WO2015163209A1 - 蛍光色素内包樹脂粒子の保存液 - Google Patents

蛍光色素内包樹脂粒子の保存液 Download PDF

Info

Publication number
WO2015163209A1
WO2015163209A1 PCT/JP2015/061567 JP2015061567W WO2015163209A1 WO 2015163209 A1 WO2015163209 A1 WO 2015163209A1 JP 2015061567 W JP2015061567 W JP 2015061567W WO 2015163209 A1 WO2015163209 A1 WO 2015163209A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent dye
resin particles
containing resin
particle
preservation solution
Prior art date
Application number
PCT/JP2015/061567
Other languages
English (en)
French (fr)
Inventor
高橋 優
文徳 岡田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP15783619.8A priority Critical patent/EP3136098B1/en
Priority to US15/305,416 priority patent/US20170045452A1/en
Priority to JP2015560442A priority patent/JP6048597B2/ja
Publication of WO2015163209A1 publication Critical patent/WO2015163209A1/ja
Priority to US16/561,679 priority patent/US20200003689A1/en
Priority to US16/561,732 priority patent/US11346784B2/en
Priority to US17/407,302 priority patent/US20210381982A1/en
Priority to US17/979,920 priority patent/US20230069563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the present invention relates to a storage solution used for storing fluorescent dye-containing resin particles.
  • fluorescent dye-containing resin particles are particles having a structure in which a fluorescent dye is included with appropriate resin particles.
  • the fluorescent dye-containing resin particles those having a form of a complex of a functional group or a molecule that can bind to a biological substance such as an antibody may be used for the purpose of application to immunostaining or the like.
  • fluorescent dye-containing resin particles When using such fluorescent dye-containing resin particles, they are not always used immediately after production, and may be stored for a certain period until use. At this time, in order to maintain the function as a fluorescent labeling agent, the fluorescent dye-containing resin particles are often stored in a diluted state in a storage solution.
  • Patent Document 1 describes that a 1% BSA / PBS buffer solution is used as a storage solution for fluorescent dye-containing resin particles.
  • the fluorescent dye-containing resin particles after storage are used as they are for various staining such as immunostaining after long-term storage, Coarse lumps may occur, which may hinder the correct counting of the number of bright spots.
  • the fluorescent dye-containing resin particles diluted with the storage solution are subjected to centrifugation, removal of the supernatant, and solvent for staining before use for staining. It is necessary to carry out a pretreatment such as a filter treatment after solvent replacement by repeating the dilution by sonication and redispersion by ultrasonic treatment for an appropriate number of times, and there is a problem that a complicated operation is required.
  • the fluorescent dye-containing resin particles are stored for a long period of time, a coarse mass is often generated when staining the cell tissue using the fluorescent dye-containing resin particles after storage.
  • a coarse lump is usually confirmed as an agglomerate having a size corresponding to 2.5 to 5 ⁇ m square or more, and may be a size corresponding to 10 ⁇ m square or more.
  • the fluorescent dye-containing resin particles are precipitated and / or aggregated.
  • an object of the present invention is to suppress the precipitation and / or aggregation of the fluorescent dye-containing resin particles, particularly aggregation, and to use the fluorescent dye-containing resin particles after staining for a long time without the need for complicated operations. It is to provide a preserving solution that can be used.
  • the present invention provides the following preservation solution: A storage solution for fluorescent dye-containing resin particles, About the particle-containing liquid obtained by adding fluorescent dye-encapsulating resin particles to the preservation solution, the particle-containing liquid after standing for 24 hours from the addition, based on the particle-containing liquid immediately after the addition A preserving solution, characterized in that the rate of change in backscattering intensity (transmitted light) at the height center is -1% or more.
  • the fluorescent dye-containing resin particles after long-term storage can be subjected to centrifugation, removal of the supernatant liquid in advance, as in the prior art, before being used for staining, Simple operation such as pipetting (stirring) without the need for pretreatment such as filter treatment after solvent replacement by repeating dilution with a solvent for staining and redispersion by ultrasonic treatment for an appropriate number of times. This makes it possible to stain cell tissues.
  • FIG. 5 The dyeing
  • FIG. 5 The dyeing
  • the preservation solution according to the present invention comprises: A storage solution for fluorescent dye-containing resin particles, About the particle-containing liquid obtained by adding fluorescent dye-encapsulating resin particles to the preservation solution, the particle-containing liquid after standing for 24 hours from the addition, based on the particle-containing liquid immediately after the addition.
  • the rate of change in the backscattering intensity (transmitted light) at the center of the height is ⁇ 1% or more.
  • the storage solution of the present invention has a backscattering intensity (transmitted light) at the center of the height immediately after the addition, which is observed for the particle-containing solution when fluorescent dye-containing resin particles are added to form a particle-containing solution.
  • the ratio D (%) of the change in the backscattering intensity (transmitted light) at the center of the height of the particle-containing liquid obtained based on the formula satisfies the relationship of D ⁇ ⁇ 1.
  • the ratio D of the change refers to the degree of aggregation of the fluorescent dye-containing resin particles that have been stored with the storage solution of the present invention, and evaluates the storage performance of the fluorescent dye-containing resin particles with the storage solution. It is a measure.
  • step (1) A step of adding a fluorescent dye-containing resin particle to a preservation solution to obtain a particle-containing solution; (2) measuring the backscattering intensity (transmitted light) I 0 at the center of the height of the particle-containing liquid immediately after the addition of the particle-containing liquid; (3) The step of measuring the backscattering intensity (transmitted light) I 24 at the center of the height of the particle-containing liquid again after allowing the particle-containing liquid to stand for 24 hours; (4) A step of determining whether or not the following requirements are satisfied based on the I 0 and I 24 .
  • the “backscattering intensity (transmitted light)” used as a reference for determining the rate of change D is that light from the light source travels straight through the sample or repeating scattering. It refers to the intensity of the transmitted light or backscattered light obtained.
  • the reason why the position at which the backscattering intensity (transmitted light) is observed is the center of the height of the particle-containing liquid is as follows.
  • the amount of backscattered light changes in the entire particle-containing liquid regardless of the height position.
  • the backscattering intensity (transmitted light) at the center of the height is reduced.
  • the backscattering intensity (transmitted light) at the upper and lower ends of the particle-containing liquid changes with time as the particles settle.
  • the scattering intensity (transmitted light) hardly changes.
  • the degree of aggregation of the fluorescent dye-containing resin particles in the preservation liquid can be correctly evaluated.
  • the storage performance of the fluorescent dye-containing resin particles can be appropriately evaluated.
  • this D is set to ⁇ 1 or more. This is based on the experience of the present inventors, and this value is judged based on the evaluation of the suppression performance of fluorescent dye-containing resin particle aggregation in the storage solution. This is because it was considered appropriate to do so. This has also been confirmed from the relationship with the evaluation results by immunostaining and morphological observation staining of fluorescent dye-containing resin particles after storage for 1 month in a storage solution in Examples and Comparative Examples described later in this specification. . In addition, the present inventors estimate that the ratio of the change in the backscattering intensity (transmitted light) at the center of the height of the particle-containing liquid left for one month has a certain correlation with the value of D. Yes.
  • save liquid of this invention may become D> 0 depending on a measurement condition, it may become such D.
  • the wavelength of the light applied to the center of the height at which the backscattering intensity (transmitted light) is measured is appropriately set to the backscattering intensity (transmitted light) in relation to the fluorescent dye-containing resin particles.
  • the wavelength of light to be irradiated be longer than the particle size of the fluorescent dye-containing resin particles.
  • light having a wavelength of around 880 nm is preferably used because no special measuring device is required.
  • the measuring instrument used for evaluation in the present invention is not particularly limited as long as it can appropriately measure the backscattering intensity (transmitted light) at the center of the height of the particle-containing liquid, but as an example of a suitable measuring instrument, An example is Turbiscan (trademark) manufactured by Formalaction. According to this measuring instrument, it is also possible to measure the backscattering intensity (transmitted light) while changing the height position. However, in measuring the backscattering intensity (transmitted light), it does not interfere with the measurement by other spectrophotometers.
  • the preservation solution of the present invention satisfies the specific range defined by the present invention in the change ratio D (%).
  • the specific configuration of the preservation solution of the present invention satisfying such a change ratio D (%) the kind of fluorescent dye-containing resin particles to be preserved and the surface modification
  • the storage solution of the present invention typically contains a buffer solution, a protein, and a surfactant, although it varies depending on the state and the like and is not specified in a strictly strict form.
  • the protein that can constitute the preservation solution of the present invention is not particularly limited as long as it does not impair the function of the fluorescent dye-containing resin particles and can prevent aggregation of the fluorescent dye-containing resin particles.
  • the preservation solution of the present invention is used for preserving the fluorescent dye-containing resin particles used for pathological staining, it is desirable that the non-specific adsorption to the cell tissue to be stained can be prevented.
  • suitable proteins include proteins generally used as blocking agents such as BSA and casein.
  • the protein content in the preservation solution of the present invention can be appropriately adjusted within a range in which aggregation of the fluorescent dye-containing resin particles can be prevented, but for example, 10% by weight or less (for example, 1 to 10% by weight of the whole preservation solution) Range).
  • the surfactant that can constitute the preservation solution of the present invention is not particularly limited as long as it does not impair the function of the fluorescent dye-containing resin particles and can prevent aggregation of the fluorescent dye-containing resin particles. I don't mean.
  • the preservation solution of the present invention is used for preserving the fluorescent dye-containing resin particles used for pathological staining
  • the fluorescent dye-containing resin particles are used for pathological staining while diluted with the preservation solution of the present invention. May be.
  • a part with a cell nucleus is negatively charged by a phosphate residue constituting a nucleic acid, and a part other than the cell nucleus tends to be positively charged.
  • a nonionic surfactant as the surfactant.
  • polyoxyethylene sorbitan fatty acid esters such as Tween (registered trademark) surfactants can be preferably used, and Tween (registered trademark) 20 can be particularly preferably used.
  • the content of the surfactant in the preservation solution of the present invention can be adjusted as appropriate within a range in which aggregation of the fluorescent dye-containing resin particles can be prevented.
  • the content is 0.1% by weight or less with respect to the whole preservation solution. It is desirable.
  • the buffer solution that can constitute the preservation solution of the present invention is not particularly limited as long as the function of the fluorescent dye-containing resin particles is not impaired, and various conventionally known buffer solutions can be used.
  • the preservation solution of the present invention is used for preserving fluorescent dye-containing resin particles used for pathological staining.
  • fluorescent dye-containing resin particles used for pathological staining fluorescent dye-containing resin particles having a reactive functional group described in the section “Aspect of fluorescent dye-containing resin particles” described below, particularly biotin and streptavidin. Fluorescent dye-containing resin particles having a molecule that easily forms a bond based on affinity interaction, such as avidin, are frequently used. Therefore, it is preferable that the buffer used in the present invention has a pH in such a range that such molecules do not denature.
  • the pH in a range suitable for pathological staining since the fluorescent dye-containing resin particles can be used for staining in a state diluted with the preservation solution of the present invention, the pH in a range suitable for pathological staining. It is preferable to have. From these viewpoints, the buffer used in the present invention preferably has a pH in the range of, for example, pH 6.0 to pH 8.0, and preferably has a pH in the range of 6.9 to 7.6. More preferred.
  • examples of preferred buffer types include phosphate buffered saline (PBS), Tris-HCl buffer, phosphate buffer (excluding PBS), and combinations of two or more thereof. .
  • the function of the fluorescent dye-containing resin particles is not impaired, and aggregation of the fluorescent dye-containing resin particles can be prevented.
  • examples of the preservative include sodium azide (NaN 3 ).
  • the preservative is desirably contained in the buffer solution at 0.015 N or less.
  • the preservation solution of the present invention can be obtained by dissolving the protein, the surfactant, and the optionally added “other components” in the buffer solution by a conventional method.
  • the combination of the above components that is, the above protein and the above preservative solution, and the above-mentioned “other components” that are optionally added depends on the type of fluorescent dye-containing resin particles to be stored. Therefore, we do not dare to specify the exact exact form. However, when adjusting the combination and the blending ratio, it is possible to consider the results of Examples and Comparative Examples described later.
  • the aggregation of the fluorescent dye-containing resin particles is considered to involve the electrostatic relationship between the fluorescent dye-containing resin particles and / or the electrostatic relationship between the storage solution and the fluorescent dye-containing resin particles. It is done. Therefore, in determining the combination and blending ratio of the above components, the zeta potential of the fluorescent dye-containing resin particles in the preservation solution may be taken into consideration.
  • the zeta potential of the fluorescent dye-containing resin particles can be measured using a general zeta potential measuring device (for example, “Zeta Sizer Nano”, manufactured by Malvern), and the protein, the preservative, In some cases, the surfactant can be further adjusted.
  • the preservation solution of the present invention includes a buffer solution having a pH of 6.0 to 8.0
  • the data potential of the fluorescent dye-containing resin particles in the preservation solution of the present invention is in the range of 0 mV to ⁇ 10 mV.
  • the preservation solution of the present invention may be prepared by adjusting the combination and blending ratio of the above components and / or finely adjusting the pH of the buffer solution within the range of pH 6.0 to 8.0. good.
  • the fluorescent dye-containing resin particles to be stored by the preservation solution of the present invention refer to a substance having a structure in which a plurality of fluorescent dye molecules are immobilized in a state of being included in the resin particles by a chemical or physical action,
  • the form is not particularly limited.
  • examples of the fluorescent dye-containing resin particles that are the subject of the present invention include conventionally known fluorescent dye-containing resin particles, which may include thermosetting resins such as melamine resins as constituent resins, and polystyrene resins.
  • a thermoplastic resin such as the above may be used as a constituent resin.
  • thermosetting resin such as a melamine resin that can fix the fluorescent dye inside a dense cross-linked structure is used.
  • Fluorescent dye-containing resin particles as the constituent resin are suitable.
  • the particle diameter of the fluorescent dye-encapsulating resin particles is not particularly limited as long as it is a particle diameter suitable for an application such as immunostaining of a tissue section, but is usually 10 nm or more and 500 nm or less, preferably 40 nm or more and 200 nm or less, more preferably 50 nm or more and 200 nm or less. Further, the coefficient of variation indicating the variation in particle diameter is not particularly limited, but is usually 20% or less, and preferably 5 to 15%.
  • the fluorescent dye-containing resin particles having such a particle diameter can be obtained, for example, by a manufacturing method as described later.
  • the particle size of the fluorescent dye-containing resin particles is obtained by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of the fluorescent dye-containing resin particles, and using the measured value as the area of a corresponding circle. Can be measured as the diameter (area circle equivalent diameter).
  • the average (average particle size) and variation coefficient of the particle size of the population of fluorescent dye-containing resin particles are measured as described above for a sufficient number (for example, 1000) of fluorescent dye-containing resin particles. After that, the average particle diameter is calculated as its arithmetic average, and the coefficient of variation is calculated by the formula: 100 ⁇ standard deviation of particle diameter / average particle diameter.
  • the fluorescent dye constituting the fluorescent dye-containing resin particles to which the present invention is applied is not particularly limited and can be a conventionally known fluorescent dye.
  • fluorescent dyes that can be generally obtained or produced include, for example, rhodamine dye molecules, squarylium dye molecules, cyanine dye molecules, aromatic hydrocarbon dye molecules, oxazine dye molecules, carbopyronine dye molecules.
  • Pyromesene dye molecule Alexa Fluor (registered trademark, manufactured by Invitrogen) dye molecule, BODIPY (registered trademark, manufactured by Invitrogen) dye molecule, Cy (registered trademark, manufactured by GE Healthcare) dye molecule, DY dye molecule (registered trademark, manufactured by DYOMICICS), HiLite (registered trademark, manufactured by Anaspec) dye molecule, DyLight (registered trademark, manufactured by Thermo Scientific) dye molecule, ATTO (registered trademark, ATTO-) TEC) dye molecule, MFP (registered trademark, Mobitec) It can be classified into Etsu Chemical Co., Ltd.) based dye molecule.
  • N, N′-Bis (2,6-diisopropenylphenyl) -1,6,7,12-tetraphenylperylene-3, 4: 9,10-tetracarboxdiimide used in Examples described later is an aromatic hydrocarbon. This corresponds to a dye molecule.
  • the fluorescent dye may be subjected to water solubilization treatment for the purpose of improving the emission intensity of the fluorescent dye or expanding the Stokes shift.
  • This water solubilization treatment is not particularly limited as long as it is a technique capable of water solubilizing the fluorescent dye, that is, improving the solubility in water.
  • Specific examples of the water solubilization treatment include a method in which a fluorescent dye is treated with an acid (concentrated sulfuric acid, concentrated hydrochloric acid, acetic acid, formic acid, etc.) or an aldehyde (formaldehyde, acetaldehyde, etc.), and these are reacted with the fluorescent dye. Of these, acid treatment which is generally excellent in effect is preferred.
  • the desired emission wavelength of the fluorescent dye can be selected according to the application.
  • the emission wavelength of the fluorescent dye is preferably from red to near infrared so as not to cover the emission wavelength of eosin that emits fluorescence.
  • a fluorescent dye having an excitation maximum wavelength in the range of 555 to 620 nm and an emission maximum wavelength in the range of 580 to 770 nm is preferable.
  • the resin constituting the fluorescent dye-containing resin particles to which the present invention is applied may be a thermosetting resin or a thermoplastic resin.
  • a thermosetting resin such as a melamine resin that can fix the fluorescent dye inside a dense cross-linked structure is used.
  • the resin to contain is preferable.
  • the resin constituting the fluorescent dye-containing resin particles to which the present invention is applied consists of a thermoplastic resin, more specifically, a thermosetting resin such as a melamine resin. Resin.
  • thermosetting resin is selected from the group consisting of melamine, urea, guanamines (including benzoguanamine, acetoguanamine, etc.), phenols (including phenol, cresol, xylenol, etc.), xylene, and derivatives thereof.
  • the thing containing the structural unit formed from at least 1 type of monomer is mentioned. Any of these monomers may be used alone or in combination of two or more. If desired, a comonomer other than one or two or more of the above compounds may be used in combination.
  • thermosetting resins include melamine / formaldehyde resins, urea / formaldehyde resins, benzoguanamine / formaldehyde resins, phenol / formaldehyde resins, and metaxylene / formaldehyde resins.
  • thermosetting resins As a raw material for these thermosetting resins, not only the monomer itself as described above but also a prepolymer obtained by reacting a monomer with a compound such as formaldehyde or other crosslinking agent in advance may be used.
  • a prepolymer obtained by reacting a monomer with a compound such as formaldehyde or other crosslinking agent in advance
  • methylol melamine prepared by condensing melamine and formaldehyde under alkaline conditions is generally used as a prepolymer, and the compound is further alkyl etherified. It may be.
  • alkyl etherification of methylol miramine include, for example, methylation for improving stability in water, butylation for improving solubility in organic solvents, and the like.
  • thermosetting resin may be one in which at least a part of hydrogen contained in the structural unit is replaced with a charged substituent or a substituent capable of forming a covalent bond.
  • a thermosetting resin can be synthesized by using, as a raw material, a monomer in which at least one hydrogen is replaced by the above substituent (derivatized) by a known method.
  • melamine resin, urea resin, benzoguanamine resin, etc. usually have cations generated from amino groups or sites derived therefrom, and phenol resins, xylene resins, etc. usually generate anions from hydroxyl groups or sites derived therefrom.
  • thermosetting resin can be synthesized according to a known method.
  • a melamine / formaldehyde resin can be synthesized by heating and polycondensing methylolmelamine prepared in advance as described above, with a reaction accelerator such as acid added as necessary.
  • thermoplastic resin for example, at least one monofunctional monomer selected from the group consisting of styrene, (meth) acrylic acid and its alkyl ester, acrylonitrile, and derivatives thereof (involved in the polymerization reaction in one molecule).
  • thermoplastic resin examples include polystyrene, styrene resin composed of styrene and other monomers, polymethyl methacrylate, acrylic resin composed of (meth) acrylic acid and its alkyl ester and other monomers, and polyacrylonitrile.
  • acrylonitrile resins composed of AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile-styrene-methyl acrylate copolymer), acrylonitrile and other monomers.
  • the thermoplastic resin is a structural unit formed from a polyfunctional monomer such as divinylbenzene (a group that participates in a polymerization reaction in one molecule, a monomer having two or more vinyl groups in the above example), that is, a crosslink.
  • a site may be included.
  • a cross-linked product of polymethyl methacrylate is exemplified.
  • thermoplastic resin may be one in which at least a part of hydrogen contained in the structural unit is replaced with a substituent having a charge or a covalent bond.
  • a thermoplastic resin can be synthesized by using, as a raw material, a monomer in which at least one hydrogen is replaced by the above substituent, such as 4-aminostyrene.
  • the thermoplastic resin may contain a structural unit having a functional group for surface modification of the obtained fluorescent dye-containing resin particles.
  • a monomer such as glycidyl methacrylate having an epoxy group as a raw material
  • fluorescent dye-containing resin particles having an epoxy group oriented on the surface can be prepared.
  • This epoxy group can be converted to an amino group by reacting with excess ammonia water.
  • Various amino molecules can be introduced into the amino group thus formed according to a known method.
  • introduction of various biomolecules into the amino group can be carried out via a molecule serving as a linker, if necessary.
  • the fluorescent dye-containing resin particles to which the present invention is applied are composed of the fluorescent dye and the resin, and may or may not be surface-modified.
  • the preservation solution of the present invention is particularly suitable for preservation of fluorescent dye-containing resin particles used for pathological staining such as immunostaining.
  • the fluorescent dye-containing resin particles to which the present invention is applied are molecular recognition substances (for example, antibodies) capable of recognizing biological substances to be detected by pathological staining (more specifically, biological substances that can be antigens).
  • reactive functional groups there are chemical functional groups such as carboxyl groups, amino groups, aldehyde groups, thiol groups, maleimide groups, and molecules that easily form bonds based on affinity interactions such as biotin, streptavidin, and avidin. Can be mentioned.
  • the fluorescent dye-containing resin particle main body part that is, the part excluding the reactive functional group and any linker or spacer part in the fluorescent dye-containing resin particle
  • a linker or a spacer having an appropriate chain length may be interposed.
  • the fluorescent dye inclusion resin particle used as the application object of this invention can be manufactured according to a well-known polymerization process about various resin.
  • the fluorescent dye-containing resin particles having a thermosetting resin as a constituent resin can be produced according to a known emulsion polymerization method.
  • the step of polymerizing fluorescent dye-containing resin particles comprising a thermosetting resin as a constituent resin includes a fluorescent dye, a resin raw material (monomer, oligomer, or prepolymer), preferably a suitable known surfactant and a suitable known It may be a step of heating the reaction mixture containing the polymerization reaction accelerator to advance the polymerization reaction of the resin and generating resin particles encapsulating the fluorescent dye.
  • the addition order of each component contained in the reaction mixture is not particularly limited.
  • Polymerization reaction conditions can be appropriately set in consideration of the type of resin and the composition of the raw material mixture.
  • the reaction temperature is usually 70 to 200 ° C.
  • the reaction time is usually 20 to 120 minutes.
  • the reaction temperature is a temperature at which the performance of the fluorescent dye does not deteriorate (within a heat resistant temperature range).
  • the heating may be performed in a plurality of stages. For example, the reaction may be performed at a relatively low temperature for a certain time, and then the temperature may be raised and the reaction may be performed at a relatively high temperature for a certain time.
  • impurities such as a resin raw material of a specific reaction, a fluorescent dye, and surfactant, may be removed and the produced
  • the modification step as the step of introducing the reactive functional group described above in the section “Aspect of fluorescent dye-containing resin particles” can also be performed.
  • the introduction of the reactive functional group can be appropriately performed by a conventional method.
  • fluorescent dye-containing resin particles comprising a thermoplastic resin as a constituent resin are prepared by a fluorescent dye, a resin raw material, a polymerization initiator (benzoyl peroxide, azobisisobutyronitrile, etc.) and a polymerization process according to a conventional method.
  • the reaction is similar to the fluorescent dye-encapsulating resin particles having a thermosetting resin as a constituent resin, except that the reaction mixture containing the catalyst is heated to cause the polymerization reaction of the resin to proceed to produce resin particles containing the fluorescent dye. Can be manufactured.
  • the preservation solution described above according to the present invention can be suitably used for preservation of fluorescent dye-containing resin particles, particularly fluorescent dye-containing resin particles used for pathological staining.
  • the method for preserving the fluorescent dye-containing resin particles can be regarded as a method including adding the fluorescent dye-containing resin particles to the above-described preservation solution of the present invention.
  • the fluorescent dye-containing resin particles can be stored usually under refrigeration (eg, 4 to 5 ° C.).
  • pathological staining is immunostaining.
  • Synthesis Examples 1-1 to 1-7 Preparation of resin particles containing fluorescent dye
  • fluorescent dye-containing resin particles A1 having an average particle diameter of 40, 60, 80, 100, 150, 200, and 250 nm using a conventionally known method -A7 were prepared.
  • 0.1 mg of the obtained particles are dispersed in 1.5 mL of EtOH (ethanol), and 2 ⁇ L of aminepropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) is added and reacted for 8 hours for surface amination treatment. It was.
  • the obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing resin particles (fluorescent particles) A5 having maleimide groups at the ends were obtained.
  • PBS phosphate buffered saline
  • EDTA ethylenediaminetetraacetic acid
  • the average particle diameter was 150 nm.
  • Synthesis Examples 1-1 to 1-4 and 1-6 to 1--7 The fluorescent dye-encapsulating resin particles A1 to A4 and A6 to A7 of Synthetic Examples 1-1 to 1-4 and 1-6 to 1-7 having different particle diameters from the fluorescent dye-encapsulating resin particles A5 of Synthesis Example 1-5 The synthesis was carried out in the same manner as in Synthesis Example 1-5, except that the amount of the dye / charged resin at the time of synthesis was kept constant while the amount of the resin was appropriately adjusted.
  • FIG. 7 shows the amount of the resin raw material (the melamine resin in Synthesis Examples 1-1 to 1-7) charged in the case where the fluorescent dye-containing resin particles are performed under the same conditions as in Synthesis Example 1-5. The relationship of the average particle diameter of the fluorescent dye inclusion resin particle obtained is shown.
  • the fluorescent dye-encapsulating resin particles A1 to A7 are sometimes referred to as maleimide group-modified fluorescent dye-encapsulating resin particles A1 to A7, respectively, in order to distinguish them from the streptavidin-modified fluorescent dye-encapsulating resin particles described later. These may be collectively referred to as maleimide group-modified fluorescent dye-containing resin particles.
  • Streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is reacted with N-succinimidylTAS-acetylthioacetate (SATA) and then treated with a known hydroxylamine to add a thiol group by deprotecting the S-acetyl group Processed. Thereafter, filtration with a gel filtration column was performed to obtain a streptavidin solution capable of binding to the fluorescent dye-containing resin particles.
  • SATA N-succinimidylTAS-acetylthioacetate
  • 1 mL of the fluorescent dye-containing resin particle-containing solution obtained by diluting the maleimide group-modified fluorescent dye-containing resin particles using PBS containing 2 mM of EDTA and adjusting to 1 nM is mixed with the streptavidin solution at room temperature.
  • a time reaction was performed to bind the fluorescent dye-containing resin particles and streptavidin. Thereafter, centrifugation and washing were performed using PBS containing 2 mM of EDTA, and only the streptavidin-modified fluorescent dye-containing resin particles were collected.
  • the obtained streptavidin-modified fluorescent dye-containing resin particles were subjected to various evaluations in a state once diluted with a 1% BSA-containing PBS buffer.
  • Example 1 to 12 and Comparative Examples 1 to 16 (Preservation solution and fluorescent dye-containing resin particles)
  • Tris buffer (pH 6.9) containing 0.6% ⁇ -casein, 0.6% ⁇ -casein, 3% BSA, 0.1% Tween® 20 and 0.015 N NaN 3
  • fluorescent dye-containing resin particles those shown in Table 1 below were used from among the streptavidin-modified fluorescent dye-containing resin particles S1 to S7.
  • a fluorescent dye-containing resin particle-containing storage solution is prepared according to the method described in the above-mentioned “Preservation of fluorescent dye-containing resin particles”.
  • the back scattering intensity (transmitted light) when using infrared rays having a wavelength of 880 nm as a light source was measured using a tervis scan for the resin particle-containing liquid. Here, the measurement was performed while sampling at intervals of 30 minutes, and continued for 24 hours.
  • the backscattering intensity (transmitted light) at the center of the height immediately after the start of measurement (corresponding to “backscattering intensity (transmitted light) at the center of the height immediately after addition)” is I ′ 0 , 24 from the start of the measurement.
  • each of the fluorescent dye-containing resin particles immediately after synthesis and the fluorescent dye-containing resin particles after storage for 1 month in the storage solution are used. Then, the following immunostaining, morphological observation staining and observation were performed.
  • a breast cancer tissue array (model number: BR243 series (24 cores); core diameter 1.5 mm) manufactured by US Biomax was used as a tissue cell slide.
  • tissue cell slide was deparaffinized according to a conventional method, and then washed with water.
  • the washed tissue cell slide was autoclaved at 121 ° C. for 5 minutes in a 10 mM citrate buffer (pH 6.0) to activate the antigen.
  • the tissue cell slide after the activation treatment was washed with a PBS buffer, and then subjected to a blocking treatment with a 1% BSA-containing PBS buffer for 1 hour in a wet box.
  • a blocking treatment with a 1% BSA-containing PBS buffer for 1 hour in a wet box.
  • anti-HER2 rabbit monoclonal antibody (4B5) (Ventana) diluted to 0.05 nM with 1% BSA-containing PBS buffer was reacted with the tissue cell slide for 2 hours. This was washed with PBS buffer, and reacted with a biotin-labeled anti-rabbit monoclonal antibody that binds to 4B5 diluted to 2 ⁇ g / mL with PBS buffer containing 1% BSA for 30 minutes.
  • the tissue cell slide was stained with fluorescent dye-containing resin particles.
  • the fluorescent dye-containing resin particles immediately after synthesis diluted to 0.2 nM with 1% BSA-containing PBS buffer solution were used as a tissue cell slide and neutral pH.
  • the reaction was carried out for 3 hours under conditions of environment (pH 6.9 to 7.4) and room temperature.
  • centrifugation, removal of the supernatant, dilution with the above-described storage solution, and redispersion by ultrasonic treatment are repeated an appropriate number of times to obtain the above-mentioned storage solution.
  • filter treatment (0.65 ⁇ m: manufactured by Millipore) was performed.
  • the tissue cell slide was washed with PBS buffer after the reaction with the fluorescent dye-containing resin particles.
  • tissue cell slide subjected to the above immunostaining was further subjected to morphological observation staining.
  • the immunostained tissue cell slide was stained with Mayer's hematoxylin solution for 1 minute and stained with hematoxylin (HE staining). Thereafter, the tissue cell slide was washed with running water at 45 ° C. for 3 minutes. Then, the operation which was immersed in pure ethanol for 5 minutes was performed 4 times, and washing
  • Enterlan New manufactured by Merck
  • the tissue section on the sample slide stained with the immunostaining and morphological observation was irradiated with predetermined excitation light to emit fluorescence.
  • the tissue section in this state was observed and imaged with a fluorescence microscope (BX-53, manufactured by Olympus).
  • observation and imaging were performed in 10 fields per one core (one tissue spot) on the sample slide.
  • the bright spot measurement was performed by the ImageJ FindMaxima method.
  • the excitation light was set to 575 to 600 nm by passing through an optical filter.
  • the range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter.
  • the excitation wavelength conditions at the time of microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm.
  • the exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 ⁇ sec) so as not to saturate the luminance of the image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 本発明の目的は、蛍光色素内包樹脂粒子の沈降および/または凝集を抑制でき、且つ、長期保存後の蛍光色素内包樹脂粒子について煩雑な操作を行う必要なく染色に用いることを可能とする保存液を提供することにある。本発明は、蛍光色素内包樹脂粒子の保存液であって、蛍光色素内包樹脂粒子を該保存液に添加することにより得られる粒子含有液について、該添加直後における該粒子含有液を基準としたときの、該添加から24時間静置後における該粒子含有液の高さ中心部の後方散乱強度(透過光)の変化の割合が-1%以上であることを特徴とする保存液を提供する。

Description

蛍光色素内包樹脂粒子の保存液
 本発明は、蛍光色素内包樹脂粒子の保存に用いられる保存液に関する。
 近年、バイオ分野で用いられる蛍光標識剤として、蛍光色素内包樹脂粒子が用いられ始めている。蛍光色素内包樹脂粒子は、蛍光色素を適当な樹脂粒子によって内包した構造を有する粒子である。ここで、蛍光色素内包樹脂粒子として、免疫染色等への適用を目的として、抗体などの生体物質と結合可能な官能基または分子との複合体の形態を有するものが用いられることもある。
 このような蛍光色素内包樹脂粒子を使用する場合、必ずしも製造後すぐに使用されるとは限らず、使用まである程度の期間保存しておく場合がある。このとき、蛍光標識剤としての機能を維持できるよう、多くの場合、保存液中に稀釈した状態で蛍光色素内包樹脂粒子の保存が行われる。
 ここで、蛍光色素内包樹脂粒子を保存するために用いられる保存液として、蛍光色素内包樹脂粒子の凝集等をできる限り防ぐことができるよう、少量のブロッキング剤を含む適当な緩衝液や界面活性剤を含む液が多用されている。例えば、特許文献1には、蛍光色素内包樹脂粒子の保存液として1%BSA/PBS緩衝液を使用していることが記載されている。
 ただ、このような従来の保存液を用いた場合であっても、長期保存後に、保存後の蛍光色素内包樹脂粒子を、そのまま免疫染色などの各種染色に使用すると、染色後の細胞組織画像において粗大塊が発生し、輝点の数を正しくカウントする妨げとなることがある。このような事態を避けるため、従来においては、長期保存後には、保存液で稀釈した状態の蛍光色素内包樹脂粒子について、染色に用いる前に、予め、遠心分離、上澄み液の除去、染色用溶媒による稀釈、および超音波処理による再分散を適当な回数繰り返すことにより溶媒置換を行った後、フィルター処理を行うなどの前処理を行う必要があり、煩雑な操作を要するという問題点がある。
国際公開第2012/029342号
 従来の保存液では、蛍光色素内包樹脂粒子を長期間保存すると、保存後の蛍光色素内包樹脂粒子を用いて細胞組織の染色を行ったときに粗大塊が発生することが多い。このような粗大塊は、通常2.5~5μm角相当以上の大きさを有する凝集塊として確認することができ、10μm角相当以上の大きさとなることもある。このような長期保存後の蛍光色素内包樹脂粒子では、蛍光色素内包樹脂粒子が、沈降および/または凝集を起こしていると考えられる。
 したがって、本発明の目的は、蛍光色素内包樹脂粒子の沈降および/または凝集、特に凝集を抑制でき、且つ、長期保存後の蛍光色素内包樹脂粒子について煩雑な操作を行う必要なく染色に用いることを可能とする保存液を提供することにある。
 上述した目的のうち少なくとも1つを実現するために、本発明では、以下の保存液が提供される:
 蛍光色素内包樹脂粒子の保存液であって、
 蛍光色素内包樹脂粒子を該保存液に添加することにより得られる粒子含有液について、該添加直後における該粒子含有液を基準としたときの、該添加から24時間静置後における該粒子含有液の高さ中心部の後方散乱強度(透過光)の変化の割合が-1%以上であることを特徴とする保存液。
 本発明の保存液で蛍光色素内包樹脂粒子を保存することにより、長期保存後の蛍光色素内包樹脂粒子でも、従来技術のように、染色に用いる前に、予め、遠心分離、上澄み液の除去、染色用溶媒による稀釈、および超音波処理による再分散を適当な回数繰り返すことにより溶媒置換を行った後、フィルター処理を行うなどの前処理を要することなく、ピペッティング(撹拌)といった簡便な操作のみで細胞組織の染色を行うことが可能となる。
実施例5における、合成直後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 実施例5における、本発明の保存液で1ヶ月保存後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 実施例11における、合成直後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 実施例11における、本発明の保存液で1ヶ月保存後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 比較例7における、合成直後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 比較例7における、保存液で1ヶ月保存後のストレプトアビジン修飾蛍光色素内包樹脂粒子を用いた染色結果。 図6Aに示した比較例7の染色結果における、粗大塊の位置を示すスケッチである。 実施例および比較例で使用した蛍光色素内包樹脂粒子を製造する場合における、樹脂原料仕込み量に対する、得られる蛍光色素内包樹脂粒子の平均粒径の関係を示すチャートである。
 以下に、本発明に係る保存液について具体的に説明する。
 〔保存液〕
 本発明に係る保存液は、
 蛍光色素内包樹脂粒子の保存液であって、
 蛍光色素内包樹脂粒子を該保存液に添加することにより得られる粒子含有液について、該添加直後における該粒子含有液を基準としたときの、該添加から24時間静置後における該粒子含有液の高さ中心部の後方散乱強度(透過光)の変化の割合が-1%以上である。
 すなわち、本発明の保存液は、蛍光色素内包樹脂粒子を添加して粒子含有液としたときに、当該粒子含有液について観測される、添加直後における高さ中心部の後方散乱強度(透過光)をI0、添加から24時間静置後における高さ中心部の後方散乱強度(透過光)をI24として、下記式
   D=(I24-I0)/I0×100
に基づいて求められる、この粒子含有液についての高さ中心部の後方散乱強度(透過光)の変化の割合D(%)が、D≧-1の関係を満たす。ここで、この変化の割合Dは、本発明の保存液による保存を行った蛍光色素内包樹脂粒子についての凝集度合いを見るものであり、保存液による、蛍光色素内包樹脂粒子の保存性能を評価する尺度となるものである。
 すなわち、別の見方をすると、蛍光色素内包樹脂粒子の保存液が本発明の保存液に該当するかどうか、すなわち、D≧-1の関係を満たすかどうかは、以下の工程(1)~(4)を含む評価方法によって確認できるともいえる:
 (1)蛍光色素内包樹脂粒子を保存液に添加して、粒子含有液を得る工程;
 (2)前記粒子含有液について、添加直後に、該粒子含有液の高さ中心部の後方散乱強度(透過光)I0を測定する工程;
 (3)前記粒子含有液を24時間静置後、再度該粒子含有液の高さ中心部の後方散乱強度(透過光)I24を測定する工程;
 (4)前記I0およびI24をもとに、下記要件を満たすか否かを判定する工程。
    (I24-I0)/I0×100≧-1
 ここで、本発明において、上記変化の割合Dを求める基準とする「後方散乱強度(透過光)」は、光源からの光が、試料を透過しながらあるいは、散乱を繰り替えしながら直進することにより得られる透過光あるいは後方散乱光の強度をいう。
 本発明において、後方散乱強度(透過光)を観測する位置を粒子含有液の高さ中心部としている理由は、以下の通りである。
 病理染色に用いる蛍光色素内包樹脂粒子の保存を保存液中で行う場合、長期保存中に粒子の凝集が起こると、病理染色を行ったときに粗大塊が発生し、正確な判定の妨げとなる。これに対して、蛍光色素内包樹脂粒子を保存液中で長期保存中に粒子の沈降が起こっても、再分散させることによって、粗大塊が発生することなく病理染色を行うことが可能である。このことを踏まえると、保存液による蛍光色素内包樹脂粒子の保存性能を評価する上で、粒子の凝集を、粒子の沈降とは区別して観測できることが必要となる。
 ここで、粒子含有液を静置したときに、分散していた粒子が凝集する場合には、高さ位置にかかわらず粒子含有液全体で後方散乱光の光量に変化が生じることから、それに伴い、高さ中心部における後方散乱強度(透過光)が減少する。
 一方、分散していた粒子が単に沈降したに過ぎない場合には、粒子の沈降に伴い粒子含有液の上端および下端における後方散乱強度(透過光)は経時変化するものの、高さ中心部における後方散乱強度(透過光)の変化はほとんど起こらない。
 したがって、後方散乱強度(透過光)を観測する位置を粒子含有液の高さ中心部とすることで、保存液における、蛍光色素内包樹脂粒子の凝集度合いを正しく評価することができ、保存液による蛍光色素内包樹脂粒子の保存性能を適切に評価することができるのである。ここで、本発明の保存液における最も理想的な態様では、この保存液中で長期保存後も蛍光色素内包樹脂粒子の凝集が生じておらず、この場合、D=0ということになる。
 ここで、本発明において、このDを-1以上としているが、これは本発明者らの経験上、この値で判断するのが、保存液における、蛍光色素内包樹脂粒子凝集の抑制性能を評価する上で適切と考えられたことによる。このことは、本明細書において後述する実施例・比較例における、保存液で1ヶ月保存後の蛍光色素内包樹脂粒子についての免疫染色・形態観察染色による評価結果との関係からも確認されている。なお、本発明者らは、1ヶ月放置した粒子含有液の高さ中心部の後方散乱強度(透過光)の変化の割合についても、上記Dの値と一定の相関関係があると推定している。
 なお、本発明の保存液は、測定状況によってD>0となる場合があるが、そのようなDとなっても差し支えない。
 本発明において後方散乱強度(透過光)の測定を行う高さ中心部に照射する光の波長は、粒子含有液について、蛍光色素内包樹脂粒子との関係で後方散乱強度(透過光)を適切に測定できる限り、必ずしも特に限定されるわけではない。ただ、適切な測定を行う上で、照射する光の波長は、蛍光色素内包樹脂粒子の粒径より長いことが望ましい。ここで、特別の測定機器を要しない点から、880nm前後の波長を有する光が好適に用いられる。
 また、本発明において評価に用いる測定機器についても、粒子含有液の高さ中心部の後方散乱強度(透過光)を適切に測定可能である限り特に限定されないものの、好適な測定機器の例として、フォーマルアクション(Formulaction)社製のタービスキャン(商標)が挙げられる。この測定機器によれば、後方散乱強度(透過光)の測定を、高さ位置を変えながら行うことも可能である。ただ、後方散乱強度(透過光)の測定にあたって、その他の分光光度計による測定を妨げるものではない。
 (構成成分)
 本発明の保存液は、上述したように、上記変化の割合D(%)が本発明で規定する特定の範囲を満たすものである。ここで、そのような変化の割合D(%)を満たす本発明の保存液を、具体的にどのような構成とするかについては、保存対象とする蛍光色素内包樹脂粒子の種類および表面修飾の状態などによっても変わるものであり、あえて一律に厳密な形で特定することはしないものの、本発明の保存液は、典型的には、緩衝液、蛋白質、界面活性剤を含む。
 ・蛋白質
 本発明の保存液を構成しうる蛋白質は、蛍光色素内包樹脂粒子の機能を損ねず、かつ、蛍光色素内包樹脂粒子の凝集を防ぐことのできるものである限り特に限定されるわけでない。ただ、本発明の保存液が、病理染色に用いる蛍光色素内包樹脂粒子を保存するために用いられる場合、染色対象とする細胞組織への非特異吸着を防ぐことのできるものが望ましい。したがって、好適な蛋白質として、BSA、カゼインなど一般にブロッキング剤として用いられる蛋白質が挙げられる。
 本発明の保存液における蛋白質の含量は、蛍光色素内包樹脂粒子の凝集を防ぐことのできる範囲で適宜調整できるものの、例えば、保存液全体に対して10重量%以下(例えば1~10重量%の範囲)とすることが望ましい。
 ・界面活性剤
 本発明の保存液を構成しうる界面活性剤は、蛍光色素内包樹脂粒子の機能を損ねず、かつ、蛍光色素内包樹脂粒子の凝集を防ぐことのできるものである限り特に限定されるわけでない。ただ、本発明の保存液が、病理染色に用いる蛍光色素内包樹脂粒子を保存するために用いられる場合、蛍光色素内包樹脂粒子は、本発明の保存液で稀釈された状態のまま病理染色に供されることがある。ここで、細胞組織のうち、細胞核のある部分は核酸を構成するリン酸残基により負に荷電しており、細胞核以外の部分は、正に荷電しやすい傾向にある。したがって、細胞組織への非特異吸着をできるだけ少なくする上では、界面活性剤として、非イオン性界面活性剤を用いることが望ましい。その中でも、Tween(登録商標)系界面活性剤などのポリオキシエチレンソルビタン脂肪酸エステルを好適に用いることができ、そのうち、Tween(登録商標)20を特に好適に用いることができる。
 本発明の保存液における界面活性剤の含量は、蛍光色素内包樹脂粒子の凝集を防ぐことのできる範囲で適宜調整できるものの、例えば、保存液全体に対して0.1重量%以下の範囲とすることが望ましい。
 ・緩衝液
 本発明の保存液を構成しうる緩衝液は、蛍光色素内包樹脂粒子の機能を損ねない限り特に限定されるわけでなく、従来公知の種々の緩衝液を用いることができる。
 ただ、本発明の好適な態様において、本発明の保存液は、病理染色に用いる蛍光色素内包樹脂粒子を保存するために用いられる。この場合、病理染色に用いる蛍光色素内包樹脂粒子として、後述する「蛍光色素内包樹脂粒子の態様」の項に記載されている反応性官能基を有する蛍光色素内包樹脂粒子、特に、ビオチン、ストレプトアビジン、アビジンなどアフィニティ相互作用に基づく結合を形成しやすい分子を有する蛍光色素内包樹脂粒子が多用される。したがって、本発明で用いられる緩衝液は、このような分子が変性しない範囲のpHを有することが好ましい。また、このような蛍光色素内包樹脂粒子を用いた病理染色にあたり、蛍光色素内包樹脂粒子は本発明の保存液で稀釈された状態で染色に供されうることから、病理染色に適した範囲のpHを有することが好ましい。これらの観点から、本発明で用いられる緩衝液は、例えば、pH6.0~pH8.0の範囲のpHを有することが好ましく、pHが6.9~7.6の範囲のpHを有することがより好ましい。ここで、好ましい緩衝液の種類の例として、リン酸緩衝生理食塩水(PBS)、Tris-HCl緩衝液、リン酸緩衝液(PBSを除く)、およびこれらのうち2種以上の組み合わせが挙げられる。
 ・その他の成分
 本発明の保存液には、上記緩衝液、蛋白質および界面活性剤のほか、蛍光色素内包樹脂粒子の機能を損ねず、かつ、蛍光色素内包樹脂粒子の凝集を防ぐことのできる限りにおいて、防腐剤など、その他の成分を配合してもよい。ここで、防腐剤としては、例えば、アジ化ナトリウム(NaN3)が挙げられる。
 防腐剤は、緩衝液中に0.015N以下で含めることが望ましい。
 ・製造方法
 本発明の保存液は、上記蛋白質および上記界面活性剤、並びに、任意で添加される上記「その他の成分」を、常法により上記緩衝液に溶解させることによって得ることができる。
 ここで、上記構成成分、すなわち、上記蛋白質および上記保存液、並びに、任意で添加される上記「その他の成分」の組み合わせや配合比率は、保存対象とする蛍光色素内包樹脂粒子の種類などに応じて変わることから、あえて一律に厳密な形で特定することはしない。ただ、組み合わせや配合比率を調整する際に、後述する実施例・比較例の結果を参酌することは可能である。
 ここで、蛍光色素内包樹脂粒子の凝集には、蛍光色素内包樹脂粒子同士の静電的な関係および/あるいは保存液と蛍光色素内包樹脂粒子との静電的な関係も関与していると考えられる。したがって、上記構成成分の組み合わせや配合比率を決定する上で、保存液における蛍光色素内包樹脂粒子のゼータ電位を参酌しても良い。ここで、蛍光色素内包樹脂粒子のゼータ電位は、一般的なゼータ電位測定装置(例えば「ゼータサイザーナノ」、Malvern社製)を用いて測定することが可能であり、上記蛋白質、上記防腐剤、および、場合によってはさらに上記界面活性剤によって調節することが可能である。例えば、本発明の保存液を、pH6.0~8.0の緩衝液を含むものとする場合、本発明の保存液中での蛍光色素内包樹脂粒子のデータ電位が0mV~-10mVの範囲となるように、上記構成成分の組み合わせや配合比率を調節し、さらに/あるいは、pH6.0~8.0の範囲内で上記緩衝液のpHを微調整することによって本発明の保存液を調製しても良い。
 (保存対象となる蛍光色素内包樹脂粒子)
 本発明の保存液による保存対象となる蛍光色素内包樹脂粒子は、複数の蛍光色素分子が化学的または物理的な作用により樹脂粒子に内包された状態で固定化された構造を有する物質をいい、その形態は特に限定されるものではない。
 ここで、本発明の対象となる蛍光色素内包樹脂粒子として、従来公知の蛍光色素内包樹脂粒子が挙げられ、メラミン樹脂などの熱硬化性樹脂を構成樹脂とするものであっても良く、ポリスチレン樹脂などの熱可塑性樹脂を構成樹脂とするものであっても良い。ただ、蛍光色素内包樹脂粒子が病理染色に用いられる場合、病理染色の過程で、キシレンのような有機溶媒を用いる透徹が行われることがある。したがって、キシレンのような有機溶媒を用いる透徹工程において蛍光色素が溶出しにくいという観点からは、緻密な架橋構造の内部に蛍光色素を固定化することができる、メラミン樹脂などの熱硬化性樹脂を構成樹脂とする蛍光色素内包樹脂粒子が好適である。
 蛍光色素内包樹脂粒子の粒径は、組織切片の免疫染色等、用途に適した粒径であれば特に限定されないが、通常10nm以上500nm以下であり、好ましくは、40nm以上200nm以下、より好ましくは、50nm以上200nm以下である。また、粒径のばらつきを示す変動係数も特に限定されないが、通常は20%以下であり、好ましくは5~15%である。このような粒径の蛍光色素内包樹脂粒子は、たとえば後述するような製造方法により得られる。
 なお、蛍光色素内包樹脂粒子の粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し、蛍光色素内包樹脂粒子の断面積を計測し、その計測値を相当する円の面積としたときの直径(面積円相当径)として測定することができる。蛍光色素内包樹脂粒子の集団の粒子サイズの平均(平均粒径)および変動係数は、十分な数(たとえば1000個)の蛍光色素内包樹脂粒子について上記のようにして粒子サイズ(粒径)を測定した後、平均粒径はその算術平均として算出され、変動係数は式:100×粒径の標準偏差/平均粒径、により算出される。
 ・蛍光色素
 本発明の適用対象となる蛍光色素内包樹脂粒子を構成する蛍光色素には、特に限定がなく、従来公知の蛍光色素とすることができる。
 ここで、一般的に入手または作製が可能な蛍光色素は、たとえば、ローダミン系色素分子、スクアリリウム系色素分子、シアニン系色素分子、芳香族炭化水素系色素分子、オキサジン系色素分子、カルボピロニン系色素分子、ピロメセン系色素分子、さらに、Alexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、Cy(登録商標、GEヘルスケア社製)系色素分子、DY系色素分子(登録商標、DYOMICS社製)、HiLyte(登録商標、アナスペック社製)系色素分子、DyLight(登録商標、サーモサイエンティフィック社製)系色素分子、ATTO(登録商標、ATTO-TEC社製)系色素分子、MFP(登録商標、Mobitec社製)系色素分子などに分類することができる。このような色素分子の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できるものである。なお、後述する実施例で用いられているN,N'-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimideは、芳香族炭化水素系色素分子に該当するものである。
 また、蛍光色素は、蛍光色素の発光強度の向上やストークスシフトの拡大等を目的として水溶化処理を施したものであっても良い。この水溶化処理は、蛍光色素を水溶化できる、つまり水に対する溶解性を向上させることのできる手法であれば特に限定されるものではない。水溶化処理の具体例としては、酸(濃硫酸、濃塩酸、酢酸、ギ酸等)またはアルデヒド(ホルムアルデヒド、アセトアルデヒド等)で蛍光色素を処理し、それらと蛍光色素とを反応させる方法が挙げられるが、このうち概して効果に優れる酸処理が好ましい。
 また、蛍光色素の発光波長は用途に応じて所望のものを選択することができる。たとえば、病理診断において、エオジン等を用いた形態観察用の染色と同時に蛍光色素を用いた免疫染色を行う用途が想定される場合は、蛍光色素からの発光を目視で観察することができ、かつ蛍光を発するエオジンの発光波長と被らないよう、蛍光色素の発光波長は赤~近赤外とすることが好適である。たとえば、励起極大波長が555~620nm、発光極大波長が580~770nmの範囲にある蛍光色素が好ましい。
 ・樹脂
 本発明の適用対象となる蛍光色素内包樹脂粒子を構成する樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であってもよい。たとえば、キシレンのような有機溶媒を用いる透徹工程において蛍光色素が溶出しにくいという観点からは、緻密な架橋構造の内部に蛍光色素を固定化することができる、メラミン樹脂等の熱硬化性樹脂を含有する樹脂が好ましい。ここで、本発明の好適な態様において、本発明の適用対象となる蛍光色素内包樹脂粒子を構成する樹脂は、熱可塑性樹脂、より具体的には、メラミン樹脂等の熱硬化性樹脂のみからなる樹脂である。
 熱硬化性樹脂としては、たとえば、メラミン、尿素、グアナミン類(ベンゾグアナミン、アセトグアナミンなどを含む)、フェノール類(フェノール、クレゾール、キシレノールなどを含む)、キシレン、およびこれらの誘導体からなる群より選ばれる少なくとも一種のモノマーから形成される構成単位を含むものが挙げられる。これらのモノマーは、何れか一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。所望によりさらに、一種または二種以上の上記化合物以外のコモノマーを併用してもよい。
 熱硬化性樹脂の具体例としては、メラミン・ホルムアルデヒド樹脂、尿素・ホルムアルデヒド樹脂、ベンゾグアナミン・ホルムアルデヒド樹脂、フェノール・ホルムアルデヒド樹脂、メタキシレン・ホルムアルデヒド樹脂が挙げられる。
 これらの熱硬化性樹脂の原料としては、上述したようなモノマーそのもののみならず、モノマーとホルムアルデヒドやその他の架橋剤等の化合物とをあらかじめ反応させて得られるプレポリマーを用いてもよい。たとえば、メラミン・ホルムアルデヒド樹脂の製造においては一般的に、メラミンとホルムアルデヒドとをアルカリ条件下で縮合して調製されるメチロールメラミンがプレポリマーとして用いられており、当該化合物はさらにアルキルエーテル化されたものであってもよい。ここで、メチロールミラミンのアルキルエーテル化の例として、例えば、水中での安定性を向上させるためのメチル化、有機溶媒中での溶解性を向上させるためのブチル化等が挙げられる。
 また、上記の熱硬化性樹脂は、その構成単位に含まれる水素の少なくとも一部が、電荷を持つ置換基、または共有結合を形成しうる置換基に置き換えられたものでもよい。このような熱硬化性樹脂は、公知の手法により少なくとも一つの水素が上記の置換基に置き換えられた(誘導体化された)モノマーを原料として用いることにより合成することができる。なお、メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂などは通常自ずとアミノ基またはこれに由来する部位から生成するカチオンを有し、フェノール樹脂、キシレン樹脂などは通常自ずと水酸基またはこれに由来する部位から生成するアニオンを有する。
 このような熱硬化性樹脂は、公知の手法に従って合成することができる。たとえば、メラミン・ホルムアルデヒド樹脂は、前述したようにしてあらかじめ調製されたメチロールメラミンを、必要に応じて酸等の反応促進剤を添加した上で加熱して重縮合させることにより合成することができる。
 一方、熱可塑性樹脂としては、たとえば、スチレン、(メタ)アクリル酸およびそのアルキルエステル、アクリロニトリル、ならびにこれらの誘導体からなる群より選ばれる少なくとも一種の単官能モノマー(一分子中に重合反応に関与する基、上記の例ではビニル基を一個持つモノマー)から形成される構成単位を含むものが挙げられる。これらのモノマーは、何れか一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。所望によりさらに、一種または二種以上の上記化合物以外のコモノマーを併用してもよい。
 熱可塑性樹脂の具体例としては、ポリスチレン、スチレンとその他のモノマーとからなるスチレン系樹脂、ポリメタクリル酸メチル、(メタ)アクリル酸およびそのアルキルエステルとその他のモノマーとからなるアクリル系樹脂、ポリアクリロニトリル、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)、アクリロニトリルおよびその他のモノマーとからなるアクリロニトリル系樹脂が挙げられる。
 上記の熱可塑性樹脂は、たとえばジビニルベンゼンのような多官能モノマー(一分子中に重合反応に関与する基、上記の例ではビニル基を二個以上持つモノマー)から形成される構成単位、つまり架橋部位を含んでいてもよい。たとえば、ポリメタクリル酸メチルの架橋物が挙げられる。
 また、上記の熱可塑性樹脂は、その構成単位に含まれる水素の少なくとも一部が、電荷を持つ置換基、または共有結合を形成しうる置換基に置き換えられたものでもよい。このような熱可塑性樹脂は、たとえば4-アミノスチレンのように、少なくとも一つの水素が上記の置換基に置き換えられた(誘導体化された)モノマーを原料として用いることにより合成することができる。
 さらに、上記の熱可塑性樹脂は、得られた蛍光色素内包樹脂粒子を表面修飾するための官能基を有する構成単位を含んでいてもよい。たとえば、エポキシ基を有するメタクリル酸グリシジルのようなモノマーを原料とすることにより、エポキシ基が表面に配向した蛍光色素内包樹脂粒子を調製することができる。このエポキシ基は、過剰のアンモニア水と反応させることによりアミノ基に変換することができる。このようにして形成されるアミノ基には、公知の手法に従って、各種の生体分子を導入することができる。ここで、アミノ基への各種の生体分子の導入は、必要に応じてリンカーとなる分子を介して行うことができる。
 ・蛍光色素内包樹脂粒子の態様
 本発明の適用対象となる蛍光色素内包樹脂粒子は、上記蛍光色素および樹脂からなるものであり、表面修飾を施したものであってもなくても良い。
 ただ、本発明の保存液は、免疫染色などの病理染色に用いられる蛍光色素内包樹脂粒子の保存に特に好適に適用できるものである。ここで、本発明の適用対象となる蛍光色素内包樹脂粒子は、病理染色による検出対象とする生体物質(より具体的には抗原となり得る生体物質)を認識可能な分子認識物質(例えば、抗体)との結合が容易となるよう、反応性官能基をさらに有していることが好ましい。ここで、反応性官能基として、カルボキシル基、アミノ基、アルデヒド基、チオール基、マレイミド基などの化学官能基、並びに、ビオチン、ストレプトアビジン、アビジンなどアフィニティ相互作用に基づく結合を形成しやすい分子が挙げられる。ここで、蛍光色素内包樹脂粒子において、蛍光色素内包樹脂粒子本体部分(すなわち、蛍光色素内包樹脂粒子における、反応性官能基および任意のリンカーまたはスペーサー部分を除いた部分)と上記反応性官能基との間には、適当な鎖長のリンカーまたはスペーサーが介在していても良い。
 ・蛍光色素内包樹脂粒子の製造方法
 本願発明の適用対象となる蛍光色素内包樹脂粒子は、各種の樹脂について公知の重合工程に準じて製造することができる。
 ここで、熱硬化性樹脂を構成樹脂とする蛍光色素内包樹脂粒子は、公知の乳化重合法に従って製造することができる。例えば、熱硬化性樹脂を構成樹脂とする蛍光色素内包樹脂粒子の重合工程は、蛍光色素、樹脂原料(モノマーまたはオリゴマーないしプレポリマー)、好ましくはさらに適当な公知の界面活性剤および適当な公知の重合反応促進剤を含有する反応混合物を加熱して樹脂の重合反応を進行させ、蛍光色素を内包する樹脂粒子を生成させる工程であっても良い。この場合、反応混合物に含まれる各成分の添加順序は特に限定されない。
 重合反応の条件(温度、時間等)は、樹脂の種類、原料混合物の組成などを考慮しながら適切に設定することができる。メラミン樹脂等の熱硬化性樹脂の合成については、反応温度は通常70~200℃、反応時間は通常20~120分間である。なお、反応温度は蛍光色素の性能が低下しない温度(耐熱温度範囲内)とすることが適切である。加熱は複数の段階に分けて行ってもよく、たとえば、相対的に低温で一定時間反応させた後、昇温して相対的に高温で一定時間反応させるようにしてもよい。そして、重合反応の終了後は、比反応の樹脂原料、蛍光色素、界面活性剤などの不純物を除去して、生成した蛍光色素内包樹脂粒子を回収して精製すれば良い。
 また、熱硬化性樹脂を構成樹脂とする蛍光色素内包樹脂粒子の製造にあたっては、重合工程の後、蛍光色素内包樹脂粒子の用途に応じて、必要により、蛍光色素内包樹脂粒子の表面に、上記「蛍光色素内包樹脂粒子の態様」の項で上述した反応性官能基を導入する工程としての修飾工程を行うこともできる。ここで、反応性官能基の導入は、常法により適宜行うことができる。
 一方、熱可塑性樹脂を構成樹脂とする蛍光色素内包樹脂粒子は、重合工程として、常法に従い、蛍光色素と、樹脂原料と、重合開始剤(過酸化ベンゾイル、アゾビスイソブチロニトリルなど)とを含有する反応混合物を加熱して樹脂の重合反応を進行させ、蛍光色素を内包する樹脂粒子を生成させる工程を行うことを除き、熱硬化性樹脂を構成樹脂とする蛍光色素内包樹脂粒子と同様に製造することができる。
 (用途)
 本発明に係る上述した保存液は、蛍光色素内包樹脂粒子、特に、病理染色に用いる蛍光色素内包樹脂粒子の保存に好適に用いることができる。別の見方をすれば、蛍光色素内包樹脂粒子の保存方法は、蛍光色素内包樹脂粒子を、上述した本発明の保存液に添加することを含む方法と見ることができる。ここで、蛍光色素内包樹脂粒子の保存は、通常冷蔵下(例えば、4~5℃)で行うことができる。
 ここで、病理染色の具体例として、免疫染色が挙げられる。
 以下、本発明に係る実施例とその比較例について図面を参照しながら説明する。
 以下の方法により、実施例及び比較例に係る蛍光色素内包樹脂粒子について計測または評価を行った。
 (蛍光色素内包樹脂粒子の平均粒径の計測方法)
 走査型電子顕微鏡(SEM)を用いて蛍光ナノ粒子を撮像し、十分な数の粒子について断面積を計測し、その計測値を相当する円の面積としたときの直径を粒径として求めたものである。後述する合成例においては、1000個の粒子の粒径の算術平均を平均粒径とした。
 [合成例1-1~1-7:蛍光色素内包樹脂粒子の調製]
 合成例1-1~1-7の蛍光色素内包樹脂粒子として、従来公知の手法を用いて、40、60、80、100、150、200、250nmの平均粒径を有する蛍光色素内包樹脂粒子A1~A7をそれぞれ用意した。
 ここで、蛍光色素内包樹脂粒子の製造方法の一例として、蛍光色素内包樹脂粒子A5の製造方法を以下に示す。
 (合成例1-5)
 N,N'-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimideを濃硫酸で処理することによりスルホ基の導入を行い、対応するスルホン酸に導いた。このスルホン酸を、常法により対応する酸塩化物に変換した。
 この酸塩化物14.4mgを水22.5mLに加えた後、ホットスターラ―上で70℃20分間加熱し、メラミン樹脂ニカラックMX-035(日本カーバイド工業社製)0.65gを加え、さらに5分間加熱撹拌した。ギ酸100μLを加え、60℃20分間で加熱攪拌した後、室温放冷した。冷却後、反応混合物を遠心用チューブに入れて遠心分離機に12,000rpmで20分間かけ、上澄み除去した。この洗浄をエタノールと水で行なった。
 得られた粒子0.1mgをEtOH(エタノール)1.5mL中に分散し、アミンプロピルトリメトキシシランLS-3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。
 得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleomidopropionamid)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包樹脂粒子(蛍光粒子)A5を得た。
 得られた蛍光色素内包樹脂粒子A5の粒径について電子顕微鏡を用いて上述した方法により計測したところ、平均粒径が150nmであった。
 (合成例1-1~1-4および1-6~1-7)
 合成例1-5の蛍光色素内包樹脂粒子A5とは粒径の異なる合成例1-1~1-4および1-6~1-7の蛍光色素内包樹脂粒子A1~A4およびA6~A7についても、合成時の色素/仕込み樹脂量を一定としつつ樹脂量を適宜加減したことを除いて、それぞれ合成例1-5と同様に合成を行った。
 参考までに、図7に、合成例1-5と同様の条件で蛍光色素内包樹脂粒子を行う場合における、樹脂原料(合成例1-1~1-7では上記メラミン樹脂)の仕込み量に対する、得られる蛍光色素内包樹脂粒子の平均粒径の関係を示す。
 なお、以下の記載において、蛍光色素内包樹脂粒子A1~A7は、後述するストレプトアビジン修飾蛍光色素内包樹脂粒子との区別のため、それぞれ、マレイミド基修飾蛍光色素内包樹脂粒子A1~A7と呼ばれる場合があり、これらを総称してマレイミド基修飾蛍光色素内包樹脂粒子と呼ばれる場合がある。
 [合成例2-1~2-7:ストレプトアビジン修飾蛍光色素内包樹脂粒子の合成]
 上記マレイミド基修飾蛍光色素内包樹脂粒子A1~A7のそれぞれについて、ストレプトアビジン修飾を以下の要領で行い、それぞれストレプトアビジン修飾蛍光色素内包樹脂粒子S1~S7に導いた。
 ストレプトアビジン(和光純薬社製)に対し、N-succinimidyl S-acetylthioacetate(SATA)と反応させた後、公知のヒドロキシルアミン処理を行うことでS-アセチル基の脱保護を行うことによりチオール基付加処理を行った。その後、ゲルろ過カラムによるろ過を行い、蛍光色素内包樹脂粒子に結合可能なストレプトアビジン溶液を得た。
 EDTAを2mM含有したPBSを用いて上記マレイミド基修飾蛍光色素内包樹脂粒子を稀釈し1nMに調整して得られる蛍光色素内包樹脂粒子含有液1mLと、上記ストレプトアビジン溶液とを混合し、室温で1時間反応を行い蛍光色素内包樹脂粒子とストレプトアビジンを結合させた。その後EDTAを2mM含有したPBSを用いて遠心、洗浄を行いストレプトアビジン修飾蛍光色素内包樹脂粒子のみを回収した。
 得られたストレプトアビジン修飾蛍光色素内包樹脂粒子は、一旦1%BSA含有PBS緩衝液で稀釈した状態で、各種評価に供した。
 [実施例1~12および比較例1~16]
 (保存液および蛍光色素内包樹脂粒子)
 実施例1~6および比較例1では、0.6% αカゼイン、0.6% βカゼイン、3% BSA、0.1% Tween(登録商標)20および0.015N NaN3を含むTris緩衝液(pH=6.9)を、実施例7~12および比較例2では、10%BSA、0.1% Tween(登録商標)20および0.05N NaN3を含むPBS緩衝液(pH=7.6)を、比較例3~9では、1%BSAを含むPBS緩衝液(pH=7.2)を、比較例10~16では、高分子系界面活性剤(0.1% DISPERBYK-194:pH=7.0)を、保存液として採用した。
 また、各実施例および比較例では、蛍光色素内包樹脂粒子として、上記ストレプトアビジン修飾蛍光色素内包樹脂粒子S1~S7の中から下記表1に示すものをそれぞれ使用した。
 以下、各蛍光色素内包樹脂粒子について、この保存液を用いて、以下の保存および評価を行った。
 (蛍光色素内包樹脂粒子の保存)
 1%BSA/PBS溶液中にある各ストレプトアビジン修飾蛍光色素内包樹脂粒子について、上澄み液を除去し、上記保存液に置換した後に、フィルター処理(0.65μm:ミリポア社製)を行った。その後、ストレプトアビジン修飾蛍光色素内包樹脂粒子が目的の濃度(0.2nM)となるように上記保存液で希釈調整して、蛍光色素内包樹脂粒子含有保存液を調製した。
 そして、蛍光色素内包樹脂粒子の保存は、蛍光色素内包樹脂粒子含有保存液の形態のまま冷蔵庫中で4℃にて行った。
 (蛍光色素内包樹脂粒子の沈降・凝集の評価)
 蛍光色素内包樹脂粒子の沈降・凝集の評価は、フォーマルアクション(Formulaction)社製のタービスキャン(商標)(タービスキャンLab)を用いて行った。
 具体的には、合成直後のストレプトアビジン修飾蛍光色素内包樹脂粒子について、上記「蛍光色素内包樹脂粒子の保存」に記載の方法にしたがって蛍光色素内包樹脂粒子含有保存液を調製し、この蛍光色素内包樹脂粒子含有液についてタービススキャンを用いて、波長880nmの赤外線を光源として使用したときの後方散乱強度(透過光)を測定した。ここで、測定は、30分間隔でサンプリングを行いながら行い、24時間続行した。
 そして、測定開始直後における高さ中心部の後方散乱強度(透過光)(「添加直後における高さ中心部の後方散乱強度(透過光)」に対応する。)をI'0、測定開始から24時間静置後における高さ中心部の後方散乱強度(透過光)をI'24としたときの、高さ中心部の後方散乱強度(透過光)の変化の割合D'(%)を、以下のように算出した。
   D'=(I'24-I'0)/I'0×100
 各実施例・比較例についての変化の割合D'を、表1に示した。例えば、実施例5では、測定を開始したときを基準として、測定開始から24h後に-0.9%後方散乱強度(透過光)が変化している。
 (蛍光色素内包樹脂粒子を用いた染色)
 保存液の性能を評価するため、上記ストレプトアビジン修飾蛍光色素内包樹脂粒子について、合成直後の蛍光色素内包樹脂粒子、および、上記保存液中で1ヶ月保存後の蛍光色素内包樹脂粒子のそれぞれを用いて、下記免疫染色、形態観察染色および観察を行った。
 ここで、組織細胞スライドとして、US Biomax社製の乳癌組織アレイ(型番:BR243のシリーズ(24コア);コア直径1.5mm)を使用した。
 ・免疫染色
 組織細胞スライドを常法に従い脱パラフィン処理した後、水に置換する洗浄を行った。洗浄した組織細胞スライドを10mMクエン酸緩衝液(pH6.0)中で121℃、5分間オートクレーブ処理することで、抗原の賦活化処理を行った。
 賦活化処理後の組織細胞スライドを、PBS緩衝液を用いて洗浄した後、湿潤箱中で1時間1%BSA含有PBS緩衝液を用いてブロッキング処理を行った。ブロッキング処理後、1%BSA含有PBS緩衝液で0.05nMに希釈した抗HER2ウサギモノクローナル抗体(4B5)(ベンタナ社製)を組織細胞スライドと2時間反応させた。これをPBS緩衝液で洗浄後、1%BSA含有PBS緩衝液で2μg/mLに希釈した4B5に結合するビオチン標識抗ウサギモノクローナル抗体と30分反応させた。
 このビオチン標識抗ウサギモノクローナル抗体との反応後、蛍光色素内包樹脂粒子による組織細胞スライドの染色を行った。
 ここで、合成直後の蛍光色素内包樹脂粒子を用いた染色にあたっては、1%BSA含有PBS緩衝液で0.2nMに稀釈した合成直後の蛍光色素内包樹脂粒子を組織細胞スライドと、中性のpH環境(pH6.9~7.4)、室温の条件下で3時間反応させた。なお、蛍光色素内包樹脂粒子は0.2nMに稀釈する前に、遠心分離、上澄み液の除去、上記保存液による稀釈、および超音波処理による再分散を適当な回数繰り返すことにより上記保存液への溶媒置換を行った後、フィルター処理(0.65μm:ミリポア社製)を行った。
 一方、上記保存液中で1ヶ月保存後の蛍光色素内包樹脂粒子を用いた染色についても、0.2nMに稀釈した合成直後の蛍光体内包樹脂粒子に代えて、上記保存液中で1ヶ月保存後の蛍光色素内包樹脂粒子を用いたことを除き、同様に行った。この場合、上記蛍光色素内包樹脂粒子含有保存液の形態で保存した蛍光色素内包樹脂粒子を稀釈することなく、ピペッティング(撹拌)を行った後、そのまま染色に用いた。ただし、実施例1および7については、蛍光色素内包樹脂粒子の沈降が確認されていなかったことから、ピペッティングを行うことなくそのまま染色に用いた。なお、本明細書において、「ピペッティング」とは、別途の記載がない限り、対象とする液を、ピペットに吸引し当該ピペットから排出する、という操作を繰り返すことにより、当該液の撹拌を行うことを意味する。
 いずれの場合においても、蛍光色素内包樹脂粒子との反応後、組織細胞スライドを、PBS緩衝液を用いて洗浄した。
 ・形態観察染色
 上記免疫染色を行った組織細胞スライドについて、さらに、形態観察染色を行った。
 具体的には、免疫染色した組織細胞スライドをマイヤーヘマトキシリン液で1分間染色してヘマトキシリン染色を行った(HE染色)。その後、該組織細胞スライドを45℃の流水で3分間洗浄した。その後、純エタノールに5分間漬ける操作4回行い、洗浄・脱水を行った。続いてキシレンに5分間漬ける操作を4回行い、透徹を行った。最後に、封入剤(「エンテランニュー」、Merck社製)を用いて組織切片を封入して観察用のサンプルスライドとした。
 ・観察
 上記免疫染色および形態観察染色したサンプルスライド上にある組織切片に対して所定の励起光を照射して蛍光を発光させた。その状態の組織切片を蛍光顕微鏡(BX-53,オリンパス社製)により観察および撮像を行った。ここで、観察および撮像は、サンプルスライド上の1つのコア(1つの組織スポット)につき10視野に分けて行った。このとき、対物レンズおよび接眼レンズとして、それぞれ倍率が40倍および10倍のものを用いた。また、輝点計測は、ImageJ FindMaxima法により計測した。
 上記励起光は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで612~682nmに設定した。
 顕微鏡観察、画像取得時の励起波長条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。
 評価結果を、下記表1に示す。参考までに、実施例5,11、比較例7についての、合成直後の蛍光体内包樹脂粒子を用いた染色画像をそれぞれ図1,3,5に、実施例5,11、比較例7についての、1ヶ月保存後の蛍光体内包樹脂粒子を用いた染色画像をそれぞれ図2,4,6Aに示す。
 ここで、粗大塊あり・なしの判定については、各組織細胞スライドについて10視野程度観察したときに、顕微鏡を通じて観察された見かけの大きさが1~2mm角(すなわち、実際の大きさとして2.5~5μm角相当)以上の凝集塊が3個以上確認された場合に×(粗大塊あり)としている。例えば、比較例7の場合、図6Aに示した1ヶ月保存後の蛍光体内包樹脂粒子を用いた染色画像には、図6Bに示したスケッチに示すように、粗大塊が3個確認されている。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  蛍光色素内包樹脂粒子の保存液であって、
     蛍光色素内包樹脂粒子を該保存液に添加することにより得られる粒子含有液について、該添加直後における該粒子含有液を基準としたときの、該添加から24時間静置後における該粒子含有液の高さ中心部の後方散乱強度(透過光)の変化の割合が-1%以上であることを特徴とする保存液。
  2.  緩衝液、蛋白質、界面活性剤を含む、請求項1に記載の保存液。
  3.  前記界面活性剤が、非イオン性界面活性剤である請求項2に記載の保存液。
  4.  前記蛍光色素内包樹脂粒子の粒径が40nm以上200nm以下である、請求項1~3のいずれか1項に記載の保存液。
  5.  前記高さ中心部に照射する光の波長が前記蛍光色素内包樹脂粒子の粒径より長い、請求項1~4のいずれか1項に記載の保存液。
  6.  前記蛍光色素内包樹脂粒子が病理染色に用いられる、請求項1~5のいずれか1項に記載の保存液。
  7.  前記蛍光色素内包樹脂粒子が反応性官能基をさらに有する、請求項1~6のいずれか1項に記載の保存液。
  8.  前記蛍光色素内包樹脂粒子を構成する樹脂が熱硬化性樹脂である、請求項1~7のいずれか1項に記載の保存液。
PCT/JP2015/061567 2014-04-23 2015-04-15 蛍光色素内包樹脂粒子の保存液 WO2015163209A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15783619.8A EP3136098B1 (en) 2014-04-23 2015-04-15 Medium for resin particles containing fluorescent dye
US15/305,416 US20170045452A1 (en) 2014-04-23 2015-04-15 Medium For Resin Particles Containing Fluorescent Dye
JP2015560442A JP6048597B2 (ja) 2014-04-23 2015-04-15 蛍光色素内包樹脂粒子の保存液
US16/561,679 US20200003689A1 (en) 2014-04-23 2019-09-05 Medium For Resin Particles Containing Fluorescent Dye
US16/561,732 US11346784B2 (en) 2014-04-23 2019-09-05 Medium for resin particles containing fluorescent dye
US17/407,302 US20210381982A1 (en) 2014-04-23 2021-08-20 Medium For Resin Particles Containing Fluorescent Dye
US17/979,920 US20230069563A1 (en) 2014-04-23 2022-11-03 Medium For Resin Particles Containing Fluorescent Dye

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-089287 2014-04-23
JP2014089287 2014-04-23

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/305,416 A-371-Of-International US20170045452A1 (en) 2014-04-23 2015-04-15 Medium For Resin Particles Containing Fluorescent Dye
US16/561,679 Division US20200003689A1 (en) 2014-04-23 2019-09-05 Medium For Resin Particles Containing Fluorescent Dye
US16/561,732 Continuation US11346784B2 (en) 2014-04-23 2019-09-05 Medium for resin particles containing fluorescent dye

Publications (1)

Publication Number Publication Date
WO2015163209A1 true WO2015163209A1 (ja) 2015-10-29

Family

ID=54332376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061567 WO2015163209A1 (ja) 2014-04-23 2015-04-15 蛍光色素内包樹脂粒子の保存液

Country Status (4)

Country Link
US (5) US20170045452A1 (ja)
EP (1) EP3136098B1 (ja)
JP (1) JP6048597B2 (ja)
WO (1) WO2015163209A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185943A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光プレミックス粒子、それを含有する蛍光染色液、およびそれらを用いた蛍光染色法
WO2018185942A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 タンパク質修飾蛍光体集積粒子の精製物を製造する方法、蛍光染色液の製造方法、タンパク質修飾蛍光体集積粒子の精製物、蛍光染色液およびタンパク質修飾蛍光体集積粒子精製用フィルター
WO2020075751A1 (ja) * 2018-10-10 2020-04-16 コニカミノルタ株式会社 発光色素含有粒子及び病理診断用標識剤
CN111289336A (zh) * 2019-12-13 2020-06-16 山东源科生物科技股份有限公司 一种真菌荧光染色液及其制备方法
WO2021182228A1 (ja) * 2020-03-10 2021-09-16 コニカミノルタ株式会社 発光色素含有粒子、その製造方法及びそれを用いる病理診断用標識剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048597B2 (ja) * 2014-04-23 2016-12-21 コニカミノルタ株式会社 蛍光色素内包樹脂粒子の保存液
JP6447557B2 (ja) * 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503951A (ja) * 2010-02-02 2013-02-04 ヴェンタナ メディカル システムズ, インク. 蛍光粒子を安定化するための組成物及び方法
WO2013147081A1 (ja) * 2012-03-30 2013-10-03 コニカミノルタ株式会社 生体物質検出方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338659A (en) 1991-04-02 1994-08-16 Terrapin Technologies, Inc. Method for determining analyte concentration by cross-reactivity profiling
DE69017753T3 (de) * 1989-05-18 2013-06-20 Yeda Research And Development Co., Ltd. Tumor-Nekrosefaktor-Bindungsprotein II, seine Reinigung und spezifische Antikörper
GB8927503D0 (en) 1989-12-04 1990-02-07 Kronem Systems Inc Enzyme-amplified lanthanide chelate luminescence
US5326692B1 (en) * 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
ATE395598T1 (de) 1998-04-14 2008-05-15 Otsuka Pharma Co Ltd Verfahren und vorrichtung zum nachweis von antikörpern
EP3225990B1 (en) 2010-08-30 2020-07-08 Konica Minolta, Inc. Particle for staining a tissue
JP6354754B2 (ja) 2013-06-19 2018-07-11 コニカミノルタ株式会社 生体分子染色用の蛍光ナノ粒子およびその製造方法
JP6048597B2 (ja) * 2014-04-23 2016-12-21 コニカミノルタ株式会社 蛍光色素内包樹脂粒子の保存液

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503951A (ja) * 2010-02-02 2013-02-04 ヴェンタナ メディカル システムズ, インク. 蛍光粒子を安定化するための組成物及び方法
WO2013147081A1 (ja) * 2012-03-30 2013-10-03 コニカミノルタ株式会社 生体物質検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136098A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185943A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光プレミックス粒子、それを含有する蛍光染色液、およびそれらを用いた蛍光染色法
WO2018185942A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 タンパク質修飾蛍光体集積粒子の精製物を製造する方法、蛍光染色液の製造方法、タンパク質修飾蛍光体集積粒子の精製物、蛍光染色液およびタンパク質修飾蛍光体集積粒子精製用フィルター
EP3608665A4 (en) * 2017-04-07 2020-04-22 Konica Minolta, Inc. PROCESS FOR PRODUCING A PURIFIED PRODUCT OF PROTEIN MODIFIED PHOSPHORUS INTEGRATED PARTICLE, METHOD FOR PRODUCING A FLUORESCENT dye liquor PURIFIED PRODUCT OF PROTEIN MODIFIED PHOSPHOR PARTICLES AND INTEGRATED FILTER FOR CLEANING OF A FLUORESCENT PROTEIN AND MODIFIED dye liquor PHOSPHORUS INTEGRATED PARTICLE
WO2020075751A1 (ja) * 2018-10-10 2020-04-16 コニカミノルタ株式会社 発光色素含有粒子及び病理診断用標識剤
JPWO2020075751A1 (ja) * 2018-10-10 2021-09-30 コニカミノルタ株式会社 発光色素含有粒子及び病理診断用標識剤
CN111289336A (zh) * 2019-12-13 2020-06-16 山东源科生物科技股份有限公司 一种真菌荧光染色液及其制备方法
CN111289336B (zh) * 2019-12-13 2023-06-13 山东源科生物科技股份有限公司 一种真菌荧光染色液及其制备方法
WO2021182228A1 (ja) * 2020-03-10 2021-09-16 コニカミノルタ株式会社 発光色素含有粒子、その製造方法及びそれを用いる病理診断用標識剤

Also Published As

Publication number Publication date
US20230069563A1 (en) 2023-03-02
US20200003690A1 (en) 2020-01-02
US20170045452A1 (en) 2017-02-16
EP3136098A4 (en) 2017-12-27
JP6048597B2 (ja) 2016-12-21
JPWO2015163209A1 (ja) 2017-04-13
US11346784B2 (en) 2022-05-31
US20210381982A1 (en) 2021-12-09
US20200003689A1 (en) 2020-01-02
EP3136098A1 (en) 2017-03-01
EP3136098B1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6048597B2 (ja) 蛍光色素内包樹脂粒子の保存液
JP6354754B2 (ja) 生体分子染色用の蛍光ナノ粒子およびその製造方法
JP4716337B2 (ja) フローサイトメトリーによる細胞の検出・分取システム、及び検出・分取方法
JP6614161B2 (ja) 蛍光観察に使用する蛍光体集積ナノ粒子
EP3054283B1 (en) Method for detecting target substance
EP3054297A1 (en) Fluorescence-labeled particle
JP6493085B2 (ja) 蛍光色素内包樹脂粒子溶液の選択方法および濃度調整方法
JPWO2015159776A1 (ja) 蛍光体集積ナノ粒子、これを用いた染色試薬、キットおよび蛍光免疫染色法
EP3441761A1 (en) Fluorescent immunostaining method
JP6658330B2 (ja) 組織切片から蛍光ナノ粒子の解離を防止する方法
EP3608669A1 (en) Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used
US20200165666A1 (en) Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method
JP6583011B2 (ja) 酸性水溶液を用いた免疫染色スライドの洗浄方法
JP6524833B2 (ja) 蛍光体集積ナノ粒子を用いたfishまたは免疫染色スライドの封入方法
JP2020016568A (ja) 蛍光標識体、組織染色方法、蛍光標識体の製造方法及び蛍光標識体の安定化方法
JP7001083B2 (ja) 蛍光観察に使用する蛍光体集積ナノ粒子
WO2022059508A1 (ja) 生体関連情報取得方法及び生体関連情報取得システム
Shalaev et al. Synthesis and experimental study of liquid dispersions of magnetic fluorescent polystyrene microspheres
US20200400656A1 (en) Particle assemblies, methods of making and use
Xiao Development of smartphone-based flow cytometry for selective cell counting
JP2023126996A (ja) 免疫染色方法及び免疫染色組織標本の作製方法
WO2022196203A1 (ja) 画像形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560442

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015783619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783619

Country of ref document: EP