WO2015161701A1 - 介孔材料包覆式钴基费托合成催化剂及其制备方法 - Google Patents

介孔材料包覆式钴基费托合成催化剂及其制备方法 Download PDF

Info

Publication number
WO2015161701A1
WO2015161701A1 PCT/CN2015/072402 CN2015072402W WO2015161701A1 WO 2015161701 A1 WO2015161701 A1 WO 2015161701A1 CN 2015072402 W CN2015072402 W CN 2015072402W WO 2015161701 A1 WO2015161701 A1 WO 2015161701A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous material
cobalt
tropsch synthesis
synthesis catalyst
based fischer
Prior art date
Application number
PCT/CN2015/072402
Other languages
English (en)
French (fr)
Inventor
饶莎莎
宋德臣
刘倩倩
郑申棵
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to CA2946638A priority Critical patent/CA2946638A1/en
Priority to AU2015251403A priority patent/AU2015251403A1/en
Priority to JP2016563174A priority patent/JP6337144B2/ja
Priority to KR1020167032475A priority patent/KR101906027B1/ko
Priority to RU2016145414A priority patent/RU2642451C1/ru
Priority to EP15783307.0A priority patent/EP3135372A4/en
Publication of WO2015161701A1 publication Critical patent/WO2015161701A1/zh
Priority to US15/331,925 priority patent/US10363550B2/en
Priority to AU2018205112A priority patent/AU2018205112C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating

Definitions

  • the invention belongs to the field of industrial catalytic Fischer-Tropsch synthesis, and in particular to a mesoporous material coated cobalt-based Fischer-Tropsch synthesis catalyst and a preparation method thereof.
  • the basic reaction of Fischer-Tropsch synthesis is: CO + 2H 2 ⁇ (-CH 2 -) + H 2 O. From this reaction we can see that the product water is produced along with the hydrocarbons, and in some reactors, such as slurry bed reactors, the concentration of water can be very high due to post-mixing.
  • the most widely used industrialized Fischer-Tropsch catalyst active species are mainly iron and cobalt.
  • the active species of the catalyst is metallic cobalt, which is likely to be oxidized by 50% by weight of the product water, thereby deactivating the catalyst, and the higher the conversion of CO, the more severe the deactivation.
  • Bertole et al. J.
  • Chinese patent CN101203304A discloses an oxidized support-supported cobalt-based catalyst comprising aluminum and 0.01-20% of lithium, wherein lithium is mainly present in the form of lithium aluminate, and the lithium aluminate-containing carrier is improved. It is water resistant and reduces the formation of cobalt aluminate, which has high activity and high C 5 + selectivity.
  • the preparation method of the carrier is severe, and it is required to calcine for a long time at a high temperature of 700 to 1000 °C.
  • Chinese patent CN1785515A reports a catalyst for synthesizing middle distillate oil from syngas.
  • the catalyst is based on mesoporous zirconia.
  • the catalyst has a cobalt content of 5 to 35 wt%, a precious metal content of 0 to 2 wt%, and non-noble metal oxidation. was 0 ⁇ 10wt%, the catalyst has high activity, good stability, selectivity C 11 ⁇ C 20 hydrocarbons is high and good mechanical properties, but preparation of mesoporous zirconium oxide support is complicated and costly.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a mesoporous material coated cobalt-based Fischer-Tropsch catalyst with long life, good stability and controllable shell thickness and a preparation method thereof.
  • the present invention provides a mesoporous material coated cobalt-based Fischer-Tropsch synthesis catalyst comprising a silica support, which is special in that the surface of the silica support is loaded with active component cobalt and is selected.
  • the zirconium auxiliary agent, the active component cobalt and the selective auxiliary zirconium are coated with a mesoporous material shell layer.
  • the catalyst of the invention firstly supports the active component on the surface of the silica carrier by impregnation method, and then coats the mesoporous material having the regular pores on the outside of the active component, and the thickness of the shell layer of the mesoporous material can be controlled by changing parameters.
  • the thickness of the mesoporous material shell layer is designed to be 1.8 to 13 ⁇ m, and the preferred thickness is 2.0 to 6.0 ⁇ m. In this way, the mesoporous material shell coats the active component inside the pores, avoiding agglomeration and shedding of the active components, and the regular pores of the mesoporous material provide mass transfer channels of CO and H 2 to ensure high reactivity of the catalyst. .
  • the active metal Co is prevented from being deactivated by oxidation of water generated during the reaction, and the outer layer of the mesoporous material is covered with A layer of a hydrophobic organic compound.
  • the silica carrier is an inorganic silica gel.
  • the inorganic silica gel has a specific surface area of 150 to 350 m 2 /g, an average pore diameter of 3 to 50 nm, a pore volume of 0.7 to 1.7 mL/g, and a particle diameter of 20 to 200 ⁇ m.
  • the inorganic silica gel has a specific surface area of 200 to 300 m 2 /g, an average pore diameter of 8 to 13 nm, a pore volume of 0.75 to 1.3 mL/g, and a particle diameter of 40 to 150 ⁇ m.
  • the active component cobalt is contained in an amount of 10 to 25% by weight based on the total weight of the catalyst, and the selective auxiliary zirconium is contained in an amount of 5 to 10% by weight based on the total weight of the catalyst.
  • the active component cobalt is contained in an amount of 15 to 20% by weight based on the total weight of the catalyst, and the selective auxiliary zirconium is contained in an amount of 5 to 8% by weight based on the total weight of the catalyst.
  • the active component cobalt is present in an amount of from 20 to 25% by weight based on the total weight of the catalyst, and the optional promoter zirconium is present in an amount of from 8 to 10% by weight based on the total weight of the catalyst.
  • the catalyst has a specific surface area of from 150 to 400 m 2 /g, an average pore diameter of from 2 to 40 nm, and a pore volume of from 0.5 to 1.4 mL/g.
  • the catalyst has a specific surface area of from 250 to 350 m 2 /g, an average pore diameter of from 3 to 9 nm, and a pore volume of from 0.6 to 1.0 mL/g.
  • the preparation method of the above mesoporous material coated cobalt-based Fischer-Tropsch synthesis catalyst comprises the following steps:
  • silica carrier is immersed in an aqueous solution of zirconium salt, aged for 12 to 24 hours, dried at 70 to 120 ° C for 8 to 24 hours, and then calcined at 400 to 500 ° C for 3 to 12 hours to obtain a supported zirconium.
  • Silica carrier is immersed in an aqueous solution of zirconium salt, aged for 12 to 24 hours, dried at 70 to 120 ° C for 8 to 24 hours, and then calcined at 400 to 500 ° C for 3 to 12 hours to obtain a supported zirconium.
  • the obtained zirconium-loaded silica carrier is immersed in an aqueous solution of a cobalt salt, aged for 12 to 24 hours, dried at 70 to 120 ° C for 8 to 24 hours, and then calcined at 400 to 500 ° C for 3 to 12 hours to obtain An initial cobalt-based Fischer-Tropsch synthesis catalyst;
  • the obtained initial cobalt-based Fischer-Tropsch synthesis catalyst is immersed in the obtained mesoporous material precursor solution, and then subjected to crystallization, washing, drying and calcination to obtain a mesoporous material coated cobalt-based Fischer-Tropsch synthesis catalyst.
  • the zirconium salt is one of zirconium nitrate or zirconyl nitrate, preferably zirconium nitrate.
  • the cobalt salt is one of cobalt carbonate or cobalt nitrate, preferably cobalt nitrate.
  • the concentration of the nitric acid solution is 1 to 2 mol/L
  • the stirring temperature is 25 to 45 ° C
  • stirring until the solution becomes clear, and then adding orthosilicate, stirring is continued for 12 to 24 hours
  • Mesoporous material precursor solution is 1 to 2 mol/L
  • the templating agent P123 is a known triblock copolymer, which is collectively referred to as polyoxyethylene-polyoxypropylene-polyoxyethylene, and has a molecular formula of PEO-PPO-PEO having the formula EO 20 PO 70 EO 20 .
  • the crystallization conditions are temperature 80-130 ° C, time 20-100 h, rotation speed 7-20 r / min; washing conditions are deionized water washing to neutral; drying conditions are 80-120 Dry at °C for 10-20 h; calcination conditions are maintained at 400-550 °C for 5-12 h.
  • the crystallization conditions are a temperature of 90 to 120 ° C, a time of 30 to 80 h, and a rotation speed of 7 to 15 r/min.
  • the hydrophobic organic solution is one of polymethyltriethoxysilane, ⁇ -aminopropyltriethoxysilane or trimethylchlorosilane.
  • the organic solvent for washing is one of n-hexane, acetone or ethanol.
  • the sealing time of the obtained mesoporous material coated cobalt-based Fischer-Tropsch synthesis catalyst is immersed in the hydrophobic organic solution for 3-8 hours, and then the cleaning is performed with the organic solvent for 2 to 3 times.
  • the invention has the beneficial effects that the developed cobalt-based Fischer-Tropsch synthesis catalyst breaks the limitation of the conventional cobalt-based catalyst and eggshell catalyst by first wrapping the mesoporous material shell on the surface of the catalyst, and the thickness of the shell layer. Controlled by process parameters, the pore structure of the mesoporous material provides a channel for diffusion of CO and H 2 while protecting the active component of the catalyst. Further, the introduction of superhydrophobic organic molecules on the mesoporous material shell effectively blocks water molecules from exiting the channels.
  • the Co-based catalyst of the invention has the characteristics of long service life, high reaction activity, good stability, high C 5 + selectivity and low methane selectivity, and is particularly suitable for a bubbling slurry bed reactor or a continuous stirred slurry bed reaction. Device.
  • Figure 1 is a schematic view showing the process flow of the preparation of the catalyst of the present invention.
  • FIG. 2 is a schematic view showing the TEM photomicrostructure of the shell layer thickness of the catalyst B of the present invention.
  • Fig. 3 is a schematic view showing the TEM photomicrostructure of the shell layer thickness of the catalyst C of the present invention.
  • FIG. 4 is a schematic view showing the TEM photomicrostructure of the shell layer thickness of the catalyst D of the present invention.
  • Fig. 5 is a schematic view showing the TEM photomicrostructure of the shell thickness of the catalyst E of the present invention.
  • Fig. 6 is a schematic view showing the TEM photomicrostructure of the shell layer thickness of the catalyst F of the present invention.
  • Fig. 7 is a schematic view showing the TEM photomicrostructure of the shell thickness of the catalyst G of the present invention.
  • the composition of Catalyst B includes an inorganic silica gel support, an active component Co, an auxiliary Zr, and a mesoporous material shell.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • the preparation method of Catalyst B is as follows:
  • the obtained catalyst B had a specific surface area of 291 m 2 /g, a pore volume of 1.16 mL/g, an average pore diameter of 10.6 nm, a thin shell thickness, and a thickness of 1.8 ⁇ m.
  • the TEM photograph of the shell thickness of the catalyst B is shown in FIG. 2 . Show.
  • the composition of Catalyst C includes an inorganic silica gel support, an active component Co, an auxiliary Zr, and a mesoporous material shell layer as described in Example 1.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • the preparation method of Catalyst C was substantially the same as that of Example 1, except that the crystallization time was 60 h instead of the crystallization time of Step 3) in Example 1.
  • the obtained catalyst C was found to have a specific surface area of 301 m 2 /g, a pore volume of 0.98 mL/g, an average pore diameter of 9.5 nm, a thick shell layer, and a thickness of 5 ⁇ m.
  • a TEM photograph of the shell thickness of Catalyst C is shown in FIG.
  • the composition of the catalyst D includes an inorganic silica gel support, an active component Co, an auxiliary Zr, and a shell layer of the mesoporous material structure described in Example 1.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • the catalyst had a specific surface area of 320 m 2 /g, a pore volume of 1.02 mL/g, an average pore diameter of 8.9 nm, and a shell thickness of 13 ⁇ m.
  • the preparation method of the catalyst D is basically the same as that of the embodiment 1, except that the crystallization time is 100 hours. Instead of the crystallization time of step 3) in Example 1.
  • a TEM photograph of the shell thickness of Catalyst D is shown in FIG.
  • the composition of the catalyst E includes an inorganic silica gel carrier, an active component Co, an auxiliary Zr, a mesoporous material shell layer, and a trimethylchlorosilane hydrophobic organic compound layer.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • the preparation method of the catalyst E is as follows:
  • the obtained catalyst E was found to have a specific surface area of 279 m 2 /g, a pore volume of 0.86 mL/g, an average pore diameter of 8.2 nm, a shell thickness of 2.5 ⁇ m, and a TEM photograph of the shell thickness of the catalyst E as shown in FIG. 5 .
  • the composition of the catalyst F includes an inorganic silica gel carrier, an active component Co, an auxiliary Zr, a mesoporous material shell layer, and a polymethyltriethoxysilane hydrophobic organic compound layer.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • Catalyst F was prepared in substantially the same manner as in Example 4, except that polymethyltriethoxysilane was used in place of trimethylchlorosilane in Example 4.
  • the specific surface area of the catalyst F was 282 m 2 /g, the pore volume was 0.91 mL/g, the average pore diameter was 7.9 nm, and the thickness of the shell layer was 2.1 ⁇ m.
  • the TEM photograph of the shell thickness of the catalyst F is shown in Fig. 6.
  • the composition of the catalyst G includes an inorganic silica gel support, an active component Co, an auxiliary Zr, a mesoporous material shell layer, and a ⁇ -aminopropyltriethoxysilane hydrophobic organic compound layer.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • Catalyst G was prepared in substantially the same manner as in Example 4, except that ⁇ -aminopropyltriethoxysilane was used in place of trimethylchlorosilane in Example 4.
  • the specific surface area of the catalyst G was 280 m 2 /g, the pore volume was 0.83 mL/g, the average pore diameter was 8.5 nm, and the thickness of the shell layer was 2.3 ⁇ m.
  • the TEM photograph of the shell thickness of the catalyst G is shown in Fig. 7.
  • the composition of the catalyst H includes an inorganic silica gel support, an active component Co, an auxiliary Zr, a mesoporous material shell layer, and a ⁇ -aminopropyltriethoxysilane hydrophobic organic compound layer.
  • the content of the Zr element was 8 wt%, and the content of the Co element was 25 wt%.
  • the preparation method of the catalyst H is as follows:
  • an inorganic silica gel carrier having a specific surface area of 150 m 2 /g, a pore volume of 1.3 mL/g, an average pore diameter of 8 nm, and an average particle diameter of 90 ⁇ m was immersed in 45 mL of an aqueous solution containing 16.74 g of Zr(NO 3 ) 4 ⁇ 5H 2 O. After aging for 24 hours in the air, it was dried at 120 ° C for 10 h, and then calcined at 500 ° C for 3 h in a muffle furnace to obtain a zirconium-loaded inorganic silica gel carrier;
  • the catalyst H was found to have a specific surface area of 200 m 2 /g, a pore volume of 1.0 mL/g, an average pore diameter of 4.0 nm, and a shell thickness of 2.0 ⁇ m.
  • the composition of the catalyst I includes an inorganic silica gel support, an active component Co, an auxiliary Zr, a mesoporous material shell layer, and a ⁇ -aminopropyltriethoxysilane hydrophobic organic compound layer.
  • the content of the Zr element was 10% by weight, and the content of the Co element was 10% by weight.
  • the preparation method of the catalyst I is as follows:
  • the specific surface area of the catalyst I was determined to be 350 m 2 /g, the pore volume was 0.6 mL/g, the average pore diameter was 9 nm, and the shell layer thickness was 6 ⁇ m.
  • the composition of the conventional catalyst A includes an inorganic silica gel carrier, an active component Co, and an auxiliary agent Zr.
  • the content of the Zr element was 5% by weight, and the content of the Co element was 20% by weight.
  • the preparation method of Catalyst A is as follows:
  • the zirconium-loaded inorganic silica gel carrier was immersed in 63 mL of an aqueous solution containing 39.43 g of Co(NO 3 ) 3 ⁇ 6H 2 O, aged in air for 16 h, placed at 110 ° C for 8 h, and then in the muffle. The furnace was calcined at 450 ° C for 10 h to obtain a cobalt-based Fischer-Tropsch synthesis catalyst A.
  • the conversion rate of CO does not change much, ranging from 55 to 65%, mainly because the shell layer of the mesoporous material has a certain The thickness, but the particle size of the catalyst is small, the mass transfer resistance is also relatively small, and the mesoporous material shell provides a mass transfer channel for H 2 and CO.
  • the selectivity of liquid hydrocarbons is slightly increased, and the selectivity of methane is slightly reduced, probably because the shell of the mesoporous material can prevent the active components from falling off due to friction during activation and transfer.
  • the mesoporous material shell layer can block the moisture of the bulk phase from directly contacting the active center.
  • the selectivity of liquid hydrocarbons increases, and the selectivity of methane also decreases significantly. This indicates that the catalyst can be effectively prevented from being water after introducing a hydrophobic substance into the shell layer of the mesoporous material. Oxidized and deactivated, when the moisture of the small molecule is generated, it is blown by the syngas along the layer of the hydrophobic organic compound to the outside of the shell. It can be seen that the Co-based catalyst prepared by the invention has high reactivity, high C 5 + selectivity and low methane selectivity.
  • the selectivity of the liquid hydrocarbon is increased more. Since the molecular structure of the organic substance of the modified catalyst F is relatively small, the hydrophobicity is slightly worse than that of the catalysts E and G. The organic matter of the modified catalyst E is more expensive than the modified catalyst G, and is volatile and highly corrosive. Catalyst H has a small specific surface area and pore size, and its activity and selectivity of liquid hydrocarbons are slightly reduced. The particle size of catalyst I is larger, the shell layer is thicker, there is a certain mass transfer resistance, and the conversion rate of CO is decreased. Catalyst G has a longer crystallization time, so catalyst G is superior to catalysts E, F, H, and I.
  • the activity of the conventional catalyst A without any modification reaches 800 h, and the activity begins to decrease. This may be due to the fact that the metal Co on the surface of the catalyst is detached from the surface of the catalyst due to friction under a long stirring state. Moreover, the water formed by the reaction causes the catalyst to be oxidized and deactivated. When the shell of the mesoporous material is coated to form catalysts B and G, the reaction time is extended to 1500 h, and the conversion of CO is still above 55%. It may be that the shell layer of the catalyst can protect the active center of the catalyst and prevent the metal part of the catalyst. Falling off due to friction.
  • the catalyst G modified by hydrophobic organic compounds has a high catalytic activity when the reaction is carried out for 2500 h, the conversion of CO is still about 60%, and the selectivity of liquid hydrocarbons is about 85%, indicating that the life of the catalyst is significantly prolonged.
  • the introduction of the hydrophobic group on the mesoporous material shell can effectively prevent the metal portion of the catalyst from falling off, and can effectively prevent the moisture from contacting the active center to deactivate the catalyst.
  • the Co-based catalyst prepared by the present invention has excellent stability and effectively improves the service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种介孔材料包覆式钴基费托合成催化剂及其制备方法。该催化剂包括二氧化硅载体,二氧化硅载体表面负载有活性组分钴和选择性助剂锆,活性组分钴和选择性助剂锆外面包覆有介孔材料壳层。其制备方法包括:制取负载锆的二氧化硅载体;以该载体为基础制得初始钴基费托合成催化剂;配制介孔材料前驱溶液;通过浸渍、晶化、洗涤、干燥和焙烧,获得介孔材料包覆式钴基费托合成催化剂。本发明通过介孔材料壳层包裹保护催化剂活性成分,壳层厚度可控,使用寿命长,反应活性较高,稳定性好,介孔材料的孔道结构提供了可供CO和H2扩散的通道,C5 +选择性高、甲烷选择性低。特别适用于鼓泡浆态床反应器或者连续搅拌浆态床反应器。

Description

介孔材料包覆式钴基费托合成催化剂及其制备方法 技术领域
本发明属于工业催化费托合成领域,具体地指一种介孔材料包覆式钴基费托合成催化剂及其制备方法。
背景技术
煤、石油和天然气是人类文明赖以生存和发展的重要能源基础,是一个国家经济可持续发展和安全稳定的保障。随着人类的不断开采,人类将面临严重的能源危机,所以寻找可再生的新能源是科学家们急需解决的问题。我国是一个农业大国,拥有大量的可再生的各种生物质,将可再生的生物能源代替化石能源将是解决能源危机的重要途径。
将生物质气化制合成气,再将合成气(CO+H2)在催化剂的作用下转变成碳氢化合物(-CH2-)的过程称作费托合成反应(FTS)。将生物质转化成合成气再经费托合成生产各种油品能够有效地解决能源危机。
费托合成的基本反应为:CO+2H2→(-CH2-)+H2O。由这个反应式我们可以看到产物水是伴随着碳氢化合物一起产生的,而且在某些反应器中,比如浆态床反应器中,由于后混合,水的浓度会达到很高。目前应用最广泛的工业化的费托催化剂活性物种主要是铁和钴。对于钴基催化的费托合成反应,催化剂活性物种为金属钴,很可能被重量占总产物50%的产物水氧化,从而使催化剂失活,而且CO的转化率越高,失活越严重。例如,Bertole等(J.Catal.,2002,210:84-96)报道水会造成非负载钴基催化剂的失活,因为高的水分压(>0.4MPa)极易造成催化剂的烧结,从而减小了钴的比表面,导致金属位活性的降低或催化剂表面CO吸附量的减少。Batholomew(Appl.Catal.A,2001,212.17-60)也认为水蒸汽可以增加负载型催化剂的烧结速率。由于钴基催化剂的成本相对较高,因此催化剂的稳定性、活性和选择性要求都会比较高,制备对水不敏感的催化剂就显得非常有必要。
中国专利CN101203304A中公开了一种氧化载体负载钴基催化剂,该氧化载体包括铝和0.01~20%的锂,其中锂主要是以铝酸锂的形式存在,这种含铝酸锂的载体具有改善的耐水性,并且减少铝酸钴的形成,该催化剂具有高活性和高C5 +的选择性。但是该载体的制备方法苛刻,需要在700~1000℃的高温下长时间煅烧。
中国专利CN1785515A报道了一种用合成气合成中间馏分油的催化剂,该催化剂以介孔二氧化锆为载体,该催化剂金属钴的含量为5~35wt%,贵金属含量0~2wt%,非贵金属氧化物0~10wt%,该催化剂具有活性高,稳定性好,C11~C20烃的选择性高以及良好的机械性能,但是载体介孔氧化锆的制备方法复杂,成本高。
发明内容
本发明的目的就是要克服现有技术所存在的不足,提供一种寿命长、稳定性好、壳层厚度可控的介孔材料包覆式钴基费托合成催化剂及其制备方法。
为实现上述目的,本发明所提供的介孔材料包覆式钴基费托合成催化剂,包括二氧化硅载体,其特殊之处在于:所述二氧化硅载体表面负载有活性组分钴和选择性助剂锆,所述活性组分钴和选择性助剂锆外面包覆有介孔材料壳层。
本发明的催化剂是先将活性组分通过浸渍法负载在二氧化硅载体表面,然后在活性组分外面包覆具有规整孔道的介孔材料,介孔材料的壳层厚度可通过改变参数加以控制。所述介孔材料壳层的厚度设计为1.8~13μm,优选的厚度为2.0~6.0μm。这样,介孔材料壳层将活性成分包覆在孔道内部,避免了活性成分的团聚和脱落,同时介孔材料的规整孔道提供了CO和H2的传质通道,保证了催化剂的高反应活性。
为了防止催化剂在反应过程中或运输转移过程中由于活性组分脱落而减少催化剂的活性,避免活性金属Co被反应过程中生成的水氧化而失活,所述介孔材料壳层外面还覆盖有疏水性有机化合物层。
本发明中,所述二氧化硅载体采用无机硅胶。
优选地,所述无机硅胶的比表面积为150~350m2/g、平均孔径为3~50nm、孔容为0.7~1.7mL/g、粒径为20~200μm。
最佳地,所述无机硅胶的比表面积为200~300m2/g、平均孔径为8~13nm、孔容为0.75~1.3mL/g、粒径40~150μm。
本发明中,所述活性组分钴的含量占催化剂总重量的10~25%,所述选择性助剂锆的含量占催化剂总重量的5~10%。
优选地,所述活性组分钴的含量占催化剂总重量的15~20%,所述选择性助剂锆的含量占催化剂总重量的5~8%。
最佳地,所述活性组分钴的含量占催化剂总重量的20~25%,所述选择性助剂锆的含量占催化剂总重量的8~10%。
本发明中,所述催化剂的比表面积为150~400m2/g,平均孔径为2~40nm,孔容为0.5~1.4mL/g。
进一步地,所述催化剂的比表面积为250~350m2/g,平均孔径为3~9nm、孔容为0.6~1.0mL/g。
上述介孔材料包覆式钴基费托合成催化剂的制备方法,包括以下步骤:
1)将二氧化硅载体浸渍在锆盐的水溶液中,陈化12~24h后,在70~120℃下干燥8~24h,再在400~500℃下焙烧3~12h,获得负载锆的二氧化硅载体;
2)将所得负载锆的二氧化硅载体浸渍在钴盐的水溶液中,陈化12~24h后,在70~120℃下干燥8~24h,再在400~500℃下焙烧3~12h,获得初始钴基费托合成催化剂;
3)将模板剂P123溶解到硝酸溶液中,搅拌使其混合均匀,再加入正硅酸乙酯,继续搅拌12~30h,获得介孔材料前驱溶液;
4)将所得初始钴基费托合成催化剂浸渍在所得介孔材料前驱溶液中,然后进行晶化、洗涤、干燥和焙烧,即可获得介孔材料包覆式钴基费托合成催化剂。
进一步地,它还包括如下步骤:
5)将所得介孔材料包覆式钴基费托合成催化剂浸渍在疏水性有机溶液 中,密封3~12h后取出,再选择清洗用有机溶剂漂洗干净,最后在60~90℃条件下干燥3~8h,即可获得疏水性介孔材料包覆式钴基费托合成催化剂。
进一步地,所述步骤1)中,锆盐为硝酸锆或硝酸氧锆中的一种,优选硝酸氧锆。
进一步地,所述步骤2)中,钴盐为碳酸钴或硝酸钴中的一种,优选硝酸钴。
进一步地,所述步骤3)中,硝酸溶液的浓度为1~2mol/L,搅拌温度为25~45℃,搅拌至溶液变澄清,再加入正硅酸乙酯,继续搅拌12~24h,获得介孔材料前驱溶液。
所述模板剂P123采用已知的三嵌段共聚物,全称为聚氧乙烯-聚氧丙烯-聚氧乙烯,其分子式为PEO-PPO-PEO,其通式为EO20PO70EO20
更进一步地,所述步骤4)中,晶化条件为温度80~130℃、时间20~100h、转速7~20r/min;洗涤条件为去离子水洗涤至中性;干燥条件为80~120℃干燥10~20h;焙烧条件为400~550℃保持5~12h。
优选地,晶化条件为温度90~120℃、时间30~80h、转速7~15r/min。
更进一步地,所述步骤5)中,疏水性有机溶液为聚甲基三乙氧基硅烷、γ-氨丙基三乙氧基硅烷或三甲基氯硅烷中的一种。
更进一步地,所述步骤5)中,清洗用有机溶剂为正己烷、丙酮或乙醇中的一种。
再进一步地,所述步骤5)中,所得介孔材料包覆式钴基费托合成催化剂浸渍在疏水性有机溶液中的密封时间为3~8h,再选择清洗用有机溶剂漂洗2~3次。
本发明的有益效果在于:所研制的钴基费托合成催化剂,打破了传统的钴基催化剂和蛋壳型催化剂的局限性,通过先将介孔材料壳层包裹在催化剂的表面,壳层厚度可通过工艺参数控制,在保护了催化剂活性成分的同时,介孔材料的孔道结构提供了可供CO和H2扩散的通道。进一步地,在介孔材料壳层上引入超疏水有机分子,可有效地将水分子阻挡在通道之外。
这样,不仅避免了反应过程中由于催化剂的磨损或者催化剂在活化和转 移过程中活性组分的脱落,而且防止了反应过程中水蒸汽对催化剂的影响,从而大幅提高了催化剂的稳定性,有效地延长了催化剂的使用寿命,具有良好的工业应用前景。本发明的Co基催化剂具有使用寿命长、反应活性高、稳定性好、C5 +选择性高、甲烷选择性低的特点,特别适于鼓泡浆态床反应器或者连续搅拌浆态床反应器。
附图说明
图1为本发明催化剂的制备工艺流程示意图。
图2为本发明催化剂B的壳层厚度TEM照片显微结构示意图。
图3为本发明催化剂C的壳层厚度TEM照片显微结构示意图。
图4为本发明催化剂D的壳层厚度TEM照片显微结构示意图。
图5为本发明催化剂E的壳层厚度TEM照片显微结构示意图。
图6为本发明催化剂F的壳层厚度TEM照片显微结构示意图。
图7为本发明催化剂G的壳层厚度TEM照片显微结构示意图。
具体实施方式
为了更好地解释本发明,以下结合附图和具体实施例对本发明作进一步的详细说明,但它们不对本发明构成限定。
实施例1:制备催化剂B
催化剂B的组成包括无机硅胶载体、活性组分Co、助剂Zr和介孔材料壳层。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂B的制备方法如下:
1)将30g比表面积280m2/g、孔容1.25mL/g、平均孔径13.6nm、粒径40μm的无机硅胶载体浸渍在45mL含5.07g的ZrO(NO3)2的水溶液中,空气中陈化16h后,将其放置于110℃下干燥8h,再于马弗炉中450℃下焙烧10h,获得负载锆的无机硅胶载体;
2)将负载锆的无机硅胶载体浸渍在63mL含39.43g的Co(NO3)3·6H2O的水溶液中,空气中陈化16h,将其放置于110℃下干燥8h,再在马弗炉中 450℃下焙烧10h,获得初始钴基费托合成催化剂;
3)将4g模板剂P123加入到140mL的2mol/L的硝酸溶液中溶解,35℃下搅拌至溶液变澄清,再加入8.4g正硅酸乙脂,继续搅拌24h后,获得介孔材料前驱溶液;
4)将介孔材料前驱溶液转移到干净的聚四氟反应釜内,取初始钴基费托合成催化剂10g浸渍在介孔材料前驱溶液中,然后固定在水热合成装置中,在130℃下晶化20h,转速为7rpm/min;取出用去离子水洗涤至中性,在100℃下干燥12h,550℃下焙烧5h,即可获得介孔材料包覆式钴基费托合成催化剂B。
经检测,所得催化剂B的比表面积为291m2/g,孔容1.16mL/g,平均孔径10.6nm,壳层厚度较薄,厚度为1.8μm,催化剂B的壳层厚度TEM照片如图2所示。
实施例2:制备催化剂C
催化剂C的组成包括无机硅胶载体、活性组分Co、助剂Zr和和实施例1所述的介孔材料壳层。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂C的制备方法与实施例1基本相同,所不同的是晶化时间60h代替实施例1中步骤3)的晶化时间。
经检测,所得催化剂C的比表面积为301m2/g,孔容0.98mL/g,平均孔径9.5nm,壳层厚度较厚,厚度为5μm。催化剂C的壳层厚度TEM照片如图3所示。
实施例3:制备催化剂D
催化剂D的组成包括无机硅胶载体、活性组分Co、助剂Zr和实施例1所述的介孔材料结构的壳层。Zr元素的含量为5wt%,Co元素的含量为20wt%。催化剂的比表面积为320m2/g,孔容1.02mL/g,平均孔径8.9nm,壳层厚度为13μm。
催化剂D的制备方法与实施例1基本相同,所不同的是晶化时间100h 代替实施例1中步骤3)的晶化时间。催化剂D的壳层厚度TEM照片如图4所示。
实施例4:制备催化剂E
催化剂E的组成包括无机硅胶载体、活性组分Co、助剂Zr、介孔材料壳层以及三甲基氯硅烷疏水性有机化合物层。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂E的制备方法如下:
1)将30g比表面积280m2/g、孔容1.25mL/g、平均孔径13.6nm、粒径40μm的无机硅胶载体浸渍在45mL含5.07g的ZrO(NO3)2的水溶液中,空气中陈化16h后,将其放置于110℃下干燥8h,再于马弗炉中450℃下焙烧10h,获得负载锆的无机硅胶载体;
2)将负载锆的无机硅胶载体浸渍在63mL含39.43g的Co(NO3)3·6H2O的水溶液中,空气中陈化16h,将其放置于110℃下干燥8h,再在马弗炉中450℃下焙烧10h,获得初始钴基费托合成催化剂;
3)介孔材料壳层的包覆:将4g模板剂P123加入到140mL的2mol/L的硝酸溶液中溶解,35℃下搅拌至澄清,再加入8.4g正硅酸乙脂,继续搅拌24h后,获得介孔材料前驱溶液;
4)将介孔材料前驱溶液转移到干净的聚四氟反应釜内,取初始钴基费托合成催化剂10g浸渍在介孔材料前驱溶液中,然后固定在水热合成装置中,在130℃下晶化20h,转速为7rpm/min;取出催化剂用去离子水洗涤至中性,在100℃下干燥12h,550℃下焙烧5h,获得介孔材料包覆式钴基费托合成催化剂;
5)将所得介孔材料包覆式钴基费托合成催化剂浸渍在200mL的三甲基氯硅烷溶液中,密封浸渍8h后取出,再用无水乙醇漂洗2次,最后在80℃下干燥8h,即可获得疏水性介孔材料包覆式钴基费托合成催化剂E。
经检测,所得催化剂E的比表面积为279m2/g,孔容0.86mL/g,平均孔径8.2nm,壳层厚度为2.5μm,催化剂E的壳层厚度TEM照片如图5所示。
实施例5:制备催化剂F
催化剂F的组成包括无机硅胶载体、活性组分Co、助剂Zr、介孔材料壳层以及聚甲基三乙氧基硅烷疏水性有机化合物层。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂F的制备方法与实施例4基本相同,所不同的是用聚甲基三乙氧基硅烷代替实施例4中的三甲基氯硅烷。
经检测,催化剂F的比表面积为282m2/g,孔容0.91mL/g,平均孔径7.9nm,壳层厚度为2.1μm,催化剂F的壳层厚度TEM照片如图6所示。
实施例6:制备催化剂G
催化剂G的组成包括无机硅胶载体、活性组分Co、助剂Zr、介孔材料壳层以及γ-氨丙基三乙氧基硅烷疏水性有机化合物层。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂G的制备方法与实施例4基本相同,所不同的是用γ-氨丙基三乙氧基硅烷代替实施例4中的三甲基氯硅烷。
经检测,催化剂G的比表面积为280m2/g,孔容0.83mL/g,平均孔径8.5nm,壳层厚度为2.3μm,催化剂G的壳层厚度TEM照片如图7所示。
实施例7:制备催化剂H
催化剂H的组成包括无机硅胶载体、活性组分Co、助剂Zr、介孔材料壳层以及γ-氨丙基三乙氧基硅烷疏水性有机化合物层。Zr元素的含量为8wt%,Co元素的含量为25wt%。
催化剂H的制备方法如下:
1)将30g比表面150m2/g、孔容1.3mL/g、平均孔径8nm、平均粒径90μm的无机硅胶载体浸渍在45mL含16.74g的Zr(NO3)4·5H2O的水溶液中,空气中陈化24h后,将其放置于120℃下干燥10h,再于马弗炉中500℃下焙烧3h,获得负载锆的无机硅胶载体;
2)将负载锆的无机硅胶载体浸渍在63mL含22.5g的CoCO3的水溶液中, 空气中陈化24h,将其放置于120℃下干燥10h,再在马弗炉中500℃下焙烧3h,获得初始钴基费托合成催化剂;
3)介孔材料壳层的包覆:将4g模板剂P123加入到140mL的1mol/L的硝酸溶液中溶解,45℃下搅拌至澄清,再加入8.4g正硅酸乙脂,继续搅拌12h后,获得介孔材料前驱溶液;
4)将介孔材料前驱溶液转移到干净的聚四氟反应釜内,取初始钴基费托合成催化剂10g浸渍在介孔材料前驱溶液中,然后固定在水热合成装置中,在100℃下晶化24h,转速为10rpm/min;取出催化剂用去离子水洗涤至中性,在80℃下干燥20h,400℃下焙烧12h,获得介孔材料包覆式钴基费托合成催化剂;
5)将所得介孔材料包覆式钴基费托合成催化剂浸渍在200mL的γ-氨丙基三乙氧基硅烷溶液中,密封浸渍3h后取出,并用正己烷漂洗3次,再在60℃下干燥3h,即可获得疏水性介孔材料包覆式钴基费托合成催化剂H。
经检测,催化剂H的比表面积为200m2/g,孔容1.0mL/g,平均孔径4.0nm,壳层厚度为2.0μm。
实施例8:制备催化剂I
催化剂I的组成包括无机硅胶载体、活性组分Co、助剂Zr、介孔材料壳层以及γ-氨丙基三乙氧基硅烷疏水性有机化合物层。Zr元素的含量为10wt%,Co元素的含量为10wt%。
催化剂I的制备方法如下:
1)将30g比表面300m2/g、孔容0.75mL/g、平均孔径13nm,平均粒径150μm的无机硅胶载体浸渍在45mL含9.5g硝酸氧锆的水溶液中,空气中陈化12h后,将其放置于70℃下干燥24h,再于马弗炉中400℃下焙烧12h,获得负载锆的无机硅胶载体;
2)将负载锆的无机硅胶载体浸渍在63mL含7.55g的CoCO3的水溶液中,空气中陈化12h,将其放置于70℃下干燥24h,再在马弗炉中400℃下焙烧12h,获得初始钴基费托合成催化剂;
3)介孔材料壳层的包覆:将4g模板剂P123加入到140mL的2mol/L的硝酸溶液中溶解,25℃下搅拌至澄清,再加入8.4g正硅酸乙脂,继续搅拌30h后,获得介孔材料前驱溶液;
4)将介孔材料前驱溶液转移到干净的聚四氟反应釜内,取初始钴基费托合成催化剂10g浸渍在介孔材料前驱溶液中,然后固定在水热合成装置中,在80℃下晶化70h,转速为15rpm/min;取出催化剂用蒸馏水洗涤至中性,在120℃下干燥10h,500℃下焙烧8h,获得介孔材料包覆式钴基费托合成催化剂;
5)将所得介孔材料包覆式钴基费托合成催化剂浸渍在200mL的γ-氨丙基三乙氧基硅烷溶液中,密封浸渍15h后取出,再用丙酮漂洗2次,然后在90℃下干燥5h,即可获得疏水性介孔材料包覆式钴基费托合成催化剂I。
经检测,催化剂I的比表面积为350m2/g,孔容0.6mL/g,平均孔径9nm,壳层厚度为6μm。
对比例1:传统催化剂A
传统催化剂A的组成包括无机硅胶载体、活性组分Co、助剂Zr。Zr元素的含量为5wt%,Co元素的含量为20wt%。
催化剂A的制备方法如下:
1)将30g比表面积280m2/g、孔容1.25mL/g、平均孔径13.6nm、粒径40μm的无机硅胶载体浸渍在45mL含5.07g的ZrO(NO3)2的水溶液中,空气中陈化16h后,将其放置于110℃下干燥8h,再于马弗炉中450℃下焙烧10h,获得负载锆的无机硅胶载体;
2)将负载锆的无机硅胶载体浸渍在63mL含39.43g的Co(NO3)3·6H2O的水溶液中,空气中陈化16h,将其放置于110℃下干燥8h,再在马弗炉中450℃下焙烧10h,得到钴基费托合成催化剂A。
上述各实施例所制得催化剂B~I与对比例所制得传统催化剂A用于生物质制合成气合成液态烃的评价结果参见下面的表1。
由表1可以看出在传统催化剂上包裹一层介孔材料壳层后,CO的转化率变化不大,均在55~65%之间,主要是因为虽然介孔材料的壳层有一定的 厚度,但是催化剂的粒径较小,传质阻力也比较小,而且介孔材料壳层为H2和CO提供了传质通道。而液态烃的选择性会稍微有所增大,甲烷的选择性会稍微降低,可能是由于介孔材料的壳层能够避免活性组分在活化和转移过程中因摩擦而脱落。另外,介孔材料壳层能够阻挡体相的水分直接接触活性中心。当在壳层表面进行疏水性有机修饰后,液态烃的选择性会增大,甲烷的选择性也明显下降很多,说明在介孔材料壳层引入疏水性物质后,能有效地防止催化剂被水氧化而失活,当小分子的水分一旦生成即被合成气顺着疏水性有机化合物层吹到壳层外面。由此可见,本发明制备所得的Co基催化剂具有较高的反应活性,C5 +选择性高,甲烷选择性低。
特别是在介孔材料壳层上面引入疏水性物质后,液态烃的选择性提高得更大,由于修饰催化剂F的有机物分子结构比较小,疏水性表现得比催化剂E、G要稍微差一点。修饰催化剂E的有机物价格要比修饰催化剂G的贵,而且易挥发,腐蚀性大。催化剂H的比表面积和孔径较小,其活性和液态烃的选择性会稍有降低,催化剂I的粒径较大,壳层较厚,存在一定的传质阻力,CO的转化率下降了,而催化剂I的晶化时间较长,故催化剂G要优于催化剂E、F、H、I。
表1 催化剂A~I的活性及选择性对比
催化剂 XCO/% S(CH4)/% S(C2-C4)% S(C5 +)/% S(CO2)/%
A 60.3 14.5 7.1 76.9 1.5
B 61.0 10.6 7.1 81.1 1.2
C 60.5 10.2 7.5 81.0 1.3
D 60.0 10.7 7.0 80.9 1.4
E 62.4 5.5 6.3 87.2 1.0
F 63.1 9.2 6.9 82.9 1.0
G 64.5 5.2 6.3 87.5 0.9
H 60.0 7.6 7.1 84.3 1.0
I 55.3 7.8 7.5 83.8 0.9
为了更好地说明本发明的优点,申请人对传统催化剂A和本发明催化剂B、G进行了长周期稳定性研究,其结果列于下面的表2和表3中。
表2 催化剂在长时间运转下CO的转化率对比
催化剂 t=500h t=800h t=1000h t=1500h t=2000h t=2500h
A 60.3% 58.6% 50.4% 40.3% 31.8% 25.8%
B 61.0% 60.9% 59.9% 56.9% 50.2% 40.1%
G 64.5% 64.4% 64.3% 63.9% 62.2% 60.1%
表3 催化剂在长时间运转下液态烃(C5+)的选择性对比
催化剂 t=500h t=800h t=1000h t=1500h t=2000h t=2500h
A 76.9% 76.8% 71.3% 63.5% 58.1% 53.5%
B 81.0% 81.1% 79.5% 76.4% 70.6% 67.8%
G 87.4% 87.5% 87.5% 86.5% 85.9% 84.9%
由表2和表3可以看出未经任何修饰的传统催化剂A反应时间达到800h活性就开始下降,可能是由于催化剂在长时间的搅拌状态下表面的金属Co会因摩擦而从催化剂表面脱落,而且反应生成的水会使催化剂被氧化而失活。而介孔材料壳层包覆形成催化剂B、G后,其反应时间延长到1500h,CO的转化率仍然在55%以上,可能是催化剂的壳层能够保护催化剂的活性中心,防止催化剂的金属部分因摩擦而脱落。特别是经过疏水性有机物修饰的催化剂G,当反应2500h时,其催化活性依然很高,CO的转化率仍然在60%左右,液态烃的选择性在85%左右,说明催化剂的寿命明显延长,这是由于在介孔材料壳层上引入疏水基后能够有效的防止催化剂的金属部分脱落,还能有效地避免水分与活性中心接触而使催化剂失活。由此可见,本发明制备的Co基催化剂具有极好的稳定性,并且有效提高了使用寿命。

Claims (22)

  1. 一种介孔材料包覆式钴基费托合成催化剂,包括二氧化硅载体,其特征在于:所述二氧化硅载体表面负载有活性组分钴和选择性助剂锆,所述活性组分钴和选择性助剂锆外面包覆有介孔材料壳层。
  2. 根据权利要求1所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述介孔材料壳层外面还覆盖有疏水性有机化合物层。
  3. 根据权利要求1或2所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述二氧化硅载体为无机硅胶。
  4. 根据权利要求3所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述无机硅胶的比表面积为150~350m2/g、平均孔径为3~50nm、孔容为0.7~1.7mL/g、粒径为20~200μm。
  5. 根据权利要求4所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述无机硅胶的比表面积为200~300m2/g、平均孔径为8~13nm、孔容为0.75~1.3mL/g、粒径40~150μm。
  6. 根据权利要求1或2所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述活性组分钴的含量占催化剂总重量的10~25%,所述选择性助剂锆的含量占催化剂总重量的5~10%。
  7. 根据权利要求6所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述活性组分钴的含量占催化剂总重量的15~20%,所述选择性助剂锆的含量占催化剂总重量的5~8%。
  8. 根据权利要求6所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述活性组分钴的含量占催化剂总重量的20~25%,所述选择性助剂锆的含量占催化剂总重量的8~10%。
  9. 根据权利要求1或2所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述介孔材料壳层的厚度为1.8~13μm。
  10. 根据权利要求9所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述介孔材料壳层的厚度为2.0~6.0μm。
  11. 根据权利要求1或2所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述催化剂的比表面积为150~400m2/g,平均孔径为2~40nm,孔容为0.5~1.4mL/g。
  12. 根据权利要求11所述的介孔材料包覆式钴基费托合成催化剂,其特征在于:所述催化剂的比表面积为250~350m2/g,平均孔径为3~9nm、孔容为0.6~1.0mL/g。
  13. 一种根据权利要求1所述的介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于,它包括以下步骤:
    1)将二氧化硅载体浸渍在锆盐的水溶液中,陈化12~24h后,在70~120℃下干燥8~24h,再在400~500℃下焙烧3~12h,获得负载锆的二氧化硅载体;
    2)将所得负载锆的二氧化硅载体浸渍在钴盐的水溶液中,陈化12~24h后,在70~120℃下干燥8~24h,再在400~500℃下焙烧3~12h,获得初始钴基费托合成催化剂;
    3)将模板剂P123溶解到硝酸溶液中,搅拌使其混合均匀,再加入正硅酸乙酯,继续搅拌12~30h,获得介孔材料前驱溶液;
    4)将所得初始钴基费托合成催化剂浸渍在所得介孔材料前驱溶液中, 然后进行晶化、洗涤、干燥和焙烧,即可获得介孔材料包覆式钴基费托合成催化剂。
  14. 根据权利要求13所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:它还包括如下步骤:
    5)将所得介孔材料包覆式钴基费托合成催化剂浸渍在疏水性有机溶液中,密封3~12h后取出,再选择清洗用有机溶剂漂洗干净,最后在60~90℃条件下干燥3~8h,即可获得疏水性介孔材料包覆式钴基费托合成催化剂。
  15. 根据权利要求13或14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤1)中,锆盐为硝酸锆或硝酸氧锆中的一种。
  16. 根据权利要求13或14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤2)中,所述钴盐为碳酸钴或硝酸钴中的一种。
  17. 根据权利要求13或14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤3)中,硝酸溶液的浓度为1~2mol/L,搅拌温度为25~45℃,搅拌至溶液变澄清,再加入正硅酸乙酯,继续搅拌12~24h,获得介孔材料前驱溶液。
  18. 根据权利要求13或14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤4)中,晶化条件为温度80~130℃、时间20~100h、转速7~20r/min;洗涤条件为去离子水洗涤至中性;干燥条件为80~120℃干燥10~20h;焙烧条件为400~550℃保持5~12h。
  19. 根据权利要求18所述介孔材料包覆式钴基费托合成催化剂的制备 方法,其特征在于:所述步骤4)中,晶化条件为温度90~120℃、时间30~80h、转速7~15r/min。
  20. 根据权利要求14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤5)中,疏水性有机溶液为聚甲基三乙氧基硅烷、γ-氨丙基三乙氧基硅烷或三甲基氯硅烷中的一种。
  21. 根据权利要求14所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤5)中,清洗用有机溶剂为正己烷、丙酮或乙醇中的一种。
  22. 根据权利要求20所述介孔材料包覆式钴基费托合成催化剂的制备方法,其特征在于:所述步骤5)中,所得介孔材料包覆式钴基费托合成催化剂浸渍在疏水性有机溶液中的密封时间为3~8h,再选择清洗用有机溶剂漂洗2~3次。
PCT/CN2015/072402 2014-04-22 2015-02-06 介孔材料包覆式钴基费托合成催化剂及其制备方法 WO2015161701A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2946638A CA2946638A1 (en) 2014-04-22 2015-02-06 Cobalt-based fischer-tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor
AU2015251403A AU2015251403A1 (en) 2014-04-22 2015-02-06 Cobalt-based Fischer-Tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor
JP2016563174A JP6337144B2 (ja) 2014-04-22 2015-02-06 メソ多孔性材料被覆型コバルト系フィッシャートロプシュ合成触媒及びその調製方法
KR1020167032475A KR101906027B1 (ko) 2014-04-22 2015-02-06 메조포러스 물질로 코팅된 코발트계 피셔-트롭시 합성 촉매제 및 그 제조 방법
RU2016145414A RU2642451C1 (ru) 2014-04-22 2015-02-06 Катализатор синтеза фишера-тропша на основе кобальта, покрытый мезопористыми материалами, и способ его получения
EP15783307.0A EP3135372A4 (en) 2014-04-22 2015-02-06 Cobalt-based fischer-tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor
US15/331,925 US10363550B2 (en) 2014-04-22 2016-10-24 Mesoporous material-coated cobalt-based catalyst for fischer-tropsch synthesis and method for preparing the same
AU2018205112A AU2018205112C1 (en) 2014-04-22 2018-07-11 Cobalt-based Fischer-Tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410162615.4 2014-04-22
CN201410162615.4A CN103920496B (zh) 2014-04-22 2014-04-22 介孔材料包覆式钴基费托合成催化剂及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/331,925 Continuation-In-Part US10363550B2 (en) 2014-04-22 2016-10-24 Mesoporous material-coated cobalt-based catalyst for fischer-tropsch synthesis and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2015161701A1 true WO2015161701A1 (zh) 2015-10-29

Family

ID=51139029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072402 WO2015161701A1 (zh) 2014-04-22 2015-02-06 介孔材料包覆式钴基费托合成催化剂及其制备方法

Country Status (9)

Country Link
US (1) US10363550B2 (zh)
EP (1) EP3135372A4 (zh)
JP (1) JP6337144B2 (zh)
KR (1) KR101906027B1 (zh)
CN (1) CN103920496B (zh)
AU (2) AU2015251403A1 (zh)
CA (1) CA2946638A1 (zh)
RU (1) RU2642451C1 (zh)
WO (1) WO2015161701A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614115A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 载体为球形三介孔复合材料的异丁烷脱氢催化剂及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920496B (zh) * 2014-04-22 2015-11-18 武汉凯迪工程技术研究总院有限公司 介孔材料包覆式钴基费托合成催化剂及其制备方法
CN104162430A (zh) * 2014-09-09 2014-11-26 安徽工程大学 一种蛋壳型的催化剂
CN104289231B (zh) * 2014-10-09 2017-02-08 武汉凯迪工程技术研究总院有限公司 高分散度钴基费托合成催化剂及其制备方法和应用
CN104368344B (zh) * 2014-10-09 2016-09-14 武汉凯迪工程技术研究总院有限公司 钴基费托合成催化剂及其制备方法和应用
KR101829917B1 (ko) * 2015-07-14 2018-02-20 성균관대학교산학협력단 피셔-트롭쉬 합성 반응용 메조 기공 구조의 주골격을 갖는 코발트계 촉매 및 이의 제조방법
CN107262093B (zh) * 2017-06-23 2019-07-26 福州大学 一种甲烷催化燃烧催化剂及其制备方法
CN109718774B (zh) * 2017-10-27 2022-02-08 中国石油化工股份有限公司 一种催化剂及其制备方法和应用及费托合成方法
RU2679801C1 (ru) * 2018-10-31 2019-02-13 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения
CN112973694A (zh) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 一种铝元素促进的无序介孔二氧化硅负载的钴基催化剂及其制备与应用
CN113754798A (zh) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 类球形超大孔介孔材料和聚烯烃催化剂及其制备方法以及烯烃聚合方法
CN112391191B (zh) * 2020-10-30 2022-09-02 山西潞安煤基清洁能源有限责任公司 一种防止费托合成工艺中催化剂凝结结垢的方法以及催化剂和应用
CN112354534B (zh) * 2020-11-04 2023-01-13 万华化学集团股份有限公司 一种催化剂的制备方法及其在杨梅醛合成中的应用
CN115090283B (zh) * 2022-07-25 2024-01-02 浙江新化化工股份有限公司 一种负载型核壳催化剂、其制备方法及其在催化环戊基丁内酯加氢中应用
CN115337930B (zh) * 2022-08-19 2024-03-15 常州大学 一种石墨化碳改性壳-核Co基催化剂的制备方法及在一氧化碳加氢催化中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052714A1 (en) * 2002-07-25 2004-03-18 Instituto Mexicano Del Petroleo Synthetic mesoporous material with radially assembled nanotubes
EP2055380A1 (en) * 2007-10-29 2009-05-06 Petroleo Brasileiro S.A. - PETROBAS Process for the production of hybrid catalysts for Fischer-Tropsch synthesis and hybrid catalysts produced according to said process
US20120238442A1 (en) * 2008-08-27 2012-09-20 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity
CN102836706A (zh) * 2012-09-12 2012-12-26 中国石油天然气股份有限公司 高温热稳定的钯复合催化剂及其制备方法与应用
CN103920496A (zh) * 2014-04-22 2014-07-16 武汉凯迪工程技术研究总院有限公司 介孔材料包覆式钴基费托合成催化剂及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ2724A1 (fr) * 1998-02-20 2003-09-01 Sasol Tech Pty Ltd Procédé pour la production d'hydrocarbures à partir d'un gaz de synthèse et leurs catalyseurs.
US6930219B2 (en) * 1999-09-07 2005-08-16 Abb Lummus Global Inc. Mesoporous material with active metals
US7452844B2 (en) * 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
US7285329B2 (en) * 2004-02-18 2007-10-23 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US7365040B2 (en) * 2004-04-26 2008-04-29 Sasoltechnology (Proprietary) Limited Catalysts
JP5049793B2 (ja) * 2005-02-17 2012-10-17 ビーピー エクスプロレーション オペレーティング カンパニー リミテッド 改質触媒および合成ガスから炭化水素への変換のための前記触媒の使用
KR20080111032A (ko) * 2006-04-20 2008-12-22 아사히 가라스 가부시키가이샤 코어 쉘형 실리카 및 그 제조 방법
JP4808688B2 (ja) * 2006-08-25 2011-11-02 新日本製鐵株式会社 合成ガスから炭化水素を製造する触媒、触媒の製造方法、触媒の再生方法、及び合成ガスから炭化水素を製造する方法
BRPI0715941B1 (pt) * 2006-08-25 2017-12-26 Nippon Steel Engineering Co., Ltd. Catalyst for production of hydrocarbons from synthesis gas, method for production of the catalyst, method for regenerating the catalyst, and method for production of hydrocarbons from gases of synthesis
US20110250122A1 (en) * 2008-11-07 2011-10-13 The Regents Of The University Of California Core-Shell Nanocatalyst For High Temperature Reactions
GB0905222D0 (en) * 2009-03-26 2009-05-13 Johnson Matthey Plc Method for producing a supported metal nitrate
JP5603063B2 (ja) * 2009-12-21 2014-10-08 花王株式会社 複合シリカ粒子の製造方法
JP4807536B2 (ja) * 2010-01-07 2011-11-02 独立行政法人日本原子力研究開発機構 水素燃焼触媒及びその製造方法並びに水素燃焼方法
CN101811050B (zh) * 2010-05-05 2012-06-27 中国科学院山西煤炭化学研究所 一种有机疏水改性钴基费托合成催化剂及制备和应用
KR101230625B1 (ko) * 2010-05-06 2013-02-06 한국과학기술연구원 메조포러스 실리카 구조체를 이용한 피셔-트롭시 공정용 촉매
JP2012100778A (ja) * 2010-11-08 2012-05-31 Universal Entertainment Corp ゲーミングマシン
CN102078818B (zh) * 2010-12-27 2015-04-08 中南民族大学 以sba-16分子筛为载体的催化剂及其制法和应用
EP2530125A1 (en) * 2011-05-30 2012-12-05 Total SA Core-shell particles with catalytic activity
RU2605092C2 (ru) * 2011-12-14 2016-12-20 Сэсол Текнолоджи (Проприетери) Лимитед Катализаторы
EP2626131A1 (en) * 2012-02-08 2013-08-14 Studiengesellschaft Kohle mbH Highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles and their use
CN102728359B (zh) * 2012-06-28 2014-10-01 中南民族大学 一种以氧化硅介孔泡沫为载体的钴基催化剂及应用
EP2898947A4 (en) * 2012-09-21 2016-10-05 Jx Nippon Oil & Energy Corp FISCHER-TROPSCH SYNTHESIS CATALYST, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING HYDROCARBONS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052714A1 (en) * 2002-07-25 2004-03-18 Instituto Mexicano Del Petroleo Synthetic mesoporous material with radially assembled nanotubes
EP2055380A1 (en) * 2007-10-29 2009-05-06 Petroleo Brasileiro S.A. - PETROBAS Process for the production of hybrid catalysts for Fischer-Tropsch synthesis and hybrid catalysts produced according to said process
US20120238442A1 (en) * 2008-08-27 2012-09-20 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity
CN102836706A (zh) * 2012-09-12 2012-12-26 中国石油天然气股份有限公司 高温热稳定的钯复合催化剂及其制备方法与应用
CN103920496A (zh) * 2014-04-22 2014-07-16 武汉凯迪工程技术研究总院有限公司 介孔材料包覆式钴基费托合成催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135372A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614115A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 载体为球形三介孔复合材料的异丁烷脱氢催化剂及其制备方法和应用

Also Published As

Publication number Publication date
JP2017521227A (ja) 2017-08-03
US10363550B2 (en) 2019-07-30
AU2015251403A1 (en) 2016-12-08
AU2018205112C1 (en) 2020-01-23
EP3135372A1 (en) 2017-03-01
AU2018205112B2 (en) 2019-10-24
EP3135372A4 (en) 2018-01-24
CN103920496B (zh) 2015-11-18
AU2018205112A1 (en) 2018-08-02
KR20160147872A (ko) 2016-12-23
CN103920496A (zh) 2014-07-16
CA2946638A1 (en) 2015-10-29
US20170036198A1 (en) 2017-02-09
KR101906027B1 (ko) 2018-10-08
RU2642451C1 (ru) 2018-01-25
JP6337144B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2015161701A1 (zh) 介孔材料包覆式钴基费托合成催化剂及其制备方法
JP5947912B2 (ja) 多孔質材料閉じ込め系のコバルト系フィッシャー・トロプシュ合成ナノ触媒とその調整方法
JP5676120B2 (ja) 活性化フィッシャー・トロプシュ合成触媒の製造方法及び炭化水素の製造方法
Héroguel et al. Improving heterogeneous catalyst stability for liquid-phase biomass conversion and reforming
WO2011108347A1 (ja) フィッシャー・トロプシュ合成触媒及びその製造方法、並びに炭化水素の製造方法
JP2017521227A5 (zh)
CN101698152A (zh) 一种钴基费托合成催化剂及其制备方法和应用
CN104812490A (zh) 用于制备费-托催化剂的方法
CN106807405A (zh) 一种用于丙烷脱氢制丙烯的催化剂的制备方法及其催化剂
BR112019001616B1 (pt) Composição de catalisador contendo cobalto
JP2007252988A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
WO2012132905A1 (ja) 活性化されたフィッシャー・トロプシュ合成反応用触媒および炭化水素の製造方法
CN109876804B (zh) 一种用于苯选择性加氢制环己烯的二氧化钛负载钌催化剂及其制备方法
CN101607202A (zh) 对苯二甲酸精制方法
AU2016225128A1 (en) Hydrocarbon synthesis catalyst, its preparation process and its use
CN103769102B (zh) 一种钴基催化剂及其制备方法和应用
CN103769227B (zh) 一种改性硅胶载体及其制备方法和应用
CN103769101B (zh) 一种钴基费托合成催化剂及其制备方法和应用
CN107537489B (zh) 多孔复合物催化剂、制备方法及其用途
JP5127726B2 (ja) 一酸化炭素の還元による炭化水素の製造方法
CN102600837B (zh) Ru/Al2O3甲烷化脱氢催化剂及其制备方法
CN108479843B (zh) 嵌入式微孔-介孔复合分子筛耐硫甲烷化催化剂的制备
JP2008239878A (ja) 炭化水素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2946638

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167032475

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015783307

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783307

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016145414

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015251403

Country of ref document: AU

Date of ref document: 20150206

Kind code of ref document: A