RU2679801C1 - Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения - Google Patents

Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения Download PDF

Info

Publication number
RU2679801C1
RU2679801C1 RU2018138487A RU2018138487A RU2679801C1 RU 2679801 C1 RU2679801 C1 RU 2679801C1 RU 2018138487 A RU2018138487 A RU 2018138487A RU 2018138487 A RU2018138487 A RU 2018138487A RU 2679801 C1 RU2679801 C1 RU 2679801C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
carrier
hours
iron
Prior art date
Application number
RU2018138487A
Other languages
English (en)
Inventor
Александр Васильевич Сандин
Гиляна Евгеньевна Джунгурова
Дмитрий Александрович Григорьев
Михаил Николаевич Михайлов
Original Assignee
Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") filed Critical Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР")
Priority to RU2018138487A priority Critical patent/RU2679801C1/ru
Application granted granted Critical
Publication of RU2679801C1 publication Critical patent/RU2679801C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Катализатор для получения легких олефинов С-Спо методу Фишера-Тропша содержит кобальт и железо на мезопористом носителе, представляющем собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м. Массовое отношение кобальт : железо в прокаленном катализаторе находится в пределах 1,0-9,0. Готовят катализатор постадийной пропиткой носителя водными растворами прекурсоров активных соединений кобальта и железа - нитратов кобальта и железа. Каждую стадию пропитки проводят после предварительного вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,0-2,5 кПа и при перемешивании носителя или прекурсора катализатора при температуре 60-80°С в течение 0,5-4 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных соединений. Раствор фильтруют под вакуумом с остаточным давлением 1,0-2,5 кПа, сушат прекурсор катализатора при температуре 40-90°С в течение 3-8 ч и прокаливают его при температуре 300-450°С в течение 3-12 ч после каждой стадии нанесения активного соединения. Мезопористый носитель получают, растворяя изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония. Полученную смесь перемешивают в течение 5-8 ч при температуре 80-90°С до образования геля при мольном отношении компонентов в растворе Al(i-OCH):i-CHOH:NHOH=1:1,0-4,0:1,5-2,5. Затем его сушат при температуре 95-110°С в течение 1-4 ч и прокаливают при температуре 400-500°С в течение 1-4 ч. Технический результат от реализации данного изобретения заключается в достижении производительности разработанного катализатора по легким олефинам С-С, полученным из синтез-газа по методу Фишера-Тропша, более 80 кг/м⋅ч. 2 н.п. ф-лы, 1 табл., 9 пр.

Description

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша, в частности, способа синтеза катализатора для получения по методу Фишера-Тропша синтетических углеводородов с повышенным содержанием легких олефинов С24.
Традиционным способом получения легких олефинов является каталитический крекинг нефти. Однако ограниченная доступность и высокая стоимость нефтяных ресурсов заставляют искать новые способы получения легких олефинов.
Известен способ приготовления катализатора для получения олефинов из синтез-газа через стадию получения метанола или диметилового эфира, в котором активным металлом является металл VIIIB группы и в качестве носителя используют цеолиты. Конверсия кислородсодержащих соединений в легкие олефины протекает в температурном диапазоне 400-520°С. СА 2228738, опубл. 26.09.2006.
Недостатком такой технологии является многоступенчатость процесса - получение сначала метанола или диметилового эфира из синтез-газа и последующая конверсия оксигенатов в легкие олефины, а также высокие температуры, необходимые для получения легких олефинов.
В US 4508846 А, опубл. 02.04.1985, описан способ приготовления катализатора синтеза легких олефинов из синтез-газа по методу Фишера-Тропша. Катализатор готовят осаждением карбонила рутения на носитель, содержащий оксид церия.
Недостатком данного способа является высокая стоимость активного металла в данном катализаторе, что повышает капиталоемкость процесса.
Известен способ приготовления катализатора синтеза легких олефинов методом соосаждения, который раскрывается в US 4199523, опубл. 22.04.1980. Катализатор содержит 60% железа и промоторы, такие как медь, серебро или щелочные металлы. В качестве модификаторов используют оксид цинка, оксид марганца, оксид церия, оксид ванадия и оксид хрома.
Недостатком описанного способа является использование катализатора с высоким содержанием активного металла (60%) и высокие температуры синтеза (до 370°С), требуемые для проявления высокой активности катализатора.
Также известен способ приготовления катализатора прямой конверсии синтез-газа в низшие олефины по методу Фишера-Тропша методом пропитки носителя, в качестве которого используют силикалит. Пропитку осуществляют раствором нитратов железа и калия. Содержание железа составляет от 5 до 25 масс %, содержание калия - не менее 0,2 масс %. US 4340503 А, опубл. 20.07 1982.
Недостатком данного способа является необходимость применения синтез-газа с низким модулем (0,9-1,3), получение которого не реализовано в промышленных масштабах. Также недостатком монометаллических железных катализаторов синтеза Фишера-Тропша является их быстрая дезактивация.
Наиболее близким к заявленному изобретению является способ синтеза катализатора для получения легких олефинов из синтез-газа. Катализатор включает мезопористый силикат с размером мезопор менее 5 нм, в качестве носителя и один или два активных металла -кобальт и железо - в количестве 5-30 масс %, а также промоторы - Mn, Mg, Zn, Cu или их оксиды в количестве 1-20 масс %, и второй промотор - оксид или гидроксид щелочных металлов - K, Na, Rb и Cs. Катализатор готовят методом пропитки носителя с последующей сушкой при температуре 80-140°С и прокаливанием при температуре 400-800°С. Получение легких олефинов с использованием данного катализатора предлагается проводить в реакторе со стационарным псевдоожиженным слоем катализатора при температуре 250-350°С, давлении 0,5-2,5 МПа, объемной скорости синтез-газа 1000-4000 ч-1 и соотношении Н2/СО, равном 1,5. При этом предлагаемые катализаторы в указанных условиях позволяют достигать конверсии СО более 96% при селективности в отношении образования легких олефинов С24 более 60%. Для биметаллических кобальт-железных катализаторов, описанных в примерах 3 и 7 патента, показатели в процессе Фишера-Тропша составляют: конверсия СО - 96,7 и 97,1%, селективность по олефинам С24 - 95 и 66% при объемной скорости синтез-газа 1000 и 3500 ч-1, соответственно. CN 103521240 В, опубл. 17.06.2015.
Недостатками катализатора являются невысокий размер мезопор (менее 5 нм), что накладывает диффузионные ограничения, вызывает затруднения при транспорте высокомолекулярных углеводородов из пор и приводит к интенсификации вторичных реакций с участием реакционноспособных легких олефинов, являющихся целевым продуктом процесса. Другим недостатком является присутствие в составе катализатора щелочных металлов, что обычно приводит к повышению метанобразования и быстрой дезактивации катализатора. Высокая конверсия СО в присутствии предлагаемых катализаторов свидетельствует об их нестабильной работе и высокой вероятности их быстрой дезактивации. Полученные показатели работы предлагаемых катализаторов в реакторе с неподвижным псевдоожиженным слоем соответствуют производительности, например, для двух биметаллических кобальт-железных образцов, не более 60 кг/м3⋅ч. Кроме того, проведение процесса синтеза в реакторе со стационарным псевдоожиженным слоем приводит к истиранию катализатора и значительному снижению его активности.
Техническая задача данной группы изобретений заключается в разработке катализатора для синтеза легких олефинов С24 по методу Фишера-Тропша с высокой производительностью и способа его получения.
Технический результат от реализации данного изобретения заключается в достижении производительности разработанного катализатора по легким олефинам С24, полученным из синтез-газа по методу Фишера-Тропша, более 80 кг/м3 кат⋅ч.
Технический результат от реализации заявленной группы изобретений достигается тем, что катализатор для получения легких олефинов С24 по методу Фишера-Тропша, содержащий кобальт и железо на мезопористом носителе, согласно изобретению, содержит мезопористый носитель, представляющий собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см3/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м2/г, а массовое отношение кобальт : железо в прокаленном катализаторе находится в пределах 1,0-9,0 и получен способом, заключающимся в одностадийной или многостадийной раздельной пропитке мезопористого носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см3/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м2/г, водными растворами прекурсоров активных соединений кобальта и железа - нитратов кобальта и железа, причем каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,0-2,5 кПа и при перемешивании носителя или прекурсора катализатора при температуре 60-80°С в течение 0,5-4 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных соединений с последующей фильтрацией раствора под вакуумом с остаточным давлением 1,0-2,5 кПа, сушат прекурсор катализатора при температуре 40-90°С в течение 3-8 ч и прокаливают его при температуре 300-450°С в течение 3-12 ч после каждой стадии нанесения активного соединения, причем мезопористый носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 5-8 ч при температуре 80-90°С до образования геля при мольном отношении компонентов в растворе Al(i-ОС3Н7)3:i-С3Н7ОН:NH4OH=1:1,0-4,0:1,5-2,5, который сушат при температуре 95-110°С в течение 1-4 ч, а затем прокаливают при температуре 400-500°С в течение 1-4 ч.
Указанные отличительные признаки существенны.
Установлено, что наличие мезопористой структуры носителя катализатора для синтеза Фишера-Тропша со средним диаметром мезопор 6-12 нм облегчает транспорт из пор как высокомолекулярных, так и легких синтетических углеводородов, и позволяет снизить время контакта первичных углеводородов с активными центрами катализатора, на которых могут протекать вторичные реакции гидрирования легких олефинов. С повышением объемной скорости происходит интенсификация образования синтетических углеводородов, что вызывает еще большие диффузионные затруднения в микропорах. Поэтому при высоких объемных скоростях (более 5000 ч-1) эффект от наличия мезопор в носителе (лучшая транспортная функция) становится более явным и позволяет получать синтетические легкие олефины С24 с высокой производительностью. Предварительное вакуумирование носителя или прекурсора катализатора обеспечивает максимальное проникновение раствора прекурсора катализатора в поры и равномерное его распределение на поверхности.
Полученный описанным выше способом биметаллический катализатор имеет суммарное содержание кобальта и железа в прокаленном катализаторе 6-30 масс % при массовом отношении кобальт : железо 1,0-9,0.
Структурные характеристики мезопористого оксида алюминия (общий объем пор (Vп, см3/г), доля мезопор (γмп, %), удельная площадь поверхности (Sп, м2/г)) могут быть определены любым из известных в технике методов, например, методом азотной порометрии.
Содержание железа и кобальта может быть определено любым известным способом, например, методом индуктивно связанной плазмы - атомно-электронной спектроскопии.
Перед проведением процесса получения синтетических легких олефинов С24 из синтез-газа катализатор активируют.
Процесс получения синтетических легких олефинов С24 из синтез-газа в присутствии этого катализатора проводят в реакторе с неподвижным слоем катализатора при температуре 240-280°С, давлении 0,5-2,0 МПа, при объемной скорости 5000-10000 ч-1. В качестве сырья процесса Фишера-Тропша используют синтез-газ с соотношением Н2/СО от 1,9 до 2,2.
Исследование катализаторов в процессе получения синтетических легких олефинов С24 из синтез-газа проводили пропусканием синтез-газа через неподвижный слой катализатора, загруженного в реактор. Эффективность работы катализатора оценивали по производительности по легким олефинам С2-С4 с 1 м3 катализатора в час.
Производительность по олефинам С24
Figure 00000001
рассчитывается по следующей формуле:
Figure 00000002
, где
Vcat - объем катализатора, м3;
14⋅10-3 - молярная масса фрагмента СН2, кг/моль.
Расчет конверсии СО (КСО) осуществляется по следующей формуле:
Figure 00000003
, где
Figure 00000004
- мольный поток моноксида углерода на входе в реактор, моль/ч;
Figure 00000005
- мольный поток моноксида углерода на выходе из реактора, моль/ч;
Селективности по индивидуальным продуктам синтеза (этилен, пропилен, бутены) рассчитываются по формуле:
Figure 00000006
, где
SX - селективность по компоненту X;
Figure 00000007
- мольный поток компонента газовой смеси Х на выходе из реактора, моль/ч;
NC/X - число атомов углерода в компоненте X;
Селективность по олефинам С24 (Solef,C2-C4) рассчитывается как сумма селективностей по олефинам С2, С3 и С4:
Solef,C2-C4=SC2H4+SC3H6+SC4H8
Определение содержания исходных и образующихся веществ в отходящих из реактора синтеза Фишера-Тропша газах может осуществляться любым известным способом, например, методом газовой или газо-жидкостной хроматографии.
Способ реализуют в соответствии со следующими примерами.
Пример 1
Катализатор состава 11 масс % Со, 9 масс % Fe и 80 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 6,5 нм, общим объемом пор 0,97 см3/г, объемом мезопор 0,88 см3/г, долей мезопор от общего объема пор носителя 91% и удельной площадью поверхности 266 м2/г, получают двухкратной последовательной раздельной пропиткой носителя. На первой стадии пропитку ведут водным раствором прекурсора кобальта - нитрата кобальта, а на второй стадии водным раствором прекурсора железа - нитрата железа. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 2 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 65°С в течение 1 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов с последующей фильтрацией раствора под вакуумом с остаточным давлением 2 кПа. Прекурсор катализатора сушат при температуре 105°С в течение 8 ч и прокаливают при температуре 450°С в течение 6 ч после каждой стадии нанесения активного компонента. Носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 8 ч при температуре 80°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-C3H7OH: NH4OH=1:2:1,5. Полученный гель сушат при температуре 110°С в течение 4 ч, а затем прокаливают при температуре 450°С в течение 3 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 10000 ч-1, соотношении Н2/СО 1,9, 280°С, 0,5 МПа были получены синтетические олефины С24 с производительностью 193,4 кг/м3 кат⋅ч.
Пример 2
Катализатор состава 3 масс % Со, 3 масс % Fe и 94 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 7,8 нм, общим объемом пор 0,85 см3/г, объемом мезопор 0,77 см3/г, долей мезопор от общего объема пор носителя 90% и удельной площадью поверхности 282 м2/г, получают однократной совместной пропиткой носителя водным раствором прекурсоров кобальта и железа - нитратов кобальта и железа, соответственно. Пропитку проводят после вакуумирования носителя до остаточного вакуума 2,5 кПа и при перемешивании носителя при температуре 80°С в течение 2 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов с последующей фильтрацией раствора под вакуумом с остаточным давлением 2,5 кПа. Затем прекурсор катализатора сушат при температуре 120°С в течение 4 ч и прокаливают при температуре 350°С в течение 3 ч. Носитель получают путем растворения изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 6 ч при температуре 86°С до образования геля. Мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-C3H7OH: NH4OH=1:3,0:2,0. Сушку геля ведут при температуре 100°С в течение 2 ч, а затем прокаливают при температуре 500°С в течение 1 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 6000 ч-1, соотношении Н2/СО 2,0, температуре 270°С, давлении 1,0 МПа были получены синтетические олефины С24 с производительностью 80,7 кг/м3 кат⋅ч.
Пример 3
Катализатор состава 27 масс % Со, 3 масс % Fe и 70 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 9,9 нм, общим объемом пор 1,08 см3/г, объемом мезопор 1,00 см3/г, долей мезопор от общего объема пор носителя 93% и удельной площадью поверхности 311 м2/г, получают трехкратной последовательной раздельной пропиткой носителя. На первой стадии - водным раствором прекурсора железа - нитрата железа, на второй и третьей стадиях водным раствором прекурсора кобальта - нитрата кобальта. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 60°С в течение 3 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 1 кПа с последующей сушкой прекурсора катализатора при температуре 95°С в течение 3 ч и его прокаливанием при температуре 420°С в течение 8 ч после каждой стадии нанесения активного компонента. Носитель получают растворяя изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 5 ч при температуре 88°С до образования геля. Мольное отношение компонентов в растворе находится в пределах: Al(i-OC3H7)3: i-С3Н7ОН: NH4OH=1:2,5:1,5. Полученный гель сушат при температуре 95°С в течение 3 ч, а затем прокаливают при температуре 400°С в течение 2 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 10000 ч-1, соотношении Н2/СО 2,2, температуре 280°С, давлении 1,0 МПа были получены синтетические олефины С24 с производительностью 218,6 кг/м3 кат⋅ч.
Пример 4
Катализатор состава 12 масс % Со, 8 масс % Fe и 80 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 8,2 нм, общим объемом пор 1,01 см3/г, объемом мезопор 0,97 см3/г, долей мезопор от общего объема пор носителя 96% и удельной площадью поверхности 277 м2/г, получают двухкратной последовательной раздельной пропиткой носителя. На первой стадии водным раствором прекурсора кобальта - нитрата кобальта, а на второй стадии водным раствором прекурсора железа - нитрата железа, при этом каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,5 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 75°С в течение 0,5 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 1,5 кП с последующей сушкой прекурсора катализатора при температуре 100°С в течение 6 ч и его прокаливанием при температуре 300°С в течение 12 ч после каждой стадии нанесения активного компонента. Носитель получают растворяя изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 6 ч при температуре 90°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-С3Н7ОН: NH4OH=1:1,5:1,5. Полученный гель сушат при температуре 105°С в течение 2 ч, а затем прокаливают при температуре 420°С в течение 4 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 8000 ч-1, соотношении Н2/СО 1,9, температуре 240°С, давлении 2,0 МПа были получены синтетические олефины С24 с производительностью 134,2 кг/м3 кат⋅ч.
Пример 5
Катализатор состава 15 масс % Со, 5 масс % Fe и 80 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 6,0 нм, общим объемом пор 0,89 см3/г, объемом мезопор 0,86 см3/г, долей мезопор от общего объема пор носителя 97% и удельной площадью поверхности 250 м2/г, получают двухкратной последовательной раздельной пропиткой носителя. На первой стадии пропитку ведут водным раствором прекурсора кобальта - нитрата кобальта, - и на второй стадии водным раствором прекурсора железа - нитрата железа. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 2,5 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 75°С в течение 4 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 2,5 кП, сушат прекурсор катализатора при температуре 135°С в течение 5 ч и прокаливают при температуре 380°С в течение 4 ч после каждой стадии нанесения активного компонента. Носитель получают растворяя изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 7 ч при температуре 85°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-С3Н7ОН: NH4OH=1:4,0:2,5. Полученный гель сушат при температуре 105°С в течение 1 ч, а затем прокаливают при температуре 440°С в течение 2 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 5000 ч-1, соотношении Н2/СО 2,0, температуре 260°С, давлении 1,0 МПа были получены синтетические олефины С24 с производительностью 86,7 кг/м3 кат⋅ч.
Пример 6
Катализатор состава 25 масс % Со, 5 масс % Fe и 70 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 11,0 нм, общим объемом пор 1,10 см3/г, объемом мезопор 0,99 см3/г, долей мезопор от общего объема пор носителя 90% и удельной площадью поверхности 296 м2/г, получают трехкратной последовательной раздельной пропиткой носителя. На первой и второй стадии пропитку ведут водным раствором прекурсора кобальта - нитрата кобальта, - и на третьей стадии водным раствором прекурсора железа - нитрата железа. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,5 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 70°С в течение 2,5 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 1,5 кПа, сушат прекурсор катализатора при температуре 110°С в течение 8 ч и прокаливают при температуре 400°С в течение 6 ч после каждой стадии нанесения активного компонента. Носитель получают растворением изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 6 ч при температуре 85°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-C3H7OH: NH4OH=1:3,5:2,0. Полученный гель сушат при температуре 100°С в течение 2 ч, а затем прокаливают при температуре 480°С в течение 2 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 10000 ч-1, соотношении Н2/СО 2,2, температуре 275°С, давлении 1,5 МПа были получены синтетические олефины С24 с производительностью 188,6 кг/м3 кат⋅ч.
Пример 7
Катализатор состава 10 масс % Со, 10 масс % Fe и 80 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 12,0 нм, общим объемом пор 0,90 см3/г, объемом мезопор 0,85 см3/г, долей мезопор от общего объема пор носителя 94% и удельной площадью поверхности 315 м2/г, получают двукратной совместной пропиткой носителя водным раствором прекурсоров кобальта и железа - нитратов кобальта и железа, соответственно. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,0 кПа и при перемешивании носителя или прекурсора при температуре 65°С в течение 3 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 1,0 кПа, сушат прекурсор катализатора при температуре 140°С в течение 7 ч и прокаливают при температуре 370°С в течение 5 ч. Носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 5 ч при температуре 90°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-С3Н7ОН: NH4OH=1:1,0:2,5. Полученный гель сушат при температуре 105°С в течение 2 ч, а затем прокаливают при температуре 450°С в течение 3 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 7000 ч-1, соотношении Н2/СО 2,2, температуре 265°С, давлении 0,5 МПа были получены синтетические олефины С24 с производительностью 116,0 кг/м3 кат⋅ч.
Пример 8
Катализатор состава 14 масс % Со, 2 масс % Fe и 84 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 10,2 нм, общим объемом пор 1,00 см3/г, объемом мезопор 0,99 см3/г, долей мезопор от общего объема пор носителя 99% и удельной площадью поверхности 271 м2/г, получают трехкратной последовательной раздельной пропиткой носителя. На первой стадии пропитывают водным раствором прекурсора железа - нитрата железа, - на второй и третьей стадиях водным раствором прекурсора кобальта - нитрата кобальта. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 70°С в течение 2 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 1 кПа, сушат прекурсор катализатора при температуре 90°С в течение 5 ч и прокаливают его при температуре 440°С в течение 8 ч после каждой стадии нанесения активного компонента. Носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 5 ч при температуре 82°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-С3Н7ОН: NH4OH=1. Полученный гель сушат при температуре 100°С в течение 3 ч, а затем прокаливают при температуре 400°С в течение 2 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 9000 ч-1, соотношении Н2/СО 2,0, температуре 250°С, давлении 1,0 МПа были получены синтетические олефины С24 с производительностью 124,2 кг/м3 кат⋅ч.
Пример 9
Катализатор состава 24 масс % Со, 4 масс % Fe и 72 масс % носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 11,4 нм, общим объемом пор 0,96 см3/г, объемом мезопор 0,96 см3/г, долей мезопор от общего объема пор носителя 100% и удельной площадью поверхности 294 м2/г, получают четырехкратной последовательной раздельной пропиткой носителя. На первой, второй и третьей стадиях пропитку ведут водным раствором прекурсора кобальта - нитрата кобальта, а на четвертой стадии водным раствором прекурсора железа - нитрата железа. Каждую стадию пропитки проводят после вакуумирования носителя или прекурсора катализатора до остаточного вакуума 2,0 кПа и при перемешивании носителя или прекурсора катализатора на каждой стадии пропитки при температуре 60°С в течение 1,5 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных компонентов. Раствор фильтруют под вакуумом с остаточным давлением 2,0 кПа, сушат прекурсор катализатора при температуре 125°С в течение 6 ч и прокаливают при температуре 360°С в течение 10 ч после каждой стадии нанесения активного компонента. Носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 7 ч при температуре 80°С до образования геля, причем мольное отношение компонентов в растворе находится в пределах: Al(i-ОС3Н7)3: i-С3Н7ОН: NH4OH=1:1,5:2,0. Полученный гель сушат при температуре 95°С в течение 4 ч, а затем прокаливают при температуре 430°С в течение 4 ч.
При осуществлении синтеза Фишера-Тропша для получения легких олефинов в присутствии данного катализатора при объемной скорости синтез-газа 10000 ч-1, соотношении Н2/СО 2,1, температуре 280°С, давлении 0,5 МПа были получены синтетические олефины С24 с производительностью 184,0 кг/м3 кат⋅ч.
В таблице приведены составы катализаторов, приготовленных в соответствии с примерами 1-9 настоящего изобретения, информация о количестве стадий их приготовления, характеристики носителя (объем пор, Vп, доля мезопор, γмп, площадь поверхности, Sп, средний диаметр мезопор, Dcp) и производительность катализаторов по олефинам С24 в процессе Фишера-Тропша (Р).
Figure 00000008
Figure 00000009
Предлагаемые в данном изобретении катализатор и способ его получения обеспечивают высокую эффективность в процессе получения синтетических легких олефинов С24 из синтез-газа по методу Фишера-Тропша с производительностью катализатора более 80 кг/м3 кат⋅ч.
Катализаторы, полученные в соответствии с описываемым способом, являются более эффективными для получения синтетических легких олефинов С24 из синтез-газа по методу Фишера-Тропша по сравнению с известными в технике катализаторами.

Claims (2)

1. Катализатор для получения легких олефинов С24 по методу Фишера-Тропша, содержащий кобальт и железо на мезопористом носителе, отличающийся тем, что мезопористый носитель представляет собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см3/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м2/г, а массовое отношение кобальт : железо в прокаленном катализаторе находится в пределах 1,0-9,0.
2. Способ получения катализатора по п. 1, предусматривающий пропитку носителя водными растворами активных соединений кобальта и железа с последующей сушкой и прокаливанием, отличающийся тем, что пропитку мезопористого носителя, представляющего собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см3/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м2/г, ведут одностадийно или многостадийно водными растворами прекурсоров активных соединений кобальта и железа - нитратов кобальта и железа, причем каждую стадию пропитки проводят после предварительного вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,0-2,5 кПа и при перемешивании носителя или прекурсора катализатора при температуре 60-80°С в течение 0,5-4 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных соединений с последующей фильтрацией раствора под вакуумом с остаточным давлением 1,0-2,5 кПа, сушат прекурсор катализатора при температуре 40-90°С в течение 3-8 ч и прокаливают его при температуре 300-450°С в течение 3-12 ч после каждой стадии нанесения активного соединения, причем мезопористый носитель получают растворением изопропоксида алюминия в изопропиловом спирте с добавлением гидроксида аммония при перемешивании полученной смеси в течение 5-8 ч при температуре 80-90°С до образования геля при мольном отношении компонентов в растворе Al(i-ОС3Н7)3:i-С3Н7ОН:NH4OH=1:1,0-4,0:1,5-2,5, который сушат при температуре 95-110°С в течение 1-4 ч, а затем прокаливают при температуре 400-500°С в течение 1-4 ч.
RU2018138487A 2018-10-31 2018-10-31 Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения RU2679801C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018138487A RU2679801C1 (ru) 2018-10-31 2018-10-31 Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018138487A RU2679801C1 (ru) 2018-10-31 2018-10-31 Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения

Publications (1)

Publication Number Publication Date
RU2679801C1 true RU2679801C1 (ru) 2019-02-13

Family

ID=65442451

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018138487A RU2679801C1 (ru) 2018-10-31 2018-10-31 Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения

Country Status (1)

Country Link
RU (1) RU2679801C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264254C2 (ru) * 1999-12-21 2005-11-20 В.Р.Грейс Энд Ко.-Конн. Гидротермически стабильные, имеющие высокий объем пор композиционные материалы типа оксид алюминия / набухаемая глина и способы их получения и использования
CN102614856A (zh) * 2012-04-20 2012-08-01 北京化工大学 一种介孔氧化铝负载型金属催化剂的制备方法及应用
US8633131B2 (en) * 2009-10-30 2014-01-21 Samsung Electronics Co., Ltd. Mesoporous oxide-catalyst complex and method of preparing the mesoporous oxide-catalyst complex
RU2610526C2 (ru) * 2015-06-18 2017-02-13 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор для осуществления процесса Фишера-Тропша в компактном варианте и способ его получения (варианты)
RU2642451C1 (ru) * 2014-04-22 2018-01-25 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Катализатор синтеза фишера-тропша на основе кобальта, покрытый мезопористыми материалами, и способ его получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264254C2 (ru) * 1999-12-21 2005-11-20 В.Р.Грейс Энд Ко.-Конн. Гидротермически стабильные, имеющие высокий объем пор композиционные материалы типа оксид алюминия / набухаемая глина и способы их получения и использования
US8633131B2 (en) * 2009-10-30 2014-01-21 Samsung Electronics Co., Ltd. Mesoporous oxide-catalyst complex and method of preparing the mesoporous oxide-catalyst complex
CN102614856A (zh) * 2012-04-20 2012-08-01 北京化工大学 一种介孔氧化铝负载型金属催化剂的制备方法及应用
RU2642451C1 (ru) * 2014-04-22 2018-01-25 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Катализатор синтеза фишера-тропша на основе кобальта, покрытый мезопористыми материалами, и способ его получения
RU2610526C2 (ru) * 2015-06-18 2017-02-13 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор для осуществления процесса Фишера-Тропша в компактном варианте и способ его получения (варианты)

Similar Documents

Publication Publication Date Title
CN108236955B (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
AU2017201067B2 (en) Methods of preparation and forming supported active metal catalysts and precursors
KR102513667B1 (ko) 다단계 촉매 시스템 및 프로펜 생산 방법
TWI503170B (zh) 氫化觸媒及藉由羰基化合物之氫化而製造醇類的方法
JP5385972B2 (ja) オレフィンの製造方法
TW586965B (en) Oligomerization catalyst, its production and its use
CN109772435B (zh) 一种由合成气直接制取芳烃并联产低碳烯烃的方法
RU2656602C1 (ru) Одностадийный способ получения бутадиена
JP2009541478A (ja) 2,3−ジメチルブタン調製プロセスおよび得られた生成物の用途
JP6629388B2 (ja) 銅系触媒前駆体およびその製造方法並びに水素化方法
EA020083B1 (ru) Дегидратация спиртов в присутствии кристаллических силикатов
JP7302991B2 (ja) オレフィンのオリゴマー化用Ni含有触媒
JP2011148720A (ja) ブタジエンの製造方法
CN104056652A (zh) 一种核壳型zsm-5分子筛小球催化剂
CN112439443B (zh) 一种轻质烯烃骨架转化催化剂及其制备方法
JP7174947B2 (ja) 固体触媒およびブタジエンの製造方法
Shimura et al. Preparation of NiOx/SiO2–Al2O3 catalysts by a homogenous precipitation method and their catalytic activity for ethylene oligomerization
JP5435275B2 (ja) 炭化水素類の製造方法
RU2679801C1 (ru) Катализатор для получения синтетических легких олефинов C2-C4 из синтез-газа и способ его получения
Shimura et al. Ethylene oligomerization over NiOx/SiO2-Al2O3 catalysts prepared by a coprecipitation method
Austin et al. Design of highly selective ethanol dehydration nanocatalysts for ethylene production
WO2023134779A1 (zh) 加氢催化剂及其制备方法和制备异己二醇和甲基异丁基甲醇的方法
US6096790A (en) Process for the preparation of a catalyst based on cobalt and scandium
EP3853190A1 (en) Process for preparing c2-c5 hydrocarbons using a hybrid catalyst
CN111111764A (zh) 催化剂体系及其用途