WO2015159677A1 - 光電変換素子、色素増感太陽電池および色素増感太陽電池モジュール - Google Patents
光電変換素子、色素増感太陽電池および色素増感太陽電池モジュール Download PDFInfo
- Publication number
- WO2015159677A1 WO2015159677A1 PCT/JP2015/059345 JP2015059345W WO2015159677A1 WO 2015159677 A1 WO2015159677 A1 WO 2015159677A1 JP 2015059345 W JP2015059345 W JP 2015059345W WO 2015159677 A1 WO2015159677 A1 WO 2015159677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photoelectric conversion
- conversion element
- dye
- semiconductor layer
- porous semiconductor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 109
- 239000004065 semiconductor Substances 0.000 claims abstract description 87
- 239000000463 material Substances 0.000 claims abstract description 67
- 238000007789 sealing Methods 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 30
- 239000000975 dye Substances 0.000 description 28
- 239000003504 photosensitizing agent Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000002904 solvent Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 12
- 239000010936 titanium Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 5
- 239000000434 metal complex dye Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- -1 nitrile compounds Chemical class 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- 239000001007 phthalocyanine dye Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 2
- UQFSVBXCNGCBBW-UHFFFAOYSA-M tetraethylammonium iodide Chemical compound [I-].CC[N+](CC)(CC)CC UQFSVBXCNGCBBW-UHFFFAOYSA-M 0.000 description 2
- VRKHAMWCGMJAMI-UHFFFAOYSA-M tetrahexylazanium;iodide Chemical compound [I-].CCCCCC[N+](CCCCCC)(CCCCCC)CCCCCC VRKHAMWCGMJAMI-UHFFFAOYSA-M 0.000 description 2
- GKXDJYKZFZVASJ-UHFFFAOYSA-M tetrapropylazanium;iodide Chemical compound [I-].CCC[N+](CCC)(CCC)CCC GKXDJYKZFZVASJ-UHFFFAOYSA-M 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- SOSAUKRKGXFQKS-UHFFFAOYSA-N 4,5-dimethyl-2-propyl-1H-imidazole hydroiodide Chemical compound I.CCCC1=NC(C)=C(C)N1 SOSAUKRKGXFQKS-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical compound [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 125000000687 hydroquinonyl group Chemical class C1(O)=C(C=C(O)C=C1)* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910001509 metal bromide Inorganic materials 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 150000002979 perylenes Chemical class 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2068—Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
- H01G9/2086—Photoelectrochemical cells in the form of a fiber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/209—Light trapping arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Definitions
- the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, and a dye-sensitized solar cell module.
- Patent Document 1 As a new type of solar cell, a solar cell including a photoelectric conversion element applying photoinduced electron transfer of a metal complex has been proposed (for example, Patent Document 1).
- a photoelectric conversion element described in Patent Document 1 a photoelectric conversion layer that adsorbs a photosensitizing dye and has an absorption spectrum in a visible light region and an electrolytic solution are sandwiched between two glass substrates. A first electrode and a second electrode are formed on the surface of the glass substrate.
- FIG. 8 is an example of a conventional photoelectric conversion element that does not use a transparent conductive film.
- 8 includes a photoelectric conversion layer 812 having a porous semiconductor layer, a current collecting electrode 804, a charge transport layer 809, a counter electrode 806, and a sealing member between an upper support 801 and a lower support 810. Parts 807 and 808 are arranged.
- a current collecting electrode 804 is formed on a porous semiconductor layer carrying a dye, and electrons are taken out through this current collecting electrode.
- a photoelectric conversion element that does not use a transparent conductive film has a problem in that the adhesion strength at the interface between the support and the porous semiconductor layer is weak, causing peeling.
- the porous semiconductor layer is merely physically adhered to the glass at the interface between the glass and the porous semiconductor layer, external forces such as glass warpage and It peels due to external factors such as deflection, contact, moisture in the air, and solvent for dye adsorption.
- the porous semiconductor layer is peeled compared to the case where the photoelectric conversion element is manufactured using the transparent conductive film. For this reason, the production yield of solar cells is deteriorated, and there is a problem that the solar cell characteristics are greatly affected.
- the present invention is a photoelectric device having a porous semiconductor layer sandwiched between a translucent upper support located on the light incident side and a lower support located on the opposite side, in order from the upper support side.
- a conversion layer, a current collecting electrode, an insulating layer, and a counter electrode are disposed, and further include a carrier transport material, and at least adjacent to and between the upper support and the porous semiconductor layer.
- This is a photoelectric conversion element in which a close contact portion of 5 to 10 nm is disposed.
- the photoelectric conversion layer may be sealed by a sealing portion, and the close contact portion may be in contact with at least one of the sealing portion, the current collecting electrode, and the counter electrode.
- the material of the close contact portion may be Ti, Ta, or Mo.
- the film thickness of the adhesion portion may be 0.5 to 5 nm.
- this invention is a dye-sensitized solar cell provided with this photoelectric conversion element. Moreover, this invention is a dye-sensitized solar cell module formed by joining this dye-sensitized solar cell in series.
- a photoelectric conversion element that does not use a transparent conductive film, in which peeling of the porous semiconductor layer from the upper support is prevented, and a dye-sensitized solar cell using the photoelectric conversion element And a dye-sensitized solar cell module using the dye-sensitized solar cell.
- FIG. 1 is a cross-sectional view illustrating an example of a configuration of a photoelectric conversion element according to the present invention.
- the porous semiconductor layer is sandwiched between a translucent upper support 101 located on the light incident side shown in FIG. 1 and a lower support 110 located on the opposite side, in order from the upper support 101 side.
- the photoelectric conversion layer 112, the current collecting electrode 104, the insulating layer 105, and the counter electrode 106 are disposed, further include a carrier transport material, and are adjacent to at least the upper support 101 and the porous semiconductor layer.
- a close contact portion 111 having a thickness of 0.5 to 10 nm is formed.
- the material constituting the upper support 101 is not particularly limited as long as it is a material that can generally be used for a support of a photoelectric conversion element, has a light-transmitting property, and can exhibit the effects of the present invention.
- the material of the upper support may be, for example, a glass substrate such as soda glass, fused silica glass, or crystal quartz glass, or may be a flexible film made of a heat resistant resin material.
- “translucency” in the present invention substantially transmits light having a wavelength having an effective sensitivity to at least a photosensitizer described later (the transmittance of the light is preferably 80% or more, preferably Means 90% or more), and does not necessarily mean that transmission of light of all wavelengths is required.
- the thickness of the upper support is not particularly limited, but is preferably 0.2 to 5 mm, for example.
- the lower support body 110 supports the counter electrode 106.
- the material of the lower support is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention, and basically has translucency. Or may not have translucency. However, when the lower support is used as the light receiving surface, translucency is required, and therefore, any material having the translucency listed in the description regarding the upper support is selected.
- the lower support may be a plate or film made of an inorganic material such as metal, or may be a plate or film made of an organic material such as plastic.
- the thickness of the lower support is not particularly limited, but is preferably 0.2 to 5 mm, for example.
- the photoelectric conversion layer 112 has a porous semiconductor layer.
- a photosensitizer is provided in the porous semiconductor layer.
- the porous semiconductor layer is composed of a semiconductor porous material.
- the porous material is preferably 0.5 ⁇ 300m 2 / g specific surface area, more preferably 10 ⁇ 200m 2 / g.
- the porosity is preferably 20% or more.
- the specific surface area is obtained by the BET method which is a gas adsorption method, and the porosity is obtained by calculation from the thickness of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor fine particles. Since the porous semiconductor layer has the above specific surface area, it can adsorb many photosensitizers, and thus can absorb sunlight efficiently.
- the carrier transport material can be sufficiently diffused, and electrons can be smoothly returned to the photoelectric conversion layer.
- the thickness of the porous semiconductor layer is not particularly limited, but for example 0.1 to 100 ⁇ m is appropriate.
- the material of the porous semiconductor layer is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention.
- Such materials include, for example, titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide,
- a compound semiconductor material such as copper-indium sulfide (CuInS 2 ), CuAlO 2 , or SrCu 2 O 2 is preferable.
- One of the above listed materials may be used alone, or two or more of the above listed materials may be used in combination. From the viewpoint of photoelectric conversion efficiency, stability and safety, it is preferable to use titanium oxide as a material constituting the porous semiconductor layer.
- the porous material may be either single crystal or polycrystalline.
- the porous semiconductor layer is preferably a polycrystalline sintered body, and is a polycrystalline sintered body made of fine powder (nanoscale to microscale). Particularly preferred is a ligation.
- particles made of compound semiconductor materials having the same size may be used, or particles made of compound semiconductor materials having different sizes may be used. Since relatively large particles scatter incident light, it is considered that they contribute to an improvement in the light capture rate. If relatively small particles are used, the number of adsorption points of the photosensitizer is increased. Therefore, it is considered that relatively small particles contribute to an improvement in the adsorption amount of the photosensitizer.
- the porous semiconductor layer of the present invention can have a two-layer structure of a porous semiconductor layer 102 and a porous semiconductor layer 103 as shown in FIG.
- light can be confined by making the porous semiconductor layer 102 a semiconductor layer having a property of transmitting light and making the porous semiconductor layer 103 a semiconductor layer having a property of scattering light. An effect is obtained.
- the sensitizing dye that is adsorbed on the porous semiconductor layer and functions as a photosensitizer is not particularly limited, but various organic dyes that can absorb light in at least one of the visible light region and the infrared light region. There may be various metal complex dyes capable of absorbing light in at least one of the visible light region and the infrared light region. These pigments may be used alone or in combination of two or more.
- organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylenes. And dyes such as indigo dyes and naphthalocyanine dyes.
- the extinction coefficient of an organic dye is larger than that of a metal complex dye in which a molecule is coordinated to a transition metal.
- metal complex dyes Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, TA, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, or Rh
- the thing of the form which the ligand coordinated to the metal atom is mentioned.
- the metal complex dye is preferably, for example, a porphyrin dye, phthalocyanine dye, or naphthalocyanine dye, more preferably a phthalocyanine dye or a ruthenium dye, and a ruthenium metal complex dye. More preferably.
- the adsorption amount of such a sensitizing dye is preferably 1 ⁇ 10 ⁇ 8 mol / cm 2 or more and 1 ⁇ 10 ⁇ 6 mol / cm 2 or less, preferably 5 ⁇ 10 ⁇ 8 mol / cm 2 or more and 5 ⁇ 10. It is more preferably -7 mol / cm 2 or less. If the adsorption amount of the photosensitizer is less than 1 ⁇ 10 ⁇ 8 mol / cm 2 , the photoelectric conversion efficiency may be lowered. On the other hand, when the adsorption amount of the photosensitizer exceeds 1 ⁇ 10 ⁇ 6 mol / cm 2 , there may be a problem that the open circuit voltage is lowered.
- the collector electrode 104 is supported by the upper support 101 and is in contact with the photoelectric conversion layer 112. It is preferable that the current collecting electrode 104 is also provided outside the sealing portion 108, so that the current collecting electrode 104 can be smoothly connected to the counter electrode 106 through an external electric circuit.
- the material for the current collecting electrode is not particularly limited as long as it has conductivity, and may or may not have translucency. However, in the case where the photoelectric conversion element functions even when the lower support is used as the light receiving surface, the same translucency as that of the upper support is required. Moreover, it is preferable that the material which comprises a current collection electrode does not have corrosivity with respect to below-mentioned carrier transport material (electrolyte etc.). Specifically, examples of the material for the collecting electrode include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO). In addition, a metal that does not exhibit corrosiveness to the material used for the carrier transport material such as titanium, nickel, or tantalum can be used.
- ITO indium tin composite oxide
- SnO 2 tin oxide
- FTO tin oxide doped with fluorine
- ZnO zinc oxide
- the thickness of the current collecting electrode is not particularly limited, but is preferably 0.02 to 50 ⁇ m, for example.
- the sheet resistance value of the collecting electrode is preferably as low as possible because FF (curve factor) can be improved, and particularly preferably 40 ⁇ / ⁇ or less.
- the current collecting electrode has a dense structure, it is preferable that a plurality of small holes are formed in the current collecting electrode.
- the plurality of small holes function as paths for the carrier transport material. That is, the carrier transport material contained in the charge transport layer, which will be described later, can move between the porous semiconductor layer and the counter electrode of the photoelectric conversion layer through the inside of the plurality of small holes formed in the current collecting electrode.
- the insulating layer 105 has a function of insulating between the current collecting electrode 104 and the counter electrode 106.
- the material of the insulating layer 105 is not particularly limited as long as the material can insulate between the collecting electrode 104 and the counter electrode 106.
- As a material that can be used for the insulating layer at least one selected from the group consisting of titanium oxide, niobium oxide, zirconium oxide, silicon oxide, aluminum oxide, and barium titanate can be used.
- the insulating layer 105 is preferably formed of a material having a conductivity of 1 ⁇ 10 12 ⁇ ⁇ cm or less. By forming the insulating layer 105 with such a low conductivity material, leakage current from the photoelectric conversion layer 112 to the counter electrode 106 can be reduced.
- the thickness of the insulating layer 105 is preferably 0.2 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
- the thickness of the insulating layer 105 is 0.2 ⁇ m or more, particularly when the thickness is 0.5 ⁇ m or more, the leakage current from the photoelectric conversion layer 112 to the counter electrode 106 tends to be reduced.
- the thickness of the insulating layer 105 is 5 ⁇ m or less, particularly when it is 2 ⁇ m or less, the resistance of the carrier transport layer is decreased, and the FF tends to be improved.
- the counter electrode 106 is provided on the lower support 110 and is in contact with the charge transport layer.
- the counter electrode is a pole on the opposite side to the collector electrode 104.
- the material of the counter electrode is not particularly limited as long as it is a material that can generally be used for the current collecting electrode and can exhibit the effects of the present invention. However, even when the lower support is a light receiving surface, it is necessary to use a light-transmitting material in order for the photoelectric conversion element to function.
- the counter electrode is preferably a laminate of a catalyst layer and a conductive layer.
- the catalyst layer is preferably provided between the charge transport layer and the conductive layer, and preferably has a function of activating the oxidation-reduction reaction of the electrolyte.
- platinum, carbon black, ketjen It is preferably made of black, carbon nanotube, fullerene or the like.
- the counter electrode may be formed only of the catalyst layer.
- the thickness of the counter electrode is not particularly limited, but for example, 0.5 to 1000 nm is appropriate.
- a space between the counter electrode 106 and the lower support 110 is filled with a carrier transport material to form a charge transport layer 109.
- the carrier transport material is a material filled in the charge transport layer 109.
- the carrier transport material is preferably composed of a conductive material capable of transporting ions. Examples of suitable materials for the carrier transport material include a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte. .
- an electrolyte in which a redox species is dissolved in a solvent can be used as the carrier transport material.
- the redox species I ⁇ / I 3 ⁇ series, Br 2 ⁇ / Br 3 ⁇ series, Fe 2+ / Fe 3+ series, quinone / hydroquinone series, or the like can be used.
- the redox species include a combination of metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), or calcium iodide (CaI 2 ) and iodine (I 2 ). Can be used.
- redox species examples include tetraalkyl ammonium salts such as tetraethylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), and tetrahexylammonium iodide (THAI).
- TEAI tetraethylammonium iodide
- TPAI tetrapropylammonium iodide
- TBAI tetrabutylammonium iodide
- THAI tetrahexylammonium iodide
- a combination of a metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr) or calcium bromide (CaBr 2 ) and bromine can be used as the redox species. .
- the solvent capable of dissolving the redox species examples include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, aprotic polar substances, and the like.
- carbonate compounds such as propylene carbonate
- nitrile compounds such as acetonitrile
- alcohols such as ethanol, water, aprotic polar substances, and the like.
- the solvent capable of dissolving the redox species it is particularly preferable to use a carbonate compound or a nitrile compound.
- the solvent capable of dissolving the redox species one kind may be used alone, or two or more kinds may be used in combination.
- a close contact portion 111 is formed adjacently between the upper support 101 and the porous semiconductor layer.
- a dye-sensitized solar cell that does not use a transparent conductive film, for example, when glass is used as a support, when the porous semiconductor layer is formed, at the interface between the porous semiconductor layer and the support due to warpage of the glass, etc. Peeling tends to occur. Therefore, this separation can be suppressed by forming a close contact portion.
- any material can be used as long as it can bond the upper support and the porous semiconductor layer, and various metals can be used, but high melting point metals such as Ti, Ta, and Mo are used. It is preferable from the viewpoint of ease of formation.
- FIGS. 3 to 7 are plan views showing an example of the structure of the close contact portion in the photoelectric conversion element of the present invention.
- the contact portion may be formed on the entire surface of the upper support as shown in FIG. 3 in relation to the surface of the upper support, or may be formed in a stripe shape as shown in FIG. 5 may be formed in a dot shape as shown in FIG. 5, or may be formed in a lattice shape as shown in FIGS.
- the close contact portion is more preferably formed on the entire surface of the upper support as shown in FIG. preferable.
- the film thickness of the adhesion part is 0.5 to 10 nm, it is possible to secure a thickness sufficient to maintain the adhesion between the upper support and the porous semiconductor layer.
- the film thickness is 0.5 nm or less, it becomes difficult to control the deposition in the process of depositing the material of the adhesion portion.
- a film thickness of 0.5 to 5 nm is preferable because it can ensure translucency through the support to the porous semiconductor layer. 0.5 to 2 nm is more preferable.
- the term “film thickness” means the maximum thickness of the close contact portion.
- the close contact portion may be any member as long as the upper support and the porous semiconductor layer are in close contact as shown in FIG. 1, but as shown in FIG. 2, the sealing portion 208, the current collecting electrode 204, the insulating layer 205, the counter electrode Any one of 206 may be contacted.
- the contact portion 211 is in contact with at least one of the sealing portion, the collecting electrode, the insulating layer, and the counter electrode, peeling is prevented at the portion in contact with the porous semiconductor layer, and the porous semiconductor layer is more separated from the upper support. It becomes difficult to peel.
- the sealing portions 107 and 108 hold the upper support body 101 and the lower support body 110, have a function of preventing leakage of the charge transport layer 109, have a function of absorbing falling objects or stress (impact), It has a function of absorbing the deflection acting on each of the upper support and the lower support during various uses.
- the material of the sealing portion is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the above-described function.
- a material include an ultraviolet curable resin or a thermosetting resin, and specifically include a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, or a glass frit. These may be used alone to form the sealing portion, or two or more layers of these two or more materials may be laminated to form the sealing portion.
- the close contact portion 111 is formed on one surface of the upper support 101.
- the close contact portion only needs to be able to bond the upper support and the porous semiconductor layer, and various metals can be used.
- the upper support and the porous semiconductor layer in the produced photoelectric conversion element are usable.
- a refractory metal such as Ti, Ta, or Mo, and more preferable to use Ti.
- various deposition methods such as vapor deposition, sputtering, CVD, molecular beam epitaxy, and spin coating can be selected.
- the close contact portion instead of forming the close contact portion on the entire surface of the upper support as shown in FIG. 3, when the close contact portion having a certain pattern is partially formed as shown in FIGS.
- patterning can be performed selectively by using a mask. By forming the contact portion by such a method, pattern formation can be performed.
- a porous semiconductor layer is first formed on the surface of the upper support 101 on which the adhesion portion 111 is formed, and then a photosensitizer can be adsorbed. .
- the method for forming the porous semiconductor layer is not particularly limited, and may be a known method.
- a suspension containing particles made of a compound semiconductor can be applied to the upper support on which the close contact portion is formed, and then fired and dried.
- fine particles comprising a compound semiconductor are suspended in a suitable solvent to obtain a suspension.
- a suitable solvent include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water.
- a commercially available titanium oxide paste for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP, R / SP
- Ti-nanoxide T, D, T / SP, D / SP, R / SP
- the obtained suspension is applied onto the upper support on which the close contact portion is formed by a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, followed by firing and drying.
- a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, followed by firing and drying.
- the temperature, time, atmosphere, and the like necessary for firing and drying can be appropriately set according to the type of material that constitutes the porous semiconductor layer.
- the atmosphere may be an air atmosphere or an inert gas or oxygen gas atmosphere, and the temperature and time may be within the range where the softening point of the support used is the maximum temperature, and glass is used as the support. When used, it is in the range of about 150 to 600 ° C., more preferably in the range of about 350 to 550 ° C. for about 10 seconds to 12 hours.
- This firing and drying may be performed once at a single temperature, or may be performed twice or more at different temperatures.
- the porous semiconductor layer is composed of a plurality of layers, it is preferable to prepare a suspension containing particles composed of different compound semiconductors, and the application of the prepared suspension, firing and drying are performed twice or more. It is preferable to repeat.
- Examples of the method of adsorbing the photosensitizer to the porous semiconductor layer include a method of adsorbing the photosensitizer to the porous semiconductor layer using a dye adsorption solution in which the photosensitizer is dissolved. .
- the photosensitizer to be used is dissolved in a solvent to obtain a dye adsorption solution.
- the solvent is not particularly limited as long as it dissolves the photosensitizer to be used and is generally used as a solvent for the photosensitizer in the production of a photoelectric conversion element.
- a photosensitizer can be made to adsorb
- the dipping conditions are not particularly limited as long as they are general methods capable of sufficiently adsorbing the photosensitizer, but can be dipped for 20 hours at a temperature of 40 ° C., for example. After the immersion, the obtained laminate may be appropriately washed with ethanol or the like.
- the formation of the collecting electrode 104 is not particularly limited, but known methods such as various deposition methods such as an evaporation method, a sputtering method, a CVD method, a molecular beam epitaxial method, and a spin coating method, or a spray method, for example. It is preferably formed by a method.
- the formation of the insulating layer 105 is not particularly limited.
- the insulating layer 105 is formed by appropriately selecting a method suitable for forming the insulating layer 105 such as a screen printing method and a doctor blade method. can do.
- the formation of the counter electrode 106 is not particularly limited in the same manner as the method for forming the current collecting electrode 104.
- the counter electrode can be formed by a known method such as sputtering, thermal decomposition of chloroplatinic acid, or electrodeposition.
- the counter electrode is formed by insulating the carbon dispersed in a solvent into a paste by screen printing or the like. A method of coating on the layer can be used.
- the lower support 110 is attached by attaching the counter electrode and the lower support through the sealing portion 107 and attaching the lower support.
- the carrier transport material is filled at least in the charge transport layer 109 with the carrier transport material.
- the method for filling the carrier transport material is not particularly limited. For example, after bonding the counter electrode and the lower support, a through hole is formed in advance in the upper support or the counter electrode and the lower support, and after the carrier transport material is injected from the through hole, the through hole is formed. A method of sealing can be employed.
- the dye-sensitized solar cell according to the present invention includes an electrode including the photoelectric conversion element according to the present invention, a counter electrode, and carrier transport provided between the electrode including the photoelectric conversion element according to the present invention and the counter electrode.
- a dye-sensitized solar cell including a layer, and a collector electrode and a counter electrode in the photoelectric conversion element are connected via an external electric circuit. Thereby, the dye-sensitized solar cell by which peeling of the porous semiconductor layer from the upper support body was prevented can be provided.
- the dye-sensitized solar cell module according to the present invention is formed by serially joining the dye-sensitized solar cells according to the present invention. Thereby, the dye-sensitized solar cell module in which peeling of the porous semiconductor layer from the upper support is prevented can be provided.
- Example 1 A photoelectric conversion element having the same structure as the photoelectric conversion element in FIG. 2 was prepared except that the porous semiconductor layer included in the photoelectric conversion layer was only one layer.
- the photoelectric conversion element of Example 1 has an upper support made of a glass substrate and a porous semiconductor layer made of sintered TiO 2 , and has a uniform film thickness of 2 nm on the entire surface of the upper support. It has a close contact portion made of Ti.
- a glass substrate is first prepared as an upper support, and as shown in FIG. A product name “titanium ⁇ 1.0 ⁇ 3.0 mm 99.5%” (manufactured by Niraco) was deposited using an evaporation method.
- a sealing portion was formed on the surface of the upper support on which the material of the close contact portion was deposited and around the portion where the porous semiconductor layer was formed. Thereafter, a TiO 2 paste (trade names “Ti-Nanoxide T / SP” and “Ti-Nanoxide T / SP” and “ A mixture obtained by mixing “Ti-Nanoxide R / SP” at a weight ratio of 6: 4 (manufactured by Solaronix) was applied using a screen printing method.
- the obtained film was dried at 120 ° C. for 20 minutes and fired at 500 ° C. for 1 hour to obtain a porous semiconductor layer made of TiO 2 .
- a metal mask having an opening with a width of 6 mm and a length of 10 mm was prepared. Then, the metal mask was placed so that the surface of the semiconductor layer was exposed from the opening of the metal mask. Then, using an electron beam still (trade name “ei-5”, manufactured by ULVAC, Inc.), the target was titanium, the deposition rate was 10 nm / s, and the collector electrode made of titanium was formed at 600 nm.
- a paste containing insulating particles constituting the insulating layer (zirconium oxide fine particles (manufactured by Sigma Aldrich) was dispersed in terpineol and further mixed with ethyl cellulose to prepare a paste.
- the insulating layer was formed by baking for 1 hour.
- a dye is mixed with a mixed solvent of acetonitrile (manufactured by Aldrich Chemical Company) and t-butyl alcohol (manufactured by Aldrich Chemical Company) (volume ratio of 1: 1) so that the concentration becomes 4 ⁇ 10 ⁇ 4 mol / liter.
- acetonitrile manufactured by Aldrich Chemical Company
- t-butyl alcohol manufactured by Aldrich Chemical Company
- porous semiconductor layer was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes. In this way, a photoelectric conversion layer having a thickness of 25 ⁇ m was formed.
- an ultraviolet curing agent (trade name “31X-101”, manufactured by ThreeBond Co., Ltd.) is applied on the surface of a glass substrate (trade name “7059”, manufactured by Corning) as a lower support, and the upper support is sealed.
- the installation side of the stop was placed on an ultraviolet curing agent applied on the surface of the lower support, and the ultraviolet curing agent was irradiated with ultraviolet rays. Thereby, the upper support body and the lower support body were joined.
- LiI redox species, manufactured by Aldrich Chemical Company
- acetonitrile as a solvent so that the concentration becomes 0.1 mol / liter, and the redox is made so that the concentration becomes 0.01 mol / liter.
- I2 manufactured by Tokyo Chemical Industry Co., Ltd.
- t-butylpyridine TBP (4-tert-butylpyridine)
- Aldrich Chemical Company t-butylpyridine
- DMPII Dimethylpropylimidazole iodide
- Example 1 a carrier transport material was injected from an injection port provided in advance in the lower support, and the injection port was sealed using an ultraviolet curable resin (trade name “31X-101 229”, manufactured by Three Bond Co., Ltd.). Thereby, the dye-sensitized solar cell of Example 1 was completed.
- an ultraviolet curable resin trade name “31X-101 229”, manufactured by Three Bond Co., Ltd.
- Example 2 A photoelectric conversion element of Example 2 was produced in the same manner as in Example 1 except that the thickness of the adhesion portion was 5 nm.
- Example 3 A photoelectric conversion element of Example 3 was produced in the same manner as in Example 1 except that the thickness of the adhesion portion was 0.5 nm.
- Example 4 A photoelectric conversion element of Example 4 was produced in the same manner as in Example 1 except that the thickness of the adhesion portion was 4 nm.
- Example 5 A photoelectric conversion element of Example 5 was produced in the same manner as in Example 1 except that the thickness of the adhesion portion was 10 nm.
- Example 6 A photoelectric conversion element of Example 6 was produced in the same manner as in Example 1 except that the material of the contact portion was Ta.
- Example 7 A photoelectric conversion element of Example 7 was produced in the same manner as in Example 1 except that the material of the contact portion was Mo.
- Example 8 A photoelectric conversion element of Example 8 was produced by the same method as Example 1 except that the raw material of the porous semiconductor layer was TiO 2 paste (trade name “Ti-Nanoxide D / SP”, manufactured by Solaronix). .
- the porous semiconductor layer is composed of a TiO 2 paste (trade name “Ti-Nanoxide T / SP”, manufactured by Solaronix) on the upper support side (film thickness 17 ⁇ m) and a TiO 2 paste (trade name “Ti— Example 1 except that two layers (total film thickness of 25 ⁇ m) were formed with a current collector electrode side layer (film thickness of 8 ⁇ m) using Nanoxide R / SP ”(manufactured by Solaronix) as a raw material, and a photoelectric conversion layer was formed.
- a photoelectric conversion element of Example 9 was produced by the same method.
- Comparative Example 1 A photoelectric conversion element of Comparative Example 1 was produced in the same manner as in Example 1 except that the adhesion part was not formed.
- Comparative example 2 A photoelectric conversion element of Comparative Example 2 was produced in the same manner as in Example 1 except that the film thickness of the adhesion portion was 0.2 nm.
- Comparative Example 3 A photoelectric conversion element of Comparative Example 3 was produced in the same manner as in Example 1 except that the film thickness of the adhesion portion was 15 nm.
- peeling, short-circuit current density, and photoelectric conversion efficiency were evaluated by the following methods.
- (2) Short-circuit current density and photoelectric conversion efficiency The obtained photoelectric conversion element is irradiated with light having an intensity of 1 kW / m 2 using a solar simulator (trade name “AM1.5 solar simulator”, manufactured by Wacom Denso). The short circuit current density (mA / cm 2 ) and the photoelectric conversion efficiency (%) were measured.
- Comparative Examples 1 and 2 were originally unsuitable for evaluating electrical characteristics because of the peeling of the porous semiconductor layer (Table 1), but were peeled off. Since there were relatively few parts, it was possible to evaluate a short circuit current density and photoelectric conversion efficiency. Therefore, in Comparative Examples 1 and 2, the short-circuit current density and the photoelectric conversion efficiency were evaluated in the same manner as in Examples 1 to 9 and Comparative Example 3.
- the photoelectric conversion element of the present invention includes the contact portion of the present invention, so that peeling can be effectively suppressed regardless of the difference between the contact portion or the porous semiconductor layer, and can be stably manufactured with a high yield.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
また、該密着部の膜厚は、0.5~5nmであってもよい。
また、本発明は、該色素増感太陽電池を直列接合して形成される、色素増感太陽電池モジュールである。
図1は、本発明に係る光電変換素子の構成の一例を示す断面図である。図1に示す光入射側に位置する透光性の上部支持体101と、その反対側に位置する下部支持体110とに挟まれて、上部支持体101の側から順に、多孔性半導体層を有する光電変換層112と、集電電極104と、絶縁層105と、対極106とが配置され、更にキャリア輸送材料が含まれ、少なくとも上部支持体101と多孔性半導体層との間に隣接して、膜厚0.5~10nmの密着部111が形成されるものである。
上部支持体101を構成する材料は、一般に光電変換素子の支持体に使用可能な材料であり、透光性を有し、且つ本発明の効果を発揮し得る材料であれば、特に限定されない。上部支持体の材料は、たとえば、ソーダガラス、溶融石英ガラス、または結晶石英ガラスなどのガラス基板であってもよいし、耐熱性樹脂材料からなる可撓性フィルムであってもよい。ここで、本発明において「透光性」とは、少なくとも後述の光増感剤に実効的な感度を有する波長の光を実質的に透過する(当該光の透過率がたとえば80%以上、好ましくは90%以上)ことを意味し、必ずしも全ての波長の光に対して透過性を必要とすることを意味するものではない。
下部支持体110は、対極106を支持する。下部支持体の材料は、一般に光電変換素子に使用可能な材料であり且つ本発明の効果を発揮し得る材料であれば、特に限定されず、基本的には、透光性を有していてもよいし、透光性を有していなくてもよい。ただし、下部支持体を受光面として使用する場合には、透光性が必要となるため、上記上部支持体に関する説明で列挙した透光性を有する何れかの材料から選択される。下部支持体は、透光性を必要としない場合には、たとえば金属などの無機材料からなる板または膜であってもよいし、プラスチックなどの有機材料からなる板または膜であってもよい。
光電変換層112は多孔性半導体層を有する。この多孔性半導体層内には、光増感剤が設けられている。以下、それぞれを順に説明する。
本発明において、集電電極104は、上部支持体101に支持されており、光電変換層112に接している。集電電極104は、封止部108の外側にも設けられていることが好ましく、これにより、外部電気回路を介して集電電極104を対極106にスムーズに接続することができる。
絶縁層105は、集電電極104と対極106との間を絶縁する機能を有する。絶縁層105の材料は、集電電極104と対極106との間を絶縁することの可能な材料であれば、特に限定されない。絶縁層に用いることのできる材料としては、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化珪素、酸化アルミニウムおよびチタン酸バリウムからなる群より選択された少なくとも1種を用いることができる。
対極106は、下部支持体110の上に設けられており、電荷輸送層に接している。対極は、集電電極104とは反対側の極である。
本発明において、対極106と下部支持体110との間は、キャリア輸送材料が充填されて電荷輸送層109とされる。
キャリア輸送材料は、電荷輸送層109に充填される材料である。キャリア輸送材料は、イオンを輸送できる導電性材料で構成されていることが好ましく、キャリア輸送材料の好適な材料としては、たとえば液体電解質、固体電解質、ゲル電解質、または溶融塩ゲル電解質などが挙げられる。
本発明においては、上部支持体101と多孔性半導体層との間に隣接して、密着部111が形成される。透明導電膜を使用しない色素増感太陽電池において、たとえば支持体としてガラスを使用する場合は、多孔性半導体層を形成した際、ガラスの反り等により多孔性半導体層と支持体との界面において、剥離が生じやすくなる。そこで、密着部を形成することで、この剥離を抑制することができる。
封止部107、108は、上部支持体101と下部支持体110とを保持し、電荷輸送層109の漏えい防止機能を有し、落下物または応力(衝撃)を吸収する機能を有し、長期にわたる使用時において上部支持体および下部支持体のそれぞれに作用するたわみなどを吸収する機能を有する。
本発明の光電変換素子の製造方法としては、まず、上部支持体101の片面に密着部111を形成する。密着部は、上部支持体と多孔性半導体層とを接着できるものであればよく、種々の金属を使用することが可能であるが、作製された光電変換素子における上部支持体と多孔性半導体層との密着性を向上するためには、Ti、Ta、Mo等の高融点金属を材料とすることが好ましく、Tiを材料とすることがより好ましい。
本発明に係る色素増感型太陽電池は、本発明に係る光電変換素子を含む電極と、対電極と、本発明に係る光電変換素子を含む電極と対電極との間に設けられたキャリア輸送層とを備え、光電変換素子中の集電電極と対極とが外部電気回路を介して接続された、色素増感型太陽電池である。これにより、上部支持体からの多孔性半導体層の剥離が防止された色素増感型太陽電池を提供することができる。
本発明に係る色素増感太陽電池モジュールは、本発明に係る色素増感太陽電池を直列接合して形成されるものである。これにより、上部支持体からの多孔性半導体層の剥離が防止された色素増感型太陽電池モジュールを提供することができる。
光電変換層に含まれる多孔性半導体層が一層のみであることを除き、図2の光電変換素子と同一の構造の光電変換素子を用意した。実施例1の光電変換素子は、ガラス基板からなる上部支持体と、焼結されたTiO2からなる多孔性半導体層とを有し、上部支持体の全面に、均等な2nmの膜厚の、Tiを材料とする密着部を有する。
密着部の膜厚を5nmとした以外は、実施例1と同じ方法にて、実施例2の光電変換素子を作製した。
密着部の膜厚を0.5nmとした以外は、実施例1と同じ方法にて、実施例3の光電変換素子を作製した。
密着部の膜厚を4nmとした以外は、実施例1と同じ方法にて、実施例4の光電変換素子を作製した。
密着部の膜厚を10nmとした以外は、実施例1と同じ方法にて、実施例5の光電変換素子を作製した。
密着部の材料をTaとした以外は、実施例1と同じ方法にて、実施例6の光電変換素子を作製した。
密着部の材料をMoとした以外は、実施例1と同じ方法にて、実施例7の光電変換素子を作製した。
多孔性半導体層の原料をTiO2ペースト(商品名「Ti-Nanoxide D/SP」、Solaronix社製)とした以外は、実施例1と同じ方法にて、実施例8の光電変換素子を作製した。
多孔性半導体層を、TiO2ペースト(商品名「Ti-Nanoxide T/SP」、Solaronix社製)を原料とする上部支持体側の層(膜厚17μm)と、TiO2ペースト(商品名「Ti-Nanoxide R/SP」、Solaronix社製)を原料とする集電電極側の層(膜厚8μm)との2層(合計膜厚25μm)形成し、光電変換層とした以外は、実施例1と同じ方法にて、実施例9の光電変換素子を作製した。
密着部を形成しなかった以外は、実施例1と同じ方法にて、比較例1の光電変換素子を作製した。
密着部の膜厚を0.2nmとした以外は、実施例1と同じ方法にて、比較例2の光電変換素子を作製した。
密着部の膜厚を15nmとした以外は、実施例1と同じ方法にて、比較例3の光電変換素子を作製した。
実施例1~9および比較例1~3において得られた光電変換素子に関し、剥離、短絡電流密度および光電変換効率について、以下の方法により評価を行なった。
(1)剥離
光電変換素子を完成させた直後に、目視にて膜剥離が観察されるかを確認した。特に、多孔性半導体層について、クラック、浮いている部分または欠けている部分が確認された場合に「膜剥離あり」と評価した。
(2)短絡電流密度および光電変換効率
得られた光電変換素子について、ソーラーシミュレータ(商品名「AM1.5ソーラーシミュレータ」、ワコム電創社製)を用いて1kW/m2の強度の光を照射し、短絡電流密度(mA/cm2)および光電変換効率(%)を測定した。
実施例1~9および比較例1~3において得られた光電変換素子に関し、剥離、短絡電流密度および光電変換効率について、評価結果を表1に示す。
膜厚0.5~10nmの密着部を有する実施例1~9においては、いずれも剥離がみられなかったのに対し、密着部を有しない比較例1および密着部の膜厚が0.5nm未満である比較例2においては剥離がみられた(表1)。このため、実施例1~9においては再現良く安定して光電変換素子を作製できたのに対し、比較例1および2においては、剥離のため、安定して光電変換素子を作製することができなかった。以上より、本発明の光電変換素子は、本発明の密着部を備えることで、密着部または多孔性半導体層の違いに係らず、剥離を有効に抑えることができ、歩留まり良く安定して作製可能であった。
(2)短絡電流密度および光電変換効率
膜厚0.5~10nmの密着部を有する実施例1~9においては、短絡電流密度が15.0~19.5mA/cm2、光電変換効率が6.2~9.5%という値を示したのに対し、密着部の膜厚が15nmである比較例3においては、短絡電流密度が13mA/cm2、光電変換効率が5.9%と、いずれも実施例より低い数値となった。よって、密着部の膜厚が0.5~10nmであれば、光電変換素子の電気的特性が十分なものとなることが明らかとなった。
Claims (5)
- 光入射側に位置する透光性の上部支持体と、その反対側に位置する下部支持体とに挟まれて、前記上部支持体の側から順に、多孔性半導体層を有する光電変換層と、集電電極と、絶縁層と、対極とが配置され、更にキャリア輸送材料が含まれ、
少なくとも前記上部支持体と前記多孔性半導体層との間に隣接して、膜厚0.5~10nmの密着部が配置されている、光電変換素子。 - 前記光電変換層は封止部によって封止され、
前記密着部が、前記封止部、前記集電電極、前記対極の少なくともいずれかと接することを特徴とする、請求項1に記載の光電変換素子。 - 前記密着部の材料はTi、TaまたはMoのいずれかである、請求項1または2のいずれかに記載の光電変換素子。
- 請求項1~3のいずれかに記載の光電変換素子を備える、色素増感太陽電池。
- 請求項4に記載の色素増感太陽電池を直列接合して形成される、色素増感太陽電池モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/304,449 US20170040119A1 (en) | 2014-04-15 | 2015-03-26 | Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module |
EP15779327.4A EP3133622B1 (en) | 2014-04-15 | 2015-03-26 | Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module |
JP2016513696A JP6270990B2 (ja) | 2014-04-15 | 2015-03-26 | 光電変換素子、色素増感太陽電池および色素増感太陽電池モジュール |
CN201580019803.4A CN106463269A (zh) | 2014-04-15 | 2015-03-26 | 光电转换元件、色素敏化太阳能电池以及色素敏化太阳能电池模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014083766 | 2014-04-15 | ||
JP2014-083766 | 2014-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159677A1 true WO2015159677A1 (ja) | 2015-10-22 |
Family
ID=54323888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059345 WO2015159677A1 (ja) | 2014-04-15 | 2015-03-26 | 光電変換素子、色素増感太陽電池および色素増感太陽電池モジュール |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170040119A1 (ja) |
EP (1) | EP3133622B1 (ja) |
JP (1) | JP6270990B2 (ja) |
CN (1) | CN106463269A (ja) |
WO (1) | WO2015159677A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051813A1 (ja) * | 2015-09-25 | 2017-03-30 | シャープ株式会社 | 光電変換素子および光電変換モジュール |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243465A (ja) * | 1999-02-22 | 2000-09-08 | Aisin Seiki Co Ltd | 光電変換素子 |
JP2007200559A (ja) * | 2006-01-23 | 2007-08-09 | Sony Corp | 光電変換装置 |
WO2012086377A1 (ja) * | 2010-12-20 | 2012-06-28 | シャープ株式会社 | 色素増感太陽電池および色素増感太陽電池モジュールならびにその製造方法 |
US20120186644A1 (en) * | 2011-01-20 | 2012-07-26 | Korea Institute Of Science And Technology | Flexible electrodes and preparation method thereof, and flexible dye-sensitized solar cells using the same |
WO2013024642A1 (ja) * | 2011-08-15 | 2013-02-21 | シャープ株式会社 | 光電変換素子 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673101B1 (en) * | 2002-10-09 | 2004-01-06 | Endovascular Technologies, Inc. | Apparatus and method for deploying self-expanding stents |
JP2005166313A (ja) * | 2003-11-28 | 2005-06-23 | Ngk Spark Plug Co Ltd | 色素増感型太陽電池 |
JP2005276857A (ja) * | 2004-03-22 | 2005-10-06 | Kyocera Corp | 光電変換装置およびその製造方法 |
JP4966525B2 (ja) * | 2005-08-10 | 2012-07-04 | 株式会社エンプラス | 色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法 |
JP5252929B2 (ja) * | 2008-01-16 | 2013-07-31 | ラピスセミコンダクタ株式会社 | 色素増感太陽電池及びその製造方法 |
US7875949B2 (en) * | 2008-02-28 | 2011-01-25 | Visera Technologies Company Limited | Image sensor device with submicron structure |
JP5614272B2 (ja) * | 2010-12-21 | 2014-10-29 | コニカミノルタ株式会社 | 光電変換素子および色素増感型太陽電池 |
-
2015
- 2015-03-26 EP EP15779327.4A patent/EP3133622B1/en not_active Not-in-force
- 2015-03-26 US US15/304,449 patent/US20170040119A1/en not_active Abandoned
- 2015-03-26 WO PCT/JP2015/059345 patent/WO2015159677A1/ja active Application Filing
- 2015-03-26 CN CN201580019803.4A patent/CN106463269A/zh active Pending
- 2015-03-26 JP JP2016513696A patent/JP6270990B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243465A (ja) * | 1999-02-22 | 2000-09-08 | Aisin Seiki Co Ltd | 光電変換素子 |
JP2007200559A (ja) * | 2006-01-23 | 2007-08-09 | Sony Corp | 光電変換装置 |
WO2012086377A1 (ja) * | 2010-12-20 | 2012-06-28 | シャープ株式会社 | 色素増感太陽電池および色素増感太陽電池モジュールならびにその製造方法 |
US20120186644A1 (en) * | 2011-01-20 | 2012-07-26 | Korea Institute Of Science And Technology | Flexible electrodes and preparation method thereof, and flexible dye-sensitized solar cells using the same |
WO2013024642A1 (ja) * | 2011-08-15 | 2013-02-21 | シャープ株式会社 | 光電変換素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3133622A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051813A1 (ja) * | 2015-09-25 | 2017-03-30 | シャープ株式会社 | 光電変換素子および光電変換モジュール |
Also Published As
Publication number | Publication date |
---|---|
US20170040119A1 (en) | 2017-02-09 |
EP3133622A4 (en) | 2017-03-29 |
EP3133622A1 (en) | 2017-02-22 |
CN106463269A (zh) | 2017-02-22 |
EP3133622B1 (en) | 2018-05-02 |
JP6270990B2 (ja) | 2018-01-31 |
JPWO2015159677A1 (ja) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5377327B2 (ja) | 光増感太陽電池モジュールおよびその製造方法 | |
JP5422645B2 (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP5273709B2 (ja) | 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール | |
US9607772B2 (en) | Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module | |
WO2010044445A1 (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP2007194039A (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP2005235725A (ja) | 色素増感型太陽電池モジュール | |
JP4448478B2 (ja) | 色素増感型太陽電池モジュール | |
JP5162347B2 (ja) | 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール | |
JP5922242B2 (ja) | 光電変換素子、その製造方法、光電変換素子モジュールおよびその製造方法 | |
JP4892186B2 (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
WO2013164967A1 (ja) | 光電変換素子および光電変換モジュール | |
JPWO2012141095A1 (ja) | 光電変換素子および光電変換モジュール | |
JP6270990B2 (ja) | 光電変換素子、色素増感太陽電池および色素増感太陽電池モジュール | |
JP2005056613A (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP2009043482A (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP5758400B2 (ja) | 色素増感太陽電池モジュールおよびその製造方法 | |
WO2013077209A1 (ja) | 湿式太陽電池および湿式太陽電池モジュール | |
WO2012117995A1 (ja) | 光電変換素子および光電変換素子モジュール | |
JP6173560B2 (ja) | 光電変換モジュールおよびそれを用いた電子機器 | |
JP2013251229A (ja) | 光電変換素子および色素増感太陽電池 | |
WO2013161557A1 (ja) | 光電変換素子モジュールおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15779327 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016513696 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015779327 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015779327 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15304449 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |