WO2015159461A1 - アキシャルエアギャップ型電動機 - Google Patents

アキシャルエアギャップ型電動機 Download PDF

Info

Publication number
WO2015159461A1
WO2015159461A1 PCT/JP2014/083818 JP2014083818W WO2015159461A1 WO 2015159461 A1 WO2015159461 A1 WO 2015159461A1 JP 2014083818 W JP2014083818 W JP 2014083818W WO 2015159461 A1 WO2015159461 A1 WO 2015159461A1
Authority
WO
WIPO (PCT)
Prior art keywords
air gap
electric motor
gap type
axial air
laminated
Prior art date
Application number
PCT/JP2014/083818
Other languages
English (en)
French (fr)
Inventor
酒井 亨
高橋 大作
潤 櫻井
高橋 秀一
博洋 床井
幸政 前田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP14889626.9A priority Critical patent/EP3133717B1/en
Priority to US15/304,248 priority patent/US10536042B2/en
Priority to CN201480079571.7A priority patent/CN106415994B/zh
Priority to JP2016513612A priority patent/JP6375371B2/ja
Publication of WO2015159461A1 publication Critical patent/WO2015159461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present invention relates to an axial air gap type electric motor, and more particularly to an axial air gap type electric motor using a laminated iron core as a stator.
  • PM Permanent Magnet
  • a neodymium magnet is more efficient as a magnet, it is a rare metal (rare earth), and thus there are problems such as cost.
  • a ferrite magnet As a magnet that does not use rare metals, it is common to use a ferrite magnet, but in a radial air gap type motor having an air gap in the same direction as the rotating shaft, a ferrite magnet is used along the rotating direction of the output shaft. In order to obtain the same performance as the neodymium magnet, it is necessary to increase the electric motor and the volume of the ferrite magnet. That is, there is a problem that the output and the size of the device are traded off.
  • An axial air gap type motor is known as an electric motor that solves the relationship between output and device size.
  • the axial air gap type motor has a feature that the thickness in the direction of the rotation axis can be reduced, that is, flattened, compared to a radial air gap type motor such as an inner rotor type.
  • Patent Document 1 discloses an axial air gap type electric motor in which a stator and a rotor face each other through a predetermined air gap in a radial direction of a rotating shaft.
  • the stator includes a stator in which a plurality of stator cores are arranged in an annular shape around the rotation axis, and two rotors that are opposed to both end planes in the rotation axis direction of the stator.
  • the stator core member includes an iron core, an insulator (bobbin), and a coil.
  • the iron core is a laminated iron core having a substantially trapezoidal cross-sectional shape in which metal plate-like members are laminated in the rotation axis radial direction.
  • the core member which is a plate-like magnetic material represented by electromagnetic steel plates and amorphous tape, varies in thickness (plate thickness deviation). There is a possibility that even if a certain number of sheets are laminated, the lamination dimension is not constant.
  • stator core to be manufactured has a structure in which a laminated core that is a pillar is inserted into a cylindrical bobbin and then a coil is wound around the outer periphery of the bobbin, etc. There is a problem that the core member is buckled and cannot be inserted correctly. On the other hand, if the laminated size of the iron core is small, there is a problem that the iron core falls off from the bobbin, which may cause a reduction in the productivity of the axial air gap type motor.
  • the laminated iron core used in the axial air gap type electric motor has a characteristic that the width of the laminated metal plate member changes from the rotating shaft in the radial direction of the rotating shaft (for example, a substantially trapezoidal cross section is formed by the stacking). is there. For this reason, if the number of laminated layers is increased or decreased in accordance with the plate thickness deviation, the shape of the laminated iron core will be different. Since it is necessary to always adjust the thickness and iron core shape to be changed with the calculated cutting width, controlling the cutting size and the number of layers while measuring the thickness of the member to be used at all times will result in extremely low productivity. There are challenges. It is desired to efficiently cope with the plate thickness deviation in the laminated iron core.
  • a laminated iron core that is a column body in which metal plate-like members are laminated in the radial direction of the rotating shaft, a cylindrical bobbin having an inner diameter into which the laminated iron core is inserted, and an outer diameter extension of the laminated iron core.
  • An axial gap comprising a stator in which a stator core formed of a coil is annularly arranged around a rotation axis, and at least one rotor facing the surface of the stator in the direction of the rotation axis with a predetermined air gap.
  • An axial air gap type electric motor comprising a portion in which metal plate-like members having substantially the same width in the rotation direction are continuously laminated.
  • FIG. 1A is a side view schematically showing an overall configuration of an axial air gap type electric motor that is a first embodiment to which the present invention is applied.
  • FIG.1 (b) is the longitudinal cross-sectional perspective view which showed typically the principal part of the axial air gap type motor of 1st Embodiment.
  • FIG. 2A is a perspective view schematically showing a stator core of the axial air gap type electric motor according to the first embodiment.
  • FIG. 2B is a perspective view schematically showing a bobbin constituting the stator core.
  • FIG.2 (c) is a front view which shows typically the stator comprised from the same stator core. It is the perspective view which shows typically the laminated iron core of 1st Embodiment, and the one part partial enlarged view.
  • FIGS. 4A to 4D are end sectional views schematically showing an application example in which the main parts of the laminated cores of the first to third embodiments are combined.
  • FIG. 1A shows an overall configuration of an axial air gap type electric motor 1 according to a first embodiment to which the present invention is applied
  • FIG. An axial air gap type motor 1 includes a stator 2 in a substantially cylindrical housing 5, a rotor 3 fixed to the rotating shaft 4 and rotating together, an output side connected to the rotating shaft 4 through bearings, and a counter-output side.
  • An end bracket, a cooling fan connected to the end of the rotating shaft 4 passing through the end bracket on the side opposite to the output shaft, and a fan cover for guiding cooling air generated by the cooling fan to the outer peripheral side of the housing 5 are provided.
  • the axial air gap type motor 1 includes an annular stator 2 having a magnetic flux in the rotation axis direction, and two rotors 3 provided on the output shaft side and the counter-output shaft side.
  • This is a two-rotor armature configuration that faces the plane through a predetermined air gap.
  • the present invention is not limited to this, and can be applied to various types such as a single rotor type and a type including a plurality of stators and a plurality of rotors.
  • stator 2 a plurality of (in this example, 12) stator cores 6 are arranged in an annular shape around the rotation axis direction, and the outer periphery thereof is directly fixed to the housing 5 by resin molding (not shown). Yes.
  • the stator 2 may be separately solidified as a strength member by resin molding or the like, and may be fixed to the motor housing 5 with bolts or the like.
  • the stator core 6 includes a laminated iron core 8, a bobbin 7 and a coil 9.
  • the bobbin 7 includes a cylindrical portion 7a having a substantially trapezoidal inner diameter and outer diameter, a flange portion 7b extending a predetermined width in the vertical direction from the outer periphery near both ends of the cylindrical portion 7a, and a housing 7 side portion of the flange portion 7b.
  • One or a plurality of coil drawing openings 7c are provided. That is, the laminated iron core 8 is inserted into the inner diameter of the cylindrical portion 7 a of the bobbin 7, and the coil is wound around the outer diameter of the cylindrical portion 7 a of the bobbin 7 in a plurality of stages.
  • the laminated iron core 8 is formed by laminating a plate-like metal magnetic body (core member) in the radial direction of the rotary shaft 4 (from the rotary shaft 4 side to the housing 5 side), and has a substantially trapezoidal columnar cross section.
  • a plate-like metal magnetic material a thin plate (tape) containing amorphous is applied, but is not limited thereto.
  • the stator 2 is obtained by arranging the stator cores 6 thus configured in an annular shape.
  • FIG. 3 shows the configuration of the laminated core 8.
  • At least two or more core members 10a having substantially the same width in the rotation direction of the rotation shaft 4 are continuously stacked on the housing 5 side of the laminated core 8, and the rotation shaft side extends from the rotation shaft to the housing 5 (rotation shaft).
  • At least two or more core members 10b whose width in the rotation direction of the rotation shaft 4 gradually increases as the diameter approaches (radial direction) are continuously stacked.
  • the cross section of the laminated iron core 8 has a substantially home base shape composed of a trapezoidal portion formed by the core member 10b and a rectangular portion formed by the core member 10a.
  • the outer diameter of the laminated iron core needs to substantially match the inner diameter of the bobbin 7 (or the inner diameter of the bobbin 7 is slightly larger). is there.
  • the thickness of the laminated iron core 8 may not always be uniform.
  • a core member formed by cutting a plate may have a case where the plate thickness dimension is not necessarily uniform, and for example, it may be difficult to completely eliminate a weak warp of the cut surface. is there. In other words, even if a predetermined number of core members are stacked, the stacked thickness may not be constant, so that it is necessary to adjust the stacked thickness.
  • the rotating shaft 4 is arranged in accordance with the variation in the plate thickness dimension of the core member 10 b mainly laminated on the oblique side portion of the laminated core shape having a substantially trapezoidal shape.
  • a straight portion (core member 10a) for increasing or decreasing a predetermined number of stacked layers is formed on the outer peripheral side, that is, on the side where the cut width of the stacked core is wide.
  • the thickness of the laminated core 8 can be easily adjusted by increasing or decreasing the number of laminated core members 10a, and a highly accurate stator can be obtained in the axial air gap type electric motor. In addition, performance can be ensured.
  • FIG. 5 the edge part cross section of the laminated iron core 8 of 2nd Embodiment is shown.
  • the core member 10a that is linearly laminated in accordance with the cutting and laminating direction of the plate-like core member 10a is arranged on the inner periphery, that is, the laminated iron core 8 with respect to the rotary shaft 4 of the axial air gap type electric motor 1.
  • a straight portion (core member 10a) for increasing / decreasing a predetermined number of stacked layers is formed on the narrow cutting width side (rotating shaft side).
  • the thickness of the laminated core 8 can be easily adjusted by increasing / decreasing the number of laminated core members 10a, and a highly accurate stator can be obtained in an axial air gap type electric motor. In addition, performance can be ensured.
  • the core member 10 a is a linear portion (core) for increasing or decreasing a predetermined number of layers near the center in the vertical direction with respect to the rotating shaft 4 of the axial air gap motor 1, that is, near the center in the stacking direction of the stacked cores 8.
  • the member 10a) is formed.
  • the thickness of the laminated core 8 can be easily adjusted by increasing / decreasing the number of laminated core members 10a, and a highly accurate stator can be obtained in an axial air gap type electric motor. In addition, performance can be ensured.
  • 7A to 7D show end cross sections in an application example of the laminated core 8.
  • the portion indicated by a dotted line indicates a straight line portion (core member 10a) for adjusting the thickness.
  • FIG. 7A shows the core member 10 a laminated in a straight line on the outer peripheral side with respect to the rotary shaft 4 of the axial air gap type electric motor 1, that is, on the side where the core member has a wider cutting width and the inner side with respect to the rotary shaft 4. It is the structure provided in the both ends with the circumference side, ie, the side with the narrow cutting width of a core member.
  • FIG. 7B shows that the core members 10 a stacked in a straight line are arranged on the outer peripheral side with respect to the rotary shaft 4 of the axial air gap type motor 1, that is, on the side where the core member has a wider cutting width, and on the rotary shaft 4.
  • it is a structure provided both near the center in the vertical direction, that is, near the center of the hypotenuse of the laminated core 8.
  • FIG. 7 (c) shows that the core members 10a stacked linearly are near the center in the vertical direction with respect to the rotating shaft 4 of the axial air gap type motor 1, that is, near the center of the hypotenuse of the laminated core 8.
  • This is a configuration provided on both the inner peripheral side with respect to the rotating shaft 4, that is, on the side where the cutting width of the core member is narrow.
  • FIG. 7D shows a configuration in which all of the first to third embodiments are provided simultaneously.
  • the thickness in the stacking direction of each linear portion (core member 10a) is not necessarily uniform.
  • the thickness may be 1 / 2N, respectively, or the thickness may be changed with a ratio of unequal each. Also good.
  • the arrangement of the core members 10a stacked in a straight line is distributed at a plurality of locations, the number of core members 10a that increase or decrease at each adjustment location can be reduced, and further, by adjustment
  • the overall shape of the laminated core 8 can also be made uniform. That is, by shortening the length of the straight line portion, the position when inserted and arranged in the bobbin 7 can be stabilized by maintaining the laminated core shape more approximate to a trapezoid.
  • the core members 10a and 10b to be stacked do not necessarily have to be straight (horizontal), and may have an arc shape in the rotation axis rotation direction (the cross section of the end portion of the laminated core 8 has a fan shape, etc.). .
  • SYMBOLS 1 Axial air gap type motor, 2 ... Stator, 3 ... Rotor, 4 ... Rotating shaft, 5 ... Housing, 6 ... Stator core, 7 ... Bobbin, 7a ... Cylindrical part, 7b ... Gutter part, 7c ... Drawer port, 8 ... Laminated core, 9 ... coil, 10a, 10b ... core member

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 アキシャルエアギャップ型電動機において、積層鉄心の板厚偏差に対して効率的に対応する。 回転軸の径方向に金属板状部材を積層した柱体である積層鉄心(8)と、積層鉄心を挿入する内径を有する筒形状のボビン(7)と、積層鉄心の外径延長上に巻き回されたコイル(9)とからなるステータコア(6)が、回転軸(4)を中心に環状に配列してなるステータと、ステータの回転軸方向端部断面と所定のエアギャップを介して面対向する少なくとも1つのロータ(3)とを備えるアキシャルギャップ型電動機であって、積層鉄心が、回転軸心から径方向に向かうにつれて、回転軸の回転方向に幅が大となる金属板状部材を連続して積層した部分(コア部材10b)と、幅が概略同一となる金属板状部材を連続して積層した部分(コア部材10a)とからなる。

Description

アキシャルエアギャップ型電動機
 本発明は、アキシャルエアギャップ型電動機に係り、ステータに積層型鉄心を用いるアキシャルエアギャップ型電動機に関する。
 近年、電動機の高効率化を進めるにあたりPM(Permanent Magnet)モータが普及している。マグネットとしてはネオジウムマグネットがより効率的であるものの希少金属(レアアース)であるが故にコスト等の問題がある。
 希少金属を使用しないマグネットとしては、フェライトマグネットを利用することが一般的であるが、回転軸と同一方向にエアギャップを持つラジアルエアギャップ型電動機では、出力軸の回転方向に沿ってフェライトマグネットを配置しなければならない為、ネオジムマグネットと同一の性能を得るためには電動機を大きくしフェライトマグネットの体積を大きくする必要がある。即ち出力と機器のサイズがトレードオフになるという問題がある。
 出力と機器のサイズとの関係を解決する電動機として、アキシャルエアギャップ型電動機が知られている。アキシャルエアギャップ型電動機は、例えば、インナーロータ型等のラジアルエアギャップ型電動機に比べて回転軸方向の厚さを薄くする、すなわち扁平にすることができるという特徴がある。
 特許文献1は、回転軸の径方向に所定のエアギャップを介してステータと、ロータとが面対向するアキシャルエアギャップ型電動機を開示する。具体的には、複数のステータコアを、回転軸を中心として環状に配列してなるステータと、このステータの回転軸方向の両端部平面に対向する2つのロータとを備える。ステータコアメンバは、鉄心、インシュレータ(ボビン)及びコイルからなる。鉄心は、金属板状部材を回転軸径方向に積層した断面概略台形の形状を有する積層鉄心である。
特開2004-282989号公報
 ところで、アキシャルエアギャップ型電動機のステータに使用する積層鉄心を製作する場合、電磁鋼鈑やアモルファステープに代表される板状の磁性体であるコア部材には厚さ寸法にばらつき(板厚偏差)があり、一定の枚数を積層してもその積層寸法は一定とはならないという虞がある。
 製作するステータコアが、柱体となった積層鉄心を筒状のボビンに挿入し、その後、ボビンの外周にコイルを巻き回す構成等である場合、鉄心の積層寸法が大となったときには、積層されたコア部材が座屈して正しく挿入できないという問題がある。他方、鉄心の積層寸法が小となれば、鉄心がボビンから脱落する等の課題もあり、アキシャルエアギャップ型電動機の生産性を損なう原因となり得る。
  この点、アキシャルエアギャップ型電動機で利用する積層鉄心は、回転軸から回転軸径方向に向かうにつれて積層する金属板状部材の幅が変化する(例えば、積層によって概略台形断面となる)という特性がある。このため板厚偏差に合せて積層枚数を増減してしまうと、積層鉄心の形状が異なるものとなってしまう。変化する板厚寸法と鉄心形状を常に計算した切断幅で調整する必要があることから、常に使用する部材の板厚を測定しながら切断寸法および積層枚数を制御すると、生産性が極めて低くなるという課題がある。
  積層鉄心における板厚偏差に効率的に対応することが望まれる。
 上述した課題を解決するため、特許請求の範囲に記載の発明を適用する。即ち回転軸の径方向に金属板状部材を積層した柱体である積層鉄心と、該積層鉄心を挿入する内径を有する筒形状のボビンと、前記積層鉄心の外径延長上に巻き回されたコイルとからなるステータコアが、回転軸を中心に環状に配列してなるステータと、前記ステータの回転軸方向端部断面と所定のエアギャップを介して面対向する少なくとも1つのロータとを備えるアキシャルギャップ型電動機であって、前記積層鉄心が、回転軸心から径方向に向かうにつれて、前記回転軸の回転方向に幅が大となる金属板状部材を連続して積層した部分と、前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分と、からなるものであるアキシャルエアギャップ型電動機である。
 本発明の一側面によれば、積層鉄心を構成する金属板状部材が持つ板厚寸法のばらつきに合せて、容易に一定の積層寸法を得られるという効果を奏する。更に、積層鉄心の外径形状の維持も確保できるという効果を奏する。
  本発明の他の課題及び効果は、以下の記載から更に明らかとなる。
図1(a)は、本発明を適用した第1実施形態であるアキシャルエアギャップ型電動機の全体構成を示す模式的に示す側面図である。図1(b)は、第1実施形態のアキシャルエアギャップ型電動機の要部を模式的に示した縦断面斜視図である。 図2(a)は、第1実施形態のアキシャルエアギャップ型電動機のステータコアを模式的に示す斜視図である。図2(b)は、同ステータコアを構成するボビンを模式的に示す斜視図である。図2(c)は、同ステータコアから構成されるステータを模式的に示す正面図である。 第1実施形態の積層鉄心を模式的に示す斜視図及びその一部の部分拡大図である。 第1実施形態の積層鉄心の端部断面図である。 第2実施形態であるアキシャルエアギャップ型電動機の積層鉄心の端部断面図である。 第3実施形態であるアキシャルエアギャップ型電動機の積層鉄心の端部断面図である。 図(a)~(d)は、第1~第3実施形態の積層鉄心の要部を組み合わせた応用例を模式的に示す端部断面図である。
 以下、図面を用いて本発明を実施するための形態について詳細に説明する。
  〔第1実施形態〕
  図1(a)に、本発明を適用した第1実施形態であるアキシャルエアギャップ型電動機1の全体構成を示し、図1(b)に要部の断面図を示す。アキシャルエアギャップ型電動機1は、概略筒形状のハウジング5内部にステータ2、回転軸4に固定されて共回りするロータ3、軸受を介して回転軸4と接続された出力側及び反出力側のエンドブラケット、反出力軸側のエンドブラケットを貫通した回転軸4の端部に接続されて共回りする冷却ファン及び冷却ファンの生成する冷却風をハウジング5の外周側に案内するファンカバーを備える。
 図1(b)に示すように、アキシャルエアギャップ型電動機1は、回転軸方向の磁束を有する円環形状のステータ2が、出力軸側及び反出力軸側に設けられた2つのロータ3と所定のエアギャップを介して平面対向する2ロータ式の電機子構成である。なお、本発明はこれに限定されず、シングルロータ式、複数のステータと複数のロータとからなる形式など、種々の形式に適用することができる。
 ステータ2は、複数の(本例では12個)ステータコア6が、回転軸方向を中心に環状に配列され、それらの外周が樹脂モールド成形(不図示)によってハウジン5に直接固定するようになっている。なお、ステータ2を別に樹脂モールド成形などで強度部材として固形化された状態を製作し、ボルト等でモータハウジング5に固定してもよい。
 図2(a)、(b)に、ステータコア6及びそれを構成するボビン7を示す。ステータコア6は、積層鉄心8、ボビン7及びコイル9から構成される。ボビン7は、概略台形の内径及び外径を有する筒部7aと、筒部7aの両端部付近外周から鉛直方向に向かって所定幅延伸する鍔部7bと、鍔部7bのハウジン5側部分に一つ又は複数設けられたコイル引出し口7cを有する。即ち積層鉄心8がボビン7の筒部7aの内径に挿入され、ボビン7の筒部7aの外径にコイルが複数段巻き回されるようになっている。
 積層鉄心8は、板状の金属磁性体(コア部材)を回転軸4の径方向(回転軸4側からハウジング5側)に積層してなり、断面が概略台形の柱体形状を有する。板状の金属磁性体としてはアモルファスを含有した薄板(テープ)を適用するものとするが、これに限るものではない。
  図2(c)に示す様に、このようにして構成されたステータコア6を環状に配列することでステータ2を得るようになっている。
 次に、本実施形態の特徴の一つである、積層鉄心8について詳述する。
  図3に、積層鉄心8の構成を示す。積層コア8のハウジング5側には、回転軸4の回転方向への幅が略同一のコア部材10aが少なくとも2枚以上連続積層され、回転軸側には、回転軸からハウジング5方向(回転軸径方向)に近づくのに応じて、回転軸4の回転方向への幅が徐々に大となるコア部材10bが少なくとも2枚以上連続積層されるようになっている。図4に示す様に、積層鉄心8の断面が、コア部材10bによる台形部分と、コア部材10aによる長方形部分とからなる概略ホームベース形状となる。
  積層鉄心8は、高い精度でボビン7に挿入・配置される必要があることから、積層鉄心の外径が、ボビン7の内径と略一致(或いは若干ボビン7の内径が大。)する必要がある。しかしながら、積層鉄心8の積厚が必ずしも一律ではないこともある。例えば、板(テープ含む)を切断してなるコア部材は、板厚寸法が必ずしも一律でない場合も考えられるし、また例えば、切断面の微弱な反り等を完全になくすことも困難で有る場合もある。即ち所定枚数のコア部材を積層しても積厚が一定とならない場合もあることから、積厚の調整を行う必要がある。
 本実施形態は、概略台形を成す積層コア形状の主に斜辺部に積層されるコア部材10bが持つ板厚寸法のばらつきに合せて、図3及び図4に示すように、回転軸4に対して外周側、即ち積層コアの切断幅の広い側に所定の積層枚数を増減するための直線部(コア部材10a)を形成したものである。
 本実施形態によれば、コア部材10aの積層枚数を増減することで積層鉄心8の積厚の調整を容易に行うことができ、アキシャルエアギャップ型電動機において、精度の高いステータを得ることができ、また性能を確保することができる。
 〔第2実施形態〕
  次いで、第2実施形態について説明する。図5に、第2実施形態の積層鉄心8の端部断面を示す。本実施形態では、板状になったコア部材10aの切断、積層方向に合せて直線状に積層されたコア部材10aをアキシャルエアギャップ型電動機1の回転軸4に対して内周即ち積層鉄心8の切断幅の狭い側(回転軸側)に所定の積層枚数を増減するための直線部(コア部材10a)を形成するようになっている。
 かかる構成であっても、コア部材10aの積層枚数を増減することで積層鉄心8の積厚の調整を容易に行うことができ、アキシャルエアギャップ型電動機において、精度の高いステータを得ることができ、また性能を確保することができる。
 次いで、第3実施形態について説明する。図6に、第3実施形態の積層鉄心8の端部断面を示す。本実施形態では、コア部材10aをアキシャルエアギャップ型電動機1の回転軸4に対して鉛直方向の中央付近即ち積層鉄心8の積層方向中央付近に所定の積層枚数を増減するための直線部(コア部材10a)を形成したものである。
 かかる構成であっても、コア部材10aの積層枚数を増減することで積層鉄心8の積厚の調整を容易に行うことができ、アキシャルエアギャップ型電動機において、精度の高いステータを得ることができ、また性能を確保することができる。
 〔応用例〕
  最後に、第1~第3実施形態を組み合わせた応用例について説明する。図7(a)~(d)に、積層鉄心8の応用例における端部断面を示す。図中、丸点線で示した部分は、積厚調整用の直線部(コア部材10a)を示す。
 図7(a)は、直線状に積層されたコア部材10aをアキシャルエアギャップ型電動機1の回転軸4に対して外周側即ちコア部材の切断幅の広い側と、回転軸4に対して内周側即ちコア部材の切断幅の狭い側との双方端部に設ける構成である。
 同様に、図7(b)は、直線状に積層されたコア部材10aをアキシャルエアギャップ型電動機1の回転軸4に対して外周側即ちコア部材の切断幅の広い側と、回転軸4に対して鉛直方向の中央付近即ち積層鉄心8の斜辺部の中央付近との双方に設ける構成である。
 同様に、図7(c)は、直線状に積層されたコア部材10aをアキシャルエアギャップ型電動機1の回転軸4に対して鉛直方向の中央付近即ち積層鉄心8の斜辺部の中央付近と、回転軸4に対して内周側即ちコア部材の切断幅の狭い側との双方に設ける構成である。
 さらに、図7(d)は、第1~第3実施形態の全てを同時に設ける構成である。なお、図7(a)~(d)において、各直線部(コア部材10a)の積層方向の厚さは必ずしも一律でなくてもよい。例えば、直線部に必要な積厚をNとした場合に、直線部が2箇所であれば、夫々1/2Nの積厚でもよいし、それぞれが不等となる比をもって積厚を変更してもよい。
 応用例によれば、直線状に積層されたコア部材10aの配置が複数箇所に分散されることから、夫々の調整箇所で増減するコア部材10aの枚数を減らすことができ、更には、調整による積層鉄心8の全体的な形状も均一化できる。即ち直線部の長さを短くすることで、より台形に近似した積層コア形状を維持することで、ボビン7に挿入、配置されたときの位置を安定させることができる。
 以上、本発明を実施するための形態について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨を逸脱することのない範囲で種々の変更が可能であることは言うまでもない。例えば、積層するコア部材10a、10bは、必ずしも直線(水平)で有る必要はなく、回転軸回転方向に円弧形状であってもよい(積層鉄心8の端部断面が扇形の形状になる等)。
1…アキシャルエアギャップ型電動機、2…ステータ、3…ロータ、4…回転軸、5…ハウジング、6…ステータコア、7…ボビン、7a…筒部、7b…鍔部、7c…引出し口、8…積層鉄心、9…コイル、10a・10b…コア部材

Claims (5)

  1.  回転軸の径方向に金属板状部材を積層した柱体である積層鉄心と、該積層鉄心を挿入する内径を有する筒形状のボビンと、前記積層鉄心の外径延長上に巻き回されたコイルとからなるステータコアが、回転軸を中心に環状に配列してなるステータと、前記ステータの回転軸方向端部断面と所定のエアギャップを介して面対向する少なくとも1つのロータとを備えるアキシャルギャップ型電動機であって、
     前記積層鉄心が、
     回転軸心から径方向に向かうにつれて、前記回転軸の回転方向に幅が大となる金属板状部材を連続して積層した部分と、
     前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分と、からなるものであるアキシャルエアギャップ型電動機。
  2.  請求項1に記載のアキシャルエアギャップ型電動機であって、
     前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分が、回転軸径方向で最も外側であるアキシャルエアギャップ型電動機。
  3.  請求項1に記載のアキシャルエアギャップ型電動機であって、
     前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分が、回転軸径方向で最も回転軸側であるアキシャルエアギャップ型電動機。
  4.  請求項1に記載のアキシャルエアギャップ型電動機であって、
     前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分が、回転軸径方向の最も外側及び最も回転軸側以外の位置にあるアキシャルエアギャップ型電動機。
  5.  請求項1に記載のアキシャルエアギャップ型電動機であって、
     前記回転軸の回転方向に幅が概略同一となる金属板状部材を連続して積層した部分が、前記回転軸心から径方向に向かうにつれて、前記回転軸の回転方向に幅が大となる金属板状部材を連続して積層した部分と互いに隣接して2以上あるアキシャルエアギャップ型電動機。
PCT/JP2014/083818 2014-04-14 2014-12-22 アキシャルエアギャップ型電動機 WO2015159461A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14889626.9A EP3133717B1 (en) 2014-04-14 2014-12-22 Axial air gap type electric motor
US15/304,248 US10536042B2 (en) 2014-04-14 2014-12-22 Axial air gap type electric motor
CN201480079571.7A CN106415994B (zh) 2014-04-14 2014-12-22 轴向气隙型电动机
JP2016513612A JP6375371B2 (ja) 2014-04-14 2014-12-22 アキシャルエアギャップ型電動機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082445 2014-04-14
JP2014-082445 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015159461A1 true WO2015159461A1 (ja) 2015-10-22

Family

ID=54323691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083818 WO2015159461A1 (ja) 2014-04-14 2014-12-22 アキシャルエアギャップ型電動機

Country Status (6)

Country Link
US (1) US10536042B2 (ja)
EP (1) EP3133717B1 (ja)
JP (3) JP6375371B2 (ja)
CN (1) CN106415994B (ja)
TW (1) TWI552486B (ja)
WO (1) WO2015159461A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141018A (ko) * 2016-03-02 2019-12-20 가부시키가이샤 히다치 산키시스템 액시얼 갭형 회전 전기 및 그 제조 방법
JP7174658B2 (ja) * 2019-03-25 2022-11-17 株式会社日立産機システム アキシャルギャップ型回転電機
DE112021000071T5 (de) * 2020-05-08 2022-04-14 Sumitomo Electric Industries, Ltd. Kernstück, Stator-Kern, Stator und sich drehende Elektromaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136476A (ja) * 2008-12-02 2010-06-17 Asmo Co Ltd 電機子コア及び電機子並びにアキシャルギャップ型回転電機
JP2010148308A (ja) * 2008-12-22 2010-07-01 Daikin Ind Ltd 界磁子及び界磁子の製造方法
JP2011055646A (ja) * 2009-09-02 2011-03-17 Daikin Industries Ltd 電機子磁芯の製造方法
WO2013084614A1 (ja) * 2011-12-07 2013-06-13 株式会社 日立製作所 回転電機及び回転電機の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649404B1 (ko) * 2001-11-29 2006-11-27 야마하하쓰도키 가부시키가이샤 축방향 간극형 회전전기기계
CN1246947C (zh) * 2002-01-29 2006-03-22 株式会社一宫电机 分裂芯装置、绕线架装置、定子和电动机
JP4305649B2 (ja) 2003-02-26 2009-07-29 株式会社富士通ゼネラル アキシャルギャップ型電動機
WO2009057674A1 (ja) * 2007-11-01 2009-05-07 Daikin Industries, Ltd. 電機子用磁芯及びその製造方法、電機子、回転電機、圧縮機
JP5458522B2 (ja) * 2007-12-17 2014-04-02 ダイキン工業株式会社 電機子用磁芯、電機子、回転電機及び圧縮機
JP2011250651A (ja) 2010-05-31 2011-12-08 Daihatsu Motor Co Ltd アキシャルギャップモータ
JP2012019582A (ja) * 2010-07-07 2012-01-26 Daikin Ind Ltd 回転電機
CN203368163U (zh) 2010-08-26 2013-12-25 三菱电机株式会社 旋转电机和用于制造其定子铁芯的定子铁芯制造装置
CN103138421B (zh) 2011-11-30 2016-03-09 台达电子工业股份有限公司 径向气隙式马达及定子结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136476A (ja) * 2008-12-02 2010-06-17 Asmo Co Ltd 電機子コア及び電機子並びにアキシャルギャップ型回転電機
JP2010148308A (ja) * 2008-12-22 2010-07-01 Daikin Ind Ltd 界磁子及び界磁子の製造方法
JP2011055646A (ja) * 2009-09-02 2011-03-17 Daikin Industries Ltd 電機子磁芯の製造方法
WO2013084614A1 (ja) * 2011-12-07 2013-06-13 株式会社 日立製作所 回転電機及び回転電機の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133717A4 *

Also Published As

Publication number Publication date
JP2020103039A (ja) 2020-07-02
TWI552486B (zh) 2016-10-01
EP3133717B1 (en) 2020-06-10
CN106415994B (zh) 2019-09-24
TW201541808A (zh) 2015-11-01
US20170093232A1 (en) 2017-03-30
JPWO2015159461A1 (ja) 2017-04-13
EP3133717A1 (en) 2017-02-22
CN106415994A (zh) 2017-02-15
JP2018110528A (ja) 2018-07-12
EP3133717A4 (en) 2017-11-15
US10536042B2 (en) 2020-01-14
JP6689312B2 (ja) 2020-04-28
JP6375371B2 (ja) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5656719B2 (ja) 永久磁石型回転電機及び永久磁石型回転電機の製造方法
JP2020103039A (ja) アキシャルエアギャップ型電動機
JP2011024291A (ja) ステータコア及びアキシャルギャップモータ
JP2006050853A (ja) モータ
JP5178371B2 (ja) 電動機
WO2021131575A1 (ja) コイル及びそれを備えたステータ、モータ
JP2009100489A (ja) スロットレス形回転電機
JP5471653B2 (ja) 永久磁石式電動モータ
WO2017212575A1 (ja) 永久磁石モータ
US10374474B2 (en) Permanent magnet motor
JP6462714B2 (ja) アキシャルギャップ型回転電機及び絶縁部材
WO2019142723A1 (ja) インシュレータ及びそれを備えたステータ、モータ
JPWO2020054469A1 (ja) ステータ及びそれを用いたモータ
JP2010068595A (ja) 同期電動機の固定子
WO2023067721A1 (ja) 回転子、回転電機、および電動パワーステアリング装置
JP2009159714A (ja) 電動機
JP5352442B2 (ja) 永久磁石モータ
JP2009247158A (ja) アキシャルエアギャップ型電動機
JP2010004690A (ja) 永久磁石回転電機及びそれを用いたエレベータ装置
WO2019142584A1 (ja) インシュレータ及びそれを備えたステータ、モータ
WO2018230436A1 (ja) 回転電気機械
WO2019142754A1 (ja) インシュレータ及びそれを備えたステータ、モータ
JP5476699B2 (ja) 発電機用固定子
JP2012175723A (ja) 回転電機
JP2020074664A (ja) ステータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014889626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014889626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15304248

Country of ref document: US