WO2015162902A1 - 廃乾電池からの有価成分の回収方法および回収設備 - Google Patents

廃乾電池からの有価成分の回収方法および回収設備 Download PDF

Info

Publication number
WO2015162902A1
WO2015162902A1 PCT/JP2015/002149 JP2015002149W WO2015162902A1 WO 2015162902 A1 WO2015162902 A1 WO 2015162902A1 JP 2015002149 W JP2015002149 W JP 2015002149W WO 2015162902 A1 WO2015162902 A1 WO 2015162902A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
zinc
solid
liquid separation
leachate
Prior art date
Application number
PCT/JP2015/002149
Other languages
English (en)
French (fr)
Inventor
山口 東洋司
八尾 泰子
藤本 京子
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016514713A priority Critical patent/JP6070898B2/ja
Publication of WO2015162902A1 publication Critical patent/WO2015162902A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method and facility for recovering valuable components from waste dry batteries, and in particular, effectively separates and recovers valuable components such as manganese and zinc, which are main components of discarded manganese dry batteries and alkaline manganese dry batteries. , Which is to be reused as a resource.
  • Patent Document 1 a manganese battery and an alkaline manganese battery are selected from waste dry batteries, crushed and sieved to obtain powder particles, and zinc contained in the powder particles is dissolved with dilute hydrochloric acid or dilute sulfuric acid.
  • Patent Document 1 a technique for leaving manganese and carbon in the dissolved residue has been proposed.
  • the zinc solution is recycled as a zinc refining raw material, and the dissolved residue mainly containing manganese dioxide and carbon is recycled as a manganese raw material.
  • Patent Document 2 proposes a technique for separating and recovering manganese dioxide and zinc chloride from waste dry batteries.
  • a waste dry battery is physically treated to obtain a material containing a large amount of manganese and zinc. This material is washed with water, dissolved in hydrochloric acid, and insoluble matters (carbon powder, etc.) are removed from the solution to produce manganese chloride. And a mixed aqueous solution of zinc chloride.
  • perchloric acid is further added and heated to oxidize manganese chloride in the mixed aqueous solution to manganese dioxide to insolubilize it, and then a solid mixture of manganese dioxide and zinc chloride is formed. obtain.
  • waste batteries are sorted according to performance, crushed, roasted, calcined, etc., so that manganese and zinc components contained in the waste batteries are changed to manganese oxide and zinc oxide. And a technique for producing manganese-zinc ferrite using the mixture thus collected as a raw material.
  • the technology mainly targets minerals instead of waste dry batteries, but a technique for recovering valuable metals by leaching valuable metals from minerals into the processing liquid using microorganisms is also known.
  • iron-reducing bacteria are allowed to act to reduce trivalent iron to divalent iron, and the metal contained in the group consisting of metal oxides and metal hydroxides using the divalent iron.
  • a technique for leaching (cobalt, nickel, manganese, etc.) to produce a leachate and a residue, separating the leachate and the residue, and recovering a desired metal has been proposed.
  • valuable metals (cobalt, nickel, manganese, etc.) contained in the leachate can be recovered by a known method and used for a desired application.
  • JP 2007-012527 A Japanese Patent Laid-Open No. 11-191439 JP-A-9-82340 JP-A-9-82339 Japanese Patent Laid-Open No. 7-85897 Japanese Patent Laid-Open No. 7-81941 JP-A-6-260175 JP-A-6-260174 JP 2007-113116 A
  • the technique proposed in Patent Document 1 mainly dissolves zinc from a granular material containing manganese dioxide, zinc, and carbon, and collects and recycles a dissolved residue containing manganese dioxide and carbon at high concentrations.
  • Technology That is, with the technique proposed in Patent Document 1, only a mixture containing high-concentration carbon together with manganese dioxide can be obtained, and high-purity manganese dioxide with an extremely low amount of carbon contamination cannot be recovered.
  • Manganese used as a steelmaking raw material is required to have a high purity in order to prevent impurities, particularly carbon, from entering the steel. Therefore, it is difficult to use the recovered material obtained by the technique proposed in Patent Document 1 as a steelmaking raw material.
  • Patent Document 2 The technology proposed in Patent Document 2 is very complicated, and it is easily imagined that the materials and labor to be collected for collection are more than the evaluation value of the collected items, so that resource recycling is economical. It cannot be established. In addition, since perchloric acid and a large amount of organic solvent, which are highly dangerous, are used in the process of recovering the manganese and zinc components, there is a problem in the safety of the work environment in addition to the high cost of the treatment.
  • the techniques proposed in Patent Documents 3 to 8 are techniques for recovering a mixture of manganese oxide and zinc oxide from waste dry batteries.
  • a manganese recovery product in which a zinc component is mixed is used as a steelmaking raw material. It is impossible to use.
  • Patent Document 9 is a technique for leaching a metal from a mineral using microorganisms, and is known as a technique with less burden on the environment without using a large amount of strong acid or organic solvent.
  • this technology when this technology is applied to waste dry batteries, the antibacterial properties of zinc that leach out together with manganese from the waste dry battery will increase when the solid-liquid ratio, that is, the ratio of the material to be treated (waste dry battery) to the leachate is increased to about 50 g / L
  • the leaching rate of the metal tends to decrease due to the inhibitory action that is considered to be caused by the action.
  • a salt of chelated iron (iron complex) such as iron citrate used as a culture medium (food) for microorganisms is generally expensive and has a disadvantage in terms of cost. Therefore, even in the technique proposed in Patent Document 9, the material thrown for recovery may be more than the evaluation value of the recovered product, and it may be difficult to economically recycle resources.
  • the present invention was developed in view of the above circumstances, and effectively separates and recovers manganese and zinc contained in the waste dry battery, and in particular, high-purity manganese with extremely low mixing of zinc and carbon,
  • An object of the present invention is to provide a method and a facility for recovering valuable components from waste dry batteries that can be obtained inexpensively and easily.
  • a manganese dry battery or an alkaline manganese dry battery is selected from the waste dry batteries, and these are crushed and sieved, the material constituting the dry battery is separated into the solid matter on the sieve and the granular material under the sieve.
  • the materials constituting the dry battery mainly iron-shell packaging materials, zinc cans, brass bars, paper materials, plastics, etc., are crushed into foil-like or piece-like solids and separated on a sieve.
  • manganese dioxide, carbon, zinc chloride, ammonium chloride, caustic potash, or MnO (OH), Zn (OH) 2 , Mn (OH) 2 , ZnO, etc. generated by discharge become powder particles, To be separated.
  • a trace amount iron may be inevitably mixed in a granular material.
  • the inventors first examined a means for obtaining a high-purity manganese component recovered material having a very small amount of carbon contamination from the above-mentioned powder particles, that is, powder particles mainly containing carbon together with manganese / zinc components. As a result, it was conceived that acid leaching treatment was performed on the granular material, manganese and zinc were leached from the granular material, and carbon was removed as a leaching residue. As a result of further investigation, it was found that manganese dioxide contained in the powder can be leached and recovered with high efficiency by using an acid solution and a reducing agent during the acid leaching treatment.
  • the inventors examined a means for recovering the manganese component and the zinc component in a separated form from the leachate obtained by leaching manganese and zinc obtained as described above. As a result, it was found that manganese can be precipitated and recovered as an oxide out of manganese and zinc dissolved in the leachate by simple means of allowing ozone to act on the leachate.
  • the leaching solution obtained by the above acid leaching treatment contains manganese ions and zinc ions.
  • iron in the granular material is also leached during the acid leaching process, so that it is assumed that the leaching solution also contains iron ions. If only the manganese component can be insolubilized and precipitated from such a leachate, the manganese component can be easily separated from zinc or iron and recovered. Therefore, the present inventors paid attention to the oxidation-reduction potential (ORP) and pH phase diagram (Eh-pH diagram) of each metal (manganese, zinc, iron).
  • ORP oxidation-reduction potential
  • Eh-pH diagram pH phase diagram
  • FIG. 1A is a state diagram (Eh-pH diagram) of oxidation-reduction potential (ORP) and pH of manganese in an aqueous solution at 25 ° C.
  • FIG. 1B is a phase diagram (Eh-pH diagram) of the oxidation-reduction potential (ORP) and pH of zinc in an aqueous solution at 25 ° C.
  • FIG. 1C is a phase diagram (Eh-pH diagram) of redox potential (ORP) and pH of iron in an aqueous solution at 25 ° C. As shown in FIGS.
  • the inventors further studied and sought a means for easily adjusting the pH and redox potential (ORP) of the leachate.
  • ORP pH and redox potential
  • a method for recovering valuable components contained in the waste dry battery from the waste dry battery A sorting process for sorting manganese batteries and / or alkaline manganese batteries from waste batteries; Crushing and sieving the waste dry batteries selected in the above screening process to obtain a granular material by sieving; An acid leaching step of mixing the powder, the acid solution and the reducing agent obtained in the crushing and sieving step, and leaching manganese and zinc from the powder; A first solid-liquid separation step for solid-liquid separation of the leachate and leach residue obtained in the acid leaching step, An ozone treatment step in which ozone is allowed to act on the leachate separated in the first solid-liquid separation step to oxidize and precipitate manganese ions contained in the leachate, thereby obtaining a manganese-containing precipitate and a zinc ion-containing solution; , A second solid-liquid separation step for solid-liquid separation of the manganes
  • a method for recovering valuable components contained in the waste dry battery from the waste dry battery A sorting process for sorting manganese batteries and / or alkaline manganese batteries from waste batteries; Crushing and sieving the waste dry batteries selected in the above screening process to obtain a granular material by sieving; An acid leaching step of mixing the powder, the acid solution and the reducing agent obtained in the crushing and sieving step, and leaching manganese and zinc from the powder; A first solid-liquid separation step for solid-liquid separation of the leachate and leach residue obtained in the acid leaching step, An ozone treatment step in which ozone is allowed to act on the leachate separated in the first solid-liquid separation step to oxidize and precipitate manganese ions contained in the leachate, thereby obtaining a manganese-containing precipitate and a zinc ion-containing solution; , A second solid-liquid separation step for solid-liquid separation of the manganese-containing precipitate obtained in the ozone treatment step and the zinc ion-containing solution;
  • a method for recovering valuable components contained in the waste dry battery from the waste dry battery A sorting process for sorting manganese batteries and / or alkaline manganese batteries from waste batteries; Crushing and sieving the waste dry batteries selected in the above screening process to obtain a granular material by sieving; An acid leaching step of mixing the powder, the acid solution and the reducing agent obtained in the crushing and sieving step, and leaching manganese and zinc from the powder; A first solid-liquid separation step for solid-liquid separation of the leachate and leach residue obtained in the acid leaching step, An ozone treatment step in which ozone is allowed to act on the leachate separated in the first solid-liquid separation step to oxidize and precipitate manganese ions contained in the leachate, thereby obtaining a manganese-containing precipitate and a zinc ion-containing solution; , A second solid-liquid separation step for solid-liquid separation of the manganese-containing precipitate obtained in the ozone treatment step and the zinc ion-containing solution;
  • a facility for recovering valuable components contained in the waste dry battery from the waste dry battery A sorting device for sorting manganese batteries and / or alkaline manganese batteries from waste batteries; A crushing device that charges the waste dry batteries sorted by the sorting device and performs crushing treatment to obtain a crushed product, A sieving device for obtaining a granular material by performing a sieving process on the crushed product obtained by the crushing device; and An acid leaching tank in which the powder, the acid solution and the reducing agent obtained by the sieving device are mixed, and manganese and zinc are leached from the powder; A first solid-liquid separation device for solid-liquid separation of the leachate and leach residue obtained in the acid leaching tank, An ozone treatment device for causing ozone to act on the leachate separated by the first solid-liquid separation device to oxidize and precipitate manganese ions contained in the leachate, thereby obtaining a manganese-containing precipitate and a zinc ion-containing solution; , A facility for recovering valuable components
  • an alkaline precipitation tank for storing the zinc ion-containing solution separated by the second solid-liquid separator and subjecting the zinc ion-containing solution to an alkaline precipitation treatment to obtain a zinc-containing precipitate
  • manganese and zinc in a waste dry battery can be separated almost completely by a simple method, and can be recovered with a high yield.
  • a manganese component with an extremely low carbon mixing amount can be recovered, so that restrictions on recycling the recovered manganese component as a steelmaking raw material can be greatly relaxed.
  • the recovered zinc component is zinc It can be recycled as a refining raw material.
  • FIG. 4 is a phase diagram (Eh-pH diagram) of redox potential (ORP) and pH of zinc in an aqueous solution. It is a redox potential (ORP) and pH phase diagram (Eh-pH diagram) of iron in an aqueous solution. It is a flow figure explaining one form of the separation and recovery method of the present invention. It is a mimetic diagram showing one form of separation and recovery equipment of the present invention. It is a figure which shows the relationship between the kind and addition amount of a reducing agent in the acid leaching process of an Example, and manganese leaching rate.
  • the present invention is directed to one or two types of waste dry batteries of manganese dry batteries and alkaline manganese dry batteries. And this invention is invention of the collection
  • FIG. 2 is a flowchart for explaining an embodiment of the present invention.
  • the method for separating manganese and zinc according to the present invention and the method for recovering manganese according to the present invention include a sorting step 1, a crushing / sieving step 2, an acid leaching step 3, a first solid-liquid separation step 4, ozone It has a processing step 5 and a second solid-liquid separation step 6.
  • the zinc recovery method of the present invention further comprises an alkali precipitation treatment step 7 and a third solid-liquid separation step 8 as the next step of the second solid-liquid separation step 6.
  • Sorting process Waste dry batteries are rarely collected separately for each type, and are generally collected in a mixed form. Therefore, in the present invention, first, one or both of a manganese dry battery and an alkaline manganese dry battery is selected from these discarded / recovered waste dry batteries.
  • a sorting method any method such as manual sorting, machine sorting using a device that sorts using shape, radiation, or the like may be used. Exclude mercury batteries, nickel-cadmium batteries, etc. in waste dry batteries according to the selected sorting method.
  • Crushing / sieving step Next, the manganese dry cell and / or the alkaline manganese dry cell sorted in the sorting step are crushed.
  • the purpose of crushing is to eliminate materials containing components other than manganese and zinc as much as possible from the constituent materials of manganese dry batteries and / or alkaline manganese dry batteries selected in the selection step.
  • manganese batteries are manganese dioxide (positive electrode material), carbon rod (current collector), zinc can (negative electrode material), zinc chloride or ammonium chloride (electrolyte), MnO ( In addition to OH) and Zn (OH) 2 , packaging materials such as iron, plastic and paper are included.
  • alkaline manganese batteries are brass bars (current collectors) instead of the carbon bars (current collectors), zinc cans (negative electrode materials), zinc chloride or ammonium chloride (electrolyte).
  • packaging materials iron, plastic, paper, etc.
  • zinc cans which are anode materials for manganese batteries
  • brass rods which are current collectors for alkaline manganese batteries
  • manganese dioxide as positive electrode material
  • carbon rod as current collector of manganese dry battery
  • zinc powder as negative electrode material of alkaline manganese dry battery
  • MnO (OH) Zn (OH) 2
  • Mn (OH) generated by discharge 2 , ZnO, etc.
  • various electrolytes become finer particles than the foil-like / flaky solids.
  • a crusher is usually used for crushing the sorted waste batteries.
  • the type of the crusher is not particularly limited, and for example, a type in which the powder material and the packaging material constituting the dry battery are well separated after crushing is preferable.
  • the biaxial rotation type crusher is mentioned, for example.
  • the sieve opening used for sieving the crushed material is preferably about 1 mm to 20 mm. Further, it is more preferably about 1 mm or more and 10 mm or less, and further preferably about 1 mm or more and 3 mm or less.
  • manganese dioxide, carbon, zinc chloride or ammonium chloride, caustic potash, and further generated by discharge are the main constituent materials of manganese dry batteries and / or alkaline manganese dry batteries.
  • a granular material in which MnO (OH), Zn (OH) 2 , Mn (OH) 2 , ZnO or the like is mixed is obtained. Moreover, a trace amount of iron component is inevitably mixed in this granular material.
  • the zinc can which is the negative electrode material of the manganese dry battery, is sieved as a foil-like or piece-like solid, but this zinc can is separately collected and recycled.
  • Acid leaching process In the acid leaching process, the powder obtained in the crushing and sieving process, the acid solution, and the reducing agent are mixed, and the powder is subjected to an acid leaching treatment.
  • an acid leaching treatment manganese and zinc are leached mainly from the granular material containing manganese / zinc component and carbon, and carbon is left in the leaching residue.
  • the acid used for the acid solution may be a general acid, and sulfuric acid, nitric acid, hydrochloric acid, and other acids can be used. However, in consideration of cost and ease of procurement, sulfuric acid or hydrochloric acid is used. preferable. When sulfuric acid is used, it is preferable to use dilute sulfuric acid having a sulfuric acid concentration of 1.4% or more and 45% or less by mass%. Further, it is more preferable to use dilute sulfuric acid having a sulfuric acid concentration of 2% or more and 30% or less in terms of mass% concentration, and even more preferable to use dilute sulfuric acid having a sulfuric acid concentration of 5% or more and 25% or less in terms of mass% concentration.
  • hydrochloric acid When hydrochloric acid is used, it is preferable to use dilute hydrochloric acid having a hydrochloric acid concentration of 1% to 14% by mass. It is more preferable to use dilute hydrochloric acid having a hydrochloric acid concentration of 2% or more and 8% or less in terms of mass% concentration. Hydrochloric acid or sulfuric acid may be a commercially available one, but the cost of the acid can be reduced by diluting and using industrial or waste acid with a small amount of harmful metal components. Moreover, the mass% concentration here is a value obtained by multiplying 100 by dividing the acid mass in the acid solution by the mass of the entire solution.
  • the acid concentration required for the leaching of manganese and zinc is the solid-liquid ratio, the amount of powder, the content of manganese and zinc in the powder, the manganese in the powder. It varies depending on the form of zinc. Therefore, an optimal acid concentration can be determined by conducting a preliminary experiment assuming an actual machine in advance.
  • the acid leaching step of the present invention it is essential to mix a reducing agent together with the granular material and the acid solution. This is because the manganese component contained in the granular material is almost completely leached.
  • the principle of manganese dissolution (manganese leaching) with a reducing agent will be described below.
  • the waste dry battery selected in the selection process includes MnO (OH), Mn (OH) 2 generated by discharge, and undischarged MnO 2 .
  • MnO (OH) and Mn (OH) 2 are considered to dissolve in acid, but MnO 2 is considered to hardly dissolve in acid.
  • a reducing agent is added in accordance with the leaching reaction with an acid.
  • the manganese components (MnO 2 and MnO (OH) 2 , Mn (OH) 2 ) in the granular material can be almost completely leached.
  • the zinc component contained in a granular material if the density
  • the type of reducing agent to be mixed with the powder and acid solution is not particularly limited, as long as it can reduce Mn from tetravalent to divalent as shown in the formula (1).
  • Examples include hydrogen, sulfide ions such as sodium sulfide, sodium hydrogen sulfite, and sodium thiosulfate, and those containing sulfite ions and thiosulfate ions.
  • the method of mixing the reducing agent may be a method of adding the reducing agent as a solid or liquid, or a method of aerating a reducing gas such as sulfurous acid gas.
  • the half reaction formula of hydrogen peroxide is shown in the following formula (2). H 2 O 2 ⁇ 2H + + O 2 + 2e-... (2)
  • the addition amount and aeration amount of a reducing agent based on the required amount (amount required for dissolution of MnO 2 ) obtained from a stoichiometric formula.
  • the ratio of MnO (OH) to MnO 2 and Mn (OH) 2 in the granular material is not clear, and there is a loss in the reaction. Therefore, it is difficult to obtain the necessary amount only by theoretical calculation.
  • the acid solution and reducing agent as exemplified above are mixed with the powder obtained in the crushing / sieving step, and an acid leaching treatment is performed while stirring.
  • a reducing agent when performing an acid leaching process, for example, after first mixing a granular material and an acid solution, a reducing agent can be mixed.
  • an acid solution, a reducing agent, and a granular material may be mixed simultaneously, and after mixing an acid solution and a reducing agent, you may mix a granular material.
  • the solid-liquid ratio (powder (g) / oxalic acid solution (L)) of the powder and acid solution in the acid leaching process should be 50 g / L or more. preferable.
  • the solid-liquid ratio is more preferably 100 g / L or more.
  • the solid-liquid ratio is preferably 800 g / L or less.
  • the treatment time for the acid leaching treatment is preferably 5 minutes or more and 6 hours or less. Further, it is more preferably 30 minutes or longer and 4 hours or shorter, and even more preferably 1 hour or longer and 3 hours or shorter.
  • the leaching solution (leaching solution containing manganese ions and zinc ions) obtained in the acid leaching step and the leaching residue (leaching residue with carbon remaining) are subjected to solid-liquid separation.
  • the solid-liquid separation means is not particularly limited, and may be any means selected from, for example, gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation and the like.
  • the leachate separated in the first solid-liquid separation step is subjected to ozone treatment in the next ozone treatment step.
  • the leaching residue separated in the first solid-liquid separation step contains high concentration of carbon, it may be recovered and reused as, for example, carbonaceous fuel.
  • Ozone treatment step In the ozone treatment step, ozone is allowed to act on the leachate (leaching solution containing manganese ions and zinc ions) separated in the first solid-liquid separation step to selectively oxidize manganese ions contained in the leachate. Precipitation yields a manganese-containing precipitate and a zinc ion-containing solution. That is, in the ozone treatment process, only manganese ions out of manganese ions and zinc ions contained in the leachate are oxidized to manganese oxides (manganese-containing precipitates), thereby maintaining the zinc component in a dissolved state. While making the manganese component solid.
  • ozone is diffused into the leachate separated in the first solid-liquid separation step to adjust the redox potential (ORP) of the leachate, and the pH and redox potential (ORP) of the leachate are shown in FIG.
  • ORP redox potential
  • FIG. 1C a region in which only manganese is insolubilized (solidified) and precipitated as an oxide (region surrounded by a circle in the Eh-pH diagram of manganese shown in FIG. 1A).
  • manganese dissolved in the leachate is preferentially insolubilized to become a solid.
  • the above leachate is acidic. Therefore, it is not usually necessary to adjust the pH of the leachate, and the pH of the leachate can be adjusted by simply diffusing ozone into the leachate separated in the first solid-liquid separation step and adjusting the oxidation-reduction potential (ORP).
  • the oxidation-reduction potential (ORP) can be adjusted to a region where only manganese is insolubilized (solidified) and precipitated as an oxide in the Eh-pH diagram.
  • the pH of the leachate may be measured prior to the ozone aeration just in case. If the measured pH is higher than the desired value, a slight acid (for example, a general acid such as sulfuric acid, nitric acid, hydrochloric acid, etc.) may be added.
  • the region where manganese (Mn), zinc (Zn), and iron (Fe) are solidified varies depending on the concentration of each component in the solution.
  • Mn and Zn concentrations in the leachate are both 0.1M and the Fe concentration is 0.05M
  • Mn and Zn are intermediate between the 10 0 M and 10 ⁇ 2 M lines.
  • the boundary may be considered as a reference, and Fe may be considered as a reference near the 10 ⁇ 2 M boundary between the 10 0 M and 10 ⁇ 2 M lines. In this case, in FIGS.
  • the pH and the oxidation-reduction potential (ORP) of the region where manganese solidifies and precipitates as an oxide are approximately “ It is understood that “pH: 0.1 to less than 2.2” and “Oxidation-reduction potential (ORP): about +0.9 V or more and +1.2 V or less” are preferable.
  • 1A to 1C are for a water temperature of 25 ° C., but if the water temperature is different, temperature correction may be performed.
  • a correction method a known method (for example, correction of an equilibrium multiplier by the Van't Hoff equation) may be performed. Therefore, after confirming that the pH of the leachate is less than 2.2, ozone is diffused into the leachate to raise the oxidation-reduction potential (ORP) to +0.9 V or more, so that only manganese is solid as an oxide. It becomes possible to materialize and separate and precipitate from other elements.
  • Ozone is produced by an ultraviolet method, a discharge method, an electrolysis method, or the like, but in industrial use, it is often produced by a method called silent discharge.
  • a silent discharge space generated by applying an alternating voltage between the electrodes
  • a part of the oxygen gas is activated and converted into ozone.
  • ozone concentration although it depends on the conditions that the concentration of the extent that the number g / Nm 3 ⁇ 300g / Nm 3.
  • a gas concentrated from air by a method such as PSA (Pressure Swing Adsorption) can be used, or a gas obtained by vaporizing liquid oxygen can be used.
  • the mixed gas of ozone and oxygen produced in this way can be used for the aeration of ozone in the present invention.
  • ozone was diffused while observing the oxidation-reduction potential (ORP), and the oxidation-reduction potential (ORP) was a predetermined value (for example, the temperature of the leachate was 25 ° C., and Mn in the leachate , Zn and Fe concentrations are preferably adjusted to about +1 V or more when Mn: 0.1M, Zn: 0.1M, and Fe: 0.05M.
  • ORP oxidation-reduction potential
  • Mn in the leachate Zn and Fe concentrations are preferably adjusted to about +1 V or more when Mn: 0.1M, Zn: 0.1M, and Fe: 0.05M.
  • the most efficient method may be selected by comparing costs and the like.
  • manganese in the leachate is preferentially insolubilized to become a solid, and most of zinc ions and iron ions are dissolved in the leachate. That is, a manganese-containing precipitate (mainly manganese dioxide MnO 2 ) and a zinc ion-containing solution (including a small amount of iron ions) are obtained.
  • a manganese-containing precipitate mainly manganese dioxide MnO 2
  • a zinc ion-containing solution including a small amount of iron ions
  • the leachate during the ozone treatment becomes black due to the manganese oxide generated by the oxidation of manganese, and it is difficult to visually determine the reaction progress state.
  • the oxidation by ozone is insufficient, unreacted manganese ions are not precipitated as solids, leading to deterioration of the manganese component recovery rate.
  • the ORP in which manganese peroxide (the uppermost part in FIG. 1A, the substance called MnO 4 ⁇ ) is mainly present is around +1.6 V even at pH 2, and the ORP actually reaches such a value.
  • the phenomenon of rising is not usually observed.
  • peroxide was generated after almost all manganese was solidified as an oxide.
  • the formation of manganese peroxide can be easily confirmed when the solution turns red. Therefore, it may be possible to determine the end point of the manganese oxidation reaction by observing the color of the leachate during the ozone treatment.
  • the entire solution becomes manganese oxide. It becomes black which is the color of (MnO 2 ), and discoloration of the leachate during ozone treatment cannot be determined.
  • manganese oxide (MnO 2 ) is separated from the leachate during the ozone treatment, it is possible to observe the color change of the leachate and thus determine whether or not manganese peroxide is generated.
  • Examples of means for separating manganese oxide (MnO 2 ) from the leachate during ozone treatment include a means for separating the manganese oxide from the leachate by filtering or sedimenting the leachate. Therefore, in actual operation, in the ozone treatment process, a small part of the leachate during ozone treatment is extracted regularly or continuously, manganese oxide is separated from the extracted solution, and the color of the solution itself is observed. It is preferable to determine the end point of the oxidation reaction of manganese ions. Specifically, a small part of the leachate during ozone treatment is taken out, and the taken out leachate is filtered or left standing to separate the solid manganese oxide and the solution, and the color of the separated solution is changed.
  • MnO 2 manganese oxide
  • the manganese-containing precipitate (MnO 2 ) obtained in the ozone treatment step and the zinc ion-containing solution are subjected to solid-liquid separation.
  • the solid-liquid separation means is not particularly limited, and may be any means selected from, for example, gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation and the like.
  • the manganese component and the zinc component were mixed by going through each step of the sorting step, crushing / sieving step, acid leaching step, first solid-liquid separation step, ozone treatment step and second solid-liquid separation step.
  • the manganese component and the zinc component can be extracted from the waste dry battery (powder particles) in a state where they are separated from each other.
  • manganese is leached almost completely into the acid solution in the same manner as zinc by using a reducing agent at the time of acid leaching.
  • a reducing agent at the time of acid leaching.
  • the leaching residue is mainly carbon, it can be burned as a fuel auxiliary agent depending on the calorific value, and the disposal cost can be further reduced.
  • the above is the method for separating manganese and zinc from the waste dry battery of the present invention.
  • the method for recovering manganese from the waste dry battery of the present invention is a method for recovering the manganese-containing precipitate separated in the second solid-liquid separation step as a manganese component.
  • a high-purity manganese component with a very low amount of zinc component and carbon can be obtained.
  • the manganese component recovered product of the present invention that is, the manganese-containing precipitate separated in the second solid-liquid separation step, is mostly MnO 2 .
  • the method for recovering zinc from the waste dry battery of the present invention is added to each of the above-described sorting step, crushing / sieving step, acid leaching step, first solid-liquid separation step, ozone treatment step, and second solid-liquid separation step. Furthermore, an alkali precipitation treatment step and a third solid-liquid separation step are provided as the next steps of the second solid-liquid separation step.
  • Alkaline precipitation treatment step In the alkali precipitation treatment step, an alkali agent is added to the zinc ion-containing solution separated in the second solid-liquid separation step, and the zinc ions in the zinc ion-containing solution are converted into zinc-containing precipitates. .
  • the zinc ion-containing solution separated in the second solid-liquid separation step is an acidic solution containing zinc at a high concentration. By making this acidic solution alkaline, zinc can be insolubilized and precipitated as a hydroxide. it can.
  • the type of alkali agent is not particularly limited, but it is preferable to use caustic soda (NaOH), potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, sodium hydrogen carbonate, or the like.
  • caustic soda (NaOH) which is a general alkali
  • precipitation of sodium salt may occur depending on the acid concentration, and the zinc content of the zinc-containing precipitate tends to decrease.
  • a sulfuric acid-containing zinc ion-containing solution is made alkaline with caustic soda, sodium sulfate is precipitated together with zinc hydroxide. In such a case, if the precipitate is washed with water, sodium sulfate can be easily dissolved and removed. Therefore, a washing step may be added as necessary.
  • the zinc-containing precipitate obtained in the alkali precipitation treatment step is solid-liquid separated and recovered as a zinc component.
  • the solid-liquid separation means is not particularly limited, and may be any means selected from, for example, means by dehydration and filtration, gravity sedimentation separation, centrifugation, filter press, membrane separation, and the like. Thereby, a high concentration zinc component can be collect
  • the zinc component recovered product of the present invention is mostly zinc hydroxide.
  • the zinc-containing precipitate separated in the third solid-liquid separation step is dehydrated by heating to a temperature of, for example, more than 100 ° C.
  • the entire amount is not a zinc hydroxide, but a part thereof is dehydrated and zinc In some cases, it is recovered as an oxide.
  • the zinc component recovered product of the present invention may contain a trace amount of sodium salt such as sodium sulfate produced in the alkali precipitation treatment step. . This is due to the difference in the type of alkali used, the amount added, and the state of washing with water, and the presence or absence of contamination varies depending on the state of treatment.
  • the zinc ion containing solution separated in the second solid-liquid separation step may inevitably contain a small amount of iron ions, iron may be precipitated together with zinc in the alkaline precipitation treatment step. Even in such a case, the iron content of the powder and granule obtained by the crushing and sieving process is not so high, so that a very small amount of iron is not a problem.
  • adjust the pH to about 4 to 5 and make air aeration before making the zinc ion-containing solution alkaline If done, only iron can be insolubilized and recovered. Thereafter, if the residual solution is made alkaline to precipitate the zinc component, a zinc-containing precipitate containing no iron can be obtained.
  • the zinc ion-containing solution separated in the second solid-liquid separation process contains other trace metal elements (Cr, Cu, Ni, Pb, Cd, Hg, etc.), the zinc precipitation is also included in the alkali precipitation treatment process.
  • the solution alkaline By making the solution alkaline, most of the trace metals precipitate with zinc. However, since these contents are very small, they are concentrations that can be sufficiently removed in the subsequent zinc refining process.
  • a recovered manganese component with a very small amount of zinc component and carbon can be obtained from a waste dry battery.
  • the use of raw materials recovered from waste dry batteries reduces the amount of fresh manganese ore used and contributes to the effective use of resources.
  • costs for disposal can be reduced, and environmental pollution can be reduced.
  • the facility of the present invention is a facility suitable for carrying out the above-described method of the present invention, that is, a method for separating manganese and zinc from waste dry batteries, a manganese recovery method, and a zinc recovery method.
  • FIG. 3 shows a schematic diagram of the facility of the present invention.
  • the manganese and zinc separation facility of the present invention is charged with a sorting device 10 for sorting manganese dry cells and / or alkaline manganese dry cells from waste dry cells, and a waste dry cell sorted by the sorting device 10. It is obtained by crushing device 20a that performs crushing treatment and obtains a crushed product, sieving device 20b that crushes crushed product obtained by crushing device 20a to obtain a granular material, and sieving device 20b.
  • the acid leaching tank 30 for leaching manganese and zinc from the powder and the leaching liquid obtained in the acid leaching tank 30 and the leaching residue are solid-liquid separated by mixing the powder, the acid solution and the reducing agent.
  • the first solid-liquid separator 40 and the leachate separated by the first solid-liquid separator 40 are made to act on ozone to oxidize and precipitate manganese ions contained in the leachate, thereby containing manganese-containing precipitates and zinc ions.
  • Ozone treatment equipment 50 to get the solution
  • a second solid-liquid separation device 60 for solid-liquid separating the resulting manganese-containing precipitate and zinc ion containing solution in the ozone processing device 50.
  • the manganese recovery facility of the present invention includes the above-described manganese and zinc separation devices 10 to 60.
  • a manganese component recovery tank 70 for recovering a manganese-containing precipitate separated by the second solid-liquid separation device 60. May be provided.
  • the zinc recovery facility of the present invention stores the zinc ion-containing solution separated by each of the manganese and zinc separation devices 10 to 60 and the second solid-liquid separation device 60, and the zinc ion-containing solution is stored in the zinc ion-containing solution.
  • An alkali precipitation treatment tank 80 that performs alkali precipitation treatment to obtain a zinc-containing precipitate, and a third solid-liquid separation device 90 that solid-liquid separates the zinc-containing precipitate obtained in the alkali precipitation treatment tank 80 are provided. Further, for example, a zinc component recovery tank 100 that recovers the zinc-containing precipitate separated by the third solid-liquid separator 90 as a zinc component may be provided.
  • the type of the sorting device is not particularly limited, and examples include a device that sorts using a shape, radiation, or the like.
  • sorting of a waste dry battery can also be performed by manual sorting, it is not always necessary to provide a sorting device.
  • a normal crusher can be used as the crushing device.
  • the type of the crusher is not particularly limited.
  • a type in which the packaging material constituting the dry battery and the granular material are well separated after crushing is preferable.
  • the biaxial rotation type crusher is mentioned, for example.
  • the sieving device is preferably provided with a sieve having an opening of 1 mm or more and 20 mm or less.
  • the opening is more preferably 1 mm or more and 10 mm or less, and further preferably 1 mm or more and 3 mm or less.
  • the ozone treatment apparatus In addition to providing a reaction tank for performing ozone treatment (ozone aeration) on the leachate, the ozone treatment apparatus periodically or continuously extracts a small portion of the leachate in the ozone aeration from the reaction tank, It is preferable to provide a separation / observation tank for separating the extracted leachate into manganese oxide (MnO 2 ) and a solution.
  • a separation / observation tank it is possible to observe the color of the solution obtained by separating the black manganese oxide (MnO 2 ) from the leachate during the ozone treatment, and thus the end point of the manganese oxidation reaction can be determined. Become.
  • a filtration device or the like for separating the leachate extracted during the ozone treatment into manganese oxide (MnO 2 ) and a solution may be provided.
  • the extracted leachate may be allowed to stand to separate into manganese oxide (MnO 2 ) and the solution without providing a special solid-liquid separator.
  • a spectrophotometer for measuring the absorbance of the filtrate or the supernatant after standing may be provided in the separation / observation tank if allowed in terms of cost, installation space, and the like.
  • each of the first to third solid-liquid separation devices for example, any device selected from a filter press device, a membrane separation device, a gravity sedimentation separation device, a filtration device, a centrifugal separation device and the like can be used.
  • a general stirring tank having a tank equipped with a stirrer can be used as the acid leaching tank and the alkali precipitation treatment tank.
  • a device for precipitating and separating iron ions inevitably mixed in the zinc ion-containing solution is provided between the second solid-liquid separation device and the alkaline precipitation treatment tank. Furthermore, assuming that, for example, sodium sulfate or the like is simultaneously precipitated together with the zinc-containing precipitate, an apparatus for washing the precipitate with water to dissolve and remove sodium sulfate may be provided after the third solid-liquid separator. .
  • Acid leaching treatment 1 with (acid solution + reducing agent) The acid leaching treatment was performed according to the present invention, and the manganese leaching rate from the granular material was determined.
  • Various reducing agents were selected and added together with the acid solution to the powder and subjected to acid leaching treatment.
  • As the acid solution reagent sulfuric acid was used.
  • the acid leaching treatment was performed by first mixing and stirring the powder and acid solution in an acid leaching tank, and then adding a reducing agent while continuing stirring. In addition, since it foams when a reducing agent is added, the reducing agent was added little by little while observing the state of foaming.
  • Acid solution amount (mL), powder particle amount (g), acid solution sulfuric acid concentration (N), type of reducing agent, amount of reducing agent added to acid solution (g / L), acid leaching treatment Time (h) and nitrogen aeration (mL / min) are as follows.
  • all the acid leaching process time shown below is the time measured from the time of mixing a granular material and an acid solution and starting stirring.
  • Acid solution 100mL Powder body: 10g (solid-liquid ratio 100g / L) Sulfuric acid concentration: 3N (mass% concentration (mass fraction) approximately 13.2%) Acid leaching treatment time: 1h (stirring treatment) Nitrogen aeration rate: 10mL / min
  • the value of the addition amount of sodium sulfide (Na 2 S ⁇ 9H 2 O) and iron sulfate (FeSO 4 ⁇ 7H 2 O) is a value when an anhydrous product is used.
  • the obtained leachate and leaching residue were solid-liquid separated by filtering with a filter paper having a pore diameter of 1 ⁇ m, and the manganese concentration of the separated leachate was quantified by ICP emission spectrometry.
  • the mass of manganese in the leachate was determined based on the quantitative value, and the manganese leaching rate was determined by calculating the ratio of the mass of manganese in the leachate to the mass of manganese in the granular material (in terms of manganese element). The result of manganese leaching rate is shown in FIG.
  • the manganese leaching rate increases as the amount of the reducing agent added increases, and hydrogen peroxide (addition amount: 45 g / L), sodium sulfide (addition amount: 40 g / L), When sodium bisulfite (addition amount: 40 g / L) was used, all the manganese in the granular material was leached. On the other hand, when no reducing agent was added (addition amount of reducing agent: 0 g / L), only a leaching rate of about 30% was obtained. When a sulfur-based reducing agent was used, sulfurous acid gas was generated during the acid leaching process.
  • hydrogen peroxide is preferably used as a reducing agent from the viewpoint of facilities and cost. Moreover, it can be said that it is preferable to use hydrogen peroxide as a reducing agent also from a comparison of drug costs.
  • Acid leaching treatment 2 with (acid solution + reducing agent) In order to reduce the acid cost, the effect of sulfuric acid concentration on the leaching rate of manganese during acid leaching treatment was investigated.
  • the powder was subjected to acid leaching treatment by adding reducing agents together with acid solutions having various sulfuric acid concentrations.
  • As the acid solution reagent sulfuric acid was used.
  • the acid leaching treatment was performed by first mixing and stirring the powder and acid solution in an acid leaching tank, and then adding a reducing agent while continuing stirring.
  • the additive was added in small portions while observing the state of foaming.
  • the acid leaching process was performed while aeration of a small amount of nitrogen.
  • Acid solution volume (mL), powder volume (g), acid solution sulfuric acid concentration (N), type of reducing agent, amount of reducing agent added (g), amount of reducing agent added to acid solution in acid leaching treatment (G / L), acid leaching treatment time (h), and nitrogen aeration amount (mL / min) are as follows.
  • the following acid leaching processing time is the time measured from the time of mixing a granular material and an acid solution and starting stirring.
  • Acid solution 2000mL Powder: 200g (solid-liquid ratio: 100g / L) Sulfuric acid concentration: 1N (mass% concentration about 4.6%), 2N (mass% concentration about 9.0%), 3N (mass% concentration about 13.2%)
  • Type of reducing agent hydrogen peroxide (H 2 O 2 )
  • Amount of reducing agent added 90 g (Amount of reducing agent added to the acid solution: 45 g / L)
  • Acid leaching treatment time 1h (stirring treatment) Nitrogen aeration: 200mL / min
  • the obtained leachate and the leaching residue were separated by filtering with a filter paper having a pore diameter of 1 ⁇ m, and the manganese concentration of the separated leachate was quantified by ICP emission spectrometry.
  • the mass of manganese in the leachate was determined based on the quantitative value, and the manganese leaching rate was determined by calculating the ratio of the mass of manganese in the leachate to the mass of manganese in the granular material (in terms of manganese element). The result of manganese leaching rate is shown in FIG.
  • the leaching of manganese requires an acid (H + ) together with electrons. From these facts, it is presumed that when the sulfuric acid concentration was 1N, the reaction was stopped because sulfuric acid had been consumed during the acid leaching treatment. Further, as apparent from the above formula (1), it is considered that the sulfuric acid concentration necessary for leaching of manganese varies depending on the manganese concentration (manganese content of the granular material that is the object to be treated). Therefore, when carrying out the acid leaching treatment, it is preferable to determine a suitable acid concentration in advance through laboratory experiments or the like each time the solid-liquid ratio is changed.
  • the zinc leaching rate and the iron leaching rate were also calculated. Specifically, after the acid leaching treatment, the obtained leachate and the leaching residue were separated by filtering with a filter paper having a pore diameter of 1 ⁇ m, and the zinc concentration and iron concentration of the separated leachate were quantified by ICP emission spectrometry. . Next, the zinc mass and iron mass in the leachate were determined based on the quantitative values. And the zinc leaching rate was calculated
  • the iron leaching rate was calculated
  • the zinc leaching rate was 99% or more, and the Fe leaching rate was about 50%.
  • the amount of leachate subjected to ozone treatment (mL), the amount of ozone diffused during ozone treatment (L / min), the stirring speed (rpm), and the time of ozone treatment (h) are as follows.
  • the following ozone treatment time is the time from the start point of ozone aeration to the end point of ozone aeration.
  • Ozone generator EZ-OG-R4 (manufactured by Ecodesign)
  • Ozone generator current 3.8A
  • Ozone diffused volume (as ozone and oxygen mixed gas): 1.8L / min (ozone concentration approx. 93g / Nm 3 , ozone action amount 10g / h)
  • Stirring speed (stirring speed of reaction tank): 260rpm
  • Ozone treatment time 9h
  • the recovered material was manganese oxide “MnO 2 ”.
  • the recovered material contains water, but the MnO 2 content in the recovered material in a state where the water is completely removed is 97% by mass or more, and high purity manganese oxide Was found to be obtained.
  • the zinc content of the recovered product was less than 1% by mass, and it was found that the manganese component and the zinc component that were mixed in the granular material were separated very efficiently.
  • the manganese recovery method of the present invention is an extremely excellent recovery method with no problem in terms of recovery rate (yield).
  • the recovered material contains sulfur that is believed to be derived from sulfuric acid.
  • sulfur and potassium is slightly high, it was confirmed separately that the recovered material could be easily reduced to about 0.1% by washing with water.
  • most of the sulfur and potassium contained in the recovered product are removed as slag or volatilized when the recovered product (manganese oxide) is subsequently reduced, so the amount removed.
  • the presence or absence of water washing, the degree, etc. may be appropriately selected from the sulfur and potassium contents required for the reduced manganese body.
  • the moisture contained in the recovered material is moisture that does not volatilize at 105 ° C., and is crystal moisture that has entered the crystals of manganese oxide.
  • manganese crystals In the case of manganese crystals, most of the water of crystallization is desorbed at temperatures up to about 300-400 ° C, so if a high degree of water removal is necessary, low moisture manganese oxides can be obtained by drying at about 300-400 ° C. Can be obtained.
  • a relatively long ozone treatment time of about 9 hours was required to recover almost the entire amount of manganese contained in the leachate before the ozone treatment as an oxide. This is because the reaction system of this example is small at the laboratory level, and a large amount of unreacted ozone escapes to the upper part of the reaction vessel, and the diffused ozone is not efficiently used. Guessed. Therefore, when applying the present invention to an actual machine, by devising the reaction vessel shape of the ozone treatment device, or by applying a technology such as microbubbles or nanobubbles to the ozone treatment device, the bubble diameter is reduced, It is preferable to increase the dissolution efficiency of ozone in the leachate. If these measures are taken to increase the utilization efficiency of ozone, the ozone treatment time can be shortened and the amount of ozone used can be reduced.
  • the recovered material mainly contained an oxide of zinc.
  • the zinc content of the recovered product was 68.8%, and it was found that it contained a high concentration of zinc.
  • a hydroxide of zinc is detected, but the precipitate zinc obtained this time was an oxide. This is presumed that when dried at 105 ° C., a dehydration reaction occurred and the hydroxide changed to an oxide. In actual operation, it remains as a dehydrated cake or as a hydroxide if dried without application of temperature, but can be recovered as an oxide if dried at about 105 ° C. Therefore, the recovery method may be appropriately selected according to the subsequent usage, purpose and cost.
  • the zinc concentration of the filtrate (filtrate obtained by suction filtration with a filter paper having a pore diameter of 1 ⁇ m after the ozone treatment in (3) above) was quantified by ICP emission spectrometry, and based on the quantified value.
  • the mass of zinc in the filtrate was determined.
  • required by said (2) in the acid leaching process before ozone treatment, 99% or more of zinc leaching rates are obtained.
  • the zinc leaching rate the 98.6% residual rate in the liquid obtained by subtracting the zinc loss (0.4%) precipitated together with manganese during the ozone treatment in (3) above, and the zinc recovery rate from the filtrate ( Taking into account almost 100%), the recovery rate of zinc from the original powder is considered to be about 99%.
  • the leaching rate obtained in (2) above (leaching rate when sulfuric acid having a sulfuric acid concentration of 3N was used as the acid solution), and the manganese concentration and zinc concentration in the various solutions obtained in (2) to (4) above.
  • the iron concentration is shown in Table 3.
  • the manganese concentration, zinc concentration, and iron concentration in various solutions shown in Table 3 were determined by ICP emission analysis. Further, the manganese content, zinc content, iron content, carbon content, sulfur content, phosphorus content, and the above (3) of the granular material and various solids obtained in the above (2) to (4) Table 4 shows the recovery rates obtained in (4) and (4) (manganese and zinc recovery rate from the leachate, and zinc recovery rate from the filtrate (zinc ion-containing solution) after the ozone treatment).
  • the various solid materials shown in Table 4 contain oxygen and some hydrogen derived from oxides or hydroxides in addition to the elements described in the table.
  • Table 4 shows the manganese recovery rate from the powder and the zinc recovery rate from the powder.
  • the manganese recovery rate from the powder was determined by calculating the ratio (in terms of manganese element) of the manganese mass in the recovered product obtained in (3) above with respect to the manganese mass in the powder.
  • the zinc recovery rate from a granular material was calculated
  • manganese and zinc in the granular material obtained by crushing and sieving the sorted waste dry battery are almost completely separated. It is possible to recover almost the entire amount of both elements and to recycle them as manganese raw materials and zinc raw materials.
  • the residue at the time of acid leaching contained carbon at a high concentration, and when the total calorific value after drying was measured, it was confirmed that it had a calorific value of about 4400 kcal / kg. This is an amount of heat of soot, and if the residue from the acid leaching can be used as a fuel or a combustion aid, it is possible to recycle all the collected materials as valuable materials.

Abstract

 廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別し、選別した乾電池を破砕、篩い分けして粉粒体とし、該粉粒体と酸溶液と還元剤とを混合して粉粒体からマンガンおよび亜鉛を浸出させ、得られた浸出液にオゾンを作用させてマンガン含有沈澱物と亜鉛イオン含有溶液とし、マンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離することにより、廃乾電池に含まれるマンガン成分をマンガン含有沈澱物として回収することにより、亜鉛や炭素などの混入が極めて少ない高純度のマンガンを、安価かつ簡便に得ることができる。

Description

廃乾電池からの有価成分の回収方法および回収設備
 本発明は、廃乾電池からの有価成分の回収方法および回収設備に関し、特に廃棄されたマンガン乾電池やアルカリマンガン乾電池の主要成分であるマンガンや亜鉛等の有価成分を、効果的に分離、回収して、資源として再利用しようとするものである。
 低品位の原鉱や、精鉱、製鉄所副生成物、産業廃棄物から特定の有価金属を回収することは、従来、コスト的な理由から困難なことが多く、工業的に実施されているのは極一部の種類の有価金属に限られてきた。
 しかし、近年、金属資源の枯渇や取引価格の上昇等により、上記したような産業廃棄物などから有価金属を積極的に回収することが必要とされるようになってきた。
 例えば、有価金属の一つであるマンガンは、産業界の多岐にわたる分野で必須の金属とされているが、将来、その需要が埋蔵量を上回ることが懸念されている。特に、製鉄所では、製鋼原料としてマンガンを大量に消費することから、マンガン源の確保という問題は、製鉄分野において極めて深刻である。
 その一方で、産業廃棄物として処分されている乾電池の一部には、マンガン含有率が高いものが存在する。また、日本国内では、莫大な量の乾電池が生産され、消費、廃棄されている。
 例えば、1次電池として代表的なマンガン乾電池およびアルカリマンガン乾電池は、正極材料として二酸化マンガンを使用し、負極材料として亜鉛を使用している。また、マンガン乾電池は、電解液に塩化亜鉛を使用する場合がある。そして、これらの電池の年間生産量は、例えば2003年度の実績で、合計約5万トン/年と言われている。
 したがって、これらの廃乾電池からマンガンを回収し、これを製鋼原料として再利用する技術を確立できれば、マンガン源の確保という上記問題の効果的な解消が期待される。しかしながら、放電終了後に廃棄されたマンガン乾電池やアルカリマンガン乾電池の資源リサイクルの現状は、亜鉛精錬メーカーが廃乾電池に含まれる亜鉛の一部を回収、或いは一部電炉メーカーが廃乾電池に含まれる鉄や炭素の一部を回収しているに過ぎない。すなわち、未だ多くの資源がリサイクルされることなく未利用のまま、廃材として埋め立て処理等に回されているのが現状である。
 このような状況下、廃乾電池の構成材料をリサイクルする技術に関し、亜鉛や鉄、炭素のみならず、マンガンをもリサイクルする技術が種々提案されている。
 例えば、特許文献1には、廃乾電池からマンガン電池およびアルカリマンガン電池を選別し、破砕、篩い分けして粉粒体を得、この粉粒体中に含まれる亜鉛等を希塩酸または希硫酸で溶解して、溶解残渣中にマンガンと炭素を残す技術が提案されている。そして、特許文献1で提案された技術によると、亜鉛溶解液は亜鉛精錬原料としてリサイクルし、主として二酸化マンガンと炭素が残存する溶解残渣はマンガン原料としてリサイクルするとされている。
 また、特許文献2には、廃乾電池から、二酸化マンガンと塩化亜鉛とを分離回収する技術が提案されている。この技術では、廃乾電池に物理的処理を施し、マンガンと亜鉛を多く含む材料を得、この材料を水洗し、塩酸溶解し、その溶液から不溶解物(炭素粉等)を除去して塩化マンガンと塩化亜鉛との混合水溶液とする。次いで、この混合水溶液を加熱濃縮したのち、更に過塩素酸を加えて加熱することで、混合水溶液中の塩化マンガンを二酸化マンガンに酸化して不溶化した後、二酸化マンガンと塩化亜鉛との固形混合物を得る。そして、得られた固形混合物に水を加えて塩化亜鉛を溶解したのち、ろ過し、二酸化マンガンと塩化亜鉛とを分離回収する。また、溶液の塩化亜鉛は、有機溶剤を使用して抽出精製する。そして、特許文献2で提案された技術によると、上記操作により二酸化マンガンと塩化亜鉛とを分離回収して得られる回収品は、再び乾電池製造にリサイクル可能な純度に仕上がるとされている。
 さらに、特許文献3~8には、廃乾電池を性能によって選別し、破砕し、焙焼、仮焼等を行うことで、廃乾電池に含まれるマンガン、亜鉛成分を、マンガン酸化物と亜鉛酸化物との混合物として回収する技術や、このようにして回収した混合物を原料としてマンガン-亜鉛フェライトを製造する技術が提案されている。
 一方、廃乾電池ではなく主に鉱物を対象とする技術であるが、微生物を用いて鉱物から有価金属を処理液中に浸出させることにより、有価金属を回収する技術も知られている。
 例えば、特許文献9には、鉄還元細菌を作用させて、3価鉄を2価鉄に還元し、この2価鉄を用いて、金属酸化物および金属水酸化物からなる群に含まれる金属(コバルト、ニッケル、マンガン等)を浸出させて、浸出液と残渣を生成し、この浸出液と残渣とを分離して、所望の金属を回収する技術が提案されている。そして、特許文献9で提案された技術によると、浸出液に含まれる有価金属(コバルト、ニッケル、マンガン等)を、公知の方法で回収し、所望の用途に用いることができるとしている。
特開2007-012527号公報 特開平11-191439号公報 特開平9-82340号公報 特開平9-82339号公報 特開平7-85897号公報 特開平7-81941号公報 特開平6-260175号公報 特開平6-260174号公報 特開2007-113116号公報
 しかしながら、特許文献1で提案された技術は、主に二酸化マンガン、亜鉛および炭素を含有する粉粒体から亜鉛を溶解し、二酸化マンガンと炭素を高濃度で含有する溶解残渣を回収してリサイクルする技術である。すなわち、特許文献1で提案された技術では、二酸化マンガンとともに高濃度の炭素を含む混合物しか得られず、炭素混入量の極めて低い高純度の二酸化マンガンは回収できない。製鋼原料として使用されるマンガンには、銑鋼への不純物、特に炭素の混入を防ぐために、高い純度が求められる。したがって、特許文献1で提案された技術により得られる回収物は、製鋼原料として使用することが困難である。
 また、特許文献1で提案された技術では、希塩酸または希硫酸を用いて粉粒体から亜鉛を溶解しているが、粉粒体からの亜鉛の除去率(溶解率)を向上させる目的で酸の濃度を高めると、粉粒体に含まれるマンガンも一部溶解してしまい、歩留りが低下する。一方、上記溶解処理条件を緩慢にすると、粉粒体から亜鉛を完全に除去できず、マンガンと亜鉛との分離が不完全になる。
 特許文献2で提案された技術は、処理が非常に煩雑であり、回収のために投じられる資材や労力は、回収品の評価額以上であることが容易に想像され、経済的に資源リサイクルが成立し得ない。また、マンガン、亜鉛成分を回収する工程で危険性の高い過塩素酸や多量の有機溶剤を使用するため、処理が高コスト化することに加えて作業環境の安全性にも問題がある。
 特許文献3~8で提案された技術では、廃乾電池からマンガンと亜鉛とを互いに分離した形で回収することができない。すなわち、特許文献3~8で提案された技術は、廃乾電池からマンガン酸化物と亜鉛酸化物の混合物を回収する技術であり、このように亜鉛成分が混入したマンガン回収物では、製鋼原料としての使用は不可能である。
 特許文献9で提案された技術は、微生物を用いて鉱物から金属を浸出する技術であり、大量の強酸や有機溶媒等を使用することなく、環境に対する負担の少ない技術として知られている。しかしながら、この技術を廃乾電池に適用した場合には、固液比、すなわち浸出液に対する被処理物(廃乾電池)の割合を50g/L程度にまで高めると、廃乾電池からマンガンと共に浸出する亜鉛の抗菌作用に起因すると考えられる阻害作用により、金属の浸出率が低下する傾向にある。また、微生物の培地(えさ)として用いるクエン酸鉄などのキレート鉄(鉄錯体)の塩は、一般的に高価であり、コスト面での不利もある。したがって、特許文献9で提案された技術においても、回収のために投じられる資材が、回収品の評価額以上となり、経済的な資源リサイクルが困難となる場合がある。
 更に、特許文献9で提案された技術では、被処理物(鉱物)からの金属の浸出処理時に、有機物の培地を用いて鉄還元細菌を増殖・維持する必要がある。したがって、このような技術によって廃乾電池からマンガン成分を回収しようとすると、最終的に回収されるマンガンに比較的高濃度の炭素が混入するおそれがあり、炭素混入量の極めて低い高純度のマンガンの回収は事実上困難である。
 以上のように、従来技術では、廃乾電池からマンガン成分と亜鉛成分を回収するに際し、マンガン成分と亜鉛成分とを互いに分離した形で回収すること、さらには炭素の混入が大幅に低減された高純度のマンガンを回収することは極めて困難であった。
 このように、従来技術では、製鋼原料として要求される高純度のマンガンを回収するに至らず、それ故、廃乾電池から純度の高いマンガンを回収して製鋼原料として再利用する技術が切望されている。
 本発明は、上記の事情に鑑みて開発されたもので、廃乾電池中に含まれるマンガンと亜鉛を効果的に分離、回収し、特に亜鉛や炭素などの混入が極めて少ない高純度のマンガンを、安価かつ簡便に得ることができる廃乾電池からの有価成分の回収方法および回収設備を提供することを目的とする。
 さて、発明者らは、廃乾電池からマンガン、亜鉛成分を分離、回収する技術に関し、従来技術が抱える上記問題点を克服する新規な分離、回収技術を探索すべく種々検討を重ねた。
 具体的には、廃乾電池からマンガン乾電池やアルカリマンガン乾電池を選別し、更に破砕、篩い分けすることにより得られた粉粒体から、マンガン成分と亜鉛成分とを互いに分離して回収する手段、および炭素混入量が極めて小さい高純度のマンガンを回収する手段について模索した。
 廃乾電池からマンガン乾電池やアルカリマンガン乾電池を選別し、これらを破砕して篩い分けすると、乾電池を構成する材料が篩上の固形物と篩下の粉粒体とに分離される。乾電池を構成する材料のうち、主に鉄皮状包装材、亜鉛缶、真鍮棒、紙材、プラスチック等は、破砕後に箔状や片状の固形物となり、篩上に分離される。一方、二酸化マンガン、炭素、塩化亜鉛、塩化アンモン、苛性カリ、或いは更に放電により生成したMnO(OH)やZn(OH)2、Mn(OH)2、ZnO等は、粉粒体となり、篩下に分離される。なお、粉粒体に、微量の鉄が不可避的に混入する場合もある。
 発明者らは、先ず、上記粉粒体、すなわち、主にマンガン・亜鉛成分とともに炭素を含有する粉粒体から、炭素混入量が極めて小さい高純度のマンガン成分回収物を得る手段について検討した。
 その結果、粉粒体に酸浸出処理を施し、粉粒体からマンガンと亜鉛を浸出させて、炭素を浸出残渣として除去することに想到した。
 そして、更に検討を進めた結果、酸浸出処理時に酸溶液と還元剤とを用いることで、粉粒体に含まれる二酸化マンガンを高い効率で浸出させて回収できることを知見した。
 続いて、発明者らは、上記の如くして得られたマンガンと亜鉛が浸出した浸出液から、マンガン成分と亜鉛成分を互いに分離した形で回収する手段について検討した。
 その結果、浸出液にオゾンを作用させるという簡便な手段により、浸出液に溶解しているマンガンおよび亜鉛のうち、マンガンのみを酸化物として沈澱させて回収できるという知見を得た。
 上記の酸浸出処理により得られる浸出液は、マンガンイオンと亜鉛イオンを含んでいる。また、粉粒体に鉄が不可避的に混入する場合には、酸浸出処理時に粉粒体中の鉄も浸出するため、上記浸出液は鉄イオンも含んでいることが想定される。
 このような浸出液から、マンガン成分のみを不溶化して沈澱させることができれば、マンガン成分を、亜鉛または鉄から容易に分離して回収することができる。そこで、本発明者らは、各金属(マンガン、亜鉛、鉄)の酸化還元電位(ORP)とpHの状態図(Eh-pH図)に着目した。
 図1Aは、25℃の水溶液中におけるマンガンの酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。図1Bは、25℃の水溶液中における亜鉛の酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。図1Cは、25℃の水溶液中における鉄の酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。
 図1A~図1Cに示すとおり、Eh-pH図においてマンガンが沈澱する領域と鉄、亜鉛が沈澱する領域はある程度重なっており、図1Aに示すマンガンのEh-pH図中、○で囲った領域以外ではマンガン以外の物質も沈澱してしまうことが分かる。そのため、マンガン、亜鉛、鉄がいずれも溶解している(イオン化している)領域から、酸化還元電位(ORP)、pHの状態を変化させると、殆どの領域において亜鉛または鉄が先に酸化物あるいは水酸化物として固形物化し、沈殿してしまう。
 しかしながら、発明者らは、唯一、低pH・高ORPの領域(図1Aに示すマンガンのEh-pH図中、○で囲った領域)に、主にマンガンが酸化物として固形物化し、沈殿する領域が存在することに着目した。
 そして、マンガンイオンと亜鉛イオン、鉄イオンを含有する上記浸出液のpHと酸化還元電位(ORP)を、Eh-pH図において主にマンガンが酸化物として固形物化し、沈澱する領域(図1Aに示すマンガンのEh-pH図中、○で囲った領域)のpHと酸化還元電位(ORP)に調整することにより、マンガンのみを酸化物として不溶化し、沈殿させることができることに想到した。
 また、発明者らは更に検討を進め、上記浸出液のpHと酸化還元電位(ORP)を簡便に調整する手段を模索した。
 その結果、上記浸出液にオゾンを作用させることにより、上記浸出液のpHと酸化還元電位(ORP)を容易に所望の値(図1Aに示すマンガンのEh-pH図中、○で囲った領域)に調整可能であることを知見した。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1]廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
 廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
 上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
 上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
 上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
 上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
 上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程とを有し、
 上記した各工程を順次経ることにより、廃乾電池中に含まれるマンガン成分をマンガン含有沈澱物として回収する、廃乾電池からの有価成分回収方法。
[2]廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
 廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
 上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
 上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
 上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
 上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
 上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程と、
 上記第2固液分離工程で分離された亜鉛イオン含有溶液にアルカリ剤を添加して、該亜鉛イオン含有溶液中の亜鉛イオンを亜鉛含有沈澱物とするアルカリ沈澱処理工程と、
 上記アルカリ沈澱処理工程で得られた亜鉛含有沈澱物を固液分離する第3固液分離工程とを有し、
 上記した各工程を順次経ることにより、廃乾電池中に含まれる亜鉛成分を亜鉛含有沈澱物として回収する、廃乾電池からの有価成分の回収方法。
[3]廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
 廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
 上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
 上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
 上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
 上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
 上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程と、
 上記第2固液分離工程で分離された亜鉛イオン含有溶液にアルカリ剤を添加して、該亜鉛イオン含有溶液中の亜鉛イオンを亜鉛含有沈澱物とするアルカリ沈澱処理工程と、
 上記アルカリ沈澱処理工程で得られた亜鉛含有沈澱物を固液分離する第3固液分離工程とを有し、
 上記した各工程を順次経ることにより、廃乾電池中に含まれるマンガン成分をマンガン含有沈澱物として、また亜鉛成分を亜鉛含有沈澱物として回収する、廃乾電池からの有価成分の回収方法。
[4]前記酸浸出工程における酸溶液が、質量%濃度1.4%以上45%以下の希硫酸または質量%濃度1%以上14%以下の希塩酸である、前記[1]~[3]のいずれかに記載の廃乾電池からの有価成分の回収方法。
[5]前記酸浸出工程における粉粒体と酸溶液との固液比が50g/L以上である、前記[1]~[4]のいずれかに記載の廃乾電池からの有価成分の回収方法。
[6]廃乾電池から該廃乾電池中に含まれる有価成分を回収する設備であって、
 廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別装置と、
 上記選別装置で選別された廃乾電池を装入して破砕処理を施し、破砕処理物を得る破砕装置と、
 上記破砕装置で得られた破砕処理物に篩い分け処理を施して粉粒体を得る篩い分け装置と、
 上記篩い分け装置で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出槽と、
 上記酸浸出槽で得られた浸出液と浸出残渣とを固液分離する第1固液分離装置と、
 上記第1固液分離装置で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理装置と、
 上記オゾン処理装置で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離装置とを備える、廃乾電池からの有価成分の回収設備。
[7]さらに、前記第2固液分離装置で分離された亜鉛イオン含有溶液を貯液し、該亜鉛イオン含有溶液にアルカリ沈澱処理を施して亜鉛含有沈澱物を得るアルカリ沈澱処理槽と、
 上記アルカリ沈澱処理槽で得られた亜鉛含有沈澱物を固液分離する第3固液分離装置とを備える、前記[6]に記載の廃乾電池からの有価成分の回収設備。
 本発明によれば、簡便な方法で廃乾電池中のマンガンと亜鉛をほぼ完全に分離でき、また高い歩留りで回収することができる。
 また、本発明によれば、炭素混入量の極めて低いマンガン成分を回収することができるため、回収したマンガン成分を製鋼原料としてリサイクルする際の制限が大幅に緩和でき、さらに回収した亜鉛成分は亜鉛精錬原料としてリサイクルすることが可能となる。
 以上のように、本発明は、廃乾電池の主要成分であるマンガン、亜鉛の両者の再利用を実現するものであることから、工業上の意味は極めて大きい。
水溶液中におけるマンガンの、酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。 水溶液中における亜鉛の、酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。 水溶液中における鉄の、酸化還元電位(ORP)とpHの状態図(Eh-pH図)である。 本発明の分離、回収方法の一形態を説明するフロー図である。 本発明の分離、回収設備の一形態を示す模式図である。 実施例の酸浸出処理における還元剤の種類および添加量とマンガン浸出率との関係を示す図である。 実施例の酸浸出処理における酸溶液の硫酸濃度とマンガン浸出率との関係を示す図である。 実施例で回収されたマンガン酸化物のXRD解析結果を示す図である。 実施例の浸出液からのマンガン回収率および亜鉛回収率を示す図である。
 以下、本発明について具体的に説明する。
 まず、本発明の廃乾電池からのマンガンおよび亜鉛の分離方法、マンガン回収方法、亜鉛回収方法について説明する。
 本発明は、マンガン乾電池、アルカリマンガン乾電池のいずれか1種または2種の廃乾電池を対象とする発明である。そして、本発明は、これらの廃乾電池に含まれるマンガン成分と亜鉛成分とを互いに分離したのち、それぞれの成分を回収する回収方法の発明である。
 図2は本発明の実施の一形態を説明するフロー図である。図2に示すように、本発明のマンガンおよび亜鉛分離方法、並びに本発明のマンガン回収方法は、選別工程1、破砕・篩い分け工程2、酸浸出工程3、第1固液分離工程4、オゾン処理工程5および第2固液分離工程6を有する。
 また、本発明の亜鉛回収方法は、上記の各工程1~6に加えて更に、第2固液分離工程6の次工程として、アルカリ沈澱処理工程7と、第3固液分離工程8とを有する。
選別工程
 廃乾電池は、種類毎に分別して回収されることが少なく、様々な種類のものが混在した形で回収されるのが一般的である。このため、本発明では、先ず、これらの廃棄・回収された廃乾電池の中から、マンガン乾電池、アルカリマンガン乾電池のうちのいずれか一方または双方を選別する。選別方法としては、手選別、形状や放射線等を利用して分別する機器を利用する機械選別など、いずれの方法を用いてもよい。選択した選別方法により、廃乾電池中の水銀電池やニカド電池等を除外する。
破砕・篩い分け工程
 次に、選別工程で選別したマンガン乾電池および/またはアルカリマンガン乾電池を破砕する。破砕の目的は、選別工程で選別したマンガン乾電池および/またはアルカリマンガン乾電池の構成材料から、マンガン・亜鉛以外の成分を含む材料を可能な限り排除することにある。
 選別された廃乾電池のうち、マンガン乾電池は、二酸化マンガン(正極材料)、炭素棒(集電体)、亜鉛缶(負極材料)、塩化亜鉛または塩化アンモニウム(電解液)、放電により生成したMnO(OH)やZn(OH)2などのほか、包装材である鉄、プラスチックおよび紙等を含む。また、選別された廃乾電池のうち、アルカリマンガン乾電池は、上記炭素棒(集電体)、亜鉛缶(負極材料)、塩化亜鉛または塩化アンモニウム(電解液)の代わりに真鍮棒(集電体)、亜鉛粉、(負極材料)、水酸化カリウム(電解液)を含み、放電により生成したMn(OH)2、ZnO等を含む。
 これらの材料が破砕されると、包装材(鉄、プラスチックおよび紙等)や、マンガン乾電池の負極材料である亜鉛缶、アルカリマンガン乾電池の集電体である真鍮棒は、箔状や片状の固形物となる。一方、正極材料である二酸化マンガン、マンガン乾電池の集電体である炭素棒、アルカリマンガン乾電池の負極材料である亜鉛粉、放電により生成したMnO(OH)やZn(OH)2、Mn(OH)2、ZnOなど、および各種電解液は、上記箔状・片状の固形物よりも更に細かい粉粒体となる。
 したがって、選別した廃乾電池を破砕したのち、所定の目開きの篩を用いて篩い分けすると、選別した廃乾電池から包装材等の大きな固形物が除去され、主にマンガン・亜鉛成分とともに炭素を含有する粉粒体を得ることができる。
 選別した廃乾電池の破砕には通常、破砕機を使用する。破砕機の型式については特に限定されず、例えば、破砕後に、乾電池を構成している包装材等と粉粒体がよく分離される型式のものが好ましい。このようなものとしては、例えば、2軸回転式の破砕機が挙げられる。上記の破砕物の篩い分け(箔状や片状の固形物と、粉粒体との篩い分け)に使用する篩の目開きは、1mm以上20mm以下程度とすることが好ましい。また、1mm以上10mm以下程度とすることがより好ましく、1mm以上3mm以下程度とすることがより一層好ましい。
 以上のように、破砕・篩い分け工程を経ることで、マンガン乾電池および/またはアルカリマンガン乾電池の主要構成材料である、二酸化マンガン、炭素、塩化亜鉛または塩化アンモン、苛性カリ、更には、放電によって生成したMnO(OH)やZn(OH)2、Mn(OH)2、ZnOなどが混合した粉粒体が得られる。また、この粉粒体には、微量の鉄成分が不可避的に混入する。
 また、破砕・篩い分け工程において、マンガン乾電池の負極材料である亜鉛缶は箔状や片状の固形物として篩い分けされるが、この亜鉛缶は別途回収され、リサイクルされる。
酸浸出工程
 酸浸出工程では、破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、粉粒体に酸浸出処理を施す。この酸浸出処理により、主にマンガン・亜鉛成分と炭素を含有する粉粒体から、マンガンおよび亜鉛を浸出させ、炭素を浸出残渣に残存させる。
 酸溶液に使用する酸としては、一般的な酸でよく、硫酸、硝酸、塩酸、その他の酸を用いることができるが、コストや調達の容易さ等を考慮すると、硫酸あるいは塩酸を用いるのが好ましい。硫酸を用いる場合には、硫酸濃度が質量%濃度で1.4%以上45%以下の希硫酸を用いることが好ましい。また、硫酸濃度が質量%濃度で2%以上30%以下の希硫酸を用いることがより好ましく、硫酸濃度が質量%濃度で5%以上25%以下の希硫酸を用いることがより一層好ましい。塩酸を用いる場合には、塩酸濃度が質量%濃度で1%以上14%以下の希塩酸を用いることが好ましい。また、塩酸濃度が質量%濃度で2%以上8%以下の希塩酸を用いることがより好ましい。塩酸または硫酸は、市販されているものを使用すればよいが、工業用或いは有害金属成分の少ない廃酸を希釈して使用すれば、酸のコストを低減することができる。また、ここでの質量%濃度は、酸溶液中の酸の質量を溶液全体の質量で除したものに100を乗じた値である。
 なお、いずれの酸を用いる場合でも、マンガンおよび亜鉛の浸出に必要な酸濃度は、固液比、粉粒体の量、粉粒体中のマンガンおよび亜鉛の含有量、粉粒体中のマンガンや亜鉛の形態等によって変動する。そのため、予め実機を想定した予備実験を行うことで、最適な酸濃度を決定することができる。
 ここで、本発明の酸浸出工程においては、粉粒体、酸溶液とともに、還元剤を混合することを必須とする。それは、粉粒体に含まれるマンガン成分をほぼ完全に浸出させるためである。還元剤によるマンガン溶解(マンガン浸出)の原理について以下に説明する。
 選別工程で選別した廃乾電池は、放電によって生成したMnO(OH)、Mn(OH)2と、未放電のMnO2とを含んでいる。これらのうち、MnO(OH)やMn(OH)2は酸に溶解すると考えられるが、MnO2は酸に殆ど溶解しないと考えられる。これは、以下(1)式で示されるMnO2溶解の半反応式から明らかなように、MnO2の溶解にはMnを4価から2価へ還元する必要があり、還元のための電子を供給する物質として還元剤が必要となるためである。
 MnO2(固形物)+4H++2e- → Mn2+(溶解)+2H2O … (1)
 以上の理由により、本発明では、酸による浸出反応に合わせて、還元剤を添加する。これにより、粉粒体中のマンガン成分(MnO2およびMnO(OH) 、Mn(OH)2)をほぼ完全に浸出させることが可能となる。なお、粉粒体に含まれる亜鉛成分については、還元剤の有無に拘わらず酸の濃度を上昇していけば、ほぼ全量が溶解(浸出)する。
 粉粒体、酸溶液とともに混合する還元剤の種類は特に限定されず、(1)式に示されるようにMnを4価から2価へ還元することができるものであればよく、例えば過酸化水素や、硫化ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム等の硫化物イオン、亜硫酸イオン、チオ硫酸イオンを含むものなどが挙げられる。また、還元剤を混合する方法は、還元剤を固形物や液体として添加する方法でもよく、亜硫酸ガス等の還元性ガスを散気する方法でもよい。例として、過酸化水素の半反応式を以下(2)式に示す。
 H2O2 → 2H++O2+2e- … (2)
 なお、還元剤の添加量や散気量は、量論式より求められる必要量(MnO2の溶解に必要な量)を基準に、実験的に決定するのが好ましい。前記粉粒体中の、MnO(OH)とMnO2、Mn(OH)2との比率は明確ではないし、反応におけるロス等もあるため、理論計算だけで必要量を求めるのは困難である。
 先に例示したような酸溶液および還元剤と、破砕・篩い分け工程で得られた粉粒体とを混合し、攪拌しながら酸浸出処理を行う。なお、酸浸出処理を行うに際しては、例えば、先ず粉粒体と酸溶液とを混合した後、還元剤を混合することができる。また、酸溶液、還元剤および粉粒体を同時に混合してもよく、酸溶液と還元剤とを混合した後に粉粒体を混合してもよい。
 酸浸出処理の効率化を図る観点からは、酸浸出工程における粉粒体と酸溶液との固液比(粉粒体(g)/ 酸溶液(L))を50g/L以上とすることが好ましい。また、上記固液比を100g/L以上とすることがより好ましい。但し、上記固液比が800g/Lを超えて過剰に高くなると、粘度が上昇してハンドリング上の問題が生じたり、後述する第1固液分離工程時の歩留まりが悪化したりする可能性がある。したがって、上記固液比は800g/L以下とすることが好ましい。
 酸浸出処理の処理温度(雰囲気温度や酸溶液の温度)は、室温(15~25℃前後)でも十分な効果が得られるが、加温を行ってもよい。加温を行えば反応効率の向上が期待できるが、その分加温コストも必要となるため、得られる効果と比較して加温実施の可否を決定すればよい。酸浸出処理の処理時間は、5分以上6時間以下とすることが好ましい。また、30分以上4時間以下とすることがより好ましく、1時間以上3時間以下とすることがより一層好ましい。
 以上の酸浸出工程により、粉粒体に含まれるマンガン、亜鉛成分がほぼ完全に浸出した浸出液が得られる。また、以上の酸浸出工程により、粉粒体に含まれる炭素のほぼ全量を浸出残渣に留めることができる。それゆえ、酸浸出工程で得られた浸出液と浸出残渣とを固液分離することにより、最終的に分離・回収されるマンガン回収物に混入する炭素量を極めて低くすることができる。
第1固液分離工程
 第1固液分離工程では、酸浸出工程で得られた浸出液(マンガンイオンおよび亜鉛イオンを含む浸出液)と浸出残渣(炭素が残留した浸出残渣)とを固液分離する。これにより、粉粒体に含まれるマンガン成分および亜鉛成分と、粉粒体に含まれる炭素とを、分離することができる。固液分離手段は特に限定されず、例えば重力沈降分離、ろ過、遠心分離、フィルタプレス、膜分離などから選ばれる任意の手段とすることができる。
 第1固液分離工程で分離された浸出液は、次工程のオゾン処理工程でオゾン処理に供する。一方、第1固液分離工程で分離された浸出残渣は、高濃度の炭素を含んでいるため、回収して例えば炭材燃料として再利用してもよい。
オゾン処理工程
 オゾン処理工程では、第1固液分離工程で分離した浸出液(マンガンイオンおよび亜鉛イオンを含む浸出液)にオゾンを作用させることにより、浸出液中に含まれるマンガンイオンを選択的に酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液を得る。すなわち、オゾン処理工程では、浸出液中に含まれるマンガンイオンおよび亜鉛イオンのうち、マンガンイオンのみを酸化してマンガン酸化物(マンガン含有沈澱物)とすることで、亜鉛成分を溶解した状態に維持しつつマンガン成分を固体状にする。
 具体的には、第1固液分離工程で分離した浸出液にオゾンを散気することで、浸出液の酸化還元電位(ORP)を調整し、浸出液のpHおよび酸化還元電位(ORP)を図1A~図1Cに示すEh-pH図においてマンガンのみが酸化物として不溶化(固形物化)・沈澱する領域(図1Aに示すマンガンのEh-pH図中、○で囲った領域)とする。これにより、浸出液に溶解していたマンガンが優先的に不溶化して固体となる。
 なお、上記浸出液は酸性である。そのため、通常、特に上記浸出液のpHを調整する必要はなく、第1固液分離工程で分離した浸出液にオゾンをそのまま散気して酸化還元電位(ORP)を調整するだけで、浸出液のpHと酸化還元電位(ORP)を、Eh-pH図においてマンガンのみが酸化物として不溶化(固形物化)・沈澱する領域に調整することができる。但し、念のためオゾン散気に先立ち浸出液のpHを測定してもよい。測定されたpHが所望の値よりも高いようであれば、若干酸(例えば、硫酸、硝酸、塩酸などの一般的な酸)を添加すればよい。
 Eh-pH線図としては、例えば、
Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers. (1974) 644p.
に記載のものを用いることができる。
 図1A~図1Cから明らかであるように、マンガン(Mn)、亜鉛(Zn)、鉄(Fe)が、共に固形物化する領域は溶液中の各成分の濃度により変動する。例えば、浸出液中Mn、Zn濃度がともに0.1Mで、Fe濃度が0.05Mであった場合には、図1A~図1Cにおいて、Mn、Znは100Mと10-2Mの線の中間の境界を基準にして考えればよく、Feは100Mと10-2Mの線の間の10-2M寄りの境界を基準にして考えればよい。この場合、図1A~図1Cにおいて、マンガンが酸化物として固形物化・沈澱する領域(図1A中、○で囲った領域)のpHと酸化還元電位(ORP)は、図1Aのとおり、おおよそ「pH:0.1以上2.2未満」、「酸化還元電位(ORP):約+0.9V以上+1.2V以下」であることが好ましいと判る。
 また、図1A~図1Cは、水温25℃の時のものであるが、水温が異なる場合には、温度補正を行えばよい。補正の方法としては、公知の方法(例えば、Van't Hoffの式による平衡乗数の補正など)で行えばよい。
 したがって、浸出液のpHが2.2未満であることを確認した上で、この浸出液にオゾンを散気して酸化還元電位(ORP)を+0.9V以上に上昇させることで、マンガンのみを酸化物として固形物化し、他の元素から分離、沈澱させることが可能になる。
 オゾンは、紫外線法、放電法、電解法などによって生成するが、工業的な利用においては、無声放電と言われる方法によって製造することが多い。原理としては、電極間に交流電圧を印加して生じさせた無声放電の空間に、酸素ガスを通すことで、酸素ガスの一部が活性化され、オゾンに変化する。この時オゾン濃度は、条件にもよるが数g/Nm3~300g/Nm3という程度の濃度となる。酸素ガスは空気からPSA(Pressure Swing Adsorption)などの方法により濃化したガスを用いることもできるし、液体酸素を気化したものを用いることもできる。本発明におけるオゾンの散気には、このようにして生成したオゾンと酸素の混合気体を用いることができる。
 オゾンの散気量としては、酸化還元電位(ORP)を観察しながらオゾンを散気し、酸化還元電位(ORP)が所定値(例えば、浸出液の温度が25℃であり、該浸出液中のMn、Zn、Fe濃度がそれぞれMn:0.1M 、Zn:0.1M、Fe:0.05Mである場合、約+1V以上)となるように調整することが好ましい。なお、オゾンの必要量は、装置形状や散気時の気泡径などによって変化するため、コスト等を比較し、最も効率のよい方法を選択すればよい。
 以上のオゾン処理工程により、浸出液中のマンガンが優先的に不溶化して固体となり、亜鉛イオン、鉄イオンの殆どは浸出液中に溶解した状態となる。すなわち、マンガン含有沈澱物(主に二酸化マンガンMnO2)と亜鉛イオン含有溶液(微量の鉄イオンを含む)が得られる。
 なお、上記オゾン処理工程においては、マンガンの酸化により生成するマンガン酸化物によってオゾン処理中の浸出液が黒色となり、反応進行状態を目視により判別することが困難となる。ここで、オゾンによる酸化が不十分な場合には、未反応マンガンイオンが固形物として沈殿せず、マンガン成分回収率の悪化を招く。
 一方、過剰にオゾンを作用させると、一度生成したマンガン酸化物が、過酸化物のイオンとなって再溶解してしまい、オゾン酸化不足の場合と同様に回収率が悪化する。その理由について本発明者らが検討した結果、マンガン酸化反応が過剰になると、固形物となったマンガンの酸化物が更に酸化され、過マンガン酸のイオンとなって溶液中に再溶解してしまうためであることが明らかになった。
 図1Aにおいて、マンガンの過酸化物(図1A中の最上部、MnO4 -という物質)が主たる存在になるORPは、pH2でも+1.6V付近であり、実際にはこのような値にまでORPが上昇する現象は、通常では観察されない。しかし、発明者による検討の結果、一部のマンガン酸化物がオゾンの作用により過酸化物となることが判明した。また、同時に、過酸化物が生成するのは、マンガンがほぼ全て酸化物として固形物化した後であることも確認された。
 これらの事実から、マンガン酸化反応の終点の見極めが必要になるが、マンガン酸化反応の終点を反応時間で管理しようとしても、前記浸出液などの場合には、浸出液ごとに溶液の濃度、組成が若干異なっていることもあり、必ずしも同じ反応時間で同じ回収率が得られるとは限らない。酸化還元電位(ORP)による制御を考えた場合にも同様の問題が生じ、明確な反応終点の確認は困難である。
 一方、マンガンの過酸化物の生成は、溶液が赤く変色することで容易に確認することができる。そのため、オゾン処理中の浸出液の色を観察することでマンガン酸化反応の終点を見極めることも考えられるが、前述のようにマンガン酸化物(固形物)微粒子の共存下では、溶液全体がマンガン酸化物(MnO2)の色である黒色になってしまい、オゾン処理中の浸出液の変色を判別できない。しかし、オゾン処理中の浸出液からマンガン酸化物(MnO2)を分離すれば、浸出液の色の変化を観察することが可能となり、ひいてはマンガンの過酸化物の生成の有無を判別することができる。
 オゾン処理中の浸出液からマンガン酸化物(MnO2)を分離する手段としては、例えば、浸出液をろ過、あるいは沈降分離して、マンガン酸化物を浸出液から分離する手段などが挙げられる。したがって、実際の運用においては、オゾン処理工程において、オゾン処理中の浸出液のごく一部を定期的または連続的に抽出し、抽出した液からマンガン酸化物を分離し、溶液自体の色を観察してマンガンイオンの酸化反応終点を見極めることが好ましい。具体的には、オゾン処理中の浸出液のごく一部を取り出し、取り出した浸出液をろ過、あるいは静置することにより、固形物であるマンガン酸化物と溶液とに分離し、分離した溶液の色を観察することが好ましい。また、観察後の溶液は再びオゾン処理工程に戻し、これを繰り返すことが好ましい。そして、マンガン酸化物を分離した後の溶液の色が赤く変色した時点でマンガン酸化反応が終了したと判断してオゾン処理を終了することが好ましい。このようにマンガン酸化反応の終点を見極めてオゾン処理を終了すれば、マンガン成分の回収率を最大にすることが可能となる。
第2固液分離工程
 第2固液分離工程では、オゾン処理工程で得られたマンガン含有沈澱物(MnO2)と亜鉛イオン含有溶液(浸出液からマンガンイオンを沈澱させた溶液)とを固液分離する。固液分離手段は特に限定されず、例えば重力沈降分離、ろ過、遠心分離、フィルタプレス、膜分離などから選ばれる任意の手段とすることができる。この第2固液分離工程により、廃乾電池に含まれるマンガン成分と亜鉛成分のそれぞれを、マンガン含有沈澱物(MnO2)と亜鉛イオン含有溶液とに分離することができる。
 上記のとおり、選別工程、破砕・篩い分け工程、酸浸出工程、第1固液分離工程、オゾン処理工程および第2固液分離工程の各工程を経ることにより、マンガン成分と亜鉛成分が混在した状態にある廃乾電池(粉粒体)から、マンガン成分と亜鉛成分を互いに分離した状態で抽出することができる。また、先述のとおり、本発明では、酸浸出の際に還元剤を用いることで、マンガンも亜鉛と同様、ほぼ完全に酸溶液中に浸出している。これをオゾン処理することにより、マンガンを亜鉛のみならず、残渣中に主として存在する炭素からも分離でき、非常に純度の高いマンガン酸化物を得ることができる。また、浸出残渣は、炭素が主体であることから、発熱量次第では燃料助剤として燃焼でき、廃棄処分費の更なる低減を図ることも可能となる。
 以上が、本発明の廃乾電池からのマンガンおよび亜鉛分離方法である。
 また、本発明の廃乾電池からのマンガン回収方法は、上記第2固液分離工程で分離されたマンガン含有沈澱物をマンガン成分として回収する方法である。これにより、亜鉛成分や炭素の混入量が極めて低い、高純度のマンガン成分が得られる。なお、本発明のマンガン成分回収物、すなわち上記第2固液分離工程で分離されたマンガン含有沈澱物は、その成分の殆どがMnO2である。
 一方、本発明の廃乾電池からの亜鉛回収方法は、上記選別工程、破砕・篩い分け工程、酸浸出工程、第1固液分離工程、オゾン処理工程および第2固液分離工程の各工程に加えて更に、第2固液分離工程の次工程としてアルカリ沈澱処理工程と、第3固液分離工程とを有する。
アルカリ沈澱処理工程
 アルカリ沈澱処理工程では、上記の第2固液分離工程で分離された亜鉛イオン含有溶液にアルカリ剤を添加して、該亜鉛イオン含有溶液中の亜鉛イオンを亜鉛含有沈澱物とする。第2固液分離工程で分離された亜鉛イオン含有溶液は、亜鉛を高濃度に含有する酸性溶液であり、この酸性溶液をアルカリ性にすることで、亜鉛を水酸化物として不溶化、沈殿させることができる。
 アルカリ剤の種類は特に制限されないが、苛性ソーダ(NaOH)、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム等を用いることが好ましい。但し、アルカリ剤として一般的なアルカリである苛性ソーダ(NaOH)を用いた場合には、酸濃度によってナトリウム塩の沈澱を生じることがあり、亜鉛含有沈殿物の亜鉛含有率が低下する傾向にある。例えば、硫酸酸性の亜鉛イオン含有溶液を苛性ソーダでアルカリ性にした場合、亜鉛の水酸化物と共に硫酸ナトリウムが同時に沈澱する。このような場合には、沈殿物を水洗すれば、硫酸ナトリウムを容易に溶解、除去することができるので、必要に応じて水洗工程を追加すればよい。
第3固液分離工程
 第3固液分離工程では、アルカリ沈澱処理工程で得られた亜鉛含有沈澱物を、固液分離して亜鉛成分として回収する。固液分離手段は特に限定されず、例えば脱水、ろ過による手段や、重力沈降分離、遠心分離、フィルタプレス、膜分離などから選ばれる任意の手段とすることができる。これにより、高濃度の亜鉛成分が回収でき、良質な亜鉛精錬原料として使用することができる。
 本発明の亜鉛成分回収物、すなわち第3固液分離工程で分離された亜鉛含有沈澱物は、その成分の殆どが亜鉛の水酸化物である。但し、第3固液分離工程で分離された亜鉛含有沈澱物を、例えば100℃超の温度に加熱して脱水した場合には、全量が亜鉛の水酸化物ではなく、一部は脱水され亜鉛の酸化物として回収される場合もある。また、本発明の亜鉛成分回収物、すなわち第3固液分離工程で分離された亜鉛含有沈澱物には、上記アルカリ沈澱処理工程で生成した硫酸ナトリウム等のナトリウム塩が微量に混入する場合もある。これは、使用したアルカリの種類、添加量、水洗状態の違いによるもので、処理の状況により混入の有無、その程度は異なる。
 なお、第2固液分離工程で分離された亜鉛イオン含有溶液は、微量の鉄イオンを不可避的に含むことがあるため、アルカリ沈澱処理工程では亜鉛と共に鉄も沈澱する場合がある。このような場合でも、本来、前記した破砕・篩い分け工程で得られる粉粒体の鉄含有量はそれほど高くないので、鉄分の微量の混入はそれほど問題にはならない。但し、仮に鉄分を除去する必要がある場合には、アルカリ沈澱処理工程においてアルカリ剤を添加する際、亜鉛イオン含有溶液をアルカリ性にする前に、pHを4~5程度に調整し、空気曝気を行えば、鉄のみを不溶化して回収することもできる。その後、残液をアルカリ性にして亜鉛成分を沈殿させれば、鉄分を含まない亜鉛含有沈澱物を得ることができる。
 また、第2固液分離工程で分離された亜鉛イオン含有溶液がその他の微量金属元素(Cr、Cu、Ni、Pb、Cd、Hg等)を含有する場合も、アルカリ沈澱処理工程で亜鉛イオン含有溶液をアルカリ性にすることにより上記微量金属の殆どが亜鉛と共に沈澱する。しかし、これらの含有量は微量であるため、その後の亜鉛精錬工程にて十分除去できる濃度である。
 以上のように、本発明によると、廃乾電池から亜鉛成分や炭素の混入量が極めて少ないマンガン成分回収物が得られる。廃乾電池からの回収原料を使用することは、フレッシュなマンガン鉱石等の使用量の削減となり、資源の有効利用に寄与する。これと同時に、これまで再利用されずに埋立等によって廃棄処分がされていた廃乾電池の量を削減できるため、廃棄処分にかかる費用を低減し、環境汚染の軽減にも寄与することができる。
 次に、本発明の廃乾電池からのマンガンおよび亜鉛分離設備、並びにマンガン回収設備、亜鉛回収設備について説明する。本発明の設備は、上記した本発明の方法、すなわち廃乾電池からのマンガンおよび亜鉛分離方法、並びにマンガン回収方法、亜鉛回収方法の実施に好適な設備である。
 図3に、本発明の設備の模式図を示す。図3に示すように、本発明のマンガンおよび亜鉛分離設備は、廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別装置10と、選別装置10で選別された廃乾電池を装入して破砕処理を施し、破砕処理物を得る破砕装置20aと、破砕装置20aで得られた破砕処理物に篩い分け処理を施して粉粒体を得る篩い分け装置20bと、篩い分け装置20bで得られた粉粒体と酸溶液と還元剤とを混合して、粉粒体からマンガンおよび亜鉛を浸出させる酸浸出槽30と、酸浸出槽30で得られた浸出液と浸出残渣とを固液分離する第1固液分離装置40と、第1固液分離装置40で分離された浸出液にオゾンを作用させて、浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理装置50と、オゾン処理装置50で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離装置60とを備える。
 また、本発明のマンガン回収設備は、上記したマンガンおよび亜鉛分離設備の各装置10~60を備え、例えば第2固液分離装置60で分離されたマンガン含有沈澱物を回収するマンガン成分回収槽70を備えてもよい。
 また、本発明の亜鉛回収設備は、上記マンガンおよび亜鉛分離設備の各装置10~60と、第2固液分離装置60で分離された亜鉛イオン含有溶液を貯液し、該亜鉛イオン含有溶液にアルカリ沈澱処理を施して亜鉛含有沈澱物を得るアルカリ沈澱処理槽80と、アルカリ沈澱処理槽80で得られた亜鉛含有沈澱物を固液分離する第3固液分離装置90とを備える。また、例えば第3固液分離装置90で分離された亜鉛含有沈澱物を亜鉛成分として回収する亜鉛成分回収槽100を備えてもよい。
 これらの設備を構成する各種装置、反応槽、回収槽は、上記したそれぞれの機能を有する限り、その構造等は問わない。
 例えば、選別装置の種類は特に限定されず、形状や放射線等を利用して分別する装置等を例示することができる。なお、廃乾電池の選別は、手選別でも行うことができるため、選別装置は必ずしも設ける必要はない。
 破砕装置としては通常の破砕機を用いることができる。破砕機の型式については特に限定されず、例えば、破砕後に、乾電池を構成している包装材と、粉粒体がよく分離される型式のものが好ましい。このようなものとしては、例えば、2軸回転式の破砕機が挙げられる。
 篩い分け装置は、目開き1mm以上20mm以下の篩を備えたものが好ましい。上記目開きは、1mm以上10mm以下とすることがより好ましく、1mm以上3mm以下とすることがより一層好ましい。
 オゾン処理装置は、浸出液にオゾン処理(オゾン散気)を施すための反応槽を設けることに加えて、反応槽からオゾン散気中の浸出液のごく一部を定期的または連続的に抽出し、抽出した浸出液をマンガン酸化物(MnO2)と溶液とに分離するための分離・観察槽を設けることが好ましい。分離・観察槽を設けることにより、オゾン処理中の浸出液から黒色のマンガン酸化物(MnO2)を分離した溶液の色を観察することが可能となり、ひいてはマンガン酸化反応の終点を見極めることが可能となる。
 なお、上記分離・観察槽において、オゾン処理中に抽出した浸出液をマンガン酸化物(MnO2)と溶液とに分離するためのろ過装置等を設けてもよい。また、特段の固液分離装置を設けずに、抽出した浸出液を静置することにより、マンガン酸化物(MnO2)と溶液とに分離してもよい。更に、コストや設置スペース等の関係において許容されるのであれば、ろ液や静置後の上澄液の吸光度を測定する分光光度計を、分離・観察槽に併設してもよい。
 第1~3の各固液分離装置としては、例えばフィルタプレス装置、膜分離装置、重力沈降分離装置、ろ過装置、遠心分離装置などから選ばれる任意の装置を用いることができる。
 酸浸出槽、アルカリ沈澱処理槽としては、例えばタンクに攪拌機を具えた一般的な攪拌槽を用いることができる。
 また、第2固液分離装置とアルカリ沈澱処理槽の間には、亜鉛イオン含有溶液に不可避的に混入した鉄イオンを沈澱分離する装置を併設することが好ましい。更に、例えば亜鉛含有沈澱物とともに硫酸ナトリウム等が同時に沈澱した場合を想定し、沈澱物を水洗して硫酸ナトリウムを溶解、除去するための装置を第3固液分離装置の後に併設してもよい。
 以下、実施例により本発明を説明するが、本発明はかかる実施例に限定されるものではない。
 廃乾電池からマンガン乾電池およびアルカリマンガン乾電池を選別し、選別した廃乾電池を破砕し、目開き2.8mmの篩で篩い分けすることにより、廃乾電池の粉粒体を得た。得られた粉粒体の組成を表1に示す。なお、得られた粉粒体は、表1に示す元素の他に、酸化物や水酸化物に由来する酸素と若干の水素、水分を含む。
Figure JPOXMLDOC01-appb-T000001
 上記により得られた粉粒体を用い、以下(1)~(4)の試験を実施した。
(1)(酸溶液+還元剤)による酸浸出処理1
 本発明に従い酸浸出処理を実施し、粉粒体からのマンガン浸出率を求めた。
 粉粒体に、酸溶液と共に種々の還元剤を選択して添加し、酸浸出処理を行った。酸溶液としては、試薬硫酸を用いた。酸浸出処理は、先ず酸浸出槽で粉粒体と酸溶液を混合して攪拌し、その後、攪拌を続けながら還元剤を添加することにより実施した。なお、還元剤を添加すると発泡するため、発泡の状況を見ながら少量ずつ還元剤を添加した。また、酸浸出処理の処理規模が小さく、攪拌中に空気中の酸素が溶液中に溶解することにより溶液中の酸化還元電位上昇が無視できない可能性があったため、窒素を少量曝気しながら酸浸出処理を行った。
 更に、比較のため、還元剤を添加せず(還元剤の添加量:0g)、粉粒体と酸溶液とを混合して攪拌することにより酸浸出処理を実施し、粉粒体からのマンガン浸出率を求めた。
 酸浸出処理における酸溶液量(mL)、粉粒体量(g)、酸溶液の硫酸濃度(N)、還元剤の種類、酸溶液に対する還元剤の添加量(g/L)、酸浸出処理時間(h)、窒素曝気量(mL/min)は、以下のとおりである。
 なお、以下に示す酸浸出処理時間は、いずれも粉粒体と酸溶液とを混合して攪拌を開始した時点から計測した時間である。
 酸溶液:100mL
 粉粒体:10g(固液比100g/L)
 硫酸濃度:3N(質量%濃度(質量分率)約13.2%)
 酸浸出処理時間:1h(攪拌処理)
 窒素曝気量:10mL/min
 <還元剤の種類>
 過酸化水素(H2O2)、硫化ナトリウム(Na2S・9H2O)、亜硫酸水素ナトリウム(NaHSO3)、チオ硫酸ナトリウム(Na2S2O3)、硫酸鉄(FeSO4・7H2O)
 <還元剤の添加量>
 0g(0g/L)、1.0g(10g/L)、2.0g(20g/L)、4.0g(40g/L)
 但し、還元剤として過酸化水素(H2O2)を用いる場合には、還元剤の添加量を4.5g(45g/L)とする酸浸出処理も実施した。なお、上記のうち、硫化ナトリウム(Na2S・9H2O)および硫酸鉄(FeSO4・7H2O)の添加量の値は、無水和物としたときの値である。
 酸浸出処理後、得られた浸出液と浸出残渣とを、孔径1μmのろ紙でろ過することにより固液分離し、分離した浸出液のマンガン濃度を、ICP発光分析法により定量した。次いで、定量値をもとに浸出液中のマンガン質量を求め、粉粒体中のマンガン質量に対する浸出液中のマンガン質量の割合(マンガン元素換算)を算出することでマンガン浸出率を求めた。
 マンガン浸出率の結果を図4に示す。
 図4から明らかなように、還元剤の添加量の増加に従い、マンガン浸出率は上昇し、還元剤として過酸化水素(添加量:45g/L)、硫化ナトリウム(添加量:40g/L)、亜硫酸水素ナトリウム(添加量:40g/L)を用いる場合には、粉粒体中のマンガンが全量浸出した。一方、還元剤を添加しない場合(還元剤の添加量:0g/L)は、30%程度の浸出率しか得られなかった。
 なお、硫黄系の還元剤を使用した場合には、酸浸出処理時に亜硫酸ガスが発生した。亜硫酸ガスなどの腐食性ガスは、実用化の際には機器にダメージを与える可能性があるため、設備・コスト上の観点からは、還元剤として過酸化水素を用いることが好ましいと云える。また、薬剤費の比較などからしても、還元剤として過酸化水素を用いることが好ましいと云える。
(2)(酸溶液+還元剤)による酸浸出処理2
 酸コスト低減のために、酸浸出処理時における硫酸濃度がマンガン浸出率に及ぼす影響を検討した。
 粉粒体に、種々の硫酸濃度の酸溶液と共に還元剤を添加し、酸浸出処理を行った。酸溶液としては、試薬硫酸を用いた。酸浸出処理は、先ず酸浸出槽で粉粒体と酸溶液を混合して攪拌し、その後、攪拌を続けながら還元剤を添加することにより実施した。上記(1)と同様に、添加剤は発泡の状況を見ながら少量ずつ添加した。また、上記(1)と同様に、窒素を少量曝気しながら酸浸出処理を行った。
 酸浸出処理における酸溶液量(mL)、粉粒体量(g)、酸溶液の硫酸濃度(N)、還元剤の種類、還元剤の添加量(g)、酸溶液に対する還元剤の添加量(g/L)、酸浸出処理時間(h)、窒素曝気量(mL/min)は、以下のとおりである。なお、以下の酸浸出処理時間は、粉粒体と酸溶液とを混合して攪拌を開始した時点から計測した時間である。
 酸溶液:2000mL
 粉粒体:200g(固液比:100g/L)
 硫酸濃度:1N(質量%濃度約4.6%)、2N(質量%濃度約9.0%)、3N(質量%濃度約13.2%)
 還元剤の種類:過酸化水素(H2O2
 還元剤の添加量:90g(酸溶液に対する還元剤の添加量:45g/L)
 酸浸出処理時間:1h(攪拌処理)
 窒素曝気量:200mL/min
 酸浸出処理後、得られた浸出液と浸出残渣とを、孔径1μmのろ紙でろ過することにより分離し、分離した浸出液のマンガン濃度を、ICP発光分析法により定量した。次いで、定量値をもとに浸出液中のマンガン質量を求め、粉粒体中のマンガン質量に対する浸出液中のマンガン質量の割合(マンガン元素換算)を算出することでマンガン浸出率を求めた。マンガン浸出率の結果を図5に示す。
 図5から明らかであるように、硫酸濃度が2Nおよび3Nである場合には、95%を超えるマンガン浸出率が得られた。特に、硫酸濃度が3Nである場合には、99.2%という極めて高いマンガン浸出率が得られた。一方、硫酸濃度が1Nである場合には、過酸化水素の添加量が一定量(約10g/L)を超えた段階で反応が停止し、マンガン浸出率は40%程度に止まった。また、酸浸出処理終了後の浸出液のpHを計測したところ、硫酸濃度が2Nおよび3Nである場合のpHは1.6と低い値に留まっていたが、硫酸濃度が1Nである場合のpHは5.9まで上昇していた。前記(1)式に示すように、マンガンの浸出には、電子と共に酸(H+)が必要である。これらのことから、硫酸濃度1Nの場合には、酸浸出処理中に硫酸が消費されてしまっていたことにより、反応が停止したと推測される。また、前記(1)式から明らかなように、マンガンの浸出に必要な硫酸濃度は、処理を行うマンガン濃度(被処理物である粉粒体のマンガン含有量)によって変動すると考えられる。したがって、酸浸出処理を実施するに際しては、固液比などの変更に応じてその都度、室内実験などを通じて予め適した酸濃度を決定しておくことが好ましい。
 なお、硫酸濃度が3Nである硫酸(酸溶液)を用いた場合については、亜鉛の浸出率と鉄浸出率についても算出した。具体的には、酸浸出処理後、得られた浸出液と浸出残渣とを、孔径1μmのろ紙でろ過することにより分離し、分離した浸出液の亜鉛濃度と鉄濃度を、ICP発光分析法により定量した。次いで、定量値をもとに浸出液中の亜鉛質量と鉄質量を求めた。そして、粉粒体中の亜鉛質量に対する浸出液中の亜鉛質量の割合(亜鉛元素換算)を算出することで亜鉛浸出率を求めた。また、粉粒体中の鉄質量に対する浸出液中の鉄質量の割合(鉄元素換算)を算出することで鉄浸出率を求めた。
 その結果、亜鉛浸出率は99%以上であり、Fe浸出率は50%程度であった。
(3)マンガン成分の回収
 本発明に従いマンガンの回収を実施し、マンガン回収率を求めた。
 上記(2)の酸浸出処理のうち、還元剤と「硫酸濃度:3N(質量%濃度約13.2%)」の酸溶液を用いた酸浸出処理を実施することにより得られた浸出液と浸出残渣とを、孔径1μmのろ紙でろ過することにより分離し、分離した浸出液に対してオゾン処理を行った。オゾン処理は、オゾン供給チューブ先端にエアストーンを取り付け、容器底部よりオゾンガスを供給し、攪拌しながら処理を行った。オゾン処理に供した浸出液量(mL)、オゾン処理時のオゾン散気量(L/min)、攪拌速度(rpm)、オゾン処理時間(h)は、以下のとおりである。なお、以下のオゾン処理時間は、オゾン散気開始時点からオゾン散気終了時点までの時間である。
 浸出液量:2000mL
 オゾン発生装置:EZ-OG-R4(エコデザイン社製)
 オゾン発生装置電流:3.8A
 オゾン散気量(オゾン、酸素混合ガスとして):1.8L/min(オゾン濃度約93g/Nm3、オゾン作用量10g/h)
 攪拌速度(反応槽のスターラー回転数):260rpm
 オゾン処理時間:9h
 オゾン処理後、孔径1μmのろ紙で吸引ろ過し、得られた沈澱物を105℃にて乾燥させたのち回収し、質量約118.1gの回収物を得た。得られた回収物の組成を、燃焼-赤外線吸収法(C、S)、イオンクロマトグラフ法(Cl)、原子吸光法(Hg)、カールフィッシャー法(結晶水分)およびICP発光分析法(残りの元素)により求めた結果を表2に示す。また、得られた回収物のXRD(X線回折)による解析結果を図6に示す。
 更に、上記(2)で求めた浸出液中のマンガン質量(オゾン処理を施す前の浸出液中に含まれていたマンガンの質量)に対する回収物中のマンガン質量の割合(マンガン元素換算)を算出することで、浸出液からのマンガン回収率を求めた。
 なお、参考のため、上記(2)で求めた浸出液中の亜鉛質量(オゾン処理を施す前の浸出液中に含まれていた亜鉛の質量)に対する回収物中の亜鉛質量の割合(亜鉛元素換算)を算出することで、浸出液からの亜鉛回収率も求めた。
 これらの結果を図7に示す。
Figure JPOXMLDOC01-appb-T000002
 図6に示すように、回収物はマンガン酸化物「MnO2」であることが確認された。また、表2に示すように、回収物は水分を含んでいるが、この水分を完全に除去した状態での回収物中のMnO2含有率は97質量%以上となり、高純度のマンガン酸化物が得られることが分かった。
 更に、表2に示すように、回収物の亜鉛含有率は1質量%未満であり、粉粒体で混在していたマンガン成分と亜鉛成分とが非常に効率よく分離されたことが分かった。
 また、図7に示すように、オゾン処理前の浸出液に含まれていたマンガンの99.8%が回収されている。更に、図4または図5に示したように、オゾン処理前の酸浸出処理では、99%以上のマンガン浸出率が得られている。したがって、全体の工程としては、酸浸出処理での浸出率99%以上と、オゾン処理での浸出液からのマンガン回収率99.8%を併せ、出発物質である粉粒体中からのマンガン回収率はほぼ99%以上と計算される。
 一方、上記(2)で求めたように、オゾン処理前の酸浸出処理では99%以上の亜鉛浸出率が得られているが、回収物にはオゾン処理前の浸出液に含まれていた亜鉛の0.4質量%程度しか回収されておらず、オゾン処理前の浸出液に含まれていた亜鉛のほぼ全量がオゾン処理後の溶液中に存在していることが確かめられた。
 以上の結果から、本発明のマンガン回収方法が、回収率(歩留り)の点でも全く問題のない極めて優れた回収方法であることが分かる。
 また、表2に示すように、回収物中に含まれる金属元素のうち、マンガン、亜鉛、鉄、カリウム以外の金属元素は全て定量下限以下であった。マンガン、亜鉛、鉄、カリウム以外の金属元素の含有量が定量下限以下となる理由としては、元来、廃乾電池中(粉粒体中)の含有量が微量であるという点も挙げられる。
 しかし、本実施例の結果から、マンガン、亜鉛、鉄以外の金属元素はオゾン処理によって殆ど沈澱せず、オゾン処理により得られた沈澱物を回収した回収物中には殆ど混入しないことが分かった。
 また、表2に示すように、回収物は、硫酸由来と思われる硫黄を含有している。このように硫黄やカリウムの含有率は、若干高いものの、回収物を水洗することにより容易に0.1%程度まで低減できることを別途確認した。
 しかしながら、回収物中に含まれる硫黄、カリウムは、例えば、のちに回収物(マンガン酸化物)を還元処理する場合には大部分がスラグとして除去されるか、または揮発すると考えられるため、除去量、還元マンガン体に求められる硫黄、カリウム含有量などから水洗実施の有無、程度等を適宜選択すればよい。
 また、回収物中に含まれる水分は、105℃では揮発しない水分であり、マンガン酸化物の結晶中に入り込んだ結晶水分である。マンガン結晶においては、結晶水は300~400℃程度までの温度で殆どが脱離することから、高度な水分除去が必要であれば、300~400℃程度で乾燥すれば低水分のマンガン酸化物を得ることができる。
 なお、本実施例においては、オゾン処理前の浸出液に含まれていたマンガンを酸化物としてほぼ全量回収するために、約9hと比較的長いオゾン処理時間を要した。これは、本実施例の反応系が実験室レベルで小さいために、未反応のオゾンが反応容器上部に多く抜けてしまい、散気したオゾンが効率的に利用されなかったことに起因するものと推測される。したがって、本発明を実機適用する場合には、オゾン処理装置の反応容器形状を工夫したり、オゾン処理装置に、マイクロバブル、ナノバブルなどの技術を適用して気泡径を小さくしたりすることで、浸出液に対するオゾンの溶解効率を高めることが好ましい。これらの処置を講じてオゾンの利用効率を高めれば、オゾン処理時間の短縮化、使用オゾン量の低減を図ることができる。
(4)亜鉛成分の回収
 本発明に従い亜鉛の回収を実施し、亜鉛回収率を求めた。
 上記(3)において、オゾン処理後、孔径1μmのろ紙で吸引ろ過することにより得られたろ液(亜鉛イオン含有溶液)に、水酸化ナトリウムを添加し、ろ液のpHを10.8まで上昇させてろ液をアルカリ性溶液にすることによりアルカリ沈澱処理を施し、黄白色の沈澱物を得た。次いで、得られた沈澱物を水洗し、105℃で乾燥したのち、回収した。
 回収物の成分をXRD(X線回折)、ICP発光分析法により分析した結果、回収物は主として亜鉛の酸化物を含有していることが確認された。また、回収物の亜鉛含有率は68.8%であり、高濃度の亜鉛を含有していることが分かった。
 通常、アルカリ沈殿処理においては、亜鉛の水酸化物が検出されるが、今回得られた沈澱物の亜鉛については酸化物であった。これは、105℃で乾燥することにより、脱水反応が生じ、水酸化物が酸化物に変化したものと推察される。実運用においては、脱水したケーキのまま、あるいは温度を掛けずに乾燥させれば水酸化物のままであるが、105℃程度で乾燥させれば酸化物として回収することも可能である。ゆえに、その後の使用用途、目的、コスト等に合わせて、回収法を適宜選択すればよい。
 また、上記ろ液(上記(3)において、オゾン処理後、孔径1μmのろ紙で吸引ろ過することにより得られたろ液)の亜鉛濃度を、ICP発光分析法により定量し、定量値をもとに上記ろ液中の亜鉛質量を求めた。そして、上記ろ液に含まれる亜鉛質量に対する回収物中の亜鉛質量の割合(亜鉛元素換算)を算出して、上記ろ液からの亜鉛回収率を求めた結果、ほぼ100%であった。
 なお、上記(2)で求めたように、オゾン処理前の酸浸出処理では、99%以上の亜鉛浸出率が得られている。したがって、この亜鉛浸出率と、上記(3)でオゾン処理時にマンガンと一緒に沈殿した亜鉛ロス分(0.4%)を減じた98.6%の液中残存率、並びに上記ろ液からの亜鉛回収率(ほぼ100%)を考え合わせると、元の粉粒体中からの亜鉛の回収率は、99%程度と考えられる。
 上記(2)で得られた浸出率(酸溶液として、硫酸濃度3Nの硫酸を用いた場合の浸出率)と、上記(2)~(4)で得られた各種溶液におけるマンガン濃度、亜鉛濃度、鉄濃度を、表3に示す。なお、表3に示す各種溶液におけるマンガン濃度、亜鉛濃度、鉄濃度は、ICP発光分析法により求めた。
 また、粉粒体および上記(2)~(4)で得られた各種固形物のマンガン含有率、亜鉛含有率、鉄含有率、炭素含有率、硫黄含有率、リン含有率、並びに上記(3)および(4)で得られた回収率(浸出液からのマンガン、亜鉛回収率、オゾン処理後のろ液(亜鉛イオン含有溶液)からの亜鉛回収率)を表4に示す。なお、表4に示した各種固形物は、表中に記載した元素の他に、酸化物または水酸化物に由来する酸素と若干の水素を含む。
 更に、粉粒体からのマンガン回収率と、粉粒体からの亜鉛回収率を、表4に示す。粉粒体からのマンガン回収率は、粉粒体中のマンガン質量に対する、上記(3)で得られた回収物中のマンガン質量の割合(マンガン元素換算)を算出することにより求めた。また、粉粒体からの亜鉛回収率は、粉粒体中の亜鉛質量に対する、上記(4)で得られた回収物中の亜鉛質量の割合(亜鉛元素換算)を算出することにより求めた。
 なお、表3および表4に示す数値はすべて実測値であり、浸出残渣や回収物(沈澱物)については回収ロス、溶液については単純なロス以外に処理中の蒸発等もあるため、完全に収支が取れているわけではないが、凡その挙動を概観するために示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4に示すように、粉粒体中のマンガンは、酸浸出処理で99.2%を浸出でき、かつオゾン処理で99.8%を回収しており、全体としても99%の回収率を達成できた。粉粒体中の亜鉛は、酸浸出処理で99.2%を浸出でき、オゾン処理で0.4%のロス(沈澱への移行)が生じたものの、ほぼ全量をその後のアルカリ沈澱処理にて回収できていた。
 一方、粉粒体中の鉄は、その2~3割がマンガン酸化物(オゾン処理後、吸引ろ過することにより得られた回収物)に混入した。図1(a)~(c)より、鉄はオゾン処理中にも大部分が溶液中に留まると思われたが、実際には一部が沈澱し、マンガン酸化物中に混入した。この理由としては、他の成分によって平衡がずれたことなどが想定されるが、詳細は不明である。しかしながら、もともとの粉粒体中の鉄含有率がそれほど高くはないため、マンガン成分回収物中の鉄含有率は0.15%と低く抑えることができた。それゆえ、回収したマンガン酸化物を鉄鋼原料としてリサイクルする分には、極端な濃度変動が生じない限り、この程度の鉄分の混入は問題にならないと考えられる。
 以上ように、本発明によれば、選別した廃乾電池(マンガン乾電池および/またはアルカリマンガン乾電池)を破砕、篩い分けすることにより得られた粉粒体中のマンガンと亜鉛をほぼ完全に分離しつつ、両元素のほぼ全量を回収でき、それぞれをマンガン原料、亜鉛原料としてリサイクルすることが可能となる。
 また、酸浸出時の残渣は炭素を高濃度に含んでおり、乾燥後の総発熱量を測定したところ4400kcal/kg程度の熱量を有することも確認された。これは薪程度の熱量であり、酸浸出時の残渣を燃料、あるいは燃焼助剤として使用できれば、回収物すべてを有価物としてリサイクルすることが可能となる。
 1 … 選別工程
 2 … 破砕・篩い分け工程
 3 … 酸浸出工程
 4 … 第1固液分離工程
 5 … オゾン処理工程
 6 … 第2固液分離工程
 7 … アルカリ沈澱処理工程
 8 … 第3固液分離工程
10 … 選別装置
20a… 破砕装置
20b… 篩い分け装置
30 … 酸浸出槽
40 … 第1固液分離装置
50 … オゾン処理装置
60 … 第2固液分離装置
70 … マンガン成分回収槽
80 … アルカリ沈澱処理槽
90 … 第3固液分離装置
100 … 亜鉛成分回収槽

Claims (7)

  1.  廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
     廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
     上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
     上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
     上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
     上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
     上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程とを有し、
     上記した各工程を順次経ることにより、廃乾電池中に含まれるマンガン成分をマンガン含有沈澱物として回収する、廃乾電池からの有価成分の回収方法。
  2.  廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
     廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
     上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
     上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
     上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
     上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
     上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程と、
     上記第2固液分離工程で分離された亜鉛イオン含有溶液にアルカリ剤を添加して、該亜鉛イオン含有溶液中の亜鉛イオンを亜鉛含有沈澱物とするアルカリ沈澱処理工程と、
     上記アルカリ沈澱処理工程で得られた亜鉛含有沈澱物を固液分離する第3固液分離工程とを有し、
     上記した各工程を順次経ることにより、廃乾電池中に含まれる亜鉛成分を亜鉛含有沈澱物として回収する、廃乾電池からの有価成分の回収方法。
  3.  廃乾電池から、該廃乾電池中に含まれる有価成分を回収する方法であって、
     廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別工程と、
     上記選別工程で選別した廃乾電池を破砕、篩い分けして粉粒体を得る破砕・篩い分け工程と、
     上記破砕・篩い分け工程で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出工程と、
     上記酸浸出工程で得られた浸出液と浸出残渣とを固液分離する第1固液分離工程と、
     上記第1固液分離工程で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理工程と、
     上記オゾン処理工程で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離工程と、
     上記第2固液分離工程で分離された亜鉛イオン含有溶液にアルカリ剤を添加して、該亜鉛イオン含有溶液中の亜鉛イオンを亜鉛含有沈澱物とするアルカリ沈澱処理工程と、
     上記アルカリ沈澱処理工程で得られた亜鉛含有沈澱物を固液分離する第3固液分離工程とを有し、
     上記した各工程を順次経ることにより、廃乾電池中に含まれるマンガン成分をマンガン含有沈澱物として、また亜鉛成分を亜鉛含有沈澱物として回収する、廃乾電池からの有価成分の回収方法。
  4.  前記酸浸出工程における酸溶液が、質量%濃度1.4%以上45%以下の希硫酸または質量%濃度1%以上14%以下の希塩酸である、請求項1~3のいずれかに記載の廃乾電池からの有価成分の回収方法。
  5.  前記酸浸出工程における粉粒体と酸溶液との固液比が50g/L以上である、請求項1~4のいずれかに記載の廃乾電池からの有価成分の回収方法。
  6.  廃乾電池から該廃乾電池中に含まれる有価成分を回収する設備であって、
     廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別する選別装置と、
     上記選別装置で選別された廃乾電池を装入して破砕処理を施し、破砕処理物を得る破砕装置と、
     上記破砕装置で得られた破砕処理物に篩い分け処理を施して粉粒体を得る篩い分け装置と、
     上記篩い分け装置で得られた粉粒体と酸溶液と還元剤とを混合して、該粉粒体からマンガンおよび亜鉛を浸出させる酸浸出槽と、
     上記酸浸出槽で得られた浸出液と浸出残渣とを固液分離する第1固液分離装置と、
     上記第1固液分離装置で分離された浸出液にオゾンを作用させて、該浸出液中に含まれるマンガンイオンを酸化して沈澱させ、マンガン含有沈澱物と亜鉛イオン含有溶液とを得るオゾン処理装置と、
     上記オゾン処理装置で得られたマンガン含有沈澱物と亜鉛イオン含有溶液とを固液分離する第2固液分離装置とを備える、廃乾電池からの有価成分の回収設備。
  7.  さらに、前記第2固液分離装置で分離された亜鉛イオン含有溶液を貯液し、該亜鉛イオン含有溶液にアルカリ沈澱処理を施して亜鉛含有沈澱物を得るアルカリ沈澱処理槽と、
     上記アルカリ沈澱処理槽で得られた亜鉛含有沈澱物を固液分離する第3固液分離装置とを備える、請求項6に記載の廃乾電池からの有価成分の回収設備。
PCT/JP2015/002149 2014-04-21 2015-04-20 廃乾電池からの有価成分の回収方法および回収設備 WO2015162902A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016514713A JP6070898B2 (ja) 2014-04-21 2015-04-20 廃乾電池からの有価成分の回収方法および回収設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014087269 2014-04-21
JP2014-087269 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015162902A1 true WO2015162902A1 (ja) 2015-10-29

Family

ID=54332080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002149 WO2015162902A1 (ja) 2014-04-21 2015-04-20 廃乾電池からの有価成分の回収方法および回収設備

Country Status (2)

Country Link
JP (1) JP6070898B2 (ja)
WO (1) WO2015162902A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150029A (ja) * 2016-02-24 2017-08-31 Jfeスチール株式会社 金属マンガンの製造方法
CN110402294A (zh) * 2017-03-15 2019-11-01 杰富意钢铁株式会社 金属锰的制造方法
CN110431245A (zh) * 2017-03-15 2019-11-08 杰富意钢铁株式会社 金属锰的制造方法
CN110945711A (zh) * 2017-05-30 2020-03-31 锂电池循环有限公司 从电池回收材料的处理方法、设备及系统
RU2734205C1 (ru) * 2020-04-27 2020-10-13 Пётр Александрович Зимовец Способ утилизации использованных химических источников тока марганцево-цинковой системы
WO2021075135A1 (ja) * 2019-10-18 2021-04-22 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
WO2021075136A1 (ja) * 2019-10-18 2021-04-22 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
JP2021070866A (ja) * 2019-10-30 2021-05-06 公信 山▲崎▼ 汚泥からの金属回収方法
CN113943865A (zh) * 2021-10-15 2022-01-18 刘佳杉 一种干电池回收环保清理设备及工艺
CN116116867A (zh) * 2022-09-07 2023-05-16 北京科技大学 一种废旧干电池与厨余垃圾的协同处理系统及方法
KR20230098861A (ko) 2021-03-04 2023-07-04 제이에프이 스틸 가부시키가이샤 폐건전지로부터의 망간 회수 방법 및 회수 설비

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306060B (zh) * 2019-08-02 2021-10-26 四川正祥环保技术有限公司 一种火法-湿法并联工艺综合回收含铅、锌废渣中有价金属的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261443A (ja) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd 廃乾電池からの有価物の分離回収方法
JP2010253432A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 乾電池からのマンガン酸化物回収方法
JP2012204343A (ja) * 2011-03-23 2012-10-22 Korea Inst Of Geoscience & Mineral Resources 三元系正極活物質からの化学二酸化マンガンの製造方法、その製造方法によって製造された化学二酸化マンガン、及び化学二酸化マンガンを含む二次電池
JP2014005496A (ja) * 2011-06-29 2014-01-16 Jfe Steel Corp マンガン回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261443A (ja) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd 廃乾電池からの有価物の分離回収方法
JP2010253432A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 乾電池からのマンガン酸化物回収方法
JP2012204343A (ja) * 2011-03-23 2012-10-22 Korea Inst Of Geoscience & Mineral Resources 三元系正極活物質からの化学二酸化マンガンの製造方法、その製造方法によって製造された化学二酸化マンガン、及び化学二酸化マンガンを含む二次電池
JP2014005496A (ja) * 2011-06-29 2014-01-16 Jfe Steel Corp マンガン回収方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150029A (ja) * 2016-02-24 2017-08-31 Jfeスチール株式会社 金属マンガンの製造方法
CN110402294B (zh) * 2017-03-15 2022-05-03 杰富意钢铁株式会社 金属锰的制造方法
CN110402294A (zh) * 2017-03-15 2019-11-01 杰富意钢铁株式会社 金属锰的制造方法
CN110431245A (zh) * 2017-03-15 2019-11-08 杰富意钢铁株式会社 金属锰的制造方法
CN110431245B (zh) * 2017-03-15 2022-08-12 杰富意钢铁株式会社 金属锰的制造方法
CN110945711A (zh) * 2017-05-30 2020-03-31 锂电池循环有限公司 从电池回收材料的处理方法、设备及系统
CN110945711B (zh) * 2017-05-30 2023-05-23 锂电池循环有限公司 从电池回收材料的处理方法、设备及系统
WO2021075136A1 (ja) * 2019-10-18 2021-04-22 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
CN114466941A (zh) * 2019-10-18 2022-05-10 杰富意钢铁株式会社 从废干电池回收锰的方法和回收设备
JPWO2021075135A1 (ja) * 2019-10-18 2021-11-04 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
WO2021075135A1 (ja) * 2019-10-18 2021-04-22 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
JP7004091B2 (ja) 2019-10-18 2022-02-04 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
JP7036229B2 (ja) 2019-10-18 2022-03-15 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
KR20220049041A (ko) 2019-10-18 2022-04-20 제이에프이 스틸 가부시키가이샤 폐건전지로부터의 망간 회수 방법 및 회수 설비
KR20220053009A (ko) 2019-10-18 2022-04-28 제이에프이 스틸 가부시키가이샤 폐건전지로부터의 망간 회수 방법 및 회수 설비
CN114555839A (zh) * 2019-10-18 2022-05-27 杰富意钢铁株式会社 从废干电池中回收锰的方法和回收设备
JPWO2021075136A1 (ja) * 2019-10-18 2021-11-04 Jfeスチール株式会社 廃乾電池からのマンガン回収方法および回収設備
JP2021070866A (ja) * 2019-10-30 2021-05-06 公信 山▲崎▼ 汚泥からの金属回収方法
RU2734205C1 (ru) * 2020-04-27 2020-10-13 Пётр Александрович Зимовец Способ утилизации использованных химических источников тока марганцево-цинковой системы
KR20230098861A (ko) 2021-03-04 2023-07-04 제이에프이 스틸 가부시키가이샤 폐건전지로부터의 망간 회수 방법 및 회수 설비
CN113943865A (zh) * 2021-10-15 2022-01-18 刘佳杉 一种干电池回收环保清理设备及工艺
CN113943865B (zh) * 2021-10-15 2023-01-10 刘佳杉 一种干电池回收环保清理设备及工艺
CN116116867A (zh) * 2022-09-07 2023-05-16 北京科技大学 一种废旧干电池与厨余垃圾的协同处理系统及方法
CN116116867B (zh) * 2022-09-07 2023-10-13 北京科技大学 一种废旧干电池与厨余垃圾的协同处理系统及方法

Also Published As

Publication number Publication date
JPWO2015162902A1 (ja) 2017-04-13
JP6070898B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6070898B2 (ja) 廃乾電池からの有価成分の回収方法および回収設備
JP6125458B2 (ja) 廃乾電池からの資源の回収方法および分離、回収設備
CN101838736B (zh) 湿法炼锌系统净液钴渣中有价金属的湿法分离方法
JP5847741B2 (ja) 廃正極材及び廃電池からの金属回収方法
CN113517484B (zh) 废钴酸锂电池的处理方法及其产物
WO2021075135A1 (ja) 廃乾電池からのマンガン回収方法および回収設備
JP6219325B2 (ja) 金属マンガンの製造方法
JP7004091B2 (ja) 廃乾電池からのマンガン回収方法および回収設備
CN108588420A (zh) 一种废铅酸蓄电池湿法回收铅的方法
JP6648674B2 (ja) 金属マンガンの製造方法
Feng et al. Investigation of leaching kinetics of cerussite in sodium hydroxide solutions
CN108866337B (zh) 一种处理金属污泥的方法
CN102634819B (zh) 二氧化硫浸出氧化锰制取电解锰/电解二氧化锰的方法
CN105018726B (zh) 一种铅锌共生矿处理方法
JP6591675B2 (ja) 金属マンガンの製造方法
Formanek et al. Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries
JP7196974B1 (ja) 廃乾電池に含有されるマンガンの回収方法および回収設備
JP7107473B1 (ja) 廃乾電池からのマンガン回収方法および回収設備
JP7298753B1 (ja) 廃乾電池に含有されるマンガンの回収方法及び回収設備
JP7423104B1 (ja) リチウムイオン電池からの金属回収方法
WO2022185974A1 (ja) 廃乾電池からのマンガン回収方法および回収設備
JP2017150029A (ja) 金属マンガンの製造方法
Al-Mahbub et al. Metal recovery from waste dry cell batteries
Chernoburova et al. Processing and extraction of critical raw materials from residues
MX2013008030A (es) Proceso de lixiviacion y recuperacion simultáneas de dioxido de manganeso en una celda electrolitica.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783538

Country of ref document: EP

Kind code of ref document: A1