WO2015159321A1 - 電解クロメート処理鋼板の製造方法 - Google Patents

電解クロメート処理鋼板の製造方法 Download PDF

Info

Publication number
WO2015159321A1
WO2015159321A1 PCT/JP2014/002166 JP2014002166W WO2015159321A1 WO 2015159321 A1 WO2015159321 A1 WO 2015159321A1 JP 2014002166 W JP2014002166 W JP 2014002166W WO 2015159321 A1 WO2015159321 A1 WO 2015159321A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromic acid
concentration
steel sheet
chromium
hydrated oxide
Prior art date
Application number
PCT/JP2014/002166
Other languages
English (en)
French (fr)
Inventor
青木 文男
智弘 金子
嘉秀 山本
寿勝 加藤
誠 荒谷
卓也 野崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2014553000A priority Critical patent/JP5858175B1/ja
Priority to CN201480077706.6A priority patent/CN106133206B/zh
Priority to PCT/JP2014/002166 priority patent/WO2015159321A1/ja
Publication of WO2015159321A1 publication Critical patent/WO2015159321A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising

Definitions

  • the present invention is suitable as a material for beverage cans, food cans, 18L cans, pail cans, art cans, etc., and can be used for electrolytic chromate treatment steel plates that can be polished and welded with high efficiency and stability.
  • the present invention relates to a method of manufacturing a steel plate.
  • Electrochromated steel sheets that have a chromate film consisting of a chromium metal hydrate layer and a chromium chromium oxide layer on the surface of the material steel sheet are cheaper and more paint-coating than tin-plated steel sheets (so-called “blink”).
  • blink tin-plated steel sheets
  • electrolytic chromate-treated steel sheets are inferior in weldability compared to tin-plated steel sheets, and usually it is necessary to perform welding after mechanically polishing and removing the surface chromate film that impairs weldability immediately before welding.
  • polishing welding method in which welding is performed after the chromate film is mechanically removed in this way, the number of welding lines is increased and it is necessary to introduce processing equipment for polishing. This is disadvantageous in terms of production cost.
  • polishing scrap metal powder
  • problems such as polishing scraps being mixed into the can and a burden required for maintenance such as cleaning of the welding machine are increased.
  • a polishing welding method has a problem that the exposed metal surface is oxidized by heat input during welding and changes to dark blue or black, and the appearance after welding deteriorates.
  • the weldability when the non-abrasive welding method is applied (hereinafter referred to as “abrasive weldability”) is improved to some extent, but the non-abrasive welding in the steel sheet width direction is observed.
  • the non-abrasive weldability at the edge in the width direction deteriorates.
  • the electrolytic chromate-treated steel sheet obtained by the conventional technique has a problem that the weldable current range (ACR) of non-abrasive welding is also small.
  • the non-abrasive weldability of the electrolytic chromate-treated steel sheet is improved to some extent, but it is difficult to balance with other characteristics such as corrosion resistance against an alkaline solution and surface appearance deterioration.
  • corrosion resistance with respect to the alkaline solution is deteriorated
  • an alkaline solution containing a surfactant is filled as the contents of the can, such as an 18L can or a pail can
  • the deterioration of the corrosion resistance particularly in the processed part becomes a problem.
  • the electrolytic chromate-treated steel sheet is usually paint-baked or film-laminated and then welded to make a can.
  • various properties such as corrosion resistance are produced. Deteriorates.
  • Patent Document 1 discloses that when producing an electrolytic chromate-treated steel sheet, the material steel sheet is subjected to cathodic electrolytic treatment in a high-concentration chromic acid bath and then immersed in a low-concentration chromic acid bath. Techniques to apply have been proposed. By this method, at least one side of the material steel plate has a metal chromium layer with an adhesion amount per side of more than 90 mg / m 2 and 190 mg / m 2 or less, and an adhesion amount per side of 3 to 8 mg / min in terms of metal chromium.
  • a chromate film composed of a uniform chromium hydrated oxide layer of m 2, which is dehydrated during paint baking and / or film lamination among all the chromium hydrated oxides constituting the chromium hydrated oxide layer.
  • the insoluble chromium hydrated oxide which has physical properties that do not dissolve in hot alkali, has an adhesion amount per side of 1 to 5 mg / m 2 in terms of metallic chromium, and the proportion of the total chromium hydrated oxide is the mass.
  • a chromate film with a ratio of less than 68% is formed.
  • Patent Document 1 by forming a desired chromate film as described above, it is excellent in naked corrosion resistance against an alkaline solution containing a surfactant, as well as corrosion resistance under a coating film and a film.
  • An electrolytic chromate-treated steel sheet with excellent abrasive weldability and a wide weldable current range (ACR) for non-abrasive welding can be obtained.
  • Patent Document 1 it is difficult to increase productivity when producing an electrolytic chromated steel sheet having a desired chromate film.
  • an electrolytic bath high-concentration chromic acid bath
  • an immersion bath for carrying out immersion treatment.
  • the material steel plate is passed through a chromate treatment line in which (low concentration chromic acid bath) is arranged in series.
  • the steel plate after cathodic electrolysis processing should be immersed in an immersion tank for 2 seconds or more. Necessary. As specified in Patent Document 1, when the immersion treatment time is less than 2 seconds, a uniform chromium hydrated oxide layer cannot be obtained, and various characteristics such as non-abrasive weldability vary greatly in the width direction of the steel sheet. .
  • the present invention has been made in view of the above circumstances, and even when the line speed of the chromate treatment line is increased, an electrolytic chromate treatment capable of forming a desired chromate film over the entire width direction of the raw steel plate. It aims at proposing the manufacturing method of a steel plate.
  • the immersion treatment time in the immersion bath is 2 seconds.
  • the metal chromium layer adhesion amount per one side is not more than 90 mg / m 2 ultra 190 mg / m 2, 3 ⁇ 8 mg / m at a coverage per side is reckoned as metal chromium 2.
  • a chromate film comprising a uniform chromium hydrated oxide layer, wherein all chromium hydrated oxides constituting the chromium hydrated oxide layer are dehydrated and heated during paint baking and / or film lamination.
  • the insoluble chromium hydrated oxide (hereinafter also referred to as “alkali insoluble chromium hydrated oxide”), which has physical properties that are insoluble in alkali, is 1 to 5 mg / m 2 in terms of metallic chromium. And the proportion of the total chromium hydrated oxide is It aims at providing the manufacturing method of the electrolytic chromate processing steel plate which can form the chromate film
  • an electrolytic chromate-treated steel sheet having a chromate film composed of a metal chromium layer and a chromium hydrated oxide layer on a steel sheet material is subjected to cathodic electrolytic treatment in a high-concentration chromic acid bath and then to a low concentration. It is obtained by subjecting it to immersion treatment in a chromic acid bath.
  • cathodic electrolytic treatment metallic chromium and chromium hydrated oxide are deposited on the surface of the raw steel plate.
  • excessive chromium hydrated oxide is deposited on the surface of the material steel plate.
  • a part of the chromium hydrated oxide is dissolved, and the chromium hydrated oxide is deposited as desired. It can be an amount.
  • the present inventors performed a cathodic electrolytic treatment on the raw steel sheet in a high concentration chromic acid bath, and then performed an immersion treatment in a low concentration chromic acid bath for an immersion treatment time of less than 2 seconds.
  • the form of the chromate film formed (the amount of metal chromium layer and chromium hydrated oxide layer deposited, the amount of alkali insoluble chromium hydrated oxide deposited, the alkali insoluble chromium in the total chromium hydrated oxide) Various factors affecting the ratio of hydrated oxide) were studied.
  • alkali-insoluble chromium hydrated oxide to the total chromium hydrated oxide constituting the chromium hydrated oxide layer (hereinafter referred to as “alkaline-insoluble chromium ratio”). ”), And it became very difficult to keep it below 68%.
  • FIG. 1 is a diagram showing the results of measuring the alkali-insoluble chromium ratio in the plate width direction of an electrolytic chromate-treated steel plate subjected to cathodic electrolysis at a high current density.
  • the electrolytic chromate-treated steel sheet includes a step of sequentially degreasing and pickling a raw steel sheet (plate width: 910 mm), a surface temperature of the raw steel sheet of 45 ° C., 170 g / l of chromic acid, A step of subjecting the material steel plate to cathodic electrolysis at a current density of 130 A / dm 2 in a high concentration chromic acid bath containing sulfate ions having a concentration 0.0055 times the concentration and a fluorine compound; and 50 g / l chromic acid. And a step of immersing the raw steel plate in a low-concentration chromic acid bath at 45 ° C. containing a fluorine compound for 1.8 seconds, and subsequently washing the raw steel plate with water in this order. This is an electrochromated steel sheet.
  • the alkali-insoluble chromium ratio shown in FIG. 1 is obtained by cutting a steel plate having a length of 100 mm in the rolling direction from the obtained electrolytic chromate-treated steel plate, further dividing the steel plate into 5 mm widths, and a test piece having a length of 100 mm ⁇ width of 5 mm. (Test specimen whose length direction is parallel to the rolling direction) was prepared, and the alkali-insoluble chromium ratio was measured every 5 mm width using these specimens.
  • the adhesion amount of the total chromium hydrated oxide constituting the chromium hydrated oxide layer and the adhesion amount of the alkali-insoluble chromium hydrated oxide were measured as follows. Moreover, the alkali-insoluble chromium ratio was calculated
  • the alkali insoluble chromium ratio is less than 68% over almost the entire region in the plate width direction.
  • the alkali insoluble chromium ratio is 68% or more at the edge in the plate width direction (the portion from the edge to 5 mm).
  • the current tends to change due to the concentration of current during the cathodic electrolysis, so it is assumed that the above-mentioned characteristic failure at the outermost edge in the plate width is due to the current density of the cathodic electrolysis. Is done.
  • the present inventors have for the electrolytic chromate treatment steel sheet when subjected to cathodic electrolysis treatment in a variety of current density of 85 ⁇ 130A / dm 2, it was measured alkali-insoluble chromium ratio.
  • the electrolytic chromated steel sheet used for the measurement was manufactured under the same conditions as above except that the current density was changed to 85 to 130 A / dm 2 . Further, the alkali-insoluble chromium ratio was measured in the same manner as described above.
  • FIG. 2 is a diagram showing the relationship between the alkali-insoluble chromium ratio and the current density at the outermost edge in the plate width direction (the portion from the edge to 5 mm). Note that the vertical axis in FIG. 2 indicates the alkali-insoluble chromium ratio in the test piece at one edge width direction (OP) of the steel plate and the alkali in the test piece at the other edge direction (DR) of the steel plate. It is an average value with the insoluble chromium ratio.
  • the alkali-insoluble chromium ratio at the outermost edge in the plate width direction is 68% or more. From these results, the current density of the cathodic electrolysis treatment was applied when forming a chromate film on the steel plate material by subjecting the material steel plate to a cathodic electrolysis treatment in a high concentration chromic acid bath and then to an immersion treatment in a low concentration chromic acid bath. It has been clarified that the alkali-insoluble chromium ratio can be reduced to less than 68% by appropriately adjusting the A in the range of 120 A / dm 2 or less.
  • the current density of the cathodic electrolysis treatment As described above, by setting the current density of the cathodic electrolysis treatment to 120 A / dm 2 or less, it is possible to solve the problem of characteristic failure at the outermost edge in the plate width direction.
  • the line speed was increased, depending on the production conditions of the electrolytic chromate-treated steel sheet, it was frequently confirmed that the alkali-insoluble chromium ratio was 68% or more, not limited to the outermost edge in the sheet width direction.
  • the present inventors investigated the correlation between the above phenomenon and manufacturing conditions, and tried to investigate the cause. As a result, it became clear that the temperature of the low concentration chromic acid bath used for the immersion treatment is strongly related to the above phenomenon.
  • FIG. 3 is a diagram showing the results of measuring the alkali-insoluble chromium ratio for an electrolytic chromate-treated steel sheet subjected to immersion treatment using low-concentration chromic acid baths at various temperatures of 40 to 70 ° C.
  • the electrolytic chromate-treated steel plate used for the measurement was manufactured under the same conditions as above except that the current density was changed to 90 to 120 A / dm 2 and the temperature of the low concentration chromic acid bath was changed to 40 to 70 ° C. did. Further, the alkali-insoluble chromium ratio was measured in the same manner as described above.
  • the alkali-insoluble chromium ratio may be 68% or higher. From these results, the line speed is increased when the steel plate is subjected to cathodic electrolytic treatment in a high concentration chromic acid bath and then subjected to immersion treatment in a low concentration chromic acid bath to form a chromate film on the steel plate material. In this case, it was revealed that the alkali-insoluble chromium ratio can be suppressed to less than 68% over the entire plate width direction by setting the bath temperature of the low-concentration chromic acid bath used for the immersion treatment to less than 60 ° C.
  • the present invention has been made based on the above-described findings, and the gist of the present invention is as follows.
  • a step of sequentially performing degreasing and pickling on the steel sheet The surface temperature of the raw steel plate is 47 ° C. or lower, and high concentration chromium containing 150 g / l or more chromic acid, sulfate ions having a concentration of 0.003 to 0.006 times the concentration of the chromic acid, and a fluorine compound.
  • the concentration of the fluorine compound in the low concentration chromic acid bath is 0.01 to 0.04 times the chromic acid concentration in terms of fluorine ions, and the immersion treatment in the low concentration chromic acid bath A method for producing an electrolytic chromate-treated steel sheet having a time of less than 2 seconds.
  • a desired chromate film can be formed over the entire width direction of the material steel plate, and the electrolytic chromate excellent in non-abrasive weldability. High-efficiency and stable production of treated steel sheets becomes possible.
  • the present invention is a method for producing an electrolytic chromate-treated steel sheet having excellent abrasive weldability.
  • an electrolytic chromate-treated steel sheet with excellent non-abrasive weldability at least one side of the material steel sheet has a metal chromium layer with an adhesion amount per side of more than 90 mg / m 2 and 190 mg / m 2 or less, and an adhesion amount per side.
  • Examples thereof include an electrolytic chromate-treated steel sheet having a chromate film that is 1 to 5 mg / m 2 and has a mass ratio of less than 68% of the total chromium hydrated oxide.
  • the overlapped portions of the electrolytic chromated steel plates are resistance-welded with a pair of welding electrodes.
  • the electrolytic chromate treatment has a physical property that the contact electrical resistance (R1) at the contact of the overlapped portion is 0.15 times or more than the contact electrical resistance (R2) at the contact of the welding electrode and the electrolytic chromated steel plate. It can be a steel plate.
  • fever form is obtained at the time of welding, and defects, such as a dust and a splash, in a welded part outer surface can be suppressed effectively.
  • the raw steel plate is sequentially degreased and pickled, and then subjected to cathodic electrolysis.
  • the surface temperature of the material steel plate during the cathodic electrolysis treatment not only affects the deposition efficiency of metallic chromium but also the hydration degree of the chromium hydrated oxide.
  • the surface temperature exceeds 47 ° C., the alkali-insoluble chromium ratio increases, which may adversely affect the non-abrasive weldability. Therefore, the surface temperature is set to 47 ° C. or lower.
  • the surface temperature of the raw steel plate during cathodic electrolysis is determined by the bath temperature and the steel plate temperature just before entering the electrolytic cell.
  • the surface temperature of the material steel plate is slightly higher than the bath temperature due to the effect of Joule heat.
  • the bath temperature of the acid bath is preferably at least less than 47 ° C.
  • a high-concentration chromic acid bath used for cathodic electrolysis is a high-concentration chromic acid containing 150 g / l or more of chromic acid, sulfate ions having a concentration of 0.003 to 0.006 times the concentration of the chromic acid, and a fluorine compound. Take a bath.
  • Sulfate ions contained in the high-concentration chromic acid bath are added as an auxiliary agent, and are added to obtain a desired amount of metal chromium and chromium hydrated oxide.
  • a part of the total chromium hydrated oxide constituting the chromium hydrated oxide layer is dehydrated and converted to alkali-insoluble chromium hydrated oxide.
  • the degree of dehydration and change to alkali-insoluble chromium hydrated oxide depends particularly on the sulfate ion concentration contained in the high concentration chromic acid bath.
  • the sulfate ion concentration contained in the high-concentration chromic acid bath is 0.003 to 0.006 times the chromic acid concentration.
  • the high concentration chromic acid bath for example, a CrO 3 —Na 2 SiF 6 —SO 4 2- based high concentration chromic acid bath is suitable.
  • This high-concentration chromic acid bath can deposit metallic chromium stably for a long period of time and with high efficiency, and at the same time, it can simultaneously deposit a film serving as the basis of a chromium hydrated oxide suitable for non-abrasive weldability.
  • a high concentration chromic acid bath such as CrO 3 —NaF—SO 4 2 ⁇ can be applied as the high concentration chromic acid bath.
  • the concentration of chromic acid in the high concentration chromic acid bath is preferably 200 g / l or less.
  • concentration of the fluorine compound in the high concentration chromic acid bath is preferably 0.01 times or more and 0.04 times or less compared with the chromic acid concentration in terms of fluorine ions.
  • the current density of cathodic electrolysis is extremely important for reducing the alkali-insoluble chromium ratio.
  • the line speed is increased.
  • the current density of the cathodic electrolysis is excessively high, the alkali-insoluble chromium ratio is increased.
  • the alkali-insoluble chromium ratio becomes high at the edge portion in the width direction of the steel sheet, and it becomes difficult to make it less than 68%.
  • the current density of the cathodic electrolysis treatment is 120 A / dm 2 or less.
  • extremely low current density in cathodic electrolysis is not preferable from the viewpoint of productivity.
  • the amount of chromium hydrated oxide that precipitates together with the metal chromium during the cathodic electrolysis tends to increase. Therefore, when the current density of the cathodic electrolysis is significantly reduced, a large amount of chromium hydrated oxide is precipitated in the cathodic electrolysis, and a part of the chromium hydrated oxide is dissolved in the subsequent immersion treatment to obtain a desired adhesion amount. It becomes difficult to do.
  • the current density of the cathode electrolytic treatment to 40A / dm 2 or more, more preferably, to 50A / dm 2 or more, and even more preferably to 55 A / dm 2 or more.
  • immersion treatment is performed on the material steel plate that has been subjected to the cathodic electrolytic treatment in a low-concentration chromic acid bath.
  • the chromium hydrated oxide excessively deposited by the cathodic electrolysis treatment is dissolved to form a chromium hydrated oxide layer having a desired adhesion amount, and an extra auxiliary agent in the chromium hydrated oxide is formed.
  • an extra auxiliary agent in the chromium hydrated oxide is formed.
  • the ratio of the alkali-insoluble chromium hydrated oxide contained in the chromium hydrated oxide layer is reduced through this immersion treatment.
  • the low-concentration chromic acid bath used in the immersion treatment is a low-concentration chromic acid bath of less than 60 ° C. containing chromic acid of 30 to 60 g / l and a fluorine compound. If the concentration of chromic acid contained in the low-concentration chromic acid bath is less than 30 g / l, the effect of removing excess auxiliary agent in the chromium hydrated oxide may not be sufficiently exhibited. On the other hand, when the concentration of chromic acid contained in the low-concentration chromic acid bath exceeds 60 g / l, the hydrated chromium oxide is dissolved inhomogeneously and a uniform chromium hydrated oxide layer cannot be obtained.
  • the concentration of the fluorine compound is preferably 0.01 to 0.04 times the chromic acid concentration in terms of fluorine ions. If the concentration of the fluorine compound is less than 0.01 times the chromic acid concentration in terms of fluorine ions, the effect of removing excess auxiliary agent in the chromium hydrated oxide may not be sufficiently exhibited. On the other hand, if the concentration of the fluorine compound is more than 0.04 times the chromic acid concentration in terms of fluorine ions, the chromium hydrated oxide is dissolved inhomogeneously and a uniform chromium hydrated oxide layer may not be obtained. Examples of the fluorine compound contained in the low concentration chromic acid bath include NH 4 F and NaF.
  • the bath temperature of the low-concentration chromic acid bath is extremely important in reducing the alkali-insoluble chromium ratio.
  • the bath temperature of the low-concentration chromic acid bath is 60 ° C. or higher, the alkali-insoluble chromium ratio may be 68% or higher, not limited to the edge portion in the plate width direction. Therefore, the bath temperature of the low concentration chromic acid bath is set to less than 60 ° C.
  • the bath temperature of the low-concentration chromic acid bath is extremely low, there is a concern that the reactivity of the dipping treatment will be poor.
  • the low concentration chromic acid bath for example, a CrO 3 —NH 4 F-based low concentration chromic acid bath is suitable.
  • a low-concentration chromic acid bath such as CrO 3 —NaF can also be applied.
  • the desired chromate film can be formed even if the immersion treatment time is less than 2 seconds, and the speed of the line can be increased.
  • the material steel plate subjected to the above immersion treatment is washed with water.
  • washing with water particularly warm water (rinsing) improves paint adhesion and laminate film adhesion after paint baking when coating baking or film laminating on electrolytic chromate-treated steel sheets.
  • washing with warm water 60 ° C. or higher is preferable, and 80 ° C. or higher is more preferable.
  • a test piece was prepared according to the following method, and the amount of metal chromium layer deposited on the center and edge of the steel sheet, and the total chromium hydrated oxide constituting the chromium hydrated oxide layer.
  • the adhesion amount and the adhesion amount of alkali-insoluble chromium hydrated oxide were measured.
  • the alkali-insoluble chromium ratio was calculated
  • test piece (steel plate width direction edge and center)> From each of the obtained electrolytic chromate-treated steel sheets, a steel sheet having a length of 100 mm was cut out in the rolling direction, and the width from one of the sheet width direction outermost edge part (OP) and the other sheet width direction outermost edge part (DR), respectively. A 5 mm test piece was collected to prepare a test piece having a length of 100 mm and a width of 5 mm (a test piece having a length direction parallel to the rolling direction).
  • test pieces were divided into four equal test pieces, and the chromium adhesion amount (a) was measured with fluorescent X-rays for each.
  • two of the four divided test pieces were immersed in a 7.5 normal NaOH solution heated to 110 ° C. for 10 minutes to remove the surface chromium hydrated oxide, and then attached with chromium X-rays.
  • the value obtained by measuring the amount was defined as the adhesion amount (b) of the metal chromium layer.
  • the average of the two measured values in (b) was subtracted from the average of the four measured values in (a) to determine the amount of all chromium hydrated oxide deposited (in terms of chromium metal).
  • the adhesion amount of the metal chromate layer at the edge portion is the adhesion amount of the metal chromate layer of the test piece at one edge portion (OP) and the adhesion amount of the metal chromate layer of the test piece at the other edge portion (DR).
  • the average value is the amount of all chromium hydrated oxide deposited on the edge portion.
  • the amount of all chromium hydrated oxide deposited on the edge portion is the same as the amount of all chromium hydrated oxide deposited on the test piece on one edge (OP) and the amount of test piece on the other edge (DR). It was set as the average value with the adhesion amount of the total chromium hydrated oxide.
  • the adhesion amount of the alkali-insoluble chromium hydrated oxide at the edge is determined by the amount of alkali-insoluble chromium hydrated oxide at the test piece at one edge (OP) and the alkali of the test piece at the other edge (DR). It was set as the average value with the adhesion amount of insoluble chromium hydrated oxide.
  • the electrolytic chromated steel plates (steel plates No. 1 to 7, 10, 11) manufactured according to the conditions specified in the present invention have a desired chromate film.
  • the electrolytic chromate-treated steel sheet (steel sheets No. 8, 9) produced by a method that does not satisfy the conditions of the present invention has an alkali-insoluble chromium ratio of 68% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 本発明の電解クロメート処理鋼板の製造方法は、素材鋼板に、脱脂、酸洗を順次施す工程と、前記素材鋼板の表面温度を47℃以下にして、150g/l以上のクロム酸と、該クロム酸の濃度対比0.003倍以上0.006倍以下の濃度の硫酸イオンと、フッ素化合物とを含有する高濃度クロム酸浴中において120A/dm2以下の電流密度で前記素材鋼板に陰極電解処理を行う工程と、30g/l以上60g/l以下のクロム酸と、フッ素化合物とを含有する60℃未満の低濃度クロム酸浴中で前記素材鋼板に浸漬処理を行う工程と、前記素材鋼板を水洗する工程と、を有することを特徴とする。

Description

電解クロメート処理鋼板の製造方法
 本発明は、飲料缶、食缶、18L缶、ペール缶、美術缶等の素材として好適であり、無研磨溶接が可能な電解クロメート処理鋼板を、高効率かつ安定的に製造し得る電解クロメート処理鋼板の製造方法に関する。
 素材鋼板の表面に、金属クロム層とクロム水和酸化物層とからなるクロメート皮膜を有する電解クロメート処理鋼板は、錫めっき鋼板(いわゆる「ぶりき」)と比較して安価であり且つ塗料密着性にも優れることから、近年、飲料缶、食缶、美術缶、18L缶、ペール缶等の素材として広く普及している。
 一方、電解クロメート処理鋼板は錫めっき鋼板と比較して溶接性に劣り、通常、溶接性を阻害する表層のクロメート皮膜を溶接直前に機械的に研磨、除去したうえで溶接を行う必要がある。しかし、このようにクロメート皮膜を機械的に除去した後に溶接する、いわゆる研磨溶接法を実施する場合には、溶接ラインの工程数が増加するうえ、研磨用の加工設備の導入が必要となるため生産コスト面で不利となる。
 また、工業的大量生産において実施した場合には、多量の研磨屑(金属粉)が発生する。その結果、例えば缶製造ラインにおいて、研磨屑が缶内に混入したり、溶接機の清掃等のメンテナンスに要する負担が増大したりする等の問題が生じる。更に、このような研磨溶接法では、露出した金属表面が溶接時の入熱によって酸化して濃青色や黒色に変化し、溶接後外観が劣化するという問題もある。
 以上の理由により、上記研磨を行うことなく溶接する、いわゆる無研磨溶接方法を適用した場合であっても充分な溶接性を示す電解クロメート処理鋼板の開発要望は強く、従来、様々な技術が提案されている。
 しかしながら、従来技術により得られる電解クロメート処理鋼板では、無研磨溶接方法を適用した場合の溶接性(以下、「無研磨溶接性」という)についてある程度改善が見られるものの、鋼板幅方向における無研磨溶接性のバラツキが大きく、特に幅方向エッジ部における無研磨溶接性が劣化する。このように幅方向エッジ部で無研磨溶接性が劣化すると、該エッジ部を切り落とすことが必要となり、歩留まりが悪くなる等の支障をきたす。また、従来技術により得られる電解クロメート処理鋼板は、無研磨溶接の溶接可能電流範囲(ACR)も小さいという問題がある。
 更に、従来技術では、電解クロメート処理鋼板の無研磨溶接性がある程度改善される反面、アルカリ溶液に対する耐食性や表面外観が劣化する等、他の特性とのバランスが困難である。特に、アルカリ溶液に対する耐食性が劣化すると、例えば18L缶やペール缶のように缶の内容物として界面活性剤を含むアルカリ溶液が充填される場合、特に加工部における耐食性の劣化が問題となる。また、製缶ラインでは通常、電解クロメート処理鋼板に塗装焼付けやフィルムラミネートした後溶接して製缶するが、従来技術では、電解クロメート処理鋼板に塗装焼付けやフィルムラミネートした後、耐食性等の諸特性が劣化する。
 このような問題に対し、特許文献1には、電解クロメート処理鋼板を製造するに際し、素材鋼板に、高濃度クロム酸浴中で陰極電解処理を施し、次いで低濃度クロム酸浴中で浸漬処理を施す技術が提案されている。この方法により、素材鋼板の少なくとも片面に、片面当たりの付着量が90mg/m2超190 mg/m2以下である金属クロム層と、片面あたりの付着量が金属クロム換算で3~8 mg/m2である均一なクロム水和酸化物層とからなるクロメート皮膜であって、前記クロム水和酸化物層を構成する全クロム水和酸化物のうち、塗装焼付け及び/又はフィルムラミネート時に脱水され熱アルカリには溶けない物性を有する不溶クロム水和酸化物の、片面あたりの付着量が金属クロム換算で1~5 mg/m2であり、かつ前記全クロム水和酸化物に占める割合が質量比で68%未満であるクロメート皮膜が形成される。
 そして、特許文献1で提案された技術によると、上記の如く所望のクロメート皮膜を形成することで、界面活性剤を含むアルカリ溶液に対する裸耐食性、ならびに塗膜およびフィルム下腐食性に優れ、且つ無研磨溶接性にも優れ、しかも無研磨溶接の溶接可能電流範囲(ACR)の広い電解クロメート処理鋼板が得られる。また、特許文献1で提案された技術によると、幅方向エッジ部における無研磨溶接性の劣化を抑制し、所望の特性を具えた電解クロメート処理鋼板を効率よく安定して提供することができる。
特開2005-298864号公報
 しかしながら、特許文献1で提案された技術では、所望のクロメート皮膜を具えた電解クロメート処理鋼板を製造する際、生産性を高めることが困難である。素材鋼板に陰極電解処理と浸漬処理とを施して電解クロメート処理鋼板を製造するに際しては、通常、陰極電解処理を施すための電解槽(高濃度クロム酸浴)と浸漬処理を施すための浸漬槽(低濃度クロム酸浴)とを直列に配設したクロメート処理ラインに素材鋼板を通板する。そして、特許文献1で提案された技術において、上記の如く所望のクロメート皮膜を具えた電解クロメート処理鋼板を製造するためには、陰極電解処理後の鋼板を浸漬槽に2秒以上浸漬することが必要となる。特許文献1に明記されているように、浸漬処理時間が2秒未満になると均一なクロム水和酸化物層が得られず、無研磨溶接性をはじめとする諸特性が鋼板幅方向で大きくばらつく。
 一方、電解クロメート処理鋼板の生産性を高めるうえではクロメート処理ラインのライン速度を高速化することが必須となるが、ライン速度を高めると必然的に浸漬処理時間が短縮する。したがって、特許文献1で提案された技術において、クロメート処理ラインのライン速度を高速化すると、浸漬処理時間が不充分となる結果、所望のクロメート皮膜を具えた電解クロメート処理鋼板を安定的に生産することが困難となる。
 本発明は、上記事情に鑑み成されたものであり、クロメート処理ラインのライン速度を高速化した場合であっても、素材鋼板の幅方向全域に亘り所望のクロメート皮膜が形成可能な電解クロメート処理鋼板の製造方法を提案することを目的とする。
 具体的には、上記の如く電解槽と浸漬槽とを直列に配設したクロメート処理ラインに素材鋼板を通板して電解クロメート処理鋼板を製造するに際し、浸漬槽での浸漬処理時間を2秒未満に短縮した場合であっても、片面当たりの付着量が90mg/m2超190 mg/m2以下である金属クロム層と、片面あたりの付着量が金属クロム換算で3~8 mg/m2である均一なクロム水和酸化物層とからなるクロメート皮膜であって、前記クロム水和酸化物層を構成する全クロム水和酸化物のうち、塗装焼付け及び/又はフィルムラミネート時に脱水され熱アルカリには溶けない物性を有する不溶クロム水和酸化物(以下、「アルカリ不溶クロム水和酸化物」ともいう)の、片面あたりの付着量が金属クロム換算で1~5 mg/m2であり、かつ前記全クロム水和酸化物に占める割合が質量比で68%未満であるクロメート皮膜を、素材鋼板の幅方向全域に亘り形成し得る電解クロメート処理鋼板の製造方法を提供することを目的とする。
 先述のとおり、鋼板素材に金属クロム層とクロム水和酸化物層とからなるクロメート皮膜を具えた電解クロメート処理鋼板は、素材鋼板に高濃度クロム酸浴中で陰極電解処理を施し、次いで低濃度クロム酸浴中で浸漬処理を施すことによって得られる。素材鋼板に高濃度クロム酸浴中で陰極電解処理を施すと、素材鋼板の表面に金属クロムとクロム水和酸化物が析出する。この陰極電解処理では素材鋼板表面に過剰のクロム水和酸化物が析出するが、続く浸漬処理を施すことで、クロム水和酸化物の一部が溶解し、クロム水和酸化物を所望の付着量とすることができる。
 ここで、電解槽(高濃度クロム酸浴)と浸漬槽(低濃度クロム酸浴)とを直列に配設したクロメート処理ラインに素材鋼板を通板して電解クロメート処理鋼板を製造する場合において、ライン速度を高速化すると、浸漬槽(低濃度クロム酸浴)での浸漬処理時間が必然的に短くなる。このように浸漬槽(低濃度クロム酸浴)での浸漬処理時間が短くなると、浸漬処理時のクロム水和酸化物の溶解量が不均一になることが懸念される。
 そこで、本発明者らは、素材鋼板に高濃度クロム酸浴中で陰極電解処理を施し、次いで低濃度クロム酸浴中で浸漬処理時間:2秒未満の浸漬処理を施して鋼板素材にクロメート皮膜を形成する場合において、形成されるクロメート皮膜の形態(金属クロム層およびクロム水和酸化物層の付着量、アルカリ不溶クロム水和酸化物の付着量、全クロム水和酸化物に占めるアルカリ不溶クロム水和酸化物の割合)に影響を及ぼす各種要因について鋭意検討した。
 その結果、陰極電解処理時の電流密度が高くなるに従い、クロム水和酸化物層を構成する全クロム水和酸化物に占めるアルカリ不溶クロム水和酸化物の質量比(以下、「アルカリ不溶クロム率」という)も高くなり、68%未満に抑えることが極めて困難になることが判明した。
 図1は、高電流密度で陰極電解処理を施した場合の電解クロメート処理鋼板について、アルカリ不溶クロム率を板幅方向に測定した結果を示す図である。
 上記電解クロメート処理鋼板は、素材鋼板(板幅:910mm)に、脱脂、酸洗を順次施す工程と、該素材鋼板の表面温度を45℃にし、170g/lのクロム酸と、該クロム酸の濃度対比0.0055倍の濃度の硫酸イオンと、フッ素化合物とを含有する高濃度クロム酸浴中において130A/dm2の電流密度で前記素材鋼板に陰極電解処理を行う工程と、50g/lのクロム酸と、フッ素化合物とを含有する45℃の低濃度クロム酸浴中で前記素材鋼板に1.8秒間浸漬処理を行う工程と、引き続いて前記素材鋼板を水洗する工程と、をこの順に行うことにより得られた電解クロメート処理鋼板である。
 また、図1に示すアルカリ不溶クロム率は、得られた電解クロメート処理鋼板から圧延方向に長さ100mmの鋼板を切り出し、更に該鋼板を5mm幅に分割して長さ100mm×幅5mmの試験片(長さ方向が圧延方向と平行な試験片)を作製し、これらの試験片を用いて5mm幅毎に、アルカリ不溶クロム率を測定したものである。
 なお、クロム水和酸化物層を構成する全クロム水和酸化物の付着量、およびアルカリ不溶クロム水和酸化物の付着量は、以下のように測定した。また、アルカリ不溶クロム率は、(アルカリ不溶クロム水和酸化物の付着量)/(全クロム水和酸化物の付着量)×100(%)で求めた。
<全クロム水和酸化物の付着量>
 各試験片を均等の大きさに4分割した分割試験片を作成し、各々について、蛍光X線でクロム付着量(a)を測定した。次いで、4分割したうちの2つの分割試験片を110℃に加熱した7.5規定のNaOH溶液中に10分間浸漬することにより表層のクロム水和酸化物を除去した後、蛍光X線でクロム付着量(b)を測定した。(a)の4測定値の平均から(b)の2測定値の平均を差し引いて、クロム水和酸化物層を構成する全クロム水和酸化物の付着量を、金属クロム換算で求めた。
<アルカリ不溶クロム水和酸化物の付着量>
 上記において4分割したうちの残り2つの分割試験片を、210℃の炉内に装入し、各分割試験片温度が210℃に到達した後、10分間空焼を行い、上記と同様に110℃に加熱した7.5規定のNaOH溶液中に10分間浸漬し、クロム量(c)を蛍光X線で測定した。(c)の2測定値の平均から前記(b)の2測定値の平均を差し引いて、アルカリ不溶クロム水和酸化物の付着量を、金属クロム換算で求めた。
 図1に示すように、陰極電解処理の電流密度が130A/dm2、浸漬処理の処理時間が1.8秒である場合、板幅方向のほぼ全域に亘りアルカリ不溶クロム率が68%未満になるものの、板幅方向最エッジ部(エッジから5mmまでの部分)では、アルカリ不溶クロム率が68%以上となっている。鋼板の幅方向エッジ部では、陰極電解処理時に電流が集中して特性が変動し易いことから、上記した板幅方向最エッジ部での特性不良は陰極電解処理の電流密度に起因するものと推測される。
 そこで、本発明者らは、85~130A/dm2の種々の電流密度で陰極電解処理を施した場合の電解クロメート処理鋼板について、アルカリ不溶クロム率を測定した。なお、測定に使用した電解クロメート処理鋼板は、電流密度を85~130A/dm2に変更した点を除き上記と同じ条件で製造した。また、アルカリ不溶クロム率も上記と同様にして測定した。
 図2は、板幅方向最エッジ部(エッジから5mmまでの部分)におけるアルカリ不溶クロム率と、電流密度との関係を示す図である。なお、図2の縦軸は、鋼板の一方の板幅方向最エッジ部(OP)の試験片におけるアルカリ不溶クロム率と、鋼板の他方の板幅方向最エッジ部(DR)の試験片におけるアルカリ不溶クロム率との平均値である。
 図2に示すように、陰極電解処理の電流密度が120 A/dm2を超えると、板幅方向最エッジ部におけるアルカリ不溶クロム率が68%以上となることがわかる。これらの結果から、素材鋼板に高濃度クロム酸浴中で陰極電解処理を施し、次いで低濃度クロム酸浴中で浸漬処理を施して鋼板素材にクロメート皮膜を形成するに際し、陰極電解処理の電流密度を120 A/dm2以下の範囲で適宜調整することで、アルカリ不溶クロム率を68%未満にできることが明らかとなった。
 以上のように、陰極電解処理の電流密度を120 A/dm2以下に設定することで、板幅方向最エッジ部における特性不良の問題を解消することができる。しかし、ライン速度を高速化した場合、電解クロメート処理鋼板の製造条件によっては、板幅方向最エッジ部に限らずアルカリ不溶クロム率が68%以上となる現象が度々確認された。
 そこで、本発明者らは、上記現象と製造条件との相関を調査し、その原因究明に努めた。その結果、上記現象に対しては、浸漬処理に用いる低濃度クロム酸浴の温度が強く関連していることが明らかになった。
 図3は、40~70℃の種々の温度の低濃度クロム酸浴を用いて浸漬処理を施した場合の電解クロメート処理鋼板について、アルカリ不溶クロム率を測定した結果を示す図である。なお、測定に使用した電解クロメート処理鋼板は、電流密度を90~120A/dm2に変更し、低濃度クロム酸浴の温度を40~70℃に変更した点を除き、上記と同じ条件で製造した。また、アルカリ不溶クロム率も上記と同様にして測定した。
 図3に示すように、低濃度クロム酸浴の浴温が60℃以上になると、アルカリ不溶クロム率が68%以上になるおそれがある。これらの結果から、素材鋼板に高濃度クロム酸浴中で陰極電解処理を施し、次いで低濃度クロム酸浴中で浸漬処理を施して鋼板素材にクロメート皮膜を形成するに際し、ライン速度を高速化する場合には、浸漬処理に用いる低濃度クロム酸浴の浴温を60℃未満とすることで、アルカリ不溶クロム率を板幅方向全域に亘り68%未満に抑制できることが明らかになった。
 本発明は、上記した知見に基づき為されたものであり、本発明の要旨は以下のとおりである。
[1]素材鋼板に、脱脂、酸洗を順次施す工程と、
 前記素材鋼板の表面温度を47℃以下にして、150g/l以上のクロム酸と、該クロム酸の濃度対比0.003倍以上0.006倍以下の濃度の硫酸イオンと、フッ素化合物とを含有する高濃度クロム酸浴中において120A/dm2以下の電流密度で前記素材鋼板に陰極電解処理を行う工程と、
 30g/l以上60g/l以下のクロム酸と、フッ素化合物とを含有する60℃未満の低濃度クロム酸浴中で前記素材鋼板に浸漬処理を行う工程と、
 前記素材鋼板を水洗する工程と、
をこの順に有することを特徴とする電解クロメート処理鋼板の製造方法。
[2]前記[1]において、前記低濃度クロム酸浴のフッ素化合物の濃度が、フッ素イオン換算でクロム酸濃度対比0.01倍以上0.04倍以下であり、前記低濃度クロム酸浴中での浸漬処理時間が2秒未満である電解クロメート処理鋼板の製造方法。
 本発明によれば、クロメート処理ラインのライン速度を高速化した場合であっても、素材鋼板の幅方向全域に亘り所望のクロメート皮膜を形成することができ、無研磨溶接性に優れた電解クロメート処理鋼板の高効率・安定生産が可能となる。
電解クロメート処理鋼板について、アルカリ不溶クロム率の、板幅方向分布を示す図である。(陰極電解処理の電流密度:130A/dm2、浸漬処理の処理時間:1.8秒) 陰極電解処理の電流密度と、電解クロメート処理鋼板(板幅方向最エッジ部)のアルカリ不溶クロム率との関係を示す図である。 浸漬処理に用いる低濃度クロム酸浴の浴温と、電解クロメート処理鋼板(板幅方向中央部)のアルカリ不溶クロム率との関係を示す図である。 電解クロメート処理鋼板を重ね合わせて抵抗溶接する際の溶接状態を示す模式図である。
 本発明は、無研磨溶接性に優れた電解クロメート処理鋼板の製造方法である。無研磨溶接性に優れた電解クロメート処理鋼板としては、素材鋼板の少なくとも片面に、片面当たりの付着量が90mg/m2超190 mg/m2以下である金属クロム層と、片面あたりの付着量が金属クロム換算で3~8 mg/m2である均一なクロム水和酸化物層とからなるクロメート皮膜であって、アルカリ不溶クロム水和酸化物の、片面あたりの付着量が金属クロム換算で1~5 mg/m2であり、かつ前記全クロム水和酸化物に占める割合が質量比で68%未満であるクロメート皮膜を具えた電解クロメート処理鋼板が例示される。このようなクロメート皮膜とすることで、耐食性が良好であり且つ無研磨溶接性にも優れた電解クロメート処理鋼板が得られる。
 また、アルカリ不溶クロム水和酸化物の付着量や質量比を、上記の如く所定の範囲に調整することで、電解クロメート処理鋼板の重ね合わせた部分同士を1対の溶接用電極で抵抗溶接する場合、前記重ね合わせ部分の接点での接触電気抵抗(R1)が、溶接用電極と電解クロメート処理鋼板の接点での接触電気抵抗(R2)に対して0.15倍以上である物性を有する電解クロメート処理鋼板とすることができる。そして、このような物性を有する電解クロメート処理鋼板とすることで、溶接時に適正な発熱形態が得られ、溶接部外面におけるチリやスプラッシュなどの欠陥を効果的に抑制することができる。
 本発明ではまず、素材鋼板に脱脂、酸洗を順次施したのち、陰極電解処理を施す。陰極電解処理中の素材鋼板の表面温度は、金属クロムの析出効率に影響するだけでなく、クロム水和酸化物の水和度に影響する。上記表面温度が47℃を超えると、アルカリ不溶クロム率が大きくなり、無研磨溶接性に悪影響を及ぼすおそれがある。したがって、上記表面温度は47℃以下とする。
 陰極電解処理中の素材鋼板の表面温度は、浴温と電解槽に進入する直前の鋼板温度により決定される。なお、一般の電解クロメート処理槽として知られている縦型の電解槽の場合、素材鋼板の表面温度は、ジュール熱の影響で浴温より少し高目の温度になるので、後述する高濃度クロム酸浴の浴温は、少なくとも47℃未満とすることが好ましい。
 陰極電解処理に用いる高濃度クロム酸浴は、150g/l以上のクロム酸と、該クロム酸の濃度対比0.003倍以上0.006倍以下の濃度の硫酸イオンと、フッ素化合物とを含有する高濃度クロム酸浴とする。
 高濃度クロム酸浴に含まれる硫酸イオンは、助剤として添加されるものであり、所望の金属クロム量、クロム水和酸化物量を得るために添加される。電解クロメート処理鋼板に塗装焼付けやフィルムラミネートする際、クロム水和酸化物層を構成する全クロム水和酸化物のうちの一部が脱水してアルカリ不溶クロム水和酸化物に変化する。ここで、脱水されてアルカリ不溶クロム水和酸化物に変化する程度は、特に高濃度クロム酸浴に含まれる硫酸イオン濃度に依存する。
 上記硫酸イオン濃度がクロム酸の濃度対比で0.003倍未満になると、アルカリ不溶クロム率が68%以上と多くなり、良好な無研磨溶接性が得られない。一方、上記硫酸イオン濃度がクロム酸の濃度対比で0.006倍を超えると、目的とするクロム水和酸化物層の適正付着量が確保できない場合がある。したがって、高濃度クロム酸浴に含まれる硫酸イオン濃度は、クロム酸の濃度対比で0.003倍以上0.006倍以下とする。
 上記高濃度クロム酸浴としては、例えば、CrO3-Na2SiF6-SO4 2-系の高濃度クロム酸浴が好適である。この高濃度クロム酸浴は、金属クロムを長時間安定かつ高効率に析出できるとともに、無研磨溶接性に適したクロム水和酸化物の基礎となる皮膜を同時に析出できる。また、上記高濃度クロム酸浴としては、例えば、CrO3-NaF-SO4 2-系等の高濃度クロム酸浴も適用することができる。
 なお、高濃度クロム酸浴中のクロム酸の濃度は、200g/l以下とすることが好ましい。また、高濃度クロム酸浴中のフッ素化合物の濃度は、フッ素イオン換算でクロム酸濃度対比0.01倍以上0.04倍以下とすることが好ましい。
 陰極電解処理の電流密度は、アルカリ不溶クロム率を低減するうえで極めて重要である。電解槽(高濃度クロム酸浴)と浸漬槽(低濃度クロム酸浴)とを直列に配設したクロメート処理ラインに素材鋼板を通板して電解クロメート処理鋼板を製造する際、ライン速度を高速化する場合には、所望のクロメート皮膜を短時間で形成すべく、電流密度を高めることが必要になる。しかしながら、陰極電解処理の電流密度が過剰に高くなると、アルカリ不溶クロム率が高くなる。特に、陰極電解処理の電流密度が120A/dm2を超えると、鋼板幅方向エッジ部においてアルカリ不溶クロム率が高くなり、68%未満とすることが困難になる。
 したがって、陰極電解処理の電流密度は120A/dm2以下とする。但し、陰極電解処理の電流密度を極端に低くすることは、生産性の観点から好ましくない。また、陰極電解処理の電流密度が低下するにつれて、陰極電解処理時に金属クロムとともに析出するクロム水和酸化物の量が増加する傾向にある。そのため、陰極電解処理の電流密度を大幅に低くすると、陰極電解処理にクロム水和酸化物が大量に析出し、続く浸漬処理でクロム水和酸化物の一部を溶解して所望の付着量とすることが困難になる。特に、ライン速度の高速化に伴い浸漬処理時間が2秒未満と短くなると、上記問題が顕著になる。それゆえ、陰極電解処理の電流密度は40A/dm2以上とすることが好ましく、50A/dm2以上とすることがより好ましく、55 A/dm2以上とすることがより一層好ましい。
 続いて、低濃度クロム酸浴中で上記陰極電解処理を施した素材鋼板に浸漬処理を行う。この浸漬処理では、上記陰極電解処理で過剰に析出したクロム水和酸化物を溶解して所望の付着量のクロム水和酸化物層を形成するとともに、クロム水和酸化物中の余分な助剤を除去する。また、この浸漬処理を通じて、クロム水和酸化物層に含まれるアルカリ不溶クロム水和酸化物の割合を低減する。
 浸漬処理で用いる低濃度クロム酸浴は、30 g/l以上60 g/l以下のクロム酸と、フッ素化合物とを含有する60℃未満の低濃度クロム酸浴とする。低濃度クロム酸浴に含まれるクロム酸の濃度が30g/l未満であると、クロム水和酸化物中の余分な助剤を除去する効果が充分に発現しない場合がある。一方、低濃度クロム酸浴に含まれるクロム酸の濃度が60g/lを超えると、クロム水和酸化物が不均一に溶解し、均一なクロム水和酸化物層が得られない。
 フッ素化合物の濃度は、フッ素イオン換算でクロム酸濃度対比0.01倍以上0.04倍以下とすることが好ましい。フッ素化合物の濃度がフッ素イオン換算でクロム酸濃度対比0.01倍未満であると、クロム水和酸化物中の余分な助剤を除去する効果が充分に発現しない場合がある。一方、フッ素化合物の濃度がフッ素イオン換算でクロム酸濃度対比0.04倍超であると、クロム水和酸化物が不均一に溶解し、均一なクロム水和酸化物層が得られない場合がある。なお、低濃度クロム酸浴に含まれるフッ素化合物としてはNH4F、NaF等が例示される。
 ここで、低濃度クロム酸浴の浴温は、アルカリ不溶クロム率を低減するうえで極めて重要である。ライン速度が高速化した場合、低濃度クロム酸浴の浴温が60℃以上になると、板幅方向最エッジ部に限らずアルカリ不溶クロム率が68%以上となる場合がある。したがって、低濃度クロム酸浴の浴温は60℃未満とする。但し、低濃度クロム酸浴の浴温が極端に低くなると、浸漬処理の反応性が乏しくなることが懸念されるため、40℃以上とすることが好ましい。なお、上記低濃度クロム酸浴としては、例えば、CrO3-NH4F系の低濃度クロム酸浴が好適である。また、CrO3-NaF系等の低濃度クロム酸浴も適用することができる。
 以上の製造条件により、浸漬処理時間が2秒未満であっても所望のクロメート皮膜が形成可能となり、ラインの高速化が可能となった。
 続いて、上記浸漬処理を施した素材鋼板を水洗する。低濃度クロム酸浴での浸漬処理後、水、特に温水で洗浄(リンス)すると、電解クロメート処理鋼板に塗装焼付けやフィルムラミネートした場合、塗装焼付け後の塗料密着性、ラミネートフィルムの密着性が向上する。このような効果を得るには、60℃以上の温水で洗浄することが好ましく、80℃以上とすることがより好ましい。
 なお、上記浸漬処理および水洗により上記した塗料密着性やラミネートフィルムの密着性が向上する理由は定かではないが、助剤の除去と温水リンスの相互作用による皮膜のオル化(OH基による高分子化)が寄与しているものと推測される。この変化の指標が、アルカリ不溶クロム率の低減に現れている。
 上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。次に、本発明の実施例を以下で具体的に説明する。
 素材鋼板である板厚0.32mm、板幅900mmの冷延鋼板の両面に、通常の脱脂、酸洗を施した後、表1に示す条件により陰極電解処理、浸漬処理を施し、更に水洗、乾燥、塗油して電解クロメート処理鋼板を製造した。なお、陰極電解処理中の素材鋼板の表面温度はいずれの試験例においても40℃以下であった。
 製造した各電解クロメート処理鋼板について、以下の手法にしたがい試験片を作製し、鋼板中央部およびエッジ部における金属クロム層の付着量、クロム水和酸化物層を構成する全クロム水和酸化物の付着量、及びアルカリ不溶クロム水和酸化物の付着量を測定した。また、得られた測定値を用い、(アルカリ不溶クロム水和酸化物の付着量)/(全クロム水和酸化物の付着量)×100(%)により、アルカリ不溶クロム率を求めた。
<試験片(鋼板幅方向エッジ部・中央部)の作製>
 得られた各電解クロメート処理鋼板から、圧延方向に長さ100mmの鋼板を切り出し、該鋼板の一方の板幅方向最エッジ部(OP)および他方の板幅方向最エッジ部(DR)からそれぞれ幅5mmの試験片を採取して、長さ100mm×幅5mmの試験片(長さ方向が圧延方向と平行な試験片)を作製した。また、得られた各電解クロメート処理鋼板から、圧延方向に長さ100mmの鋼板を切り出し、該鋼板板幅方向中央部から幅5mmの試験片を採取して、長さ100mm×幅5mmの試験片(長さ方向が圧延方向と平行な試験片)を作製した。
 各試験片を均等の大きさに4分割した分割試験片を作成し、各々について、蛍光X線でクロム付着量(a)を測定した。次いで、4分割したうちの2つの分割試験片を、110℃に加熱した7.5規定のNaOH溶液中に10分間浸漬することにより表層のクロム水和酸化物を除去した後、蛍光X線でクロム付着量を測定した値を金属クロム層の付着量(b)とした。
 また、前記(a)の4測定値の平均から前記(b)の2測定値の平均を差し引いて、全クロム水和酸化物の付着量(金属クロム換算)を求めた。
 更に、上記において4分割したうちの残り2つの分割試験片を、210℃の炉内に装入し、各分割試験片温度が210℃に到達した後、10分間空焼を行い、上記と同様に110℃に加熱した7.5規定のNaOH溶液中に10分間浸漬し、クロム量(c)を蛍光X線で測定した。そして、(c)の2測定値の平均から前記(b)の2測定値の平均を差し引いて、アルカリ不溶クロム水和酸化物の付着量(金属クロム換算)を求めた。
 なお、エッジ部の金属クロメート層の付着量は、一方のエッジ部(OP)における試験片の金属クロメート層の付着量と、他方のエッジ部(DR)における試験片の金属クロメート層の付着量との平均値とした。同様に、エッジ部の全クロム水和酸化物の付着量は、一方のエッジ部(OP)における試験片の全クロム水和酸化物の付着量と、他方のエッジ部(DR)における試験片の全クロム水和酸化物の付着量との平均値とした。エッジ部のアルカリ不溶クロム水和酸化物の付着量は、一方のエッジ部(OP)における試験片のアルカリ不溶クロム水和酸化物の付着量と、他方のエッジ部(DR)における試験片のアルカリ不溶クロム水和酸化物の付着量との平均値とした。
 更に、以下の手法にしたがい、電解クロメート処理鋼板の重ね合わせた部分同士を1対の溶接用電極で抵抗溶接する場合における、前記重ね合わせ部分の接点での接触電気抵抗(R1)と溶接用電極と電解クロメート処理鋼板の接点での接触電気抵抗(R2)の比(R1/ R2)を求めた。
 <接触電気抵抗比(R1/R2)の測定>
 製造した各電解クロメート処理鋼板を210℃の炉内に装入し、鋼板温度が210℃に到達後、10分間空焼を行なった。前記電解クロメート処理鋼板の重ね合せ端部同士1a、1bを、その表裏面を合わせた状態で、図4に示すように、2mmφ面積を持つ1対の銅電極2a、2bで挾み込み、加圧力980Nで1Aの通電を行い、3秒後の電位差からR1とR2を求め、これらから、R1/R2の接触電気抵抗比を算出した。
 これらの結果を表2に示す。なお、表2に記載の付着量は、いずれも鋼板片面当たりの付着量である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に規定された条件にしたがい製造された電解クロメート処理鋼板(鋼板No.1~7,10,11)はいずれも、所望のクロメート皮膜が得られている。これに対し、本発明の条件を満足しない方法により製造された電解クロメート処理鋼板(鋼板No.8,9)は、アルカリ不溶クロム率が68%以上となっている。
  1a、1b 電解クロメート処理鋼板の重ね合わせた端部
  2a、2b 溶接用電極

Claims (2)

  1.  素材鋼板に、脱脂、酸洗を順次施す工程と、
     前記素材鋼板の表面温度を47℃以下にして、150g/l以上のクロム酸と、該クロム酸の濃度対比0.003倍以上0.006倍以下の濃度の硫酸イオンと、フッ素化合物とを含有する高濃度クロム酸浴中において120A/dm2以下の電流密度で前記素材鋼板に陰極電解処理を行う工程と、
     30g/l以上60g/l以下のクロム酸と、フッ素化合物とを含有する60℃未満の低濃度クロム酸浴中で前記素材鋼板に浸漬処理を行う工程と、
     前記素材鋼板を水洗する工程と、
    をこの順に有することを特徴とする電解クロメート処理鋼板の製造方法。
  2.  前記低濃度クロム酸浴のフッ素化合物の濃度が、フッ素イオン換算でクロム酸濃度対比0.01倍以上0.04倍以下であり、前記低濃度クロム酸浴中での浸漬処理時間が2秒未満である請求項1に記載の電解クロメート処理鋼板の製造方法。
PCT/JP2014/002166 2014-04-16 2014-04-16 電解クロメート処理鋼板の製造方法 WO2015159321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014553000A JP5858175B1 (ja) 2014-04-16 2014-04-16 電解クロメート処理鋼板の製造方法
CN201480077706.6A CN106133206B (zh) 2014-04-16 2014-04-16 电解铬酸盐处理钢板的制造方法
PCT/JP2014/002166 WO2015159321A1 (ja) 2014-04-16 2014-04-16 電解クロメート処理鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/002166 WO2015159321A1 (ja) 2014-04-16 2014-04-16 電解クロメート処理鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2015159321A1 true WO2015159321A1 (ja) 2015-10-22

Family

ID=54323576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002166 WO2015159321A1 (ja) 2014-04-16 2014-04-16 電解クロメート処理鋼板の製造方法

Country Status (3)

Country Link
JP (1) JP5858175B1 (ja)
CN (1) CN106133206B (ja)
WO (1) WO2015159321A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313040B1 (ko) 2017-06-09 2021-10-14 제이에프이 스틸 가부시키가이샤 캔용 강판 및 그 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298864A (ja) * 2004-04-08 2005-10-27 Jfe Steel Kk 電解クロメート処理鋼板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292366B1 (ko) * 1995-03-29 2001-06-01 에모또 간지 아연계 도금강판용의 전해 크로메이트욕 및 그것을 사용한 내식성, 내지문성 및 내크롬 용출성이 우수한 전해 크로메이트처리 아연계 도금강판의 제조방법
ATE283552T1 (de) * 2000-08-05 2004-12-15 Ineos Chlor Entpr Ltd Behandlung eines substrates aus nichtrostendem stahl
JP5315677B2 (ja) * 2007-11-28 2013-10-16 Jfeスチール株式会社 燃料タンク用鋼板およびその製造方法
KR101310598B1 (ko) * 2009-02-04 2013-09-23 신닛테츠스미킨 카부시키카이샤 주석 도금 강판 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298864A (ja) * 2004-04-08 2005-10-27 Jfe Steel Kk 電解クロメート処理鋼板およびその製造方法

Also Published As

Publication number Publication date
JP5858175B1 (ja) 2016-02-10
JPWO2015159321A1 (ja) 2017-04-13
CN106133206B (zh) 2018-09-11
CN106133206A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5884947B2 (ja) Niめっき鋼板及びNiめっき鋼板の製造方法
KR102313040B1 (ko) 캔용 강판 및 그 제조 방법
KR102313041B1 (ko) 캔용 강판 및 그 제조 방법
EP3388548B1 (en) Steel sheet for cans and production method for steel sheet for cans
JP6493520B2 (ja) 缶用鋼板およびその製造方法
JP5858175B1 (ja) 電解クロメート処理鋼板の製造方法
JP6119931B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
CN112639172B (zh) 罐用钢板及其制造方法
JP4474977B2 (ja) 溶接缶用電解クロメート処理鋼板および電解クロメート処理鋼板の製造方法
JP2014101572A (ja) 無研磨で溶接可能な電解クロメート処理鋼板の製造方法
JPS6144158B2 (ja)
JP6052305B2 (ja) 容器用鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014553000

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889420

Country of ref document: EP

Kind code of ref document: A1