WO2015162712A1 - Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci - Google Patents

Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci Download PDF

Info

Publication number
WO2015162712A1
WO2015162712A1 PCT/JP2014/061355 JP2014061355W WO2015162712A1 WO 2015162712 A1 WO2015162712 A1 WO 2015162712A1 JP 2014061355 W JP2014061355 W JP 2014061355W WO 2015162712 A1 WO2015162712 A1 WO 2015162712A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor module
main terminal
potential side
conductor
semiconductor
Prior art date
Application number
PCT/JP2014/061355
Other languages
English (en)
Japanese (ja)
Inventor
行武 正剛
徹 増田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/061355 priority Critical patent/WO2015162712A1/fr
Publication of WO2015162712A1 publication Critical patent/WO2015162712A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a power conversion device such as a power module and an inverter device incorporating a semiconductor switching element used in the power conversion device.
  • the conventional high voltage (for example, 1200 V or higher) semiconductor module for switching has a structure in which holes are formed in both the module main terminal electrode surface and the external bus bar main terminal surface and tightened with bolts. It was. For this reason, the structure which makes a current path oppose in the main terminal part of the module was not taken. Further, as a connection technique that does not depend on bolt tightening, there is JP-A-2006-148098 (Patent Document 1).
  • connection is made to a receptacle provided on a backplane having a power bus layer (see means for solving the problems).
  • the module and the bus bar are connected without using bolting in a configuration called an edge card connector.
  • the forward path and the return path of the current can be configured to always face each other.
  • a specific connection portion is not disclosed.
  • the object of the present invention is to suppress parasitic inductance that increases at the main terminal connection portion between the semiconductor module and the external bus bar, to secure a heat dissipation path for this connection portion, and also to carry the semiconductor module and assemble it to the inverter device.
  • An object of the present invention is to provide a semiconductor module having ease of handling and a power converter using the same.
  • a semiconductor module of the present invention is, for example, a semiconductor module including a plurality of semiconductor switching elements, the main terminal on the high potential side of the semiconductor module, and the low potential side of the semiconductor module.
  • the main terminal of the semiconductor module is formed of a surface in which main connection surfaces face each other in the semiconductor module.
  • the power converter of the present invention is characterized by comprising the semiconductor module of the present invention.
  • the loop area of the current can be minimized in the module main terminal connection portion and the main terminal connection portion does not appear outside the module, the module can be easily handled. Furthermore, it becomes easy to dissipate heat from the main terminal connection portion.
  • the semiconductor module of the present invention includes, for example, the semiconductor module 0 including a plurality of semiconductor switching elements, the power terminal 1T on the high potential side of the semiconductor module 0 and the power terminal on the low potential side of the semiconductor module 0. 2T is constituted by opposing surfaces in the semiconductor module 0.
  • the high potential side main terminal and the low potential side main terminal are provided inside the semiconductor module, and the high potential side main terminal is provided.
  • At least one of the main terminal on the high potential side and the main terminal on the low potential side has a structure in contact with a main heat radiating plate that radiates heat generated from the semiconductor via an insulator. It may be.
  • each of the high potential side main terminal and the low potential side main terminal is in contact with the first conductor and the second conductor on at least two surfaces. You may make it have a surface.
  • each of the main terminal on the high potential side and the main terminal on the low potential side has a taper angle and is in contact with the first conductor and the second conductor. You may make it have.
  • each of the high-potential side main terminal and the low-potential side main terminal is a plane perpendicular to a plane forming the main terminal, and the first conductor and the second potential You may make it have a surface which contacts a conductor.
  • the power converter of the present invention is characterized by including the semiconductor module of the present invention.
  • FIG. 1 is an example of an image diagram of a cross-sectional configuration of a power module according to a first embodiment of the present invention.
  • Reference numeral 5a denotes a switching semiconductor element such as an IGBT or a MOSFET. In the present embodiment, a case where a MOSFET is used as the switching semiconductor element 5a will be described as an example.
  • Reference numeral 5b denotes a reflux diode.
  • the connection layer 6a is an electrical and thermal connection between the drain of the switching semiconductor element 5a and the first wiring layer 1
  • the connection layer 6b is an electrical and thermal connection between the cathode of 5b and the first wiring layer 1.
  • the wiring layer 1 is connected via an insulating layer 3 to a housing 4 that also serves as a heat dissipation base, and constitutes a main heat dissipation path.
  • the connection layer 7a is connected to the source of the switching semiconductor element 5a and the second wiring layer 2, and the connection layer 7b is connected to the anode of 5b and the second wiring layer 2 to carry out electrical and thermal connection. Yes.
  • the connection layer 7c is responsible for electrical connection between the gate of the switching semiconductor element 5a and the control signal wiring 2c.
  • 0 is a semiconductor module, and an external bus bar 10 is connected to the left opening in the figure.
  • 11 of the bus bar 10 is a wiring layer 11 connected to the first wiring layer 1 of the semiconductor module, and 12 is a wiring layer 12 connected to the second wiring layer 2 of the semiconductor module.
  • Reference numeral 13 denotes an insulating layer, which provides insulation between the wiring layer 11 and the wiring layer 12.
  • the bus bar 10 is inserted into the semiconductor module 0 and realizes an electrically good connection by using a sandwiching means (not shown) for reducing the resistance of the contact portion. Further, the portions not shown around the semiconductor elements 5a and 5b are filled with, for example, an insulator such as silicon gel, and are responsible for the insulation of the high breakdown voltage semiconductor elements.
  • the portion connecting the semiconductor module and the external bus bar is formed by the adjacent opposing surfaces, the parasitic inductance can be reduced. Further, protrusions such as main terminals are eliminated from the outside of the semiconductor module, which facilitates handling during mounting.
  • FIG. 2 is an example of an image diagram of a cross-sectional configuration of the power module according to the second embodiment of the present invention. Differences from the embodiment of FIG. 1 will be mainly described.
  • the semiconductor elements 5a and 5b are flip-chip mounted and have a structure in which the most heat-generating surface of the semiconductor element is directed to the main heat dissipation path side.
  • the first wiring layer 2 connected to the high potential power source has a structure folded at the right end in the drawing.
  • FIG. 3a shows a configuration in which the wiring layer is tapered to facilitate insertion during fitting.
  • FIG. 3b shows a configuration in which terminals stacked in a strip shape are stacked several times. By comprising in this way, while making a contact area increase significantly, since it contacts on both sides of strip shape, the quality of contact can be improved.
  • FIG. 3c shows a configuration in which each terminal contacts at two or more surfaces formed into a tapered shape.
  • connection portions having different potentials face each other through the thin insulating layer, the parasitic inductance can be greatly reduced.
  • FIG. 4 is an image view of the connecting portion between the semiconductor module and the external bus bar as viewed from the direction perpendicular to the current path surface.
  • 1 is a connection terminal portion on the semiconductor module side
  • 11 is a connection terminal portion on the external bus bar side.
  • the compression direction for reducing the contact resistance of the connection portion is a direction perpendicular to the current path surface. For this reason, since there is no insulating layer on the line where the compressive force is applied, there is no stress on the insulating layer due to compression, and there is no need to consider deterioration of the reliability of the insulating layer.
  • FIG. 5 is a structural diagram showing an example of the structure of the pressing plate for reducing the contact resistance of the main terminal connecting portion of the present invention.
  • 31 and 32 are pressing plates, and a module-side bus bar (not shown) and a main terminal connecting portion of an external bus bar are sandwiched between the two pressing plates.
  • the holding plate is sandwiched from above and below with bolts 33 and tightened with bolts 33 to reduce the contact resistance of the connecting portion.
  • Protruding portions 34 are provided in the portion where the pressing plate is sandwiched, and portions where the contact load is increased are provided in a matrix to further reduce the contact resistance.
  • FIG. 6 is a diagram showing an example of an inverter circuit when the semiconductor module of the present invention is applied to a power converter.
  • Reference numeral 40 denotes a three-phase (U, V, W) inverter.
  • Reference numeral 41 denotes a semiconductor module according to the present invention, which includes a switching element 42 and a reflux diode element 43.
  • Reference numeral 44 denotes a smoothing filter capacitor, and reference numeral 50 denotes an electric motor serving as a load.
  • the rated voltage is a loss under one class. It is possible to use a semiconductor module that suppresses the above. Therefore, the loss and cost of the inverter can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

La présente invention concerne, afin de supprimer l'inductance parasite qui augmente dans une partie connexion de borne principale entre un module à semi-conducteurs et une barre omnibus externe, l'obtention d'un chemin de dissipation de chaleur destiné à la partie connexion et la garantie d'un traitement facile lorsque le module à semi-conducteurs est transporté et assemblé à un dispositif inverseur. Le module à semi-conducteurs de l'invention est caractérisé en ce que, dans un module à semi-conducteurs (0) comportant une pluralité d'éléments de commutation à semi-conducteurs intégrés, une borne d'alimentation électrique (1T) côté potentiel haut du module à semi-conducteurs (0) et une borne d'alimentation électrique (2T) côté potentiel bas du module à semi-conducteurs (0) sont formées à partir des surfaces en regard l'une de l'autre dans le module à semi-conducteurs (0). En outre, le convertisseur de puissance est caractérisé en ce qu'il est configuré pour être doté du module à semi-conducteurs mentionné ci-dessus.
PCT/JP2014/061355 2014-04-23 2014-04-23 Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci WO2015162712A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061355 WO2015162712A1 (fr) 2014-04-23 2014-04-23 Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061355 WO2015162712A1 (fr) 2014-04-23 2014-04-23 Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci

Publications (1)

Publication Number Publication Date
WO2015162712A1 true WO2015162712A1 (fr) 2015-10-29

Family

ID=54331904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061355 WO2015162712A1 (fr) 2014-04-23 2014-04-23 Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci

Country Status (1)

Country Link
WO (1) WO2015162712A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067998A (ja) * 2016-10-18 2018-04-26 三菱電機株式会社 電力変換装置
JP2018186686A (ja) * 2017-04-27 2018-11-22 富士電機株式会社 電力変換装置
JP2019096718A (ja) * 2017-11-22 2019-06-20 三菱電機株式会社 半導体装置
WO2019239771A1 (fr) * 2018-06-11 2019-12-19 ローム株式会社 Module semi-conducteur
US10720378B2 (en) 2017-08-31 2020-07-21 Delta Electronics (Shanghai) Co., Ltd Component structure, power module and power module assembly structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218554A (ja) * 2001-11-14 2003-07-31 Yazaki Corp 電源分配箱及びパワーデバイスモジュール
JP2006148098A (ja) * 2004-11-24 2006-06-08 General Electric Co <Ge> パワーモジュール、相脚パワーモジュール組立体および3相インバータ組立体
JP2006294849A (ja) * 2005-04-11 2006-10-26 Mitsubishi Electric Corp 半導体装置
JP2010056206A (ja) * 2008-08-27 2010-03-11 Toyota Motor Corp 半導体モジュール
JP2010104135A (ja) * 2008-10-23 2010-05-06 Hitachi Ltd 電力変換装置及び車載用電機システム
JP2011135737A (ja) * 2009-12-25 2011-07-07 Denso Corp 電力変換装置
JP2013215071A (ja) * 2012-04-04 2013-10-17 Denso Corp 電力変換器
JP2014013826A (ja) * 2012-07-04 2014-01-23 Yazaki Corp 電子部品実装基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218554A (ja) * 2001-11-14 2003-07-31 Yazaki Corp 電源分配箱及びパワーデバイスモジュール
JP2006148098A (ja) * 2004-11-24 2006-06-08 General Electric Co <Ge> パワーモジュール、相脚パワーモジュール組立体および3相インバータ組立体
JP2006294849A (ja) * 2005-04-11 2006-10-26 Mitsubishi Electric Corp 半導体装置
JP2010056206A (ja) * 2008-08-27 2010-03-11 Toyota Motor Corp 半導体モジュール
JP2010104135A (ja) * 2008-10-23 2010-05-06 Hitachi Ltd 電力変換装置及び車載用電機システム
JP2011135737A (ja) * 2009-12-25 2011-07-07 Denso Corp 電力変換装置
JP2013215071A (ja) * 2012-04-04 2013-10-17 Denso Corp 電力変換器
JP2014013826A (ja) * 2012-07-04 2014-01-23 Yazaki Corp 電子部品実装基板

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067998A (ja) * 2016-10-18 2018-04-26 三菱電機株式会社 電力変換装置
JP2018186686A (ja) * 2017-04-27 2018-11-22 富士電機株式会社 電力変換装置
US10720378B2 (en) 2017-08-31 2020-07-21 Delta Electronics (Shanghai) Co., Ltd Component structure, power module and power module assembly structure
JP2019096718A (ja) * 2017-11-22 2019-06-20 三菱電機株式会社 半導体装置
WO2019239771A1 (fr) * 2018-06-11 2019-12-19 ローム株式会社 Module semi-conducteur
CN112352314A (zh) * 2018-06-11 2021-02-09 罗姆股份有限公司 半导体模块
JPWO2019239771A1 (ja) * 2018-06-11 2021-07-08 ローム株式会社 半導体モジュール
US11328985B2 (en) 2018-06-11 2022-05-10 Rohm Co., Ltd. Semiconductor module
JP7228587B2 (ja) 2018-06-11 2023-02-24 ローム株式会社 半導体モジュール
US11664298B2 (en) 2018-06-11 2023-05-30 Rohm Co., Ltd. Semiconductor module
CN112352314B (zh) * 2018-06-11 2023-11-28 罗姆股份有限公司 半导体模块
US11923278B2 (en) 2018-06-11 2024-03-05 Rohm Co., Ltd. Semiconductor module

Similar Documents

Publication Publication Date Title
US10153708B2 (en) Three-level power converter
US9660356B1 (en) Semiconductor device
KR101522089B1 (ko) 반도체 장치
US9129932B2 (en) Semiconductor module
JP5169353B2 (ja) パワーモジュール
WO2015162712A1 (fr) Module à semi-conducteurs et convertisseur de puissance faisant appel à celui-ci
US9780684B2 (en) Power converter
WO2015072105A1 (fr) Module de puissance
US10027094B2 (en) Power module, power converter and drive arrangement with a power module
US11587921B2 (en) Semiconductor device
US10438872B2 (en) Semiconductor device and lead frame
US9209099B1 (en) Power semiconductor module
JP5817702B2 (ja) 半導体モジュール
US11088630B2 (en) Power converter
US10438865B2 (en) Semiconductor device
US11495527B2 (en) Semiconductor module
US11901837B2 (en) Power control unit
US11450647B2 (en) Semiconductor module and semiconductor device including the same
US10103096B2 (en) Semiconductor device
US20190229040A1 (en) Semiconductor device and method of manufacturing the same
US11901836B2 (en) Power control unit
JP2014127582A (ja) 半導体モジュール
CN111799581B (zh) 电子电路单元
JP2013222886A (ja) 半導体モジュール
US20230307332A1 (en) Power Semiconductor Module and Method for Producing a Power Semiconductor Module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP