energy:50eV- Narrow pass energy:20eV- 분석원소:C, O, F, Cl, S |
4. Raman PL 측정
정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 Raman PL 특성의 변화를 측정하였다. 이러한 Raman PL 측정은 HTL 소재의 정제 전후의 대기 노출 시간에 따른 유기소재의 안정성을 비교하기 위한 것이다. 도 14a 내지 도 14d는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 Raman PL 특성의 변화를 측정한 그래프이다.
도 14a 및 도 14b에서 알 수 있듯이, 정제 전 HTL 소재의 경우 대기중 노출 시간이 경과함에 따라 피크(peak)의 반치폭(FWHM)의 변화폭이 8cm-1에 이른 반면, 도 14c 및 도 14d에서 정제 후 HTL 소재의 경우 그 수치가 0.5cm-1 정도로 매우 안정적임을 확인하였다. 이는 이온성 액체를 이용해 정제한 유기소재의 표면이 이온성 액체의 성분에 의해 보호(passivation)되고 있음을 의미한다.
5. PL 측정
정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 PL 특성의 변화를 측정하였다. 이러한 PL 측정은 HTL 소재의 정제 전후의 대기 노출 시간에 따른 유기소재의 안정성을 비교하기 위한 것이다. 도 15a 내지 도 15d는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 PL 특성의 변화를 측정한 그래프이다.
도 15c 및 도 15d에서 알 수 있듯이, 정제 후 HTL 소재의 발광 피크(peak) 위치가 단파장(460nm -> 440nm) 쪽으로 이동하고, 또한 반치폭(FWHM)의 값이 75nm에서 50nm로 낮아짐을 알 수 있다. 이는 정제 공정을 통해 물질의 순도가 향상되었음을 의미한다. 또한, 도 15a 및 도 15b에서 정제 전 HTL 소재의 경우 대기중 노출 시간이 경과함에 따라 피크 위치의 변화값이 ±5nm에 이르고 반치폭(FWHM)의 변화폭이 10nm에 이른 반면, 정제 후 HTL 소재의 경우 피크 위치의 변화값이 ±1nm 이하이고 반치폭(FWHM)의 변화폭이 5nm 이하임을 알 수 있다. 이를 통해, 이온성 액체를 이용해 정제한 유기소재의 경우, 외부의 수분 및 산소에 의한 물질의 특성 변화가 미비하다는 것이다. 이는 이온성 액체를 이용해 정제한 유기소재의 표면이 이온성 액체의 성분에 의해 보호되고 있음을 의미한다.
6. SEM 측정
정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 표면 형상의 변화를 측정하였다. 이러한 PL 측정은 HTL 소재의 정제 전후의 대기 노출 시간에 따른 유기소재의 안정성을 비교하기 위한 것이다. 도 16a 내지 도 16d는 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제 전후의 HTL 소재에 대한 대기 노출 시간에 따른 표면 형상의 변화를 촬영한 SEM(x 1k) 사진이다.
정제 전 HTL 소재는 합성 직후의 물질로 98.6% 정도의 순도를 갖는 것으로서, 도 16a 내지 도 16d에서 알 수 있듯이, 표면형상에서 특이한 특징은 관찰되지 않았다. 그런데, 이 발명의 수평형 유기소재 정제장치를 통해 정제한 HTL 소재는 구형 형상의 결정립이 관찰되었다. 이러한 결정립의 크기는 5㎛의 매우 균일한 사이즈를 가졌다. 한편, 시간 경과에 따른 표면 형상의 변화는 크게 관찰되지 않았다.
7. XPS 측정
XPS 측정을 통해 이 발명의 수평형 유기소재 정제장치를 이용해 정제된 유기소재의 특징을 조사하였다. 도 17은 도 13에 도시된 수평형 유기소재 정제장치를 통한 정제된 유기소재의 특징을 나타낸 XPS의 그래프이다.
도 17에서 알 수 있듯이, 유기소재의 정제에 사용된 이온성 액체의 음이온 성분에 기인하는 F, S의 원소가 검출되었다. 이는 이온성 액체를 이용한 유기소재 정제방법의 고유한 결과로서, 정제공정에서 재결정화된 유기소재의 표면에 음이온 및 양이온이 분자레벨에서 화학적 결합을 하고 있음을 보여준 것이다. 이렇듯, 정제된 유기소재의 표면이 이온성 액체, 이온성 액체에 기인하는 성분(이온성 액체를 구성하는 성분), 또는 이온성 액체를 구성하는 이온에 의해 보호되는 것을 알 수 있다. 특히, 정제된 유기소재의 표면이 화학적으로 결합된 단일 분자층의 음이온에 의해 보호되는 것을 알 수 있다. 결론적으로, 정제된 유기소재의 표면이 보호됨에 따라, 상술한 바와 같이 대기 노출에 따른 정제된 유기소재의 특성이 안정적으로 유지됨을 알 수 있다. 이러한 특징, 즉 사용한 이온성 액체에 기인하는 특성 성분의 원소가 극미량 검출되는 것은 이온성 액체를 이용한 정제방법으로 정제된 유기소재의 고유의 특징으로서, 이러한 특징을 조사함으로써 대상 유기소재가 이온성 액체를 이용한 정제법으로 정제된 대상물인지를 판명할 수가 있다. 따라서, 이 발명은 이러한 정제물의 특징을 갖는 유기소재를 제공하는 것을 포함한다.
그런데, OLED 패널 제조공정에 있어서, 이온성 액체에 기인하는 F, S 성분들이 소자공정에 혼입되게 되면 소자 특성에 좋지 않은 영향을 미칠 가능성이 있다. 따라서, 소자 제작을 위한 증착공정 직전에 정제된 유기소재의 표면을 보호하는 이온성 액체에 기인하는 F, S 성분들을 제거해야 할 필요가 있다.
이에 본 발명자가 실험해 본 결과, 유기소재의 표면을 보호하는 이온성 액체에 기인하는 성분들이 아르곤 이온 에칭(Ar ion etching) 또는 100℃ 이상의 열처리를 통해 완전히 제거됨을 확인하였다. 만약, 이러한 불순물이 유기소재의 내부에 존재한다면, 이러한 열처리나 간단한 아르곤 이온 에칭 등의 방법으로 제거되지 않을 것이므로, 상기 결과들은 이온성 액체에 기인한 성분들은 정제된 유기소재의 표면에만 극미량 존재하는 것을 증명한다.
도 18은 정제된 유기소재를 120℃에서 1분간 열처리를 한 후 XPS로 표면 조성을 분석한 그래프이다. 도 18에서 알 수 있듯이, F, S 성분에 기인하는 위치에서 매우 약한 피크가 검출되었으며, 이는 정제된 유기소재의 표면에 존재하는 대부분의 F, S 성분이 열처리를 통해 제거되었음을 의미한다. 이를 통해, 정제된 유기소재를 소자공정에 투입하기까지의 유통경로에서 정제된 유기소재를 안정적으로 핸들링할 수 있음을 확인하고, 소자공정 직전에 적절한 사전처리를 통해 유기소재의 표면을 보호하는 이온성 액체에 기인하는 성분들을 완전히 제거 가능하여 소자공정에서 어떠한 악영향을 미치지 않음을 확인하였다.
한편, 상기 실시예들 및 실험예에서는 불순물이 함유된 OLED용 유기소재를 이온성 액체로 정제함에 따라, 정제된 유기소재의 표면이 이온성 액체, 이온성 액체에 기인하는 성분, 또는 이온성 액체를 구성하는 이온에 의해 보호되는 것을 확인하였다. 그런데, 이 발명은 기존의 승화정제법 등에 의해 정제된 유기소재의 표면을 이온성 액체로 코팅해, 정제된 유기소재의 표면을 이온성 액체, 이온성 액체에 기인하는 성분, 또는 이온성 액체를 구성하는 이온으로 보호할 수도 있다. 이때, 정제된 유기소재의 표면을 이온성 액체로 코팅하는 방법으로는, 일반적인 스프레이 코팅, 침지 코딩 등 다양한 방법을 이용하면 된다.
이상에서 이 발명의 보호층을 갖는 유기소재 및 이러한 유기소재를 생성하기 위한 유기소재 정제장치에 대한 기술사항을 첨부도면과 함께 서술하였지만 이는 이 발명의 가장 양호한 실시예를 예시적으로 설명한 것이다. 따라서, 이 발명이 상기에 기재된 실시예에 한정되는 것은 아니고, 이 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게 자명하므로, 그러한 변형예 또는 수정예들 또한 이 발명의 특허청구범위에 속한다 할 것이다.
Claims (8)
- 정제된 유기소재의 표면이 이온성 액체(Ionic liquids)에 의해 보호되는 것을 특징으로 하는 유기소재.
- 정제된 유기소재의 표면이 이온성 액체(Ionic liquids)에 기인하는 성분에 의해 보호되는 것을 특징으로 하는 유기소재.
- 정제된 유기소재의 표면이 이온성 액체(Ionic liquids)를 구성하는 이온에 의해 보호되는 것을 특징으로 하는 유기소재.
- 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,상기 유기소재는 불순물이 함유된 OLED(Organic Light Emitting Diodes)용 유기소재를 상기 이온성 액체에 용해하여 재결정화함으로써 생성되는 것을 특징으로 하는 유기소재.
- 청구항 4에 있어서,상기 불순물이 함유된 OLED용 유기소재를 융해, 기화 또는 승화시켜 상기 이온성 액체에 용해시키는 것을 특징으로 하는 유기소재.
- 청구항 4에 있어서,상기 불순물이 함유된 OLED용 고상, 액상 또는 기상의 유기소재를 이온성 액체에 용해시키는 것을 특징으로 하는 유기소재.
- 청구항 4에 있어서,상기 유기소재의 표면은 화학적으로 결합된 단일 분자층의 음이온(anion)에 의해 보호되는 것을 특징으로 하는 유기소재.
- 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,상기 정제된 유기소재는 불순물이 함유된 OLED(Organic Light Emitting Diodes)용 유기소재를 승화정제법으로 정제하여 생성한 것을 특징으로 하는 유기소재.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0049494 | 2014-04-24 | ||
KR20140049494 | 2014-04-24 | ||
KR10-2014-0073585 | 2014-06-17 | ||
KR20140073585 | 2014-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015163734A1 true WO2015163734A1 (ko) | 2015-10-29 |
Family
ID=54332815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/004134 WO2015163734A1 (ko) | 2014-04-24 | 2015-04-24 | 보호층을 갖는 유기소재 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20150123188A (ko) |
WO (1) | WO2015163734A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011105A (zh) * | 2021-10-19 | 2022-02-08 | 杭州福斯特电子材料有限公司 | 一种封装油墨组合物的提纯方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020055000A1 (ko) * | 2018-09-10 | 2020-03-19 | 주식회사 디엠에스 | 유기재료, 유기재료 제조방법 및 유기발광소자 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040048868A (ko) * | 2002-12-04 | 2004-06-10 | 동경 엘렉트론 주식회사 | 유기 재료막의 처리 방법 |
KR20040102877A (ko) * | 2003-05-30 | 2004-12-08 | 학교법인 서강대학교 | 유기 전계 발광 소자에 사용되는 유기물의 초고순도정제방법 |
JP2005036355A (ja) * | 2003-07-16 | 2005-02-10 | National Institute Of Advanced Industrial & Technology | 耐水耐熱防汚性コーティング部材及びその製造方法 |
KR101289792B1 (ko) * | 2013-06-19 | 2013-07-26 | 신상규 | 유기발광재료의 분리정제방법 |
KR20130096370A (ko) * | 2012-02-22 | 2013-08-30 | 삼성디스플레이 주식회사 | 유기물 정제장치 |
-
2015
- 2015-04-23 KR KR1020150057326A patent/KR20150123188A/ko unknown
- 2015-04-24 WO PCT/KR2015/004134 patent/WO2015163734A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040048868A (ko) * | 2002-12-04 | 2004-06-10 | 동경 엘렉트론 주식회사 | 유기 재료막의 처리 방법 |
KR20040102877A (ko) * | 2003-05-30 | 2004-12-08 | 학교법인 서강대학교 | 유기 전계 발광 소자에 사용되는 유기물의 초고순도정제방법 |
JP2005036355A (ja) * | 2003-07-16 | 2005-02-10 | National Institute Of Advanced Industrial & Technology | 耐水耐熱防汚性コーティング部材及びその製造方法 |
KR20130096370A (ko) * | 2012-02-22 | 2013-08-30 | 삼성디스플레이 주식회사 | 유기물 정제장치 |
KR101289792B1 (ko) * | 2013-06-19 | 2013-07-26 | 신상규 | 유기발광재료의 분리정제방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011105A (zh) * | 2021-10-19 | 2022-02-08 | 杭州福斯特电子材料有限公司 | 一种封装油墨组合物的提纯方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150123188A (ko) | 2015-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015122686A1 (ko) | 이온성 액체를 이용한 유기소재 정제방법 및 정제장치 | |
WO2014098458A1 (ko) | 이온성 액체를 이용한 유기소재 정제방법 및 정제장치 | |
KR100806113B1 (ko) | 박막증착 장치의 원료가스 공급장치 및 잔류가스 처리장치및 그 방법 | |
KR101441667B1 (ko) | 성막방법 및 발광장치 제조방법 | |
WO2014038791A1 (ko) | 유기발광재료의 회수방법 | |
KR20170128154A (ko) | 이온성 액체를 이용한 유기소재 정제장치 및 정제방법 | |
US20110311717A1 (en) | Vapor deposition method and vapor deposition system | |
WO2015163734A1 (ko) | 보호층을 갖는 유기소재 | |
KR102005471B1 (ko) | 유기 발광 소자의 재료로 사용되는 유기 물질 정제방법 | |
KR20140079309A (ko) | 이온성 액체를 이용한 유기소재의 재결정화 방법 및 장치 | |
JP2005149924A (ja) | 蒸着装置および蒸着材料の回収・再利用方法並びに有機電界発光装置の製造方法。 | |
CN110431214B (zh) | 有机电致发光元件用材料的回收方法和有机电致发光元件用材料的制造方法 | |
KR100550941B1 (ko) | 유기물질의 정제장치 및 정제방법 | |
WO2003070856A1 (fr) | Dispositif electroluminescent organique | |
KR20060008531A (ko) | 유기물질의 승화정제방법 | |
EP1514918B1 (en) | Method of cleaning chamber of vacuum evaporation apparatus for production of organic el element | |
KR20160099769A (ko) | 이온성 액체를 이용한 롤형 유기소재 정제방법 및 정제장치 | |
KR20150108743A (ko) | 이온성 액체를 이용한 스프레이형 유기소재 정제방법 및 정제장치 | |
KR20150096332A (ko) | 이온성 액체를 이용한 수평형 유기소재 정제방법 및 정제장치 | |
KR20210052698A (ko) | 이온성 액체를 이용한 하이브리드 유기소재 정제장치 | |
TW201703831A (zh) | 具有保護層的有機材料 | |
KR100434273B1 (ko) | 유기물질의 정제방법 | |
KR20200126460A (ko) | 유기소재 인라인 정제 시스템 | |
KR101573746B1 (ko) | 이온성 액체를 이용한 유기재료 정제 방법 | |
JP4259106B2 (ja) | 有機エレクトロルミネッセンス素子用透明導電性基板、これを用いた有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15783003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15783003 Country of ref document: EP Kind code of ref document: A1 |