WO2015161469A1 - 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法 - Google Patents

一种人工关节臼杯、磁控溅射镀膜装置及其制备方法 Download PDF

Info

Publication number
WO2015161469A1
WO2015161469A1 PCT/CN2014/076043 CN2014076043W WO2015161469A1 WO 2015161469 A1 WO2015161469 A1 WO 2015161469A1 CN 2014076043 W CN2014076043 W CN 2014076043W WO 2015161469 A1 WO2015161469 A1 WO 2015161469A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
artificial joint
sputtering
joint cup
cup according
Prior art date
Application number
PCT/CN2014/076043
Other languages
English (en)
French (fr)
Inventor
李玲玲
金攻
涂江平
Original Assignee
中奥汇成科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中奥汇成科技股份有限公司 filed Critical 中奥汇成科技股份有限公司
Priority to EP14890374.3A priority Critical patent/EP3135310B1/en
Priority to US15/120,703 priority patent/US10233537B2/en
Priority to PCT/CN2014/076043 priority patent/WO2015161469A1/zh
Priority to CN201410484382.XA priority patent/CN104224409B/zh
Publication of WO2015161469A1 publication Critical patent/WO2015161469A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys

Definitions

  • the invention relates to the field of materials and medical instruments, in particular to an artificial cup product for coating a nano-multilayer structure carbon film, a magnetron sputtering coating device for producing an artificial cup, and a preparation method thereof.
  • High molecular weight polyethylene has relatively superior physical, chemical and mechanical properties and is still the mainstream material for artificial artificial cups.
  • many years of clinical observations and experimental studies have shown that high-molecular-weight polyethylene cups are compatible with metal femoral heads, have relatively low relative hardness, and are subjected to large loads for a long time.
  • Polymer polyethylene cups will produce wear particles and cause local interfacial osteolysis, causing prostheses. Looseness leads to shortened service life of the artificial hip joint, which increases the clinical risk of secondary and tertiary artificial hip revision surgery.
  • the physical filling method improves the wear resistance, it reduces important mechanical properties such as tensile strength, impact strength and elongation at break, and is currently mainly used in the industrial field.
  • Coating technology can add additional properties to the substrate material.
  • Domestic and foreign researchers try to plate the diamond-like film on the surface of the polymer polyethylene cup, and increase the wear resistance of the polymer based on the properties of the polymer polyethylene.
  • high-molecular polyethylene as a soft material, has poor heat resistance, is easy to carbonize, and is easy to oxidize.
  • the coating process and equipment are required to be high. Under the condition of damage, the surface coating of polymer polyethylene is realized, and the design of the coating material system, the process standard and the performance of the equipment are extremely high. At present, there is no similar product on the market.
  • the applicant's prior patent, publication number: 201210151152. 2 discloses a magnetron sputtering coating device, a nano-multilayer film, and a preparation method thereof, by using a special sputtering device and sputtering technology, Molecular polyethylene as a matrix of artificial joints, etc., is coated with a nano-multilayer carbon film technology, respectively, a transition layer coated with titanium carbide and graphite-like, a multi-layer structure in which graphite-like layers and diamond-like layers are alternately laminated, and a diamond-like top layer Membrane structure, the technical scheme starts from the material system, according to the characteristics of the polymer polyethylene which is poor in heat resistance, easy to oxidize, easy to carbonize, easy to dissociate in the main chain or side chain, and easy to crosslink, on the surface of the polymer polyethylene crucible cup
  • the new material system and its preparation method are constructed to solve the problem of poor adhesion between the film and the substrate.
  • An artificial joint cup includes a substrate and a nano-multilayer film plated on the substrate;
  • the nano-multilayer film includes a pure Ti substrate layer crosslinked with the substrate, a T i over the pure Ti substrate layer, and a Ti iC transition layer, a composite layer on the Ti and Ti C transition layer, and a pure carbon film layer on the composite layer;
  • the composite layer is a nano-multilayer structure composed of a graphite-like and diamond-like monolayer film alternately deposited; In the direction from the bottom layer to the composite layer, the mass percentage of Ti in the Ti and Ti C transition layers gradually decreases, and the mass percentage of C gradually increases.
  • the substrate is a high molecular polyethylene crucible cup.
  • the substrate and the nano-multilayer film have a binding force of >60N.
  • the nano-multilayer film has a hardness of >20 GPa.
  • the pure Ti underlayer has a thickness of 100-300 nm. Further, the thickness of the T i and T i C transition layer is 300-500 nm
  • the thickness of the pure carbon film is 1 00 nm-200nm o
  • the embodiment of the invention further provides a device for producing the above-mentioned artificial joint cup for plating a nano-multilayer film on a substrate; comprising a vacuum coating chamber, a sputtering target, and a rotating table on the base of the vacuum coating chamber And a workpiece holder on the turret, and a first rotation system for driving the turret to rotate around a central axis of the turret;
  • the sputtering target is disposed around the turret and perpendicular to the turret, the sputtering target includes two a sputtering target and a second sputtering target, the sputtering target is located on a circumference concentric with the turret, and an arc between the two first sputtering targets is 180-240 degrees, the second The sputtering target bisects the arc;
  • the turret is fixedly disposed with a partition passing through the surface of the turre
  • the first sputtering target is a graphite target
  • the second sputtering target is a titanium target or a tantalum target.
  • the magnetic field shielding layer is a silicon steel gasket.
  • the partition passes through the turret table along the diameter of the turret, and the width of the partition is larger than the diameter of the turret.
  • a distance between the spacer and the circumference of the sputtering target is 2-1 0 cm, and the sputtering target is rectangular.
  • the material of the separator is titanium, aluminum, stainless steel or a combination thereof.
  • the method further includes: a second rotation system that drives the turret to rotate about a central axis of the workpiece holder.
  • the workpiece rack is disposed on the turret table by a bracket rod, and a plurality of workpiece racks are disposed on the same bracket rod.
  • the sputtering target is disposed on an inner wall of the vacuum coating chamber.
  • an arc between the two first sputtering targets is 180 degrees
  • the sputtering target further includes another second sputtering target, and the two second sputtering targets are oppositely disposed, the other The two sputtering targets are in an idle state.
  • the embodiment of the invention further provides a production device using the above-mentioned artificial joint cup production device
  • a method of cupping a cup for coating a nano-multilayer film on a substrate to keep the turret rotating at a constant speed including:
  • Step 1) Adjust the initial magnetic field strength Gl with a magnetic field shielding layer to achieve the requirement of non-destructive sputtering of the surface of the high-methylene polyethylene cup;
  • Step 2 Control the initial working pressure of the coating chamber to be Pl, and pass 99.9% of argon gas to clean the target and the substrate;
  • Step 3 controlling the working pressure P2 of the coating chamber, the working magnetic field strength of the first sputtering target is controlled to be G2; the second sputtering target is plated with the initial layer II current and the bias voltage VI on the substrate to perform the first predetermined duration.
  • Step 4) keeping the bias of the second sputtering target constant, and starting from the initial current II, the operating current of the second sputtering target is decreased by ⁇ II every first interval time T1 until the operating current is the first a predetermined current value; at the same time, the first sputtering target starts from the initial operating current 12, and the bias value is V2, and the operating current of the first sputtering target increases by ⁇ 2 until the operating current thereof is separated by the second interval time T2. a second predetermined current value; the operating voltages of the first sputtering target and the second sputtering target remain unchanged, and sputtering is performed for a second predetermined duration;
  • Step 5 maintaining the operating current of the second sputtering target at a first predetermined current value or setting and maintaining at a third predetermined current value, the operating current of the first sputtering target is maintained at a second predetermined current value or will be first
  • the working current of the sputtering target is set and maintained at a fourth predetermined current value, and the operating voltages of the first sputtering target and the second sputtering target remain unchanged, and sputtering is performed for a third predetermined duration;
  • Step 6) setting the operating current of the second sputtering target to zero, the operating current of the first sputtering target is maintained at the operating current of the step 3) or setting and maintaining the operating current of the first sputtering target
  • Five predetermined current values are subjected to sputtering for a fourth predetermined period of time.
  • the initial magnetic field strength G1 is 20-30 GT; the initial working air pressure is 1.0 mPa; the working air pressure P2 is controlled at 130 mPa-250 mPa; and the working magnetic field strength G2 is 10-150 mT;
  • the OA the first predetermined current value is 0.5-1.
  • OA the first predetermined current value is 0.5-1.
  • OA the first predetermined current value is 0.5-1.
  • the initial operating current 12 is 0, the ⁇ 2 is 0.5-1.
  • the second predetermined current value is 3.0-6.
  • the bias voltage V2 is 60-100V; and the T1 and T2 are both greater than A positive number.
  • the first predetermined duration is 10-30 min.
  • the second predetermined duration is 10-30 min.
  • the third predetermined duration is 5-10h.
  • the fourth predetermined duration is 10_20 min.
  • first interval time T1 is 3-10 min; and the second interval time T2 is 3-10 min. Further, the entire process temperature of the coating is controlled at 30-40 °C.
  • the embodiment of the invention is based on the low-temperature magnetron sputtering coating equipment, further transforming and upgrading the existing equipment, and starting from the material system, according to the high heat resistance of the polymer polyethylene, easy oxidation, easy carbonization, main chain or side
  • the material is easy to dissociate and easy to crosslink, and a new material system and a preparation method thereof are constructed on the surface of the polymer polyethylene crucible cup.
  • Ti is used as the substrate, cross-linked with high molecular polyethylene, and the gradient change of the ratio between Ti and C elements is used as the transition layer to solve the problem of poor adhesion between the film and the substrate.
  • the low-temperature magnetron sputtering technology solves the problem.
  • Molecular polyethylene is easy to oxidize and carbonize.
  • the embodiment of the invention improves the wear resistance of the high-molecular polyethylene crucible cup, suppresses the joint precision deviation caused by creep, and constructs an ultra-wearable nano-multilayer structure DLC film with high surface hardness, strong bonding force and self-lubricating function.
  • the new artificial hip joint cup improves the wear resistance of the high-molecular polyethylene crucible cup, suppresses the joint precision deviation caused by creep, and constructs an ultra-wearable nano-multilayer structure DLC film with high surface hardness, strong bonding force and self-lubricating function.
  • the new artificial hip joint cup improves the wear resistance of the high-molecular polyethylene crucible cup, suppresses the joint precision deviation caused by creep, and constructs an ultra-wearable nano-multilayer structure DLC film with high surface hardness, strong bonding force and self-lubricating function.
  • the new artificial hip joint cup improves the wear resistance of the high-molecular polyethylene crucible cup, suppresses the joint precision deviation caused by creep, and constructs
  • FIG. 1 is a schematic perspective view of a magnetron sputtering coating apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of the magnetron sputtering coating apparatus shown in FIG.
  • Figure 3 is a high molecular polyethylene plating Ti underlayer and a nano multilayer structure carbon film
  • Figure 4 shows the Raman spectrum of a plated nano-multilayer carbon film polymer polyethylene.
  • An artificial joint cup of the embodiment of the invention includes a base body and a nanometer plated on the base body
  • the substrate is a human implantable device, such as a bone joint head or a cup, and may also be other substrates, such as engineering props, etc.
  • the material of the base may be metal or alloy material. Or other materials, etc.
  • the substrate in this embodiment is a high molecular polyethylene crucible cup.
  • the nano-multilayer film includes a pure Ti underlayer crosslinked with a matrix, a Ti and Ti C transition layer on a pure Ti underlayer, a composite layer on the Ti and Ti C transition layer, and pure carbon on the composite layer
  • the composite layer is a nano-multilayer structure composed of graphite-like and diamond-like monolayer films alternately deposited; the mass percentage of Ti in the Ti and Ti C transition layers is gradually reduced from the bottom layer to the composite layer The mass percentage of small and C is gradually increased, which has better adhesion with the bottom layer, and reduces the penetration of the underlying titanium into the transition layer, while having low internal stress and good lubricity, and is improved by the pure carbon film layer on the top layer. Lubrication performance.
  • the substrate has a binding force to the nano-multilayer film of >60 N, and the nano-multilayer film has a hardness of >20 GPa.
  • FIG. 3 is a high-density polyethylene plated T i bottom layer and a nano-multilayer structure carbon film; it can be observed from FIG. 3 that after the Ti underlayer is plated, the surface of the polymer polyethylene exhibits a metallic luster. There is no carbonization phenomenon; the nano-multilayer carbon film is plated, and the surface of the polymer polyethylene is bright black.
  • Figure 4 is a Raman spectrum of a polymerized polyethylene film with a nano-multilayer structure. The Raman spectrum of Figure 4 is used to analyze the nano-multilayer carbon film samples of polymer polyethylene coating at 1349 cm -1596 cm. There are characteristic peaks of graphite-like (s p2 ) and diamond-like (sp 3 ).
  • the Ti and Ti C transition layer means that the transition layer is a film layer mixed with titanium and titanium carbide, that is, the transition layer is simultaneously doped with titanium and titanium carbide.
  • the number of layers of the nano-multilayer structure in which the graphite-like and diamond-like monolayer films are alternately deposited in the composite layer is not limited.
  • an embodiment of the present invention also discloses a device for producing an artificial joint cup for plating a nano-multilayer film on a substrate; the artificial joint cup for producing an artificial joint in this embodiment
  • the device is a magnetron sputtering coating device, comprising a vacuum coating chamber, a sputtering target, a rotating table on the base of the vacuum coating chamber, and a workpiece holder on the rotating table, and a first rotation for driving the central axis of the rotating table around the rotating table System, temperature control system;
  • the device also includes other necessary components, such as heating device, cooling water circulation system and power system electrically connected to the sputtering target (not shown).
  • the sputtering target is disposed around the turret and perpendicular to the turret, the sputtering target includes two first sputtering targets and a second sputtering target, and the sputtering targets are located on a circumference concentric with the turret.
  • the circumference of the position of the target may be an actual part, such as an inner wall of the vacuum coating chamber 100, or may be a virtual circumference such as any position between the turret stage and the vacuum coating chamber, wherein the two first sputtering targets 120a, 120b Positioned relatively in parallel, and the circumference 104 is equally divided, the second sputtering target 130 equally divides an arc between the two first sputtering targets 120a, 120b, that is, two first sputtering targets 120a
  • the arc between 120b is substantially 180°
  • the arc between the second sputtering target 130 and the first sputtering target 120a, 120b is substantially 90 degrees.
  • the first sputtering target 120a, 120b may be a sputtering target of a certain element, and the second sputtering target may be a sputtering target of another element, which may be selected according to a specific sputtering product.
  • the material of the sputtering target for example, in the embodiment, the first sputtering target is a graphite target, and the second sputtering target is a titanium target.
  • the first sputtering target may be The carbon target, the second sputtering target may also be a ruthenium target or the like.
  • the two first sputtering targets and one second sputtering target may also be disposed at intervals on the circumference at other angles, for example, a circle between the two first sputtering targets 120a, 120b.
  • the arc has an arc of other angles between 180° and 240°, and a second sputtering target equally divides the arc such that the arc of the arc between the second sputtering target and the first sputtering target can At 90-120. Between the second sputtering target 130 and the first sputtering target 120a, 120b, the arc of the arc is 120°.
  • the turret table 102 is a truncated cone.
  • the turret table 102 is fixedly disposed with a partition plate 110.
  • the baffle plate 110 is a continuous plate, and the material of the baffle plate may be titanium or aluminum.
  • the partition 110 is vertically disposed on the turret table 102 through the diameter of the turret table, and the turret table 102 is partitioned into two mutually independent regions 102-1, 102 by the partition plate 110- 2, in the direction perpendicular to the turntable, both ends of the spacer 110 exceed the two ends of the sputtering targets 120a, 120b, 130, so that the spacer blocks the sputtering target on the other side of a certain area, so that the The region only accepts the coating of the sputtering target facing the region, and more preferably, in order to achieve a better blocking effect, the width of the spacer is larger than the diameter of the turret, wherein the width refers to the passage of the spacer
  • the length of the turret in the diameter direction is more preferably, the distance d between the partition and the circumference of the sputtering target is 2-10 cm.
  • the turret table 102 is provided with a first rotation system (not shown) for driving the turret table to rotate about its central axis, that is, the turret table and the partition plate rotate around the central axis of the turret table along with the turret table.
  • a first rotation system (not shown) for driving the turret table to rotate about its central axis, that is, the turret table and the partition plate rotate around the central axis of the turret table along with the turret table.
  • a region 102-1 of the turret is facing the first sputtering target 120a (eg a graphite target) and a second sputtering target 1 30 (titanium target), so that the product to be coated (or the substrate) of the region 1 0 2 _1 can be plated with titanium or diamond-like: titanium carbide film (titanium and titanium carbide mixed) The film layer), and another region of the turntable, 102-2, faces the first sputtering target 120b (graphite target), so that the product of the region 102-2 is plated with a carbon film, and with the turntable
  • the products in different areas will be laminated with titanium or diamond-like: titanium carbide film and carbon film, so as to achieve the nano-multilayer film coating on the product, and by regulating the rotation speed of the turret
  • the partition 110 may also be vertically disposed at other positions of the turret, or may be a bent plate or any other partition that may divide the turret into two mutually independent regions.
  • the device further has a second rotation system for driving the turret table to rotate around the central axis of the workpiece holder, that is, the workpiece holder can be rotated, and the turret table 106 is disposed on the turret table 102 by the bracket rod 160.
  • a plurality of workpiece holders 140, a plurality of workpiece holders 150 may be spaced apart from each other on the same holder rod 160 to improve processing efficiency, and the workpiece holder 140 is used to place a substrate (or product) 150 to be processed, and the product 150 may be uniformly disposed on the workpiece.
  • the coating layer on the workpiece to be coated on each workpiece holder can have better uniformity.
  • the magnetron sputtering coating apparatus is different from the embodiment.
  • the sputtering targets are four (not shown), and are disposed.
  • the sputtering target includes two first sputtering targets and two second sputtering targets, two first sputtering targets are oppositely disposed, and two second sputtering targets are opposite to each other.
  • the four sputtering targets are equally divided, but one of the second sputtering targets does not work when the multilayer film is prepared, that is, two first sputtering targets and one second sputtering target
  • the target sputtering current and voltage are set to perform target sputtering coating, and the other second sputtering target is not subjected to target sputtering coating, and is in an idle state.
  • the other second sputtering target is not subjected to sputtering coating.
  • a magnetic field shielding layer is disposed at the bottom of the first sputtering target.
  • a magnetic field shielding effect of silicon steel two 5 mm thick silicon steel sheets and three thermal conductive films are placed on the bottom of the first sputtering target (graphite target); two pure graphite targets and one pure Ti target They are alternately arranged at an angle of 1 20 degrees perpendicular to the horizontal plane. According to the conditions of surface oxidation and carbonization of high molecular polyethylene and other polymers, adjust the strength of the magnetic field to achieve high molecular weight polyethylene and other polymers. There is a need for surface non-destructive sputtering.
  • the embodiment of the present invention further provides a method for coating a substrate on any substrate by using any of the above magnetron sputtering coating devices, the method comprising:
  • Step 1) Adjust the initial magnetic field strength G l with a magnetic field shielding layer to achieve the requirement of non-destructive sputtering of the surface of the high-methylene polyethylene cup;
  • Step 2 controlling the initial working pressure of the coating chamber to be Pl, and injecting 99.9% of the argon gas to clean the target and the substrate;
  • Step 3 controlling the working pressure P2 of the coating chamber, the working magnetic field strength of the first sputtering target is controlled to be G2; the second sputtering target is plated with the initial layer II and the bias voltage VI to coat the bottom layer of the pure titanium layer for the first predetermined duration.
  • Step 4) keeping the bias of the second sputtering target constant, and starting from the initial current II, the operating current of the second sputtering target is decreased by ⁇ II every first interval time T1 until the operating current is the first a predetermined current value; at the same time, the first sputtering target starts from the initial operating current 12, and the bias value is V2, and the operating current of the first sputtering target increases by ⁇ ⁇ 2 until every second interval time T2, until The working current is a second predetermined current value; the operating voltages of the first sputtering target and the second sputtering target remain unchanged, and sputtering is performed for a second predetermined duration;
  • Step 5 maintaining the operating current of the second sputtering target at a first predetermined current value or setting and maintaining at a third predetermined current value, the operating current of the first sputtering target is maintained at a second predetermined current value or will be first
  • the working current of the sputtering target is set and maintained at a fourth predetermined current value, and the operating voltages of the first sputtering target and the second sputtering target remain unchanged, and sputtering is performed for a third predetermined duration;
  • Step 6) setting the operating current of the second sputtering target to zero, the operating current of the first sputtering target is maintained at the operating current of the step 3) or setting and maintaining the operating current of the first sputtering target
  • Five predetermined current values are subjected to sputtering for a fourth predetermined period of time.
  • all three sputtering targets are operated, that is, two first sputtering targets and one second sputtering target are operated, and an implementation of another second sputtering target is further included.
  • the second sputtering target is in an idle state, and sputtering is not performed in the preparation of the nano-multilayer film.
  • the first sputtering target of the magnetron sputtering coating device is a graphite target, a second sputtering
  • the target is a titanium target.
  • the initial magnetic field strength of 20-30GT is adjusted by silicon steel gasket to meet the requirement of non-destructive sputtering of polymer polyethylene cup surface; and the vacuum coating chamber is evacuated to 1.0 mPa, and 99.9% argon gas is used for cleaning.
  • Target and substrate for 5 min.
  • the turret is rotated at a high speed, and the substrate to be coated can also rotate.
  • the working atmosphere of the control coating chamber is maintained at 130 mPa-250 mPa, and the magnetic field strength of the first sputtering target (such as a graphite target) is 10-150 mT, and the current of the second sputtering target (such as titanium target)
  • the second sputtering target current is changed by 0.5-1. OA for each gradient, and 5 times from
  • the OA gradually drops to 0.5-1. OA.
  • the current of the two first sputtering targets (graphite target) is changed by a gradient of 0.5-1.0A per rise, and gradually increases from 0 to 6 times. 3.0-6.0A, that is, the current of the second sputtering target is stepwise reduced, the current of the first sputtering target is stepwise increased, and the amplitudes of their increase and decrease may be the same or different, the interval time Can be the same or different.
  • their target voltages were kept constant at 60-100V, coated with Ti and TiC gradient films, with a plating time of 10-30 min and a thickness of 300-500 nm.
  • the second sputtering target, the two first sputtering target currents, and the bias value are maintained, and the nano-multilayer carbon film composed of graphite-like, diamond-like single layer alternately deposited on the transition layer is maintained, and the single layer is maintained.
  • the film thickness is 10-25 nm, the total thickness is 1.5-5.0, and the total time is 5-10h.
  • the second sputtering target current is set to 0, and a pure carbon film is deposited on the multilayer film structure for 10-20 min, and the pure carbon film thickness is 100 let-200 nm.
  • the total thickness of the nano-multilayer carbon film is 2.0-6. ⁇ ⁇ , and the whole process temperature of the coating is controlled at 30-40 °C.
  • the two first sputtering targets of the magnetron sputtering coating device are graphite targets, one second sputtering target is a titanium target, and the arc between the second sputtering target and the first sputtering target in the sputtering device is substantially At 90 degrees, the rotating table rotates at 1.5 rpm, and the substrate to be coated rotates. Before coating, first the substrate to be coated (or The product to be coated is placed on the workpiece holder of the vacuum coating chamber, and the polymer polyethylene cup is ultrasonically cleaned with 99% alcohol for 5 minutes, then ultrasonically cleaned with ultrapure water for 5 minutes, and dried by cold air.
  • the initial magnetic field strength of 20 GT is adjusted by a silicon steel gasket to reach the requirement of non-destructive sputtering of the surface of the polymer polyethylene crucible; and the vacuum coating chamber is evacuated to 1.0 mPa, 99.9% of argon is introduced.
  • the target and substrate were cleaned for 5 min.
  • the turret is rotated at a high speed, and the substrate to be coated can also rotate.
  • the working pressure of the control coating chamber is maintained at 150 mPa
  • the magnetic field strength of the first sputtering target (graphite target) is 80 mT
  • the current of the second sputtering target (titanium target) is 3.0 A
  • the bias voltage is 90 V.
  • the bottom layer of the titanium layer has a coating time of 10 min and a coating thickness of 150 nm.
  • the second sputtering target current is gradually decreased from 3. OA to Q. 5A after 5 times of decreasing by 0.5 A, and simultaneously, two first sputtering target (graphite target) currents are used.
  • 5A is a gradient change, and gradually increases from 0 to 3. 0A, that is, the current of the second sputtering target is stepwise reduced, and the current of the first sputtering target is stepped. Increase, the magnitude of their increase and decrease may be the same or different, and the intervals may be the same or different.
  • the T i and T iC gradient films were plated with a plating time of 20 min and a plating thickness of 350 nm (the C ratio gradually increased and the Ti ratio gradually decreased).
  • the second sputtering target, the two first sputtering target currents, and the bias value are maintained, and the nano-multilayer carbon film composed of graphite-like, diamond-like single layer alternately deposited on the transition layer is maintained, and the single layer is maintained.
  • the film thickness is 10-25 nm, the total thickness is 2. 4 um, and the total time is 8 h.
  • the second sputtering target current is set to 0, and a pure carbon film is deposited on the multilayer film structure for 10 minutes, and the pure carbon film thickness is 100 n legs.
  • the total thickness of the nano-multilayer carbon film is 3.
  • the whole process temperature of the coating is controlled from a room temperature of 27 ° C to a working temperature of 37 ° C, a film-based bonding force of 87 N, and a film hardness of 27. 5 Gpa.
  • the two first sputtering targets of the magnetron sputtering coating device are graphite targets, one second sputtering target is a titanium target, and the arc between the second sputtering target and the first sputtering target in the sputtering device is substantially 90 degrees, the rotation speed of the rotating table is 2.
  • Q rpm the substrate to be coated is rotated.
  • the substrate to be coated (or the product to be coated) is first placed on the workpiece holder of the vacuum coating chamber, with 99% alcohol. Ultrasonic cleaning of the polymer polyethylene cup for 5 minutes, then ultrasonic cleaning with ultrapure water for 5 min, cold air drying.
  • the initial magnetic field strength of 25 GT is adjusted by a silicon steel gasket to achieve the non-destructive sputtering of the surface of the polymer polyethylene crucible; and the vacuum coating chamber is evacuated to 1.0 mPa, 99.9% of argon is introduced. Air cleaning target and substrate 5m in.
  • the turret is rotated at a high speed, and the substrate to be coated can also rotate.
  • the working pressure of the control coating chamber is maintained at 250 mPa
  • the magnetic field strength of the first sputtering target (graphite target) is 150 mT
  • the current of the second sputtering target (titanium target) is 2.0 A
  • the bias voltage is 1 00 V is plated on the substrate.
  • the bottom layer of pure titanium layer has a coating time of 15 min and a coating thickness of 250 nm.
  • the current of the second sputtering target is gradually decreased from 3.5 A to 1.
  • the current of the two first sputtering targets (graphite target) is decreased every 5 times.
  • 5A is a gradient change, and gradually increases from 0 to 3.
  • 0A that is, the current of the second sputtering target is stepwise reduced, and the current of the first sputtering target is stepped.
  • Increase the magnitude of their increase and decrease may be the same or different, and the intervals may be the same or different.
  • their target voltage is kept constant 80V
  • plating T i and T i C gradient film plating time is 25m in
  • plating thickness is 450nm (C ratio gradually increases, T i ratio decreases gradually) ).
  • the second sputtering target, the two first sputtering target currents, and the bias value are maintained, and the nano-multilayer carbon film composed of graphite-like, diamond-like single layer alternately deposited on the transition layer is maintained, and the single layer is maintained.
  • the film thickness is 10-25 nm, the total thickness is 2.0 um, and the total time is 6 h.
  • the second sputtering target current is set to 0, and a pure carbon film is deposited on the multilayer film structure for 15 m in time and a pure carbon film thickness of 150 n legs.
  • the total thickness of the nano-multilayer carbon film is 2.75 ⁇ ⁇ , and the whole process temperature of the coating is controlled from a room temperature of 27 ° C to a working temperature of 37 ° C, a film-based bonding force of 90 N, and a film hardness of 27. 8Gpa.
  • the two first sputtering targets of the magnetron sputtering coating device are graphite targets, one second sputtering target is a titanium target, and the arc between the second sputtering target and the first sputtering target in the sputtering device is substantially 90 degrees, the rotation speed of the rotating table is 2.5 rpm, the substrate to be coated is rotated.
  • the substrate to be coated (or the product to be coated) is first placed on the workpiece holder of the vacuum coating chamber, with 99% alcohol. Ultrasonic cleaning of the polymer polyethylene crucible 5mi n, ultrasonic cleaning with ultrapure water for 5min, cold air drying.
  • the initial magnetic field strength is adjusted by the silicon steel shims to a temperature of 30 GHz, so as to achieve the non-destructive sputtering of the surface of the polymer polyethylene enamel cup; and the vacuum coating chamber is evacuated to 1. 0 mPa, 99.9% The argon purged the target and the substrate for 5 min.
  • the turret is rotated at a high speed, and the substrate to be coated can also rotate.
  • the working pressure of the control coating chamber is maintained at 220 mPa
  • the magnetic field strength of the graphite target is 110 mT
  • the second sputtering target (titanium target) current is 3.0 A
  • the bias voltage is 150 V.
  • the bottom layer of the pure titanium layer is plated on the substrate, and the coating time is 20 Min, the coating thickness is 300 nm.
  • the second sputtering target current is changed by a gradient of 0.8A per revolution, and gradually decreases from 5.
  • OA is a gradient change, which gradually increases from 0 to 6.0A after 6 times, that is, the current of the second sputtering target decreases stepwise, and the current of the first sputtering target increases stepwise.
  • the magnitude of the increase and decrease may be the same or different, and the intervals may be the same or different.
  • their target voltage was kept constant at 100V, and Ti and TiC gradient films were plated for 30min plating time and 500nm thickness (the C ratio gradually increased and the Ti ratio gradually decreased).
  • the second sputtering target, the two first sputtering target currents, and the bias value are maintained, and the nano-multilayer carbon film composed of graphite-like, diamond-like single layer alternately deposited on the transition layer is maintained, and the single layer is maintained.
  • the film thickness is 10-25 nm, the total thickness is 3.5 um, and the total time is 10 h.
  • the second sputtering target current is set to 0, and a pure carbon film is deposited on the multilayer film structure for 20 minutes, and the pure carbon film thickness is 200.
  • the total thickness of the nano-multilayer carbon film is 4.5 ⁇ m, and the whole process temperature of the coating is controlled from room temperature of 27 ° C to 37 ° C, the film-based bonding force is 95 N, and the film hardness is 28.5 Gpa.

Abstract

一种人工关节臼杯,包括有基体和镀覆于基体上的纳米多层膜。该纳米多层膜包括有与基体交联的纯Ti底层、纯Ti底层之上的Ti和TiC过渡层、Ti和TiC过渡层上的复合层以及该复合层上的纯碳膜层。该复合层为类石墨与类金刚石单层膜交替沉积组成的纳米多层结构;从底层向复合层方向上,该Ti和TiC过渡层中的Ti的质量百分比逐渐减小、C的质量百分比逐渐增大。还提供了用于生产该人工关节臼杯的装置,以及生产人工关节臼杯的方法。

Description

一种人工关节臼杯、 磁控溅射镀膜装置及其制备方法 技术领域
本发明涉及材料及医疗器械领域, 特别涉及镀覆纳米多层结构碳膜的 人工臼杯产品、 生产人工臼杯的磁控溅射镀膜装置及其制备方法。
背景技术
高分子聚乙烯具有相对优越的物理、 化学、 力学性能, 仍是当前人工 关节臼杯的主流材料。 但多年临床观察和实验研究显示, 高分子聚乙烯臼 杯与金属股骨头配伍, 相对硬度低, 长期承受较大载荷, 高分子聚乙烯臼 杯会产生磨损颗粒引起局部界面骨溶解, 引发假体松动, 导致人工髋关节 使用寿命缩短, 增加了患者二次、 三次人工髋关节翻修手术的临床风险。
近年人工髋关节假体尝试了 "陶 -陶" 、 "金 -金" 同材质的配伍方式, 希望解决不同材质的界面磨损问题。但是, 临床应用证明, "陶 -陶" 、 "金 -金" 同样有难以克服的缺陷, 如 "陶 -陶" 关节易碎, 限制了术后人群的 活动量和活动范围; "金 -金" 关节对手术条件和医生手术水平要求更为严 格, 关节置换稍有偏差即会加大关节边缘磨损, 产生大量碎屑及异响。 因 此,人工髋关节的主流产品仍选择以高分子聚乙烯臼杯 -金属球头配伍的方 式进行技术升级。
高分子聚乙烯的磨损主要受材料性能和加工方式的影响, 因此, 国内 外学者通过交联改性和物理改性的方式提高高分子聚乙烯耐磨性。 但是辐 射交联改性存在高分子聚乙烯在交联过程中氧化和催化问题; 离子注入交 联改性, 离子注入层深度有限(注入能量 50 ~ 1 00 keV时, 层厚约 0. 1 ~ 0. 2 μ πι ) , 不能满足医用高分子聚乙烯材料的要求。 物理填充方式虽然提高了 耐磨性,但降低了如拉伸强度、抗冲击强度和断裂伸长率等重要力学性能, 目前主要应用于工业领域。
涂层技术可以给基底材料增加额外的属性, 国内外学者尝试将类金刚 石膜镀覆于高分子聚乙烯臼杯表面, 在保障高分子聚乙烯材质属性的基础 上, 增加其耐磨损性能。 但是高分子聚乙烯作为软体材料, 耐热性差, 易 碳化、 易氧化, 在其上沉积涂层, 对镀膜工艺及设备要求较高, 如何在无 损的条件下, 实现高分子聚乙烯表面镀覆, 对镀膜材料体系的设计、 工艺 的标准和设备的性能要求极高, 目前, 世界上尚无类似的产品上市。
申请人的先前专利, 公开号为: 201210151152. 2, 公开了一种磁控溅 射镀膜装置、 纳米多层膜及其制备方法, 通过釆用专门的溅射装置及溅射 技术, 对以高分子聚乙烯为基体的人工关节等进行镀覆纳米多层结构碳膜 技术, 分别镀覆有碳化钛和类石墨的过渡层、 类石墨层与类金刚石层交替 层叠的多层结构及类金刚石顶层膜结构, 该技术方案从材料体系入手, 根 据高分子聚乙烯耐热性差、 易氧化、 易碳化、 主链或侧链易游离、 易交联 的材料特点,在高分子聚乙烯臼杯表面上构建新的材料体系及其制备方法, 解决膜与基体结合力差的问题, 同时, 以低温磁控溅射技术解决了高分子 聚乙烯易氧化、 碳化问题。
申请人通过研究及实践, 对申请的该技术方案还存在的不足之处进行 改进, 并同时针对生产产品的装置及方法均同时提出改进方案, 以适应改 进技术方案的要求。 发明内容
本发明的目的是旨在至少解决上述技术缺陷之一, 提高人工关节假体使 用寿命。
本发明实施例是通过以下技术方案实现的:
一种人工关节臼杯, 包括有基体和镀覆于基体上的纳米多层膜; 所述纳 米多层膜包括有与基体交联的纯 T i底层、纯 T i底层之上的 T i和 T iC过渡 层、 Ti和 Ti C过渡层上的复合层以及所述复合层上的纯碳膜层; 所述复合 层为类石墨与类金刚石单层膜交替沉积组成的纳米多层结构; 从底层向复 合层方向上, 所述 T i和 Ti C过渡层中的 Ti 的质量百分比逐渐减小、 C的 质量百分比逐渐增大。
进一步的, 所述基体为高分子聚乙烯臼杯。
进一步的, 所述基体与纳米多层膜结合力〉 60N。
进一步的, 所述纳米多层膜的硬度〉 20Gpa。
进一步的, 所述纯 Ti底层的厚度为 100-300 nm。 进一步的, 所述 T i和 T i C过渡层的厚度为 300-500 nm
进一步的, 所述复合层的类石墨、 类金刚石单层膜交替沉积组成的纳 米多层结构中, 单层膜厚度为 1 0-25 nm, 复合层的总厚度为 1. 5-5. 0 进一步的, 所述纯碳膜的厚度为 1 00 nm-200nmo
本发明实施例还提供了一种用于生产上述人工关节臼杯的装置,用于在基 体上镀覆纳米多层膜; 包括有真空镀膜室、 溅射靶、 真空镀膜室底座上的 转架台和转架台上的工件架, 以及驱动转架台绕转架台的中心轴转动的第 一转动系统; 所述溅射靶设置在转架台周围并与转架台垂直, 所述溅射靶 包括两个第一溅射靶及一个第二溅射靶, 所述溅射靶位于与转架台同心的 圓周上, 两个所述第一溅射靶之间的圓弧为 180-240度, 所述第二溅射靶 等分所述圓弧; 所述转架台上固定设置有穿过转架台表面的隔板, 在垂直 于转架台方向上, 所述隔板的两端均超出所述溅射靶的两端; 所述第一溅 射靶的底部设置有磁场屏蔽层。
进一步的,所述第一溅射靶为石墨靶,所述第二溅射靶为钛靶或钽靶。 进一步的, 所述磁场屏蔽层为硅钢垫片。
进一步的, 所述隔板沿着转架台的直径穿过所述转架台, 且所述隔板 的宽度大于转架台的直径。
进一步的, 所述隔板与所述溅射靶所在圓周的间距为 2-1 0 cm 进一步的, 所述溅射靶为矩形。
进一步的, 所述隔板的材料为钛、 铝、 不锈钢或他们的组合。
进一步的, 还包括: 驱动转架台绕工件架的中心轴转动的第二转动系 统。
进一步的, 所述工件架通过支架杆设置在转架台上, 同一支架杆上间 隔设置有多个工件架。
进一步的, 所述溅射靶设置在真空镀膜室的内壁上。
进一步的, 两个所述第一溅射靶之间的圓弧为 180度, 所述溅射靶还 包括另一第二溅射靶, 两个第二溅射靶相对设置, 该另一第二溅射靶为闲 置状态。
本发明实施例还提供一种利用上述人工关节臼杯的生产装置生产人工 关节臼杯的方法, 用于在基体上镀覆纳米多层膜, 保持转架台匀速转动, 包 括:
步骤 1 ) 用磁场屏蔽层调整初始磁场强度 Gl, 使其达到高分子聚乙烯 臼杯表面无损溅射的需求;
步骤 2 )控制镀膜室初始工作气压为 Pl, 通入 99.9%的氩气清洗靶材 及基体;
步骤 3)控制镀膜室工作气压 P2,第一溅射靶工作磁场强度控制为 G2; 第二溅射靶用初始 II 电流、 偏压 VI在基体上镀覆纯钛层底层, 进行第一 预定时长的溅射;
步骤 4)保持第二溅射靶的偏压不变, 并从初始电流 II开始, 每隔第一 间隔时间 Tl, 所述第二溅射靶的工作电流减少△ II, 直到其工作电流为第一 预定电流值; 同时, 第一溅射靶从初始工作电流 12 开始, 偏压值为 V2, 每间隔第二间隔时间 T2, 所述第一溅射靶的工作电流增加 ΔΙ2, 直到其工 作电流为第二预定电流值; 所述第一溅射靶和所述第二溅射靶的工作电压 保持不变, 进行第二预定时长的溅射;
步骤 5 ) 将第二溅射靶的工作电流保持在第一预定电流值或设定并保 持在第三预定电流值, 第一溅射靶的工作电流保持在第二预定电流值或将 第一溅射靶的工作电流设定并保持在第四预定电流值, 所述第一溅射靶和 所述第二溅射靶的工作电压保持不变, 进行第三预定时长的溅射;
步骤 6 ) 将第二溅射靶的工作电流设定为零, 第一溅射靶的工作电流 保持在步骤 3) 阶段的工作电流或者将第一溅射靶的工作电流设定并保持 在第五预定电流值, 进行第四预定时长的溅射。
可选的, 所述初始磁场强度 G1为 20-30GT; 初始工作气压为 P1为 1.0 mPa;所述工作气压 P2控制在 130 mPa-250 mPa;工作磁场强度 G2为 10-150 mT; 所述第二溅射靶用初始 II电流为 3.0-5.0A, 偏压 VI为 90-150V, 所 述 ΔΙ1为 0.5-1. OA, 所述所述第一预定电流值为 0.5-1. OA, 所述初始工作 电流 12为 0, 所述 ΔΙ2为 0.5-1. OA, 所述第二预定电流值为 3.0-6. OA, 所述偏压 V2为 60-100V; 所述 T1和 T2均为大于的正数。
进一步的, 所述第一预定时长为 10-30 min。 进一步的, 所述第二预定时长为 10-30min。
进一步的, 所述第三预定时长为 5-10h。
进一步的 , 所述第四预定时长为 10_20min。
进一步的,所述第一间隔时间 T1为 3-10min;第二间隔时间 T2为 3-10min。 进一步的, 镀膜全过程温度控制在 30-40 °C。
本发明实施例是在低温磁控溅射镀膜设备基础上, 对现有设备进一步 改造、 升级, 并从材料体系入手, 根据高分子聚乙烯耐热性差、 易氧化、 易碳化、 主链或侧链易游离、 易交联的材料特点, 在高分子聚乙烯臼杯表 面上构建新的材料体系及其制备方法。以 Ti做基底,与高分子聚乙烯交联, 以 Ti、 C元素之间比例的梯度变化作为过渡层, 解决膜与基体结合力差的问 题, 同时, 以低温磁控溅射技术解决了高分子聚乙烯易氧化、 碳化问题。
在此基础上, 利用类石墨结构膜的超润滑性和类金 ¾ 'J结构膜结构的超 硬度, 构建一种类石墨膜和类金刚石膜的交替镀覆的纳米多层结构 DL C膜。
本发明实施例提升了高分子聚乙烯臼杯的耐磨性, 遏制蠕变导致的关 节精度偏差, 构建出表面硬度高、 结合力强、 有自润滑功能的超耐磨纳米 多层结构 DLC膜的新型人工髋关节臼杯。 附图说明
图 1为根据本发明实施例的磁控溅射镀膜装置的立体结构示意图; 图 2为图 1所示的磁控溅射镀膜装置的俯视示意图;
图 3为高分子聚乙烯镀覆 Ti底层及纳米多层结构碳膜;
图 4为镀覆纳米多层结构碳膜高分子聚乙烯的拉曼光谱。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。
本发明实施例的一种人工关节臼杯, 包括有基体和镀覆于基体上的纳米 多层膜; 在本发明实施例中, 基体为可以人体植入类器材, 如骨关节头或 臼杯等, 还可以为其他基体, 如工程道具等等, 基体的材料可以为金属或 合金材料或其他材料等, 本实施例中的基体为高分子聚乙烯臼杯。
所述纳米多层膜包括有与基体交联的纯 Ti底层、 纯 Ti底层之上的 T i 和 Ti C过渡层、 Ti和 Ti C过渡层上的复合层以及所述复合层上的纯碳膜层; 所述复合层为类石墨与类金刚石单层膜交替沉积组成的纳米多层结构; 从 底层向复合层方向上, 所述 T i和 Ti C过渡层中的 Ti的质量百分比逐渐减 小、 C 的质量百分比逐渐增大, 与底层具有更好的结合力, 并减少底层的 钛向过渡层渗透, 同时具有低的内应力和好的润滑性, 并通过顶层的纯碳 膜层提高润滑性能。 所述基体与纳米多层膜结合力〉 60N, 所述纳米多层膜 的硬度 >20Gpa。
如图 3和图 4所示, 图 3为高分子聚乙烯镀覆 T i底层及纳米多层结构 碳膜; 通过图 3能够观察到, 镀覆 Ti底层后, 高分子聚乙烯表面呈现金属 光泽, 未出现碳化现象; 镀覆纳米多层结构碳膜, 高分子聚乙烯表面呈亮 黑色。 图 4 为镀覆纳米多层结构碳膜高分子聚乙烯的拉曼光谱; 通过图 4 的拉曼光谱分析了高分子聚乙烯镀膜纳米多层结构碳膜样品, 在 1349cm -、 在 1596 cm— 有类石墨 (s p2 ) 、 类金刚石 (s p 3 ) 的特征峰。
需要说明的是, 在本发明实施例中, 所述 Ti和 Ti C过渡层指该过渡层 为混合有钛和碳化钛的膜层, 也就是说, 该过渡层同时掺有钛和碳化钛。
在本发明实施例中, 对复合层中类石墨与类金刚石单层膜交替沉积组 成的纳米多层结构的层数不做限定。
如图 1 和图 2所示, 本发明的实施例还公开了一种生产人工关节臼杯 的装置, 用于在基体上镀覆纳米多层膜; 本实施例中的生产人工关节臼杯的 装置为磁控溅射镀膜装置, 包括有真空镀膜室、 溅射靶、 真空镀膜室底座 上的转架台和转架台上的工件架, 以及驱动转架台绕转架台的中心轴转动 的第一转动系统, 温控系统; 同时, 本装置还包括有其它必要部件, 如加 热装置、冷却水循环系统及与溅射靶电连接的电源系统等(图中未示出)。 所述溅射靶设置在转架台周围并与转架台垂直, 所述溅射靶包括两个第一 溅射靶及一个第二溅射靶, 这些溅射靶位于与转架台同心的圓周上, 溅射 靶所在位置的圓周可以为实际部件, 例如真空镀膜室 100 的内壁, 也可以 是虚拟的圓周例如转架台与真空镀膜室之间的任意位置上, 其中, 两个第 一溅射靶 120a、 120b相对地平行设置, 且将所述圓周 104等分, 所述第二 溅射靶 130等分两个第一溅射靶 120a、 120b之间的圓弧, 即, 两个第一溅 射靶 120a、 120b之间的弧度基本为 180° , 第二溅射靶 130与第一溅射靶 120a, 120b之间的弧度基本为 90。 , 所述第一溅射靶 120a、 120b可以为 某一种元素的溅射靶, 所述第二溅射靶可以为另一种元素的溅射靶, 可以 根据具体需要溅射的产品来选择溅射靶的材料, 例如, 本实施例中, 所述 第一溅射靶为石墨靶、 所述第二溅射靶为钛靶, 在其他实施例中, 所述第 一溅射靶可以为碳靶, 所述第二溅射靶还可以为钽靶等。
在其他实施例中, 两个第一溅射靶及一个第二溅射靶在圓周上还可以 是设置为其他角度的间隔设置, 例如, 两个第一溅射靶 120a、 120b之间的 圓弧的弧度为 180° -240° 之间的其他角度,而一个第二溅射靶等分所述圓 弧, 这样, 第二溅射靶与第一溅射靶之间的圓弧的弧度可以在 90-120。 之 间,第二溅射靶 130与第一溅射靶 120a、120b之间的圓弧的弧度为 120° 。
在本实施例中, 所述转架台 102为圓台, 在所述转架台 102上固定设 置有隔板 110, 优选地, 该隔板 110为一直板, 隔板的材料可以为钛、 铝、 不锈钢等或这些材料的组合, 所述隔板 110穿过转架台的直径垂直设置在 转架台 102上, 通过该隔板 110将转架台 102分隔为两个相互独立的区域 102-1、 102-2, 在垂直于转架台的方向上, 隔板 110的两端均超出溅射靶 120a, 120b, 130 的两端, 这样, 隔板阻挡住某一区域另一面的溅射靶, 可以使该区域只接受该区域面对的溅射靶的镀膜, 更优地, 为了取得更好 的阻挡效果, 所述隔板的宽度大于转架台的直径, 其中, 所述宽度指所述 隔板穿过转架台直径方向的长度, 更优地, 所述隔板与所述溅射靶所在圓 周的间距 d为 2_10cm。
所述转架台 102 设置有驱动转架台绕其中心轴转动的第一转动系统 (图中未示出) , 即, 转架台及隔板随着转架台一起绕转架台的中心轴做 转动。在三个溅射靶上述设置的位置情况下,在转架台转动到任一位置时, 在隔板 102的遮挡下, 转架台的一个区域 102-1面对第一溅射靶 120a (如 石墨靶)和第二溅射靶 1 30 (钛靶), 从而该区域 1 02_1的待镀膜产品(或 基体)上可以镀覆上钛或类金刚石: 碳化钛膜(钛和碳化钛混合的膜层), 而转架台的另一个区域 1 02-2面对第一溅射靶 120b (石墨靶) , 从而该区 域 1 02-2 的产品上镀覆上碳膜, 而随着转架台的转动, 不同区域上的产品 将会层叠的镀覆上钛或类金钢石: 碳化钛膜及碳膜, 从而实现产品上纳米 多层膜的镀覆, 而通过调控转架台的转速, 可以控制单层膜的厚度, 该装 置结构简单, 对工艺的控制简单, 解决了多层膜的制备, 适宜于工业化。
在其他实施例中,所述隔板 1 1 0还可以垂直设置在转架台的其他位置, 也可以为弯折板或其他任意可以将转架台分隔为两个相互独立的区域的隔 板。
在本实施例中, 该装置还具有驱动转架台绕工件架的中心轴转动的第 二转动系统, 也就是说, 工件架可以自转, 通过支架杆 1 60在所述转架台 1 02上设置有多个工件架 140, 同一支架杆 160上可以间隔设置多个工件架 150 , 来提高加工效率, 工件架 140用来放置要加工的基体(或产品) 150, 产品 1 50可以均匀地设置在工件架 140的圓周上。 通过工件架的自转, 可 以使每个工件架上的待镀膜产品上镀覆的膜层具有较好的均匀性。
以上为本发明较佳实施例的磁控溅射镀膜装置,与该实施例不同的是, 在另一较佳实施例中, 所述溅射靶为四个 (图中未示出) , 设置在转架台 的四周, 也就是说, 所述溅射靶包括两个第一溅射靶及两个第二溅射靶, 两个第一溅射靶相对设置, 两个第二溅射靶相对设置, 四个溅射靶等分圓 周,但在进行多层膜的制备时,其中一个第二溅射靶并不工作,也就是说, 两个第一溅射靶及一个第二溅射靶设置相应的靶电流、 电压等参数进行靶 溅射镀膜, 而另一个第二溅射靶不进行靶溅射镀膜, 为闲置状态。 在此实 施例中, 虽然设置了四个溅射靶, 但其中一个溅射靶并不进行溅射镀膜。
在本发明的所有实施例中, 在第一溅射靶的底部设置有磁场屏蔽层。 在本实施例中, 利用硅钢的磁场屏蔽效果, 在第一溅射靶(石墨靶材) 底 部垫加两块 5mm厚硅钢片和三层导热膜; 两块纯石墨靶与一块纯 T i靶垂直 于水平面呈 1 20度角交替排列。 依据高分子聚乙烯及其它聚合物表面氧化 及碳化的发生条件, 调整磁场的强弱, 达到对高分子聚乙烯和其它聚合物 表面无损溅射的要需求。
以上对本发明实施例的磁控溅射镀膜装置进行了详细的描述, 在进行 制备时, 根据具体的需求, 进行各个工艺参数的设定进行纳米多层膜的制 备。 为此, 本发明实施例还提供了利用上述任一磁控溅射镀膜装置在基材 上进行镀膜的方法, 该方法包括:
步骤 1 ) 用磁场屏蔽层调整初始磁场强度 G l, 使其达到高分子聚乙烯 臼杯表面无损溅射的需求;
步骤 2 )控制镀膜室初始工作气压为 Pl, 通入 99. 9%的氩气清洗靶材 及基体;
步骤 3 )控制镀膜室工作气压 P2,第一溅射靶工作磁场强度控制为 G2 ; 第二溅射靶用初始电流 I I、 偏压 VI 在基体上镀覆纯钛层底层, 进行第一 预定时长的溅射;
步骤 4 )保持第二溅射靶的偏压不变, 并从初始电流 I I开始, 每隔第一 间隔时间 Tl, 所述第二溅射靶的工作电流减少△ I I, 直到其工作电流为第一 预定电流值; 同时, 第一溅射靶从初始工作电流 12 开始, 偏压值为 V2, 每间隔第二间隔时间 T2, 所述第一溅射靶的工作电流增加 Δ Ι 2, 直到其工 作电流为第二预定电流值; 所述第一溅射靶和所述第二溅射靶的工作电压 保持不变, 进行第二预定时长的溅射;
步骤 5 ) 将第二溅射靶的工作电流保持在第一预定电流值或设定并保 持在第三预定电流值, 第一溅射靶的工作电流保持在第二预定电流值或将 第一溅射靶的工作电流设定并保持在第四预定电流值, 所述第一溅射靶和 所述第二溅射靶的工作电压保持不变, 进行第三预定时长的溅射;
步骤 6 ) 将第二溅射靶的工作电流设定为零, 第一溅射靶的工作电流 保持在步骤 3 ) 阶段的工作电流或者将第一溅射靶的工作电流设定并保持 在第五预定电流值, 进行第四预定时长的溅射。
在本发明的制备方法的实施例中, 都是三个溅射靶进行工作, 即两个 第一溅射靶和一个第二溅射靶工作, 在还包括另一个第二溅射靶的实施例 中,该第二溅射靶为闲置状态,在纳米多层膜的制备中,一直不进行溅射。
在一些实施例中, 磁控溅射镀膜装置的第一溅射靶为石墨靶、 第二溅 射靶为钛靶, 首先将待镀膜的基体 (或待镀膜的产品) 置入真空镀膜室的 工件架上, 用 99%的酒精超声波清洗高分子聚乙烯臼杯 5min后, 再用超纯 水超声波清洗 5min, 冷风吹干。
同时, 用硅钢垫片调整初始磁场强度 20-30GT, 使其达到高分子聚乙 烯臼杯表面无损溅射的需求;并将真空镀膜室抽真空至 1.0 mPa 时, 通入 99.9%的氩气清洗靶材及基体 5min。
而后, 进行溅射, 整个溅射过程中, 转架台勾速转动, 待镀膜的基材 也可以自转。
具体的, 控制镀膜室工作气压保持在 130 mPa-250 mPa, 第一溅射靶 (比如石墨靶) 磁场强度为 10-150 mT, 第二溅射靶 (比如钛靶) 电流
2.0-5. OA、偏压 90-150V在基体上镀覆纯钛层底层,镀膜时间为 10-30 min, 厚度为 100-300 讓。
然后将第二溅射靶电流以每降低 0.5-1. OA为一个梯度变化,经 5次从
3.0-5. OA逐渐降到 0.5-1. OA, 同时, 将两个第一溅射靶(石墨靶) 电流以 每升高 0.5-1.0A为一个梯度变化, 经 6次由 0逐渐升至 3.0-6.0A, 也就 是说, 第二溅射靶的电流呈阶梯式的减少, 第一溅射靶的电流呈阶梯式的 增加, 他们的增加和减少的幅度可以相同或不同, 间隔的时间可以相同或 不同。 整个过程中他们的靶电压保持不变偏压 60-100V, 镀覆 Ti和 TiC梯 度膜, 镀覆时间为 10-30min, 厚度为 300-500 nm。
然后保持第二溅射靶、 两个第一溅射靶电流、 偏压值不变, 在过渡层 基础上镀覆类石墨、 类金刚石单层交替沉积组成的纳米多层结构碳膜, 单 层膜厚度为 10-25 nm, 总厚度为 1.5-5.0画, 总时间为 5_10h。 第二溅射 靶电流设置为 0, 继续在多层膜结构上沉积纯碳膜, 时间为 10-20min, 纯 碳膜厚度为 100讓- 200nm。由此,纳米多层结构碳膜总厚度为 2.0-6. Ο μπι, 镀膜全过程温度控制在 30-40°C。
实施例 1
磁控溅射镀膜装置的两个第一溅射靶为石墨靶、 一个第二溅射靶为钛 靶, 溅射装置中的第二溅射靶与第一溅射靶之间的弧度基本为 90度, 转架 台转速为 1.5 rpm, 待镀膜的基材自转。 镀膜前, 首先将待镀膜的基体(或 待镀膜的产品) 置入真空镀膜室的工件架上, 用 99%的酒精超声波清洗高 分子聚乙烯臼杯 5min后, 再用超纯水超声波清洗 5min, 冷风吹干。
同时, 用硅钢垫片调整初始磁场强度 20GT, 使其达到高分子聚乙烯臼 杯表面无损溅射的需求;并将真空镀膜室抽真空至 1. 0 mPa时, 通入 99. 9% 的氩气清洗靶材及基体 5min。
而后, 进行溅射, 整个溅射过程中, 转架台勾速转动, 待镀膜的基材 也可以自转。
具体的, 控制镀膜室工作气压保持在 150 mPa, 第一溅射靶(石墨靶) 磁场强度为 80mT, 第二溅射靶(钛靶) 电流 3. 0A、 偏压 90V在基体上镀覆 纯钛层底层, 镀膜时间为 10 min, 镀膜厚度为 150 nm。
然后将第二溅射靶电流以每降低 0. 5A为一个梯度变化,经 5次从 3. OA 逐渐降到 Q. 5A, 同时, 将两个第一溅射靶(石墨靶) 电流以每升高 0. 5A 为一个梯度变化, 经 6次由 0逐渐升至 3. 0A, 也就是说, 第二溅射靶的电 流呈阶梯式的减少, 第一溅射靶的电流呈阶梯式的增加, 他们的增加和减 少的幅度可以相同或不同, 间隔的时间可以相同或不同。 整个过程中他们 的靶电压保持不变偏压 60V, 镀覆 T i和 T iC梯度膜, 镀覆时间为 20min, 镀覆厚度为 350nm ( C比例逐渐增大, Ti比例逐渐减少 ) 。
然后保持第二溅射靶、 两个第一溅射靶电流、 偏压值不变, 在过渡层 基础上镀覆类石墨、 类金刚石单层交替沉积组成的纳米多层结构碳膜, 单 层膜厚度为 10-25 nm, 总厚度为 2. 4um, 总时间为 8h。 第二溅射靶电流设 置为 0, 继续在多层膜结构上沉积纯碳膜, 时间为 10min, 纯碳膜厚度为 100 n腿 m。 由此, 纳米多层结构碳膜总厚度为 3. Ο μ πι, 镀膜全过程温度控 制在从 27 °C室温升至 37 °C工作温度,膜基结合力 87 N,膜硬度为 27. 5 Gpa。
实施例 2
磁控溅射镀膜装置的两个第一溅射靶为石墨靶、 一个第二溅射靶为钛 靶, 溅射装置中的第二溅射靶与第一溅射靶之间的弧度基本为 90度, 转架 台转速为 2. Q rpm, 待镀膜的基材自转, 镀膜前, 首先将待镀膜的基体(或 待镀膜的产品) 置入真空镀膜室的工件架上, 用 99%的酒精超声波清洗高 分子聚乙烯臼杯 5min后, 再用超纯水超声波清洗 5min, 冷风吹干。 同时, 用硅钢垫片调整初始磁场强度 25GT, 使其达到高分子聚乙烯臼 杯表面无损溅射的需求;并将真空镀膜室抽真空至 1. 0 mPa时, 通入 99. 9% 的氩气清洗靶材及基体 5m in。
而后, 进行溅射, 整个溅射过程中, 转架台勾速转动, 待镀膜的基材 也可以自转。
具体的, 控制镀膜室工作气压保持在 250 mPa, 第一溅射靶(石墨靶) 磁场强度为 150mT, 第二溅射靶(钛靶) 电流 2. 0A、 偏压 1 00V在基体上镀 覆纯钛层底层, 镀膜时间为 15 mi n, 镀膜厚度为 250 nm。
然后将第二溅射靶电流以每降低 0. 5A为一个梯度变化,经 5次从 3. 5A 逐渐降到 l . QA, 同时, 将两个第一溅射靶(石墨靶) 电流以每升高 0. 5A 为一个梯度变化, 经 6次由 0逐渐升至 3. 0A, 也就是说, 第二溅射靶的电 流呈阶梯式的减少, 第一溅射靶的电流呈阶梯式的增加, 他们的增加和减 少的幅度可以相同或不同, 间隔的时间可以相同或不同。 整个过程中他们 的靶电压保持不变偏压 80V, 镀覆 T i和 T i C梯度膜, 镀覆时间为 25m in, 镀覆厚度为为 450nm ( C比例逐渐增大, T i比例逐渐减少 ) 。
然后保持第二溅射靶、 两个第一溅射靶电流、 偏压值不变, 在过渡层 基础上镀覆类石墨、 类金刚石单层交替沉积组成的纳米多层结构碳膜, 单 层膜厚度为 1 0-25 nm, 总厚度为 2. 0um, 总时间为 6h。 第二溅射靶电流设 置为 0, 继续在多层膜结构上沉积纯碳膜, 时间为 15m in, 纯碳膜厚度为 150 n腿 m。 由此, 纳米多层结构碳膜总厚度为 2. 75 μ πι, 镀膜全过程温度 控制在从 27 °C室温升至 37 °C工作温度,膜基结合力 90 N,膜硬度为 27. 8Gpa。
实施例 3
磁控溅射镀膜装置的两个第一溅射靶为石墨靶、 一个第二溅射靶为钛 靶, 溅射装置中的第二溅射靶与第一溅射靶之间的弧度基本为 90度, 转架 台转速为 2. 5 rpm, 待镀膜的基材自转, 镀膜前, 首先将待镀膜的基体 (或 待镀膜的产品) 置入真空镀膜室的工件架上, 用 99%的酒精超声波清洗高 分子聚乙烯臼杯 5mi n后, 再用超纯水超声波清洗 5min, 冷风吹干。
同时, 用硅钢垫片调整初始磁场强度 30GT, 使其达到高分子聚乙烯臼 杯表面无损溅射的需求;并将真空镀膜室抽真空至 1. 0 mPa时, 通入 99. 9% 的氩气清洗靶材及基体 5min。
而后, 进行溅射, 整个溅射过程中, 转架台勾速转动, 待镀膜的基材 也可以自转。
具体的,控制镀膜室工作气压保持在 220 mPa,石墨靶磁场强度为 110mT, 第二溅射靶(钛靶) 电流 3.0A、 偏压 150V在基体上镀覆纯钛层底层, 镀 膜时间为 20 min, 镀膜厚度为 300 nm。
然后将第二溅射靶电流以每降低 0.8A为一个梯度变化,经 5次从 5. OA 逐渐降到 1.0A, 同时, 将两个第一溅射靶(石墨靶) 电流以每升高 1. OA 为一个梯度变化, 经 6次由 0逐渐升至 6.0A, 也就是说, 第二溅射靶的电 流呈阶梯式的减少, 第一溅射靶的电流呈阶梯式的增加, 他们的增加和减 少的幅度可以相同或不同, 间隔的时间可以相同或不同。 整个过程中他们 的靶电压保持不变偏压 100V, 镀覆 Ti和 TiC梯度膜, 镀覆时间为 30min, 镀覆厚度为 500nm ( C比例逐渐增大, Ti比例逐渐减少 ) 。
然后保持第二溅射靶、 两个第一溅射靶电流、 偏压值不变, 在过渡层 基础上镀覆类石墨、 类金刚石单层交替沉积组成的纳米多层结构碳膜, 单 层膜厚度为 10-25 nm, 总厚度为 3.5um, 总时间为 10h。 第二溅射靶电流 设置为 0, 继续在多层膜结构上沉积纯碳膜, 时间为 20min, 纯碳膜厚度为 200 讓讓。 由此, 纳米多层结构碳膜总厚度为 4.5 μπι, 镀膜全过程温度控 制在从 27°C室温升至 37°C工作温度,膜基结合力 95 N,膜硬度为 28.5 Gpa。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员 而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等 同限定。

Claims

权 利 要 求
1、 一种人工关节臼杯, 包括有基体和镀覆于基体上的纳米多层膜; 其特 征在于: 所述纳米多层膜包括有与基体交联的纯 Ti底层、纯 T i底层之上 的 Ti和 TiC过渡层、 Ti和 Ti C过渡层上的复合层以及所述复合层上的纯 碳膜层;所述复合层为类石墨与类金刚石单层膜交替沉积组成的纳米多层 结构; 从底层向复合层方向上, 所述 Ti和 TiC过渡层中的 Ti的质量百分 比逐渐减小、 C的质量百分比逐渐增大。
2、 根据权利要求 1 所述的人工关节臼杯, 其特征在于: 所述基体为高 分子聚乙烯臼杯。
3、 根据权利要求 1 所述的人工关节臼杯, 其特征在于: 所述基体与纳 米多层膜结合力>60
4、 根据权利要求 1或 2或 3所述的人工关节臼杯, 其特征在于: 所述 纳米多层膜的硬度〉 20Gpa。
5、 根据权利要求 1所述的人工关节臼杯, 其特征在于: 所述纯 Ti底层 的厚度为 100-300 nm。
6、 根据权利要求 1所述的人工关节臼杯, 其特征在于: 所述 T i和 TiC 过渡层的厚度为 300-500 讓。
7、 根据权利要求 1 所述的人工关节臼杯, 其特征在于: 所述复合层的 类石墨、 类金刚石单层膜交替沉积组成的纳米多层结构中, 单层膜厚度为 10-25 nm, 复合层的总厚度为 1. 5- 5. 0um。
8、 根据权利要求 1 所述的人工关节臼杯, 其特征在于: 所述纯碳膜的 厚度为 100 nm-200nmo
9、 一种用于生产权利要求 1至 8任一项所述人工关节臼杯的装置, 其特 征在于: 包括有真空镀膜室、 溅射靶、 真空镀膜室底座上的转架台和转架 台上的工件架, 以及驱动转架台绕转架台的中心轴转动的第一转动系统; 所述溅射靶设置在转架台周围并与转架台垂直, 所述溅射靶包括两个第一 溅射靶及一个第二溅射靶, 所述溅射靶位于与转架台同心的圓周上, 两个 所述第一溅射靶之间的圓弧为 180-240度,所述第二溅射靶等分所述圓弧; 所述转架台上固定设置有穿过转架台表面的隔板,在垂直于转架台方向上, 所述隔板的两端均超出所述溅射靶的两端; 所述第一溅射靶的底部设置有 磁场展蔽层。
1 0、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 所述第一溅射靶为石墨靶, 所述第二溅射靶为钛靶或钽靶。
1 1、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 所述磁场屏蔽层为硅钢垫片。
12、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 所述隔板沿着转架台的直径穿过所述转架台, 且所述隔板的宽度大 于转架台的直径。
1 3、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 所述隔板与所述溅射靶所在圓周的间距为 2-1 0 cm。
14、 根据权利要求 9或 1 3所述的用于生产上述人工关节臼杯的装置, 其特征在于: 所述溅射靶为矩形。
15、根据权利要求 9或 12或 1 3所述的用于生产上述人工关节臼杯的装 置, 其特征在于: 所述隔板的材料为钛、 铝、 不锈钢或他们的组合。
16、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 还包括: 驱动转架台绕工件架的中心轴转动的第二转动系统。
17、 根据权利要求 9所述的用于生产上述人工关节臼杯的装置, 其特征 在于: 所述工件架通过支架杆设置在转架台上, 同一支架杆上间隔设置有 多个工件架。
18、 根据权利要求 9或 1 0所述的用于生产上述人工关节臼杯的装置, 其特征在于: 所述溅射靶设置在真空镀膜室的内壁上。
19、 根据权利要求 9或 1 0所述的用于生产上述人工关节臼杯的装置, 其特征在于: 两个所述第一溅射靶之间的圓弧为 180 度, 所述溅射靶还包 括另一第二溅射靶, 两个第二溅射靶相对设置, 该另一第二溅射靶为闲置 状态。
20、一种生产人工关节臼杯的方法,利用上述人工关节臼杯的生产装置, 用于在基体上镀覆纳米多层膜, 保持转架台勾速转动, 其特征在于: 包括: 步骤 1 ) 用磁场屏蔽层调整初始磁场强度 G l, 使其达到高分子聚乙烯 臼杯表面无损溅射的需求;
步骤 2 )控制镀膜室初始工作气压为 Pl, 通入 99. 9%的氩气清洗靶材 及基体;
步骤 3 )控制镀膜室工作气压 P2,第一溅射靶工作磁场强度控制为 G2 ; 第二溅射靶用初始 I I 电流、 偏压 VI在基体上镀覆纯钛层底层, 进行第一 预定时长的溅射;
步骤 4 )保持第二溅射靶的偏压不变, 并从初始电流 I I开始, 每隔第一 间隔时间 Tl, 所述第二溅射靶的工作电流减少△ I I, 直到其工作电流为第一 预定电流值; 同时, 第一溅射靶从初始工作电流 12 开始, 偏压值为 V2, 每间隔第二间隔时间 T2, 所述第一溅射靶的工作电流增加 Δ Ι 2, 直到其工 作电流为第二预定电流值; 所述第一溅射靶和所述第二溅射靶的工作电压 保持不变, 进行第二预定时长的溅射;
步骤 5 ) 将第二溅射靶的工作电流保持在第一预定电流值或设定并保 持在第三预定电流值, 第一溅射靶的工作电流保持在第二预定电流值或将 第一溅射靶的工作电流设定并保持在第四预定电流值, 所述第一溅射靶和 所述第二溅射靶的工作电压保持不变, 进行第三预定时长的溅射;
步骤 6 ) 将第二溅射靶的工作电流设定为零, 第一溅射靶的工作电流 保持在步骤 3 ) 阶段的工作电流或者将第一溅射靶的工作电流设定并保持 在第五预定电流值, 进行第四预定时长的溅射。
21、 根据权利要求 20 所述的生产人工关节臼杯的方法, 其特征在于: 所述初始磁场强度 G1为 20-30GT; 初始工作气压为 P1为 1. 0 mPa ; 所述工 作气压 P2控制在 130 mPa-250 mPa ; 工作磁场强度 G2为 10-150 mT; 所述 第二溅射靶用初始 I I电流为 3. 0-5. OA, 偏压 VI为 90-150V, 所述 Δ Ι 1为 0. 5-1. OA, 所述第一预定电流值为零, 所述初始工作电流 12为 0, 所述△ 12为 0. 5-1. OA,所述第二预定电流值为 3. 0-6. OA,所述偏压 V2为 60-100V; 所述第一间隔时间 T1和第二间隔时间 T2均为大于的正数。
22、 根据权利要求 20 所述的生产人工关节臼杯的方法, 其特征在于: 所述第一预定时长为 10-30 min。
23、 根据权利要求 20 所述的生产人工关节臼杯的方法, 其特征在于: 所述第二预定时长为 10-30mi n。
24、 根据权利要求 20 所述的生产人工关节臼杯的方法, 其特征在于: 所述第三预定时长为 5-10h。
25、 根据权利要求 20所述的生产人工关节臼杯的方法, 其特征在于: 所 述第四预定时长为 10- 20mi n。
26、 根据权利要求 20或 21所述的生产人工关节臼杯的方法, 其特征在 于: 所述第一间隔时间 T1为 3-10min; 第二间隔时间 T2为 3-10min。
27、 根据权利要求 20或 21所述的生产人工关节臼杯的方法, 其特征在 于: 镀膜全过程温度控制在 30-40 °C。
PCT/CN2014/076043 2014-04-23 2014-04-23 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法 WO2015161469A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14890374.3A EP3135310B1 (en) 2014-04-23 2014-04-23 Artificial joint cup, magnetic control sputtering coating film preparation method
US15/120,703 US10233537B2 (en) 2014-04-23 2014-04-23 Artificial joint cup, magnetic control sputtering coating film device and preparation method thereof
PCT/CN2014/076043 WO2015161469A1 (zh) 2014-04-23 2014-04-23 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法
CN201410484382.XA CN104224409B (zh) 2014-04-23 2014-09-19 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076043 WO2015161469A1 (zh) 2014-04-23 2014-04-23 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2015161469A1 true WO2015161469A1 (zh) 2015-10-29

Family

ID=54331607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076043 WO2015161469A1 (zh) 2014-04-23 2014-04-23 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法

Country Status (3)

Country Link
US (1) US10233537B2 (zh)
EP (1) EP3135310B1 (zh)
WO (1) WO2015161469A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282918A (zh) * 2016-08-30 2017-01-04 中国人民解放军装甲兵工程学院 一种类石墨纳米多层薄膜及其制备方法和应用
CN107281544A (zh) * 2017-06-09 2017-10-24 南京理工大学 一种钛及钛合金表面自润滑耐磨复合涂层及其制备方法
CN109338322A (zh) * 2018-11-19 2019-02-15 宁波甬微集团有限公司 一种压缩机滑片表面涂层及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065011A (zh) * 2018-01-23 2019-07-30 项刚 金刚石砂轮及其制备方法
US10507111B2 (en) 2018-03-09 2019-12-17 Stephen Bramblett Johnson Magnetic prosthetic
CN111074226B (zh) * 2020-02-10 2021-02-02 兰州理工大学 一种碳基复合薄膜及其制备方法
CN113350570B (zh) * 2021-06-17 2022-03-08 湘潭大学 一种具有自修复织构化复合薄膜结构的人工关节及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111003A1 (en) * 2005-11-11 2007-05-17 Hon Hai Precision Industry Co., Ltd. Article with multilayer diamond-like carbon film and method for manufacturing the same
CN101224141A (zh) * 2007-12-21 2008-07-23 浙江大学 关节头和臼杯表面镀覆碳/TiC纳米多层复合膜的人工髋关节
CN101519769A (zh) * 2009-04-02 2009-09-02 电子科技大学 一种改善磁场分布的平面磁控溅射靶
CN102245799A (zh) * 2008-12-15 2011-11-16 居林无限责任公司 用于基片组件的表面处理和/或表面涂敷的设备
CN102247620A (zh) * 2011-01-28 2011-11-23 北京中奥汇成生物材料科技有限公司 全金属关节头和臼杯表面镀覆碳/碳:碳化钛纳米多层薄膜
CN102677009A (zh) * 2012-05-15 2012-09-19 北京中奥汇成生物材料科技有限公司 一种磁控溅射镀膜装置、纳米多层膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1196836B (it) * 1986-12-12 1988-11-25 Sorin Biomedica Spa Protesi in materiale polimerico con rivestimento di carbonio biocompatibile
US6800095B1 (en) * 1994-08-12 2004-10-05 Diamicron, Inc. Diamond-surfaced femoral head for use in a prosthetic joint
JP3561611B2 (ja) * 1997-09-25 2004-09-02 三洋電機株式会社 硬質炭素系被膜
JP4730753B2 (ja) * 2000-03-23 2011-07-20 株式会社神戸製鋼所 ダイヤモンドライクカーボン硬質多層膜および耐摩耗性、耐摺動性に優れた部材
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP3995900B2 (ja) * 2001-04-25 2007-10-24 株式会社神戸製鋼所 ダイヤモンドライクカーボン多層膜
WO2007020138A1 (en) * 2005-08-18 2007-02-22 Nv Bekaert Sa Substrate coated with a layered structure comprising a tetrahedral carbon coating
JP5109320B2 (ja) * 2006-09-28 2012-12-26 ブラザー工業株式会社 摺動部材
JP2010508942A (ja) 2006-11-10 2010-03-25 サンドビック インテレクチュアル プロパティー アクティエボラーグ 外科インプラント複合材料およびキットおよび製造方法
KR20080095413A (ko) 2007-04-24 2008-10-29 주식회사 탑 엔지니어링 박막 봉지용 트윈 타깃 스퍼터 시스템 및 이를 이용한 성막방법
CN101418433A (zh) 2008-10-17 2009-04-29 湖南玉丰真空科学技术有限公司 一种可提高靶材利用率的平面磁控溅射阴极
CN101804708B (zh) 2010-04-09 2012-08-15 浙江大学 Ti-TiN-CNx梯度多层薄膜及其制备方法
EP2664690B1 (en) * 2012-05-15 2015-09-16 ZhongAo HuiCheng Technology Co. Ltd. A magnetron sputtering coating device and the preparation method of a nano-multilayer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111003A1 (en) * 2005-11-11 2007-05-17 Hon Hai Precision Industry Co., Ltd. Article with multilayer diamond-like carbon film and method for manufacturing the same
CN101224141A (zh) * 2007-12-21 2008-07-23 浙江大学 关节头和臼杯表面镀覆碳/TiC纳米多层复合膜的人工髋关节
CN102245799A (zh) * 2008-12-15 2011-11-16 居林无限责任公司 用于基片组件的表面处理和/或表面涂敷的设备
CN101519769A (zh) * 2009-04-02 2009-09-02 电子科技大学 一种改善磁场分布的平面磁控溅射靶
CN102247620A (zh) * 2011-01-28 2011-11-23 北京中奥汇成生物材料科技有限公司 全金属关节头和臼杯表面镀覆碳/碳:碳化钛纳米多层薄膜
CN102677009A (zh) * 2012-05-15 2012-09-19 北京中奥汇成生物材料科技有限公司 一种磁控溅射镀膜装置、纳米多层膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135310A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282918A (zh) * 2016-08-30 2017-01-04 中国人民解放军装甲兵工程学院 一种类石墨纳米多层薄膜及其制备方法和应用
CN107281544A (zh) * 2017-06-09 2017-10-24 南京理工大学 一种钛及钛合金表面自润滑耐磨复合涂层及其制备方法
CN109338322A (zh) * 2018-11-19 2019-02-15 宁波甬微集团有限公司 一种压缩机滑片表面涂层及其制备方法
CN109338322B (zh) * 2018-11-19 2020-12-29 宁波甬微集团有限公司 一种压缩机滑片表面涂层及其制备方法

Also Published As

Publication number Publication date
US10233537B2 (en) 2019-03-19
EP3135310B1 (en) 2020-08-05
EP3135310A4 (en) 2018-01-03
EP3135310A1 (en) 2017-03-01
US20170029935A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2015161469A1 (zh) 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法
US9799498B2 (en) Magnetron sputtering coating device, a nano-multilayer film, and the preparation method thereof
CN102677009B (zh) 一种磁控溅射镀膜装置、纳米多层膜及其制备方法
CA2572072C (en) Porous coatings for biomedical implants
JP7118474B2 (ja) 二次元アモルファス炭素被膜並びに幹細胞の成長及び分化方法
US20150351791A1 (en) Surgical instrument
CN104224409B (zh) 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法
CN103920185B (zh) 一种Mo金属掺杂复合类金刚石涂层钛合金人工骨关节及其制备方法
CA2570194A1 (en) Radiopaque coating for biomedical devices
US20170290950A1 (en) Synthesis and use of poly(glycerol-sebacate) films in fibroblast growth regulation
CN104862657A (zh) 一种钛合金表面纳米Ti/TiN梯度膜及其制备方法
WO2023045352A1 (zh) 一种用于生物医用的多级结构膜
WO2012100739A1 (zh) 全金属关节头和臼杯表面镀覆碳/碳:碳化钛纳米多层薄膜
CN106902385B (zh) 复合植入材料及其制造方法
CN104046951B (zh) 一种在医用钛合金表面制备镨掺杂氮化钛涂层的方法
Okpalugo et al. The human micro‐vascular endothelial cells in vitro interaction with atomic‐nitrogen‐doped diamond‐like carbon thin films
CN113737144B (zh) 一种高频电刀用Al2O3/CrN复合绝缘涂层及其制备方法
CN219147886U (zh) 一种疏水高频电刀刀头
CN115233224B (zh) 一种表面耐磨和低生物毒性的tc4材料及其制备方法
CN108950551B (zh) 医用钛合金表面复合膜及其制备方法和应用
CN111991621B (zh) 一种医疗器具及其制备方法
JP6584263B2 (ja) 生体材料の製造方法、人工血管用材料の製造方法、及び生体材料
Akahori et al. Fatigue properties of beta-type titanium alloy for biomedical applications under various fatigue conditions
Jiang et al. Effect of micro-characterization on thrombus formation ability of TiO 2 film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120703

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014890374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE