WO2015159720A1 - 熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール - Google Patents

熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール Download PDF

Info

Publication number
WO2015159720A1
WO2015159720A1 PCT/JP2015/060472 JP2015060472W WO2015159720A1 WO 2015159720 A1 WO2015159720 A1 WO 2015159720A1 JP 2015060472 W JP2015060472 W JP 2015060472W WO 2015159720 A1 WO2015159720 A1 WO 2015159720A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
boron nitride
conductive sheet
primary particles
silicon nitride
Prior art date
Application number
PCT/JP2015/060472
Other languages
English (en)
French (fr)
Inventor
元基 正木
万里子 ▲高▼原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015159720A1 publication Critical patent/WO2015159720A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method for manufacturing a compound for a heat conductive sheet, a method for manufacturing a heat conductive sheet, a compound for a heat conductive sheet, a heat conductive sheet, and a power module.
  • a heat conductive sheet is used to transfer heat from a heat generation target part of an electric device or electronic device to a heat radiating member.
  • the heat conductive sheet is required to have high heat conductivity and to be insulating.
  • a heat conductive sheet in which an inorganic filler is dispersed in a thermosetting resin is widely used (for example, Patent Documents 1 to 6).
  • hexagonal boron nitride (h-BN) having high thermal conductivity and insulating properties is widely used as the inorganic filler.
  • the crystal structure of hexagonal boron nitride is a layered structure similar to graphite, and its particle shape is scaly.
  • Scale-like boron nitride has anisotropic thermal conductivity such that the thermal conductivity in the major axis direction (crystal direction) is high and the thermal conductivity in the minor axis direction (layer direction) is low.
  • the difference in thermal conductivity between the major axis direction and the minor axis direction is said to range from several times to several tens of times. Therefore, by aligning the scaly boron nitride dispersed in the thermosetting resin so that the major axis direction coincides with the thickness direction of the sheet, the thermal conductivity of the thermal conductive sheet is dramatically improved. That is expected. At this time, the scaly boron nitride is in an upright state inside the thermally conductive sheet.
  • the heat conductive sheet For the production of the heat conductive sheet, known molding methods such as a press molding method, an injection molding method, an extrusion molding method, a calendar molding method, a roll molding method and a doctor blade molding method are applied.
  • a compound containing a thermosetting resin is molded into a sheet by these molding methods, the scaly boron nitride in the thermosetting resin is oriented in a collapsed state in the sheet due to pressure and flow during molding. That is, it is oriented so that the major axis direction of the scaly boron nitride coincides with the surface direction of the sheet. Since scaly boron nitride has such a tendency, the obtained heat conductive sheet has excellent heat conductivity in the sheet surface direction, and in the usage form in which the sheet thickness direction becomes a heat conduction path, The conductivity is not sufficient.
  • Patent Document 1 proposes an insulating heat radiating sheet containing BN powder having a cohesion degree of 3% to 50% as a heat radiating filler.
  • Patent Document 2 proposes a heat dissipating spacer characterized by containing pine box-like boron nitride in an addition reaction type liquid silicone solidified product.
  • pine box-like boron nitride is formed by aggregation of hexagonal boron nitride scaly primary particles without orientation.
  • an object of the present invention is to provide a compound for a heat conductive sheet which is advantageous in terms of productivity and cost and has excellent heat conductivity and adhesiveness.
  • the method for producing a compound for a thermally conductive sheet according to the present invention includes a first step of producing an agglomerate from a stock solution containing primary particles of hexagonal boron nitride and primary particles of silicon nitride, and an agglomerate produced in the first step.
  • the present invention it is possible to provide a method for producing a compound for a heat conductive sheet, which is advantageous in terms of productivity and cost and excellent in heat conductivity and adhesiveness. Moreover, according to this invention, it is possible to provide the power module excellent in heat dissipation.
  • FIG. 4A shows the structure of secondary particles fired from primary particles of scaly boron nitride.
  • FIG. 4B is a diagram showing that the primary particles of scaly boron nitride and the primary particles of silicon nitride are separated.
  • FIG. 4C is a diagram showing that the secondary particles are a mixture of the scaly boron nitride primary particles 4 and the silicon nitride primary particles 5.
  • FIG. 6 is a graph showing the relationship between the relative value of thermal conductivity and the relative value of peel strength in Examples 1 to 6 and Comparative Examples 1 to 6. It is the figure which showed the relationship between the relative value of thermal conductivity with respect to the silicon nitride content rate of a secondary particle, and the relative value of peeling strength. It is the figure which showed typically peeling of the resin generate
  • FIG. 1 is a schematic cross-sectional view of a power module according to the present embodiment.
  • a power module 6 includes a power semiconductor element 9 mounted on a lead frame 8 that is one heat radiating member, a metal heat sink 10 that is the other heat radiating member, and a space between the lead frame 8 and the heat sink 10. And a heat conductive sheet 7 disposed on the surface.
  • the power semiconductor element 9 is joined to the lead frame 8 with solder or the like.
  • the mold resin 13 seals the heat conductive sheet 7, the lead frame 8, and the power semiconductor element 9.
  • Wire bonding is performed between the power semiconductor element 9 and the control semiconductor element 11 and between the power semiconductor element 9 and the lead frame 8 by a metal wire 12.
  • the portions other than the end portion of the lead frame 8 and the portion of the heat sink 10 for external heat dissipation are sealed with the mold resin 13. Since the power module 6 having such a configuration includes the cured thermal conductive sheet 7 according to the present application which is excellent in thermal conductivity and insulation, the power module 6 is excellent in heat dissipation.
  • the present inventors diligently studied the cause of the fact that the adhesiveness between the sheet and the heat radiating part (metal plate, heat sink, etc.) may not be improved in the heat conductive sheet containing the secondary particles of boron nitride.
  • Boron nitride filled in the thermally conductive sheet is a crystal having very low reactivity and almost no functional groups such as OH groups on the particle surface. Since the chemical bonding via the coupling agent is unlikely to occur at the interface between the resin and the boron nitride constituting the thermally conductive sheet, the thermally conductive sheet filled with boron nitride as an inorganic filler is at the interface between the resin and the boron nitride. Peeling easily occurs due to cohesive failure.
  • the present invention has been made based on such knowledge.
  • primary particles of boron nitride and primary particles of silicon nitride are aggregated to form an aggregate.
  • the secondary particles obtained by sintering the aggregates are dispersed in the resin matrix as an inorganic filler. Since chemical bonding occurs via the coupling agent at the interface between the silicon nitride and the resin in the secondary particles, the adhesion between the heat conductive sheet and the heat radiating member such as a metal plate or heat sink is improved.
  • Secondary particles are also called secondary agglomerated particles.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of the thermally conductive sheet in the present embodiment.
  • a thermally conductive green sheet 1 is composed of a thermosetting resin 2 serving as a matrix, and an inorganic filler containing secondary particles 3 of boron nitride and silicon nitride dispersed in the thermosetting resin 2. It is configured.
  • the secondary particles 3 according to the present invention are formed by agglomerating the primary particles 4 of flaky boron nitride and the primary particles 5 of silicon nitride.
  • the lead frame 8 is bonded and fixed to the heat sink 10 by the cured heat conductive raw sheet 1.
  • FIG. 3 is a diagram showing the thermal conductivity of hexagonal boron nitride having a scale-like form.
  • the direction of the arrow represents the direction of heat conduction
  • the thickness of the arrow represents the magnitude of heat conduction.
  • the scaly boron nitride has a hexagonal crystal structure and has a property that it easily grows in the a-axis direction (major axis direction) during crystal growth.
  • the thermal conductivity of such scaly boron nitride is several to several tens of times greater in the a-axis direction (major axis direction) than in the c-axis direction (minor axis direction).
  • thermosetting resin When the thermosetting resin is filled with secondary particles of flaky boron nitride as an inorganic filler for the purpose of suppressing the orientation of the flaky boron nitride in the sheet surface direction, the thermal conductivity in the thickness direction of the thermally conductive sheet is Although improved, the adhesion is not improved. Because the surface of the scaly boron nitride particles has very few functional groups such as OH groups, the reactivity is extremely low, and chemical bonding does not occur at the interface between boron nitride and the resin, which does not improve the adhesion it is conceivable that. Thus, in the heat conductive sheet using only boron nitride as the inorganic filler, it is difficult to achieve both high heat conductivity in the sheet thickness direction and high adhesive strength.
  • secondary particles 3 of boron nitride and silicon nitride are mixed and blended with a thermosetting resin as an inorganic filler.
  • a thermosetting resin as an inorganic filler.
  • FIG. 4A shows the structure of secondary particles fired from only the primary particles 4 of scaly boron nitride.
  • FIG. 4B and FIG. 4C show the structure of secondary particles fired by adding primary particles of silicon nitride to primary particles of scaly boron nitride.
  • FIG. 4B shows that the primary particles 4 of flaky boron nitride and the primary particles 5 of silicon nitride are separated.
  • FIG. 4C shows that the secondary particles are a mixture of primary particles 4 of flaky boron nitride and primary particles 5 of silicon nitride.
  • the thermosetting resin or mold resin
  • a stock solution containing primary particles 4 of flaky boron nitride and primary particles 5 of silicon nitride is injected into the atmosphere by a known method such as a spray drying method, and primary particles 4 of flaky boron nitride and primary particles of silicon nitride are injected. Aggregate 5 into particles.
  • the spray drying method the stock solution can be instantly made into a particulate dried product in a hot air receiving continuous drying apparatus. Thereafter, the aggregate is fired and grain-grown to obtain secondary particles in which the primary particles of boron nitride and the primary particles of silicon nitride are mixed.
  • the firing temperature is not particularly limited, but is generally about 2,000 ° C.
  • the shape of the secondary particles 3 is not particularly limited, but is preferably spherical. If it is the spherical secondary particle 3, when manufacturing the heat conductive raw sheet 1, a filling amount can be increased, ensuring the fluidity
  • the average particle size of the secondary particles 3 is preferably 20 ⁇ m or more and 180 ⁇ m or less, and more preferably 40 ⁇ m or more and 130 ⁇ m or less.
  • the average particle size is less than 20 ⁇ m, the thermally conductive green sheet 1 having a desired thermal conductivity may not be obtained.
  • the average particle diameter exceeds 180 ⁇ m, it becomes difficult to mix and disperse the secondary particles 3 in the thermosetting resin 2, which may cause trouble in workability and moldability.
  • the maximum particle size of the secondary particles 3 is preferably about 90% or less of the thickness of the thermally conductive raw sheet 1.
  • the average major axis of the scaly boron nitride primary particles 4 is 15 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less. Within this range, it is possible to obtain secondary particles 3 in which the primary particles 4 of the flaky boron nitride are aggregated in all directions, that is, isotropically aggregated, and the secondary particles 3 are isotropic. It will have thermal conductivity. As a result, the thermal conductivity is improved in the thickness direction of the thermal conductive raw sheet 1.
  • the scaly boron nitride primary particles 4 do not aggregate isotropically, and the thermal conductivity of the secondary particles 3 is anisotropic. Appears. That is, only the thermal conductivity in a specific direction is increased. As a result, desired heat conductivity cannot be obtained in the thickness direction of the heat conductive raw sheet 1.
  • the thermosetting resin 2 serving as a matrix of the heat conductive raw sheet 1 is not particularly limited.
  • an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, a polyimide resin, or the like can be used.
  • the epoxy resin is particularly preferable because the production of the heat conductive raw sheet 1 becomes easy.
  • the main component of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, and glycidyl-aminophenol type epoxy resin. It is done. These resins can be used alone or in combination.
  • Examples of the curing agent that promotes the curing of the epoxy resin include aliphatic acid anhydrides such as alicyclic acid anhydrides (such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride) and dodecenyl succinic anhydride.
  • aliphatic acid anhydrides such as alicyclic acid anhydrides (such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride) and dodecenyl succinic anhydride.
  • aromatic anhydrides such as phthalic anhydride and trimellitic anhydride
  • organic dihydrazides such as dicyandiamide and adipic acid dihydrazide
  • tris dimethylaminomethyl phenol, dimethylbenzylamine, 1,8-diazabicyclo (5,5) 4,0)
  • Undecene and derivatives thereof, and imidazoles (2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, etc.
  • imidazoles (2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, etc.
  • the thermally conductive raw sheet 1 can contain a coupling agent from the viewpoint of improving the adhesive force at the interface between the thermosetting resin 2 and the secondary particles 3 made of boron nitride and silicon nitride.
  • Examples of coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltri And methoxysilane. These coupling agents can be used alone or in combination.
  • the blending amount of the coupling agent may be appropriately set according to the type of the thermosetting resin 2 and the coupling agent to be used. It is 01 mass% or more and 1 mass% or less.
  • thermosetting resin composition containing a predetermined amount of the thermosetting resin 2 and an amount of a curing agent necessary for curing the thermosetting resin 2 is prepared.
  • a solvent is added to the thermosetting resin composition to prepare a solution of the thermosetting resin composition, and an inorganic filler (specifically, secondary particles 3) is added to the solution and premixed.
  • an inorganic filler specifically, secondary particles 3
  • it does not specifically limit as a solvent used for preparing the solution of a thermosetting resin composition For example, toluene and methyl ethyl ketone can be used.
  • the amount of the solvent is not particularly limited as long as it can be preliminarily mixed, and generally 40% by mass or more and 85% by mass with respect to the total mass of the thermosetting resin composition and the inorganic filler. % Or less.
  • the viscosity of a thermosetting resin composition is low, it is not necessary to add a solvent.
  • a coupling agent is just to add a coupling agent before the following kneading
  • the preliminary mixture is kneaded using a three-roll or kneader to produce a compound for a heat conductive sheet, and then the compound is applied to a release-treated resin sheet or the like by a doctor blade method. Or you may apply
  • the thermally conductive raw sheet of the present embodiment can be obtained by drying the coated material and volatilizing the solvent in the coated material.
  • the solvent may be heated to 80 ° C. or more and 150 ° C. or less as necessary to promote the volatilization of the solvent.
  • the matrix thermosetting resin 2 may be made into a B-stage from the viewpoint of adhesion to the heat generating member and the heat radiating member.
  • the B stage is an intermediate stage of the reaction of the thermosetting resin, and the material is softened and expanded by heating.
  • the heat conductive raw sheet of this embodiment manufactured in this way is disposed between the heat generating member and the heat radiating member of the electric device and the electronic device, thereby bonding the heat generating member and the heat radiating member and Can be insulated.
  • the heat conductive raw sheet of the present embodiment has high heat conductivity, heat can be efficiently transferred from the heat generating member to the heat radiating member.
  • the thermally conductive raw sheet of the present embodiment is arranged between a heat generating member such as an electronic device and a heat radiating member, the thermally conductive raw sheet in which the thermosetting resin of the matrix is in the B stage state is used. Let's assume that. A heat conductive sheet is formed by heating to 150 ° C. or higher and 200 ° C. or lower after the heat conductive raw sheet is disposed. As a result, the heat generating member and the heat radiating member are bonded to the heat conductive sheet.
  • the heat conductive green sheet is bonded to either the heat generating member or the heat radiating member of the electronic device.
  • the adhesion of the heat generating member and heat radiating member to the heat conductive sheet is further improved Can be made.
  • the heat generating member may be disposed between the heat generating member and the heat conductive sheet.
  • the power module of the present embodiment includes a power semiconductor element mounted on one heat radiating member, another heat radiating member that radiates heat generated in the power semiconductor element to the outside, and heat generated in the power semiconductor element on one side. And a heat conductive sheet that is transmitted from the heat dissipating member to the other heat dissipating member.
  • FIG. 7 the relationship between the kind of inorganic filler in a secondary particle and its content used in the Example and the comparative example is shown.
  • Secondary particles were prepared by spray-drying a stock solution containing primary particles of flaky hexagonal boron nitride and primary particles of silicon nitride. The figure shows the weight ratio of silicon nitride and boron nitride to the total weight of the inorganic filler.
  • Secondary particle No. A-No. G is adjusted so that the silicon nitride content is 0 wt% to 50 wt%.
  • Example 1 100 parts by mass of liquid bisphenol A type epoxy resin (Epicoat 828: manufactured by Japan Epoxy Resin Co., Ltd.) and 1 mass of 1-cyanoethyl-2-methylimidazole (Cureazole 2PN-CN: manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing agent was added to 166 parts by mass of methyl ethyl ketone, which is a solvent, and stirred to prepare a solution of the thermosetting resin composition.
  • the inorganic filler secondary particles No. C was blended so as to be 60% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler, and mixed with the solution of the thermosetting resin composition to prepare a preliminary mixture.
  • the preliminary mixture was further kneaded with three rolls to prepare a compound for a heat conductive sheet in which the mixed filler was uniformly dispersed in the solution of the thermosetting resin composition.
  • the compound for thermal conductive sheet was applied to a heat-dissipating member (copper foil) having a thickness of 105 ⁇ m by a doctor blade method, and heat-dried at 110 ° C. for 15 minutes, and the thickness was 100 ⁇ m and the B stage state.
  • a heat conductive green sheet was prepared. Two heat conductive raw sheets in a B-stage state formed on the heat radiating member were stacked so that the sheet side was inside, and then heated at 120 ° C. for 1 hour. Furthermore, by heating at 160 ° C. for 3 hours, the thermosetting resin as a matrix of the heat conductive sheet was completely cured to obtain a heat conductive sheet (Example 1) sandwiched between two heat radiating members.
  • Example 2 As the inorganic filler, secondary particles of boron nitride and silicon nitride No. A heat conductive sheet sandwiched between two heat dissipating members was obtained in the same manner as in Example 1 except that D was used.
  • Example 3 as the inorganic filler, secondary particles of boron nitride and silicon nitride No. A heat conductive sheet sandwiched between two heat radiating members was obtained in the same manner as in Example 1 except that E was used.
  • Comparative Example 1 As the inorganic filler, secondary particles of boron nitride and silicon nitride No. A heat conductive sheet sandwiched between two heat radiating members was obtained in the same manner as in Example 1 except that A was used.
  • Comparative Example 2 as the inorganic filler, secondary particles of boron nitride and silicon nitride No. A heat conductive sheet sandwiched between two heat dissipating members was obtained in the same manner as in Example 1 except that B was used.
  • Comparative Example 3 as the inorganic filler, secondary particles of boron nitride and silicon nitride No.
  • a heat conductive sheet sandwiched between two heat radiating members was obtained in the same manner as in Example 1 except that F was used.
  • Comparative Example 4 as the inorganic filler, secondary particles of boron nitride and silicon nitride No.
  • a heat conductive sheet sandwiched between two heat radiating members was obtained in the same manner as in Example 1 except that G was used.
  • the thermal conductivity in the thickness direction of the sheets was measured by a laser flash method.
  • the results of the thermal conductivity are shown in FIG. 8 as relative values of the thermal conductivity based on the thermal conductivity obtained with the thermal conductive sheet of Comparative Example 1.
  • the relative value of thermal conductivity was obtained from the formula (1).
  • [Thermal conductivity obtained with the thermal conductive sheet of each example or each comparative example] / [Thermal conductivity obtained with the thermal conductive sheet of comparative example 1] Formula (1)
  • the kind of component and the compounding quantity etc. which were used by the Example and the comparative example are also summarized.
  • the compounding quantity it represented using the mass part.
  • the thermally conductive sheet using secondary particles having a silicon nitride content of 10% or more and 30% or less as the inorganic filler has a sheet thickness.
  • the thermal conductivity in the direction is high, and the peel strength is also improved.
  • the thermal conductive sheet using secondary particles having a silicon nitride content of 5% or less as the inorganic filler has high thermal conductivity in the sheet thickness direction. Has not improved. This is because, when the silicon nitride content of the secondary particles is as low as 10% or less, the area of the chemically bonded portion at the interface between the secondary particles and the resin is small, and therefore, at the interface between the secondary particles and the resin.
  • the thermal conductive sheet using secondary particles having a silicon nitride content of 40% or more as the inorganic filler has improved peel strength, but the heat in the sheet thickness direction Low conductivity. This is thought to be because the thermal conductivity of the secondary particles themselves is significantly reduced by increasing the content of silicon nitride having a lower thermal conductivity than boron nitride.
  • Example 4 Example 5, Example 6, Comparative Example 5 and Comparative Example 6 were prepared in order to examine the effect of the filling rate of the inorganic filler in the heat conductive sheet.
  • the inorganic filler contains secondary particles No. 20 containing 20% by weight of boron nitride. D was used.
  • Example 4 As the inorganic filler, the secondary particle No. Heat conduction sandwiched between two heat dissipating members in the same manner as in Example 1 except that D was mixed so as to be 30% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler. Sex sheet was obtained.
  • Example 5 As the inorganic filler, the secondary particle No. Heat conduction sandwiched between two heat radiating members in the same manner as in Example 1 except that D was blended so as to be 40% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler. Sex sheet was obtained.
  • Example 6 as the inorganic filler, the secondary particle No. Heat conduction sandwiched between two heat radiating members in the same manner as in Example 1 except that D was blended so as to be 70% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler. Sex sheet was obtained.
  • Comparative Example 5 As the inorganic filler, the secondary particle No. Heat conduction sandwiched between two heat dissipating members in the same manner as in Example 1 except that D was blended so as to be 10% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler. Sex sheet was obtained.
  • Comparative Example 6 as the inorganic filler, the secondary particle No. Heat conduction sandwiched between two heat dissipating members in the same manner as in Example 1 except that D was mixed so as to be 85% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler. Sex sheet was obtained.
  • the thermal conductive sheet of the present invention is advantageous in terms of productivity and cost, and is excellent in thermal conductivity and peel strength.
  • the present invention by setting the silicon nitride content of the secondary particles 3 to 10 wt% or more and 30 wt% or less, a decrease in the thermal conductivity of the secondary particles themselves can be minimized, and a thermosetting resin can be obtained.
  • the thermal conductivity in the sheet thickness direction can be improved.
  • the area of the chemically bonded portion at the interface between the silicon nitride and the resin increases, cohesive failure does not easily occur at the interface between the secondary particles and the resin, and the adhesion between the sheet and the heat dissipation member is improved.
  • the filling rate of the inorganic filler in the compound for thermal conductive sheet (and the thermal conductive raw sheet) is 20 volume% or more and 80 volume% or less.
  • the filling rate of the inorganic filler is 30% by volume or more and 65% by volume or less, it is excellent in workability when producing a heat conductive green sheet, and the heat conductivity of the heat conductive green sheet is further increased. improves.
  • the filling rate is less than 20% by volume, a heat conductive raw sheet having desired heat conductivity may not be obtained.
  • the filling rate exceeds 80% by volume, it becomes difficult to mix and disperse the secondary particles in the thermosetting resin during the production of the heat conductive raw sheet, which may hinder workability and moldability. There is.
  • FIG. 10 is a schematic diagram showing a cross section of a thermally conductive sheet containing secondary particles of boron nitride. It shows a state where the cured resin is peeled off due to cohesive failure at the interface between the cured resin and boron nitride.
  • the heat conductive sheet 7 containing the secondary particles 3 obtained by aggregating the scaly boron nitride primary particles 4 is cured in a state of being adhered to the heat radiating member 14. In this heat conductive sheet 7, when stress is applied so as to peel off the heat dissipation member 14, peeling occurs at the interface between the secondary particles 3 and the thermosetting resin, causing cohesive failure.
  • thermosetting resin is the place where the adhesion is weakest in the adhesion between the heat conductive sheet 7 and the heat radiating member 14. Therefore, in order to improve the peel strength between the heat conductive sheet 7 and the heat dissipation member 14, it is important to strengthen the adhesion between the secondary particles 3 and the thermosetting resin.
  • the content of the primary particles 5 of silicon nitride is preferably 10% by weight or more and 30% by weight or less. If it is this range, it becomes possible to improve heat conductivity and adhesiveness simultaneously, However, In content of 30 weight%, heat conductivity may fall by the dispersion
  • the primary particles 4 of the flaky boron nitride contained in the stock solution used for the spray drying method or the like are preferably low crystalline in order to promote the sintering in the firing step.
  • the crystallinity of the scaly boron nitride primary particles 4 is preferably 20 or more.
  • the primary particles 4 of the flaky boron nitride contained in the secondary particles 3 after calcination are improved in crystallinity with the sintering in the calcination step, and are highly crystalline scaly with a crystallinity of 10 or less. It changes into primary particles 4 of boron nitride.
  • the degree of crystallinity of the primary particles of scaly boron nitride increases as the crystallinity decreases, and decreases as the crystallinity increases.
  • the crystallinity of the primary particles 4 of the scaly boron nitride has a value of about 1.6.
  • the calculation of the crystallinity of the scaly boron nitride primary particles 4 is preferably carried out by sampling several points (preferably 10 points) and obtaining the average value of the crystallinity obtained from each sample.
  • thermosetting resin 1 thermal conductive raw sheet, 2 thermosetting resin, 3 secondary particles, 4 primary particles of flaky boron nitride, 5 primary particles of silicon nitride, 6 power module, 7 thermal conductive sheet, 8 lead frame, 9 power Semiconductor element, 10 heat sink, 11 control semiconductor element, 12 metal wire, 13 mold resin, 14 heat dissipation member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 生産性やコスト面において有利であり、且つ熱伝導性及び接着性に優れた熱伝導性シート用コンパウンドを提供することを目的とする。熱伝導性シート用コンパウンドの製造方法は、六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を含む原液から凝集物を作製する第1工程と、第1工程で作製した凝集物を焼成して窒化ホウ素の一次粒子と窒化ケイ素の一次粒子が混成してなる二次粒子を作製する第2工程と、第2工程で作製した二次粒子を熱硬化性樹脂組成物の溶液に混ぜ合せて予備混合物を作製する第3工程と、第3工程で作製した予備混合物を混練する第4工程と、を備え、六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を、重量比で75:25から90:10の範囲に配合して凝集物を作製することを特徴とする。

Description

熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール
 本発明は、熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュールに関するものである。
 電気機器或いは電子機器の発熱対象部から放熱部材へ熱を伝達させるのに熱伝導性シートが用いられている。熱伝導性シートには、高い熱伝導性を有していること、および絶縁性であることが要求されている。このような要求を満たすものとして、無機充填剤を熱硬化性樹脂中に分散させた熱伝導性シートが広く用いられている(例えば特許文献1~6)。ここで、無機充填剤として、高い熱伝導率を有し、且つ絶縁性である六方晶窒化ホウ素(h-BN)が広く用いられている。六方晶窒化ホウ素の結晶構造は、黒鉛と同様の層状構造であり、その粒子形状は鱗片状である。
 鱗片状窒化ホウ素は、長径方向(結晶方向)の熱伝導率が高く、短径方向(層方向)の熱伝導率が低いという、異方的な熱伝導性を有している。長径方向と短径方向との間の熱伝導率の差は、数倍から数十倍におよぶと言われている。よって、熱硬化性樹脂中に分散される鱗片状窒化ホウ素を、長径方向がシートの厚み方向と一致するように配向させることにより、熱伝導性シートは厚み方向の熱伝導性が飛躍的に向上すると期待されている。このとき鱗片状窒化ホウ素は、熱伝導性シートの内部で、直立した状態にある。
 熱伝導性シートの作製には、プレス成形法、射出成形法、押出成形法、カレンダー成形法、ロール成形法、ドクターブレード成形法等の公知の成形方法が適用されている。これらの成形方法により熱硬化性樹脂を含むコンパウンドをシート状に成形すると、成形時の圧力や流動によって、熱硬化性樹脂中の鱗片状窒化ホウ素はシート内で倒れた状態に配向される。すなわち、鱗片状窒化ホウ素の長径方向がシートの面方向と一致するように配向されている。鱗片状窒化ホウ素にこのような傾向があるため、得られた熱伝導性シートは、シート面方向の熱伝導性が優れたものとなり、シート厚み方向が熱伝導経路となる使用形態においては、熱伝導性は十分であるとはいえない。
 そこで、熱硬化性樹脂中に分散される鱗片状窒化ホウ素の長径方向が、シート面方向に配向することを抑制する各種の工夫が提案されている。例えば、特許文献1では、凝集度が3%~50%であるBN粉末を放熱フィラーとして含有させた絶縁放熱シートが提案されている。また、特許文献2では、松ボックリ状窒化ホウ素を付加反応型液状シリコーン固化物に含有させてなることを特徴とする放熱スペーサーが提案されている。ここで松ボックリ状窒化ホウ素は、六方晶窒化ホウ素の鱗片状の一次粒子が配向せずに集合してなるものである。
特開平11-60216号公報 特開2004-51852号公報 特開2014-172768号公報 特開2014-001254号公報 特開2010-157563号公報 特開2011-178894号公報
 熱伝導性シートは、金属板やヒートシンク等の放熱部材に接着させて使用されるため、熱伝導性だけでなく、接着性も重要である。しかし、上記の技術では、熱伝導性シートと放熱部材(金属板、ヒートシンク等)との接着性に関する設計がなされていないため、熱伝導性シートと放熱部材との剥離が生じやすい。本発明は、このような課題を解決するためになされたものである。すなわち、本発明は、生産性やコスト面において有利であり、且つ熱伝導性及び接着性に優れた熱伝導性シート用コンパウンドを提供することを目的とする。
 本発明に係る熱伝導性シート用コンパウンドの製造方法は、六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を含む原液から凝集物を作製する第1工程と、第1工程で作製した凝集物を焼成して窒化ホウ素の一次粒子と窒化ケイ素の一次粒子が混成してなる二次粒子を作製する第2工程と、第2工程で作製した二次粒子を熱硬化性樹脂組成物の溶液に混ぜ合せて予備混合物を作製する第3工程と、第3工程で作製した予備混合物を混練する第4工程と、を備え、六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を、重量比で75:25から90:10の範囲に配合して凝集物を作製することを特徴とする。
 本発明によれば、生産性やコスト面において有利であり、且つ熱伝導性及び接着性に優れた熱伝導性シート用コンパウンドの製造方法を提供することができる。また、本発明によれば、熱放散性に優れたパワーモジュールを提供することが可能である。
本実施の形態におけるパワーモジュールの断面模式図である。 本実施の形態における熱伝導性シートの断面模式図である。 六方晶窒化ホウ素の熱伝導性を示す図である。 図4Aは、鱗片状窒化ホウ素の一次粒子から焼成した二次粒子の構造を表している。図4Bは、鱗片状窒化ホウ素の一次粒子と窒化ケイ素の一次粒子が分離していることを表している図である。図4Cは、2次粒子が鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5の混成物であることを表している図である。 本実施の形態における二次粒子の製造方法を説明する図である。 本実施の形態における熱伝導性シートの製造方法を示すフロー図である。 二次粒子の組成を比較した図である。 実施例1~6並びに比較例1~6における熱伝導率の相対値および剥離強度の相対値の関係を示した図である。 二次粒子の窒化ケイ素含有率に対する熱伝導率の相対値および剥離強度の相対値の関係を示した図である。 二次粒子を含有する熱伝導性シートにおいて、樹脂と窒化ホウ素との界面で発生した樹脂の剥離を模式的に示した図である。
 以下に、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかわるパワーモジュールの断面模式図である。同図において、パワーモジュール6は、一方の放熱部材であるリードフレーム8に搭載された電力半導体素子9と、他方の放熱部材である金属製のヒートシンク10と、リードフレーム8とヒートシンク10との間に配置された熱伝導性シート7とを備えている。電力半導体素子9はリードフレーム8にはんだ等で接合されている。モールド樹脂13は熱伝導性シート7とリードフレーム8と電力半導体素子9を封止している。電力半導体素子9と制御用半導体素子11との間、及び電力半導体素子9とリードフレーム8との間は、金属線12によってワイアボンディングされている。リードフレーム8の端部、及びヒートシンク10の外部放熱のための部分以外はモールド樹脂13で封止されている。このような構成を有するパワーモジュール6は、熱伝導性及び絶縁性に優れた本願に係る硬化した熱伝導性シート7を有しているので、熱放散性に優れたものとなる。
 本発明者らは、窒化ホウ素の二次粒子を含有させた熱伝導性シートにおいて、シートと放熱部(金属板やヒートシンク等)との接着性が向上しない場合があることの原因を鋭意研究した結果、以下の知見を得た。熱伝導性シートに充填される窒化ホウ素は、粒子表面にOH基等の官能基がほとんど無く、反応性が極めて低い結晶である。熱伝導性シートを構成する樹脂と窒化ホウ素の界面において、カップリング剤を介した化学的結合が起こりにくいため、無機充填剤として窒化ホウ素を充填した熱伝導性シートは、樹脂と窒化ホウ素界面での凝集破壊による剥離が生じ易い。
 本発明は、このような知見に基づいてなされたものである。先ず窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を凝集させて凝集物を成形する。次いで凝集物を焼結させた二次粒子を無機充填剤として樹脂マトリックス中に分散させる。二次粒子中の窒化ケイ素と樹脂の界面にカップリング剤を介した化学的結合が起こるので、熱伝導性シートと金属板やヒートシンク等の放熱部材との接着性が向上する。二次粒子は二次凝集粒子とも呼ばれている。
 図2は、本実施の形態における熱伝導性シートの断面構造を表す模式図である。同図において、熱伝導性生シート1は、マトリックスとなる熱硬化性樹脂2と、この熱硬化性樹脂2に分散された、窒化ホウ素と窒化ケイ素の二次粒子3を含む無機充填剤とから構成されている。本発明による二次粒子3は、鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5が凝集して成形されたものである。リードフレーム8は硬化した熱伝導性生シート1によってヒートシンク10に接着固定される。
 図3は鱗片状の形態を有する六方晶窒化ホウ素の熱伝導性を示す図である。同図において、矢印の方向は熱伝導の方向、矢印の太さは熱伝導の大きさを表している。鱗片状窒化ホウ素は、六方晶系の結晶構造を有しており、結晶成長する際にa軸方向(長径方向)に成長し易いという性質がある。このような鱗片状窒化ホウ素の熱伝導率は、a軸方向(長径方向)の方がc軸方向(短径方向)よりも数倍から数十倍大きい。一般に、鱗片状窒化ホウ素のみを熱硬化性樹脂に分散させて熱伝導性シートを形成すると、鱗片状窒化ホウ素の長径方向がシート面方向と一致するように配向され易いため、シートの厚み方向の熱伝導性は向上しない。
 鱗片状窒化ホウ素のシート面方向への配向を抑制する目的で無機充填材として鱗片状窒化ホウ素の二次粒子を熱硬化性樹脂に充填した場合、熱伝導性シートの厚み方向の熱伝導率は向上するが、接着性が向上しない。鱗片状窒化ホウ素の粒子表面には、OH基などの官能基が極めて少ないため、反応性が極めて低く、窒化ホウ素と樹脂の界面に化学的な結合が起こらないことが、接着性が向上しない原因と考えられる。このように、窒化ホウ素のみを無機充填剤に用いた熱伝導性シートでは、シート厚み方向の高い熱伝導性と、高い接着強度を両立させることが困難である。
 これに対して本発明では、無機充填材として窒化ホウ素と窒化ケイ素の二次粒子3を熱硬化性樹脂に混合して配合する。その際に二次粒子3の形状を保持したまま熱硬化性樹脂中に分散させることにより、シート中で鱗片状窒化ホウ素の一次粒子がランダムな方向に向いた状態で充填される。そのため、熱伝導性シートの厚み方向の熱伝導性が向上する。さらに、二次粒子中の窒化ケイ素と樹脂の界面で化学的な結合が起こるため、熱伝導性シートと金属板、シートシンク等の放熱部材との接着性が向上する。
 熱伝導性シートに含まれる二次粒子の構造を図4A~図4Cを使って説明する。図4Aは、鱗片状窒化ホウ素の一次粒子4のみから焼成した二次粒子の構造を表している。図4Bと図4Cは、鱗片状窒化ホウ素の一次粒子に窒化ケイ素の一次粒子を加えて焼成した二次粒子の構造を表している。図4Bは、鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5が分離していることを表している。図4Cは、2次粒子が鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5の混成物であることを表している。図4Aおよび図4Bの状態では、熱硬化性樹脂(またはモールド樹脂)は鱗片状窒化ホウ素との界面で剥離が生じやすい。
 図5に基づいて本願にかかる二次粒子の製造方法を説明する。先ず、鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5を含む原液をスプレードライ法等の公知の方法によって大気中に噴射し、鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5を粒子状に凝集させる。スプレードライ法によれば、熱風受熱連続乾燥装置の中において原液を即座に粒子状の乾燥製品にすることができる。その後、凝集物を焼成および粒成長させることによって、窒化ホウ素の一次粒子と窒化ケイ素の一次粒子が混成してなる二次粒子を得ることができる。ここで、焼成温度は、特に限定されることはないが、一般に約2,000℃である。二次粒子3の形状は、特に限定されることはないが、球状であることが好ましい。球状の二次粒子3であれば、熱伝導性生シート1を製造する際に、樹脂の流動性を確保しつつ、充填量を多くすることができる。この方法によれば、図4Cに示したように、鱗片状窒化ホウ素の一次粒子4と窒化ケイ素の一次粒子5が二次粒子3の中で混在している。
 二次粒子3の平均粒径は、20μm以上180μm以下であることが好ましく、40μm以上130μm以下であることがより好ましい。平均粒径が20μm未満であると、所望の熱伝導率を有する熱伝導性生シート1が得られないことがある。一方、平均粒径が180μmを超えると、二次粒子3を熱硬化性樹脂2に混合分散させることが困難となって、作業性や成形性に支障を生じることがある。なお、熱伝導性生シート1の厚さに対して二次粒子3の粒径が大きすぎると界面を伝って絶縁破壊特性が低下する。よって、二次粒子3の最大粒径は、熱伝導性生シート1の厚さの約9割以下であることが好ましい。
 鱗片状窒化ホウ素の一次粒子4の平均長径は、15μm以下であり、好ましくは0.1μm以上10μm以下である。この範囲であれば、鱗片状窒化ホウ素の一次粒子4があらゆる方向を向いて凝集した、すなわち等方的に凝集した、二次粒子3を得ることができ、二次粒子3が等方的な熱伝導性を有することとなる。その結果、熱伝導性生シート1の厚み方向において熱伝導性が向上する。一方、鱗片状窒化ホウ素の一次粒子4の平均長径が、15μmよりも大きいと、鱗片状窒化ホウ素の一次粒子4が等方的に凝集せず、二次粒子3の熱伝導性に異方性が現れる。すなわち、特定方向の熱伝導性だけが高くなる。その結果、熱伝導性生シート1の厚み方向において所望の熱伝導性が得られない。
 熱伝導性生シート1のマトリックスとなる熱硬化性樹脂2としては、特に制限されることはない。例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂等を用いることができる。これらの中でも、エポキシ樹脂は、熱伝導性生シート1の製造が容易になるので特に好ましい。エポキシ樹脂の主剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジル-アミノフェノール系エポキシ樹脂が挙げられる。これらの樹脂は、単独又は組み合わせて用いることができる。
 エポキシ樹脂の硬化を助長する硬化剤としては、例えば、脂環式酸無水物(メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸及び無水ハイミック酸等)、ドデセニル無水コハク酸等の脂肪族酸無水物、芳香族酸無水物(無水フタル酸及び無水トリメリット酸等)、有機ジヒドラジド(ジシアンジアミド及びアジピン酸ジヒドラジド等)、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体、イミダゾール類(2-メチルイミダゾール、2-エチル-4-メチルイミダゾール及び2-フェニルイミダゾール等)を用いることができる。これらの硬化剤は、単独又は組み合わせて用いることができる。硬化剤の配合量は、使用する熱硬化性樹脂2や硬化剤の種類によって適宜調整すればよく、一般的に、100質量部の熱硬化性樹脂2に対して0.1質量部以上200質量部以下である。
 熱伝導性生シート1は、熱硬化性樹脂2と窒化ホウ素と窒化ケイ素からなる二次粒子3との界面の接着力を向上させる観点から、カップリング剤を含むことができる。カップリング剤としては、例えば、γ―グリシドキシプロピルトリメトキシシラン、N-β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N-フェニル-γ―アミノプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシラン等が挙げられる。これらのカップリング剤は、単独又は組み合わせて用いることができる。カップリング剤の配合量は、使用する熱硬化性樹脂2やカップリング剤の種類等に併せて適宜設定すればよいが、一般的に、100質量部の熱硬化性樹脂2に対して0.01質量%以上1質量%以下である。
 本実施の形態の熱伝導性シートは、図6に示すフローに従って製造する。まず、所定量の熱硬化性樹脂2と、この熱硬化性樹脂2を硬化させるために必要な量の硬化剤を含む熱硬化性樹脂組成物を調製する。次に、この熱硬化性樹脂組成物に溶剤を加えて熱硬化性樹脂組成物の溶液を調製し、この溶液に無機充填剤(具体的には、二次粒子3)を加えて予備混合する。ここで、熱硬化性樹脂組成物の溶液を調製するのに使用される溶剤としては、特に限定されることはなく、例えばトルエンやメチルエチルケトンを用いることができる。また、溶剤の配合量も、予備混合が可能な量であれば特に限定されることはなく、一般に、熱硬化性樹脂組成物と無機充填剤との合計質量に対して40質量%以上85質量%以下である。なお、熱硬化性樹脂組成物の粘度が低い場合には、溶剤を加えなくてもよい。また、カップリング剤を配合する場合、カップリング剤は下記の混練工程前までに加えればよい。
 次に、この予備混合物を3本ロールやニーダ等を用いて混練し、熱伝導性シート用コンパウンドを作製した後、このコンパウンドを離型処理された樹脂シート等にドクターブレード法により塗布する。あるいは、このコンパウンドを放熱部材上に直接塗布してもよい。次に、この塗布物を乾燥させ、塗布物中の溶剤を揮発させることによって、本実施の形態の熱伝導性生シートを得ることができる。ここで、乾燥の際には、必要に応じて80℃以上150℃以下に加熱し、溶剤の揮発を促進させてもよい。また、パワーモジュール等に組み込む際には、発熱部材及び放熱部材との接着性等の観点から、マトリックスの熱硬化性樹脂2をBステージ化させてもよい。Bステージは熱硬化性樹脂の反応の中間的な段階であって、材料は加熱により軟化して膨張する。
 このようにして製造される本実施の形態の熱伝導性生シートは、電気機器および電子機器の発熱部材と放熱部材との間に配置することにより、発熱部材と放熱部材とを接着すると共に電気絶縁することができる。特に、本実施の形態の熱伝導性生シートは、熱伝導性が高いので、発熱部材から放熱部材に熱を効率良く伝達することができる。ここで、本実施の形態の熱伝導性生シートを電子機器等の発熱部材と放熱部材との間に配置する場合に、マトリックスの熱硬化性樹脂がBステージ状態の熱伝導性生シートを用いることを想定してみる。この熱伝導性生シートの配置後に150℃以上200℃以下に加熱して硬化させることによって、熱伝導性シートが形成される。その結果、発熱部材及び放熱部材は熱伝導性シートに接着されている。
 また、熱伝導性生シートは、電子機器の発熱部材及び放熱部材のいずれか一方に接着する。この熱伝導性生シートに他方の発熱部材又は放熱部材を圧接しながら150℃以上200℃以下に加熱して硬化させることにより、発熱部材及び放熱部材の熱伝導性シートに対する接着性をより一層向上させることができる。なお、発熱部材に熱伝導性シートを直接接触させることが適切でない場合には、発熱部材と熱伝導性シートの間に発熱部材を配置してもよい。本実施の形態のパワーモジュールは、一方の放熱部材に搭載された電力半導体素子と、電力半導体素子で発生する熱を外部に放熱する他方の放熱部材と、電力半導体素子で発生する熱を一方の放熱部材から他方の放熱部材に伝達する熱伝導性シートとを備えている。
 以下、実施例及び比較例により本発明の効果を詳細に説明するが、これらによって本発明が限定されるものではない。図7に、実施例及び比較例で用いた、二次粒子における無機充填剤の種類及びその含有量の関係を示す。二次粒子は、鱗片状の六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を含む原液をスプレードライ法によって作製した。図には無機充填剤の全重量に対する窒化ケイ素と窒化ホウ素の重量比を表している。二次粒子No.A~No.Gは、窒化ケイ素含有量が0重量%~50重量%になるように調整されている。
[実施例1]
 液状のビスフェノールA型エポキシ樹脂(エピコート828:ジャパンエポキシレジン株式会社製)100質量部と、硬化剤である1-シアノエチル-2-メチルイミダゾール(キュアゾール2PN-CN:四国化成工業株式会社製)1質量部とを含む熱硬化性樹脂組成物を、溶媒であるメチルエチルケトン166質量部に添加し、撹拌して、熱硬化性樹脂組成物の溶液を調製した。次に、無機充填材として二次粒子No.Cを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して60体積%となるように配合し、熱硬化性樹脂組成物の溶液に混ぜ合わせて予備混合物を作製した。
 この予備混合物をさらに、三本ロールにて混練し、熱硬化性樹脂組成物の溶液中に混合充填剤を均一に分散させた熱伝導性シート用コンパウンドを作製した。次に、熱伝導性シート用コンパウンドを、厚さ105μmの放熱部材(銅箔)にドクターブレード法にて塗布し、110℃で15分間の加熱乾燥処理をし、厚さが100μmでBステージ状態の熱伝導性生シートを作製した。放熱部材上に形成したBステージ状態の熱伝導性生シートは、シート側が内側になるように2枚重ねた後、120℃で1時間加熱した。さらに160℃で3時間加熱することで、熱伝導性シートのマトリックスである熱硬化性樹脂を完全に硬化させ、2つの放熱部材に挟まれた熱伝導性シート(実施例1)を得た。
[実施例2]および[実施例3]
 実施例2では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Dを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。実施例3では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Eを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。
[比較例1]~[比較例4]
 比較例1では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Aを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。比較例2では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Bを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。比較例3では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Fを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。比較例4では、無機充填剤として、窒化ホウ素と窒化ケイ素の二次粒子No.Gを用いたこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。 
 実施例1~3及び比較例1~4で得られた熱伝導性シートについて、シートの厚み方向の熱伝導率をレーザーフラッシュ法にて測定した。熱伝導率の結果は、比較例1の熱伝導性シートで得られた熱伝導率を基準とする熱伝導率の相対値として図8に示した。熱伝導率の相対値は、式(1)から求めた。
 [各実施例又は各比較例の熱伝導性シートで得られた熱伝導率]/[比較例1の熱伝導性シートで得られた熱伝導率] …式(1)
 なお、図8において、実施例及び比較例で使用した構成成分の種類及び配合量等についてもまとめている。また、配合量については質量部を用いて表した。
 熱伝導性シートの剥離強度を測定するために、熱伝導性シートを2枚の放熱部材で挟んだ評価試料を作製した。熱伝導性シートの剥離強度は、オートグラフで、評価試料の一方の放熱部材を固定し、他方の放熱部材を50mm/分の一定速度でシート固定面と90°方向に引っ張ることによって測定した。剥離強度の結果は、比較例1の熱伝導性シートで得られた剥離強度を基準とする剥離強度の相対値として図8に示した。剥離強度の相対値は、式(2)から求めた。
 [各実施例又は比較例の熱伝導性シートで得られた剥離強度]/[比較例1の熱伝導性シートで得られた剥離強度] …式(2)
 図8に示されているように、実施例1~3のように、窒化ケイ素の含有量が10%以上30%以下の二次粒子を無機充填材に用いた熱伝導性シートは、シート厚み方向の熱伝導率が高く、かつ剥離強度も向上している。それに対して、比較例1、2のように窒化ケイ素の含有量が5%以下の二次粒子を無機充填材に用いた熱伝導性シートは、シート厚み方向の熱伝導性高いが、剥離強度が向上していない。これは、二次粒子の窒化ケイ素含有量が10%以下と少ないと、二次粒子と樹脂の界面で化学的に結合している部分の面積が少ないため、二次粒子と樹脂の界面での凝集破壊が起こり易いためと考えられる。比較例3と比較例4のように窒化ケイ素の含有量が40%以上の二次粒子を無機充填剤に用いた熱伝導性シートは、剥離強度は向上しているが、シート厚み方向の熱伝導率が低い。これは、窒化ホウ素と比較して熱伝導率の低い窒化ケイ素の含有量が増えることによって、二次粒子自体の熱伝導率が著しく低下することが原因と考えられる。
 また、実施例1~3、並びに比較例1~4の結果を基に、無機充填剤(二次粒子)における窒化ケイ素含有量と、熱伝導率の相対値および剥離強度の相対値との関係を図9に示した。この図から、二次粒子の窒化ケイ素含有量とシート厚み方向の熱伝導性および剥離強度には密接な関係があることが分かる。次に、熱伝導性シートにおける無機充填剤の充填率の効果を調べるために、実施例4、実施例5、実施例6、比較例5および比較例6を作成した。無機充填剤には窒化ホウ素を20重量%含む二次粒子No.Dを使用した。
[実施例4]~[実施例6]
 実施例4では、無機充填剤として、二次粒子No.Dを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して30体積%となるように配合したこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。実施例5では、無機充填剤として、二次粒子No.Dを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して40体積%となるように配合したこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。実施例6では、無機充填剤として、二次粒子No.Dを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して70体積%となるように配合したこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。
[比較例5]および[比較例6]
 比較例5では、無機充填剤として、二次粒子No.Dを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して10体積%となるように配合したこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。比較例6では、無機充填剤として、二次粒子No.Dを、熱硬化性樹脂組成物と無機充填剤との合計体積に対して85体積%となるように配合したこと以外は、実施例1と同様にして2つの放熱部材に挟まれた熱伝導性シートを得た。
 実施例4~6および比較例5~6で得られた熱伝導性シートについて、シートの厚み方向の熱伝導率と剥離強度を上記と同じ方法にて測定した。これらの結果は図8に示してある。実施例4~6および比較例5、6では、熱伝導シートにおける無機充填材の充填率を10体積%~85体積%の範囲で変えたシートを作製、熱伝導率を測定した。比較例6の充填率を85%にしたシートは樹脂の流動性が非常に悪く、シートを作製することができなかった。図8の結果を見ると分かるように、無機充充填材の充填率が10体積%以下では、シート厚み方向の熱伝導率が低い。それに対して、充填量を30体積%以上にしたシートでは、シート厚み方向の熱伝導性が向上している。
 以上の結果からわかるように、本発明の熱伝導性シートは、生産性やコスト面において有利であり、且つ熱伝導性及び剥離強度に優れている。特に、本発明における、二次粒子3の窒化ケイ素含有量を10重量%以上30重量%以下とすることで、二次粒子自体の熱伝導率低下が最小限に抑えられ、熱硬化性樹脂に充填した際に、シート厚み方向の熱伝導率を向上させることが可能になる。また、窒化ケイ素と樹脂の界面での化学的に結合する部分の面積が増えるため、二次粒子と樹脂の界面での凝集破壊が起こりにくく、シートと放熱部材との接着性が向上する。
 また、熱伝導性シート用コンパウンド(および熱伝導性生シート)における無機充填剤の充填率は、20体積%以上80体積%以下であることが好ましい。特に、無機充填剤の充填率が30体積%以上65体積%以下の場合には、熱伝導性生シートを製造する際に作業性に優れると共に、熱伝導性生シートの熱伝導性がより一層向上する。充填率が20体積%未満であると、所望の熱伝導性を有する熱伝導性生シートが得られないことがある。また、充填率が80体積%を超えると、熱伝導性生シートの製造時に、二次粒子を熱硬化性樹脂に混合分散させることが困難となって、作業性や成形性に支障を生じることがある。
 なお、図10は、窒化ホウ素の二次粒子を含有させた熱伝導性シートの断面を表している模式図である。硬化樹脂と窒化ホウ素との界面での凝集破壊により硬化樹脂が剥離した様子を示している。鱗片状窒化ホウ素の一次粒子4を凝集させた二次粒子3を含有してなる熱伝導性シート7は、放熱部材14に接着した状態で硬化している。この熱伝導性シート7において、放熱部材14を剥離するように応力を印加すると、二次粒子3と熱硬化性樹脂との界面で剥離が起こり、凝集破壊を起こす。これは、熱伝導性シート7と放熱部材14の接着において、二次粒子3と熱硬化性樹脂との界面が、最も接着が弱い箇所であることを示している。そのため、熱伝導性シート7と放熱部材14の剥離強度を向上させるためには、二次粒子3と熱硬化性樹脂との接着を強固にすることが重要である。
 二次粒子3の熱伝導率を低下させないようにするためには、窒化ケイ素の一次粒子5の含有量を可能な限り少なくすることが好ましい。しかしながら、窒化ケイ素の一次粒子5の含有量が少なすぎると、二次粒子3と樹脂との接着性が低下する。そのため、窒化ケイ素の一次粒子5の含有量は、接着性が低下しない範囲で、極力少なくすることが好ましい。このような観点から、窒化ケイ素の一次粒子の含有量は、10重量%以上、30重量%以下であることが好ましい。この範囲であれば、熱伝導性と接着性を同時に高めることが可能になるが、30重量%の含有量では製造上のばらつきによって熱伝導性が低下する場合がある。従って、10重量%以上、25重量%以下であることがより好ましい。
 スプレードライ法等に使用する原液に含まれる鱗片状窒化ホウ素の一次粒子4は、焼成工程での焼結を促進させるために、低結晶性であることが好ましい。鱗片状窒化ホウ素の一次粒子4の結晶性は、結晶化度20以上が好ましい。結晶化度が20以上の低結晶性の鱗片状窒化ホウ素の一次粒子4を用いることで、焼成工程での焼結が促進され、鱗片状窒化ホウ素の一次粒子4どうしが強固に固着し、結果として、凝集力の高い二次粒子3を得ることができる。なお、焼成後の二次粒子3に含まれる鱗片状窒化ホウ素の一次粒子4は、焼成工程での焼結にともなって、結晶性が向上し、結晶化度10以下の高結晶性の鱗片状窒化ホウ素の一次粒子4に変化する。
 ここで、鱗片状窒化ホウ素の一次粒子4の結晶化度は、鱗片状窒化ホウ素の一次粒子のX線回折パターンを測定することによって求めることができる。具体的には、X線回折における(100)面、(101)面及び(102)面の各回折ピーク面積を求め、下記の式(3)に代入することによって算出することができる。
  結晶化度=[(100)+(101)]/(102) …… 式(3)
 式(3)において、(100)、(101)及び(102)は、各面の回折ピーク面積を表す。一般に、鱗片状窒化ホウ素の一次粒子の結晶化度は、結晶性が低くなると大きな値となり、結晶性が高くなると小さな値となる。完全な結晶性では、鱗片状窒化ホウ素の一次粒子4の結晶化度は1.6程度の値となる。鱗片状窒化ホウ素の一次粒子4の結晶化度の算出は、数点(好ましくは10点)のサンプリングを行い、各サンプルから得られた結晶化度の平均値を求めることが好ましい。
 なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 熱伝導性生シート、2 熱硬化性樹脂、3 二次粒子、4 鱗片状窒化ホウ素の一次粒子、5 窒化ケイ素の一次粒子、6 パワーモジュール、7 熱伝導性シート、8 リードフレーム、9 電力半導体素子、10 ヒートシンク、11 制御用半導体素子、12 金属線、13 モールド樹脂、14 放熱部材。 

Claims (9)

  1.  六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を含む原液から凝集物を作製する第1工程と、
    前記第1工程で作製した凝集物を焼成して、前記六方晶窒化ホウ素の一次粒子と前記窒化ケイ素の一次粒子が、焼成により凝集して一体化してなる二次粒子を作製する第2工程と、
    前記第2工程で作製した二次粒子を熱硬化性樹脂組成物の溶液に混ぜ合せて予備混合物を作製する第3工程と、
    前記第3工程で作製した予備混合物を混練する第4工程と、を備え、
     前記六方晶窒化ホウ素の一次粒子と前記窒化ケイ素の一次粒子を、重量比で75:25から90:10の範囲に配合して前記凝集物を作製することを特徴とする熱伝導性シート用コンパウンドの製造方法。
  2.  前記二次粒子を、二次粒子と熱硬化性樹脂組成物との合計体積に対して、20体積%以上80%体積以下の範囲に配合して、前記予備混合物を作製することを特徴とする請求項1に記載の熱伝導性シート用コンパウンドの製造方法。
  3.  前記二次粒子は、球形状を有することを特徴とする請求項2に記載の熱伝導性シート用コンパウンドの製造方法。
  4.  前記六方晶窒化ホウ素の一次粒子は、結晶化度が20以上であることを特徴とする請求項3に記載の熱伝導性シート用コンパウンドの製造方法。
  5.  六方晶窒化ホウ素の一次粒子と窒化ケイ素の一次粒子を含む原液から凝集物を作製する第1工程と、
    前記第1工程で作製した凝集物を焼成して、前記六方晶窒化ホウ素の一次粒子と前記窒化ケイ素の一次粒子が、焼成により凝集して一体化してなる二次粒子を作製する第2工程と、
    前記第2工程で作製した二次粒子を熱硬化性樹脂組成物の溶液に混ぜ合せて予備混合物を作製する第3工程と、
    前記第3工程で作製した予備混合物を混練してコンパウンドを作製する第4工程と、
    前記第4工程で作製したコンパウンドをシート状に成形する第5工程と、を備え、
     前記六方晶窒化ホウ素の一次粒子と前記窒化ケイ素の一次粒子を、重量比で75:25から90:10の範囲に配合して前記凝集物を作製することを特徴とする熱伝導性シートの製造方法。
  6.  前記六方晶窒化ホウ素の一次粒子は、結晶化度が20以上であることを特徴とする請求項5に記載の熱伝導性シートの製造方法。
  7.  有機物から構成される熱硬化性樹脂と、
    前記熱硬化性樹脂の硬化を助長する硬化剤と、
    前記熱硬化性樹脂に分散している無機充填物と、を備え、
    前記無機充填物は、六方晶窒化ホウ素の粒子と窒化ケイ素の粒子が混成してなり、
    前記六方晶窒化ホウ素の粒子と前記窒化ケイ素の粒子は、重量比で75:25から90:10の範囲に配合されていることを特徴とする熱伝導性シート用コンパウンド。
  8.  有機物から構成されるシート状に成形された熱硬化性樹脂と、
    前記熱硬化性樹脂の硬化を助長する硬化剤と、
    前記熱硬化性樹脂に分散している無機充填物と、を備え、
    前記無機充填物は、六方晶窒化ホウ素の粒子と窒化ケイ素の粒子が混成してなり、
    前記六方晶窒化ホウ素の粒子と前記窒化ケイ素の粒子は、重量比で75:25から90:10の範囲に配合されていることを特徴とする熱伝導性シート。
  9.  金属製のヒートシンクと、
    無機充填物と熱硬化性樹脂を含むシート状のコンパンドが硬化してなる熱伝導性シートと、
    前記ヒートシンクに前記熱伝導性シートによって接着固定されているリードフレームと、
    前記リードフレームに接合されている電力半導体素子と、
    前記熱伝導性シートと前記リードフレームと前記電力半導体素子を封止するモールド樹脂と、を備え、
    前記無機充填物は、六方晶窒化ホウ素の粒子と窒化ケイ素の粒子が混成してなり、
    前記六方晶窒化ホウ素の粒子と前記窒化ケイ素の粒子は、重量比で75:25から90:10の範囲に配合されていることを特徴とするパワーモジュール。
PCT/JP2015/060472 2014-04-14 2015-04-02 熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール WO2015159720A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082455A JP2017107888A (ja) 2014-04-14 2014-04-14 熱伝導性シート用コンパウンドの製造方法、熱伝導性シート用コンパウンド及びパワーモジュール
JP2014-082455 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015159720A1 true WO2015159720A1 (ja) 2015-10-22

Family

ID=54323932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060472 WO2015159720A1 (ja) 2014-04-14 2015-04-02 熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール

Country Status (2)

Country Link
JP (1) JP2017107888A (ja)
WO (1) WO2015159720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275800A1 (en) * 2021-06-30 2023-01-05 3M Innovative Properties Company Thermally conductive sheet precursor, precursor composition, thermally conductive sheet obtained from thermally conductive sheet precursor, and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775053B2 (ja) * 2019-03-28 2020-10-28 株式会社ダイセル 成形体およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256307A (ja) * 1985-09-05 1987-03-12 Tokuyama Soda Co Ltd 窒化ほう素と他の非酸化物セラミックスとの混合粉末の製造方法
JPH0959425A (ja) * 1995-08-28 1997-03-04 Tatsumori:Kk 高熱伝導性複合粒子
JP2002030223A (ja) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd 熱伝導性樹脂組成物
JP2009035484A (ja) * 2001-08-07 2009-02-19 Saint-Gobain Ceramics & Plastics Inc 高固形分のhBNスラリー、hBNペースト、球状hBN粉末、並びにそれらの製造方法および使用方法
JP2012054604A (ja) * 2011-11-10 2012-03-15 Mitsubishi Electric Corp 絶縁シートおよびこれを用いたパワーモジュール
JP2014028749A (ja) * 2012-07-04 2014-02-13 Mizushima Ferroalloy Co Ltd ハイブリッド型bn凝集粒子およびその製造方法ならびに高分子材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256307A (ja) * 1985-09-05 1987-03-12 Tokuyama Soda Co Ltd 窒化ほう素と他の非酸化物セラミックスとの混合粉末の製造方法
JPH0959425A (ja) * 1995-08-28 1997-03-04 Tatsumori:Kk 高熱伝導性複合粒子
JP2002030223A (ja) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd 熱伝導性樹脂組成物
JP2009035484A (ja) * 2001-08-07 2009-02-19 Saint-Gobain Ceramics & Plastics Inc 高固形分のhBNスラリー、hBNペースト、球状hBN粉末、並びにそれらの製造方法および使用方法
JP2012054604A (ja) * 2011-11-10 2012-03-15 Mitsubishi Electric Corp 絶縁シートおよびこれを用いたパワーモジュール
JP2014028749A (ja) * 2012-07-04 2014-02-13 Mizushima Ferroalloy Co Ltd ハイブリッド型bn凝集粒子およびその製造方法ならびに高分子材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275800A1 (en) * 2021-06-30 2023-01-05 3M Innovative Properties Company Thermally conductive sheet precursor, precursor composition, thermally conductive sheet obtained from thermally conductive sheet precursor, and method for producing the same

Also Published As

Publication number Publication date
JP2017107888A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5208060B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP5036696B2 (ja) 熱伝導性シート及びパワーモジュール
JP5184543B2 (ja) 熱伝導性シート及びパワーモジュール
JP6022061B2 (ja) 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP5340202B2 (ja) 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP5225303B2 (ja) 熱伝導性シートの製造方法
JP4089636B2 (ja) 熱伝導性樹脂シートの製造方法およびパワーモジュールの製造方法
WO2012070289A1 (ja) 熱伝導性シート及びパワーモジュール
JP5791488B2 (ja) 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール
JP6000749B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
JP5063710B2 (ja) パワーモジュール
JP2008153430A (ja) 放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュール
JP5855042B2 (ja) パワーモジュールの製造方法
JP2014152299A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、その製造方法及びそれを備えるパワーモジュール
JP2011178894A (ja) 熱硬化性樹脂組成物、熱伝導性シート及びパワーモジュール
TWI520926B (zh) A ceramic mixture, and a thermally conductive resin sheet containing a ceramic composition
JP6025966B2 (ja) 熱伝導性絶縁シート、パワーモジュール及びその製造方法
JP2008255186A (ja) 熱伝導性樹脂シート及びパワーモジュール
JP5653280B2 (ja) 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール
JP2015196823A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP2016155946A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
JP5274007B2 (ja) 熱伝導性樹脂シートおよびこれを用いたパワーモジュール
WO2015159720A1 (ja) 熱伝導性シート用コンパウンドの製造方法、熱伝導性シートの製造方法、熱伝導性シート用コンパウンド、熱伝導性シート及びパワーモジュール
WO2022118873A1 (ja) 熱伝導性樹脂組成物および成形体
JP2016204669A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP