WO2015156360A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2015156360A1
WO2015156360A1 PCT/JP2015/061126 JP2015061126W WO2015156360A1 WO 2015156360 A1 WO2015156360 A1 WO 2015156360A1 JP 2015061126 W JP2015061126 W JP 2015061126W WO 2015156360 A1 WO2015156360 A1 WO 2015156360A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
cell
current
monitoring device
Prior art date
Application number
PCT/JP2015/061126
Other languages
English (en)
French (fr)
Inventor
鈴木 睦三
睦 菊地
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201580017218.0A priority Critical patent/CN106461730B/zh
Priority to US15/302,187 priority patent/US10101404B2/en
Priority to EP15777200.5A priority patent/EP3130934B1/en
Publication of WO2015156360A1 publication Critical patent/WO2015156360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to a battery monitoring device that monitors the state of a battery.
  • An assembled battery in which a plurality of battery cells of a secondary battery such as a lithium ion secondary battery, a nickel metal hydride battery, or a lead battery are arranged in series and parallel is usually used together with a battery monitoring device.
  • the battery monitoring device detects the state of the battery by detecting the cell voltage of each battery cell constituting the assembled battery or detecting the current flowing through the battery cell. Thereby, it is monitored whether the assembled battery is in an appropriate state.
  • Some battery monitoring devices may function as a control device, such as controlling an energized state in order to maintain an appropriate state.
  • a general battery monitoring device in order to know whether or not each cell is overcharged or overdischarged, the voltage or energization current of each battery cell is detected or measured. Moreover, in order to know the deterioration state of a battery, the internal resistance of a battery cell may be detected. This is because when the battery deteriorates, the internal resistance increases, and knowing the internal resistance indicates the deterioration state of the battery.
  • the detection of the internal resistance of the battery is obtained from the measured value of the voltage of the battery cell and the measured value of the energizing current. However, at this time, it is necessary to synchronize the timing at which the voltage detection means detects the cell voltage of the battery cell and the timing at which the current detection means detects the current flowing through the battery cell.
  • a general battery state detection circuit is configured to measure the cell voltages of a plurality of battery cells in order, the cell voltage measurement requires a certain period of cell voltage measurement period. Therefore, it is difficult to make the simultaneity of the cell voltage measurement time and the current measurement time smaller than the time width of the cell voltage measurement period. For this reason, in the conventional battery monitoring circuit, it is difficult to adjust the voltage and current measurement times for each battery cell, and it is therefore difficult to measure the internal resistance of the battery for each cell.
  • the current detection means is provided in the monitoring circuit provided with the voltage detection means, and the detection of the cell voltage and the current are performed based on the clock on the monitoring circuit side.
  • a configuration for performing detection of the above is conceivable.
  • Patent Document 1 discloses a configuration using correction means that allows a deviation between the voltage detection timing in the monitoring circuit and the current detection timing in the control circuit and corrects the deviation.
  • a second voltage measurement unit that measures a voltage across the battery cell group in which at least two or more battery cells are connected in series, a current measurement unit that measures a current flowing through the assembled battery, and a first voltage measurement.
  • Trigger signal for The includes a trigger signal generating unit for input to the second voltage measuring unit and the current measuring unit.
  • the internal resistance of a plurality of battery cells can be detected for each cell.
  • FIG. 1 is a diagram illustrating an example of the configuration of the electric vehicle drive device 100.
  • FIG. 2 is a diagram illustrating a change in cell voltage when the energization current of the assembled battery 10 changes.
  • FIG. 3 is a diagram showing a typical configuration example of the cell voltage measurement circuits CC1 to CCL shown in FIG.
  • FIG. 4 is a diagram schematically showing a measurement sequence in the cell voltage measurement circuit CC1.
  • FIG. 5 is a diagram for explaining the allowable time range Tp.
  • FIG. 6 is a diagram for explaining the internal resistance deriving operation in the battery monitoring device 2.
  • FIG. 7 is a diagram for explaining an allowable value of the measurement time deviation.
  • FIG. 1 is a diagram illustrating an example of the configuration of the electric vehicle drive device 100.
  • FIG. 2 is a diagram illustrating a change in cell voltage when the energization current of the assembled battery 10 changes.
  • FIG. 3 is a diagram showing a typical configuration example of the cell voltage measurement circuits
  • FIG. 8 is a diagram showing the relationship between the measurement time deviation ⁇ t and the measurement error ⁇ R of the internal resistance.
  • FIG. 9 is a diagram showing a second embodiment of the battery monitoring device.
  • FIG. 10 is a diagram illustrating a third embodiment of the battery monitoring device.
  • FIG. 11 is a diagram illustrating a fourth embodiment of the battery monitoring device.
  • FIG. 12 is a diagram schematically illustrating the transfer function GV of the second voltage measurement unit 22 and the transfer function GI of the current measurement unit 23.
  • FIG. 13 is a diagram illustrating a sixth embodiment of the battery monitoring device.
  • a battery monitoring device is a device that detects a battery state of an assembled battery provided in a battery system (also called a power storage device) and keeps the assembled battery in an appropriate state.
  • FIG. 1 shows an electric vehicle drive device 100 equipped with a battery system 1 provided with a battery monitoring device 2 of the present embodiment.
  • the electric vehicle drive device is a rotating machine system that drives an electric vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV).
  • HEV hybrid vehicle
  • EV electric vehicle
  • the electric vehicle drive device 100 includes a battery system 1 including the battery monitoring device 2 and the assembled battery 10, a vehicle controller 30 that controls the entire vehicle, an inverter 40, a rotating electrical machine 50, and the like.
  • the battery system 1 is connected to the inverter 40 via relays 60 and 61.
  • the battery monitoring device 2 communicates with the inverter 40 and the host vehicle controller 30 via a CAN (ControllerCAArea Network) communication bus.
  • CAN ControllerCAArea Network
  • the rotating electrical machine 50 is driven by the electric power from the inverter 40.
  • discharge power is supplied from the battery system 1 to the rotating electrical machine 50 through the inverter 40, and an engine (not shown) is assisted by the driving force of the rotating electrical machine 50.
  • regenerative electric power from the rotating electrical machine 50 charges the assembled battery 10 provided in the battery system 1 through the inverter 40.
  • the inverter 40 includes a motor controller 41, and controls the DC-AC conversion and AC-DC conversion of the inverter 40, thereby performing drive control of the rotating electrical machine 50 and charge / discharge control of the assembled battery 10.
  • the battery system 1 includes an assembled battery 10, a battery monitoring device 2, and a current measuring element 9.
  • the assembled battery 10 is configured by connecting a plurality of battery cells C (C (1) to C (N)) as a minimum unit in series.
  • the assembled battery 10 of the present embodiment is configured by connecting, for example, about 50 to 100 battery cells C in series.
  • the number of battery cells C constituting the assembled battery 10 is N, and in the following, when one of the N battery cells C (1) to C (N) is represented, the battery cell Sometimes called C.
  • the battery cell C which comprises the assembled battery 10 the lithium ion secondary battery which can be charged / discharged is used, for example. In the example shown in FIG.
  • the assembled battery 10 including a plurality of battery cells C has a plurality (L in the example shown in FIG. 1) grouped into a predetermined number of battery cells (four in the example shown in FIG. 1).
  • the cell blocks B1 to BL are connected in series to form a connection body.
  • the battery monitoring device 2 is a device that monitors the state of the assembled battery 10. An overcharge / discharge detection function that detects overcharge and overdischarge of each battery cell C of the assembled battery 10, and each battery cell C of the assembled battery 10. It has an internal resistance detection function for detecting internal resistance.
  • the battery monitoring device 2 includes a cell voltage measurement unit 21, a second voltage measurement unit 22, a current measurement unit 23, a control unit 24, and the like.
  • the cell voltage measurement unit 21 is a circuit that measures the voltage of each battery cell C constituting the assembled battery 10 (hereinafter referred to as cell voltage).
  • the cell voltage measurement unit 21 includes a plurality of cell voltage measurement circuits CC1 to CCL corresponding to the cell blocks B1 to BL.
  • the cell voltage measurement circuits CC1 to CCL are circuits that can measure the cell voltages of about 4 to 12 battery cells C, and may be configured as an integrated circuit (IC).
  • 2nd voltage measurement part 22 is a circuit which measures the voltage (henceforth the total voltage Vt) of the N battery cells which comprise the assembled battery 10 whole.
  • the N battery cells C are represented by symbols C (1), C (2),..., C (N-1), C (N) from the assembled battery negative electrode side
  • the second voltage measuring unit 22 The second voltage input terminals 220a and 220b are connected to the negative electrode of the battery cell C (1) and the positive electrode of the battery cell C (N), respectively.
  • Each of the cell voltage measurement circuits CC1 to CCL measures the voltage of each battery cell for each of the cell blocks B1 to BL.
  • the cell voltage measurement circuits CC1 to CCL communicate with the balancing resistors, the balancing switches, and the control unit 24 that perform the cell voltage balancing operation of the battery cells C (1) to C (N).
  • a measurement signal (electric signal) is input from the current measuring element 9 to the current measuring unit 23 that measures the current flowing through the assembled battery 10.
  • the current measuring element 9 is an element that converts the magnitude of the current into an electric signal, and specifically includes a Hall element sensor, a shunt resistance element, and the like.
  • An electric signal corresponding to the magnitude of the current is output from the current measuring element 9, and the electric signal is measured by the current measuring unit 23.
  • the shunt resistance element is superior to the Hall element sensor in the following points. Since the shunt resistor element has a small offset current, the state of charge (SOC) of the assembled battery 10 can be accurately measured (with high accuracy). Further, since the shunt resistance element has a fast response characteristic (trackability of the voltage value with respect to the current change), if the measurement time constant of the current measuring unit 23 is increased, the time resolution can be increased accordingly. That is, it is excellent in that it is easy to achieve simultaneity of measurement.
  • the control unit 24 performs overall control of the battery monitoring device 2, and performs, for example, operation control and state determination of the cell voltage measurement circuits CC1 to CCL.
  • the control unit 24 receives signals sent from each of the cell voltage measurement unit 21, the second voltage measurement unit 22, and the current measurement unit 23, and uses the signal values to each battery cell C (1) to C (N ) Internal resistance is detected.
  • the number N of battery cells C (1) to C (N) constituting the assembled battery 10 is large, electrical insulation is required for connection between the high voltage side and the low voltage side in the battery monitoring device 2.
  • N 96 lithium ion secondary batteries are connected in series.
  • the voltage across the assembled battery 10 is about 400V. Therefore, there is a voltage difference of about 400 V between the cell voltage measurement circuit CC1 to which the battery cell C (1) is connected and the cell voltage measurement circuit CCL to which the battery cell C (N) is connected. Therefore, it is necessary to electrically insulate the cell voltage measurement circuits CC1 to CCL from the control unit 24.
  • the insulating element 6 is inserted into a connection line (signal line).
  • the rotating electrical machine 50 operates as a generator, and regenerative power flows from the rotating electrical machine 50 (generator) to the inverter 40 and the assembled battery 10. For this reason, the charging current to the assembled battery 10 increases. Thus, in the battery system 1, the energization current to the assembled battery 10 changes with time.
  • FIG. 2 is a diagram showing changes in the cell voltage when the energization current of the assembled battery 10 changes.
  • FIG. 2A shows a change in current
  • FIG. 2B shows a change in cell voltage.
  • the change in the cell voltage at this time includes a component that immediately responds to the current change as shown in FIG. It is expressed by a component that changes late.
  • the component that responds immediately is called a DC internal resistance component (DCR, Direct-Current Resistance), and the component that changes with delay is called a polarization component.
  • the DC internal resistance component is a voltage change caused by the internal resistance R of the battery cell C and is represented by R ⁇ ⁇ I.
  • the polarization component is a voltage change component caused by factors such as the capacitance and inductance of the battery cell C, and further the behavior of ions in the electrolytic solution.
  • the battery monitoring device 2 detects the internal resistance of the battery cell C as described above. Since the internal resistance is calculated based on the voltage of the battery cell C (cell voltage) and the current flowing through the battery cell C, it is necessary to accurately measure the cell voltage and current in order to obtain the internal resistance with high accuracy.
  • FIG. 3 is a diagram showing a typical configuration example of the cell voltage measurement circuits CC1 to CCL shown in FIG.
  • the cell voltage measurement circuits CC1 to CCL have the same configuration, and FIG. 3 shows the cell voltage measurement circuit CC1.
  • the number of battery cells C constituting the cell block B1 is four.
  • FIG. 3 shows the case where the number of battery cells C is six.
  • the cell voltage measurement circuits CC1 to CCL can measure the cell voltages of about 4 to 12 battery cells C, and the selection circuit 210 that selects the battery cells C (1) to C (6) to be measured. And a voltage detection circuit 211.
  • a multiplexer or the like is used as the selection circuit 210, and the voltage detection circuit 211 is generally composed of an amplifier and an analog / digital converter.
  • FIG. 4 is a diagram schematically showing a typical measurement sequence in the cell voltage measurement circuit CC1 shown in FIG.
  • FIG. 4A is a timing chart showing cell voltage measurement timings of the battery cells C (1) to C (6)
  • FIG. 4B shows a change in current.
  • the selection circuit 210 includes battery cell C (1) ⁇ battery cell C (2) ⁇ battery cell C (3) ⁇ battery cell C (4) ⁇ battery cell C (5) ⁇ Battery cells are selected in order, such as battery cell C (6). Then, the cell voltage is sequentially measured for each cell by the voltage detection circuit 211.
  • the cell voltage measured by the voltage detection circuit 211 is referred to as a cell voltage measurement value.
  • the time required for measuring the cell voltage (herein referred to as the cell voltage measurement period) Tm is measured for one cell. Six times the required time is required. For example, a typical value of the measurement required time for one cell is 200 ⁇ s. In this case, the cell voltage measurement period Tm is 1.2 ms.
  • the present invention it is possible to measure the cell voltage value and the current value substantially simultaneously using the fact that the time change of the “cell voltage ratio” is small as will be described later. As a result, even when the current changes with time as shown in FIG. 4B, the internal resistance can be accurately measured for each cell.
  • the “cell voltage ratio” is the ratio of individual cell voltage measurement values to the total of N cell voltage measurement values vc (1, t) to vc (N, t).
  • the cell voltage ratio of the battery cell C (k) at time t is expressed as a (k, t).
  • the cell voltage ratio a (k, t) is obtained by the following equation (1).
  • vc (k, t) is a cell voltage measurement value of the battery cell C (k) at time t.
  • each battery cell C ((2) is obtained by the following equation (2) from the cell voltage ratio and the total voltage Vt measured by the second voltage measuring unit 22.
  • the cell voltages 1) to C (N) can be calculated.
  • the cell voltage vc (k, t0) calculated by the equation (2) is referred to as a cell voltage calculation value.
  • time t0 is the measurement time of the total voltage Vt by the second voltage measurement unit 22.
  • the time t2 in the cell voltage ratio a (k, t2) is the measurement time of each battery cell C (1) to C (N) in each cell voltage measurement circuit CC1 to CCL.
  • the N cell voltage measurement values vc (1, t) to vc (N, t) are the cell voltage measurement periods shown in FIG. Measured within Tm.
  • the time difference between the measurement time (cell voltage measurement time) t2 and the measurement time t0 of the total voltage Vt in the cell voltage ratio a (k, t2) is within the allowable time range Tp described later. If it is, it is acceptable. This is because, as will be described later, the time change of the cell voltage ratio a (k, t2) is sufficiently small during the period of the allowable time range Tp. Note that the calculation of the cell voltage ratio a (k, t) by the equation (1) and the calculation of the cell voltage calculation value vc (k, t0) of each battery cell C (k) by the equation (2) This is performed in 24 arithmetic units 240.
  • a polarization component P (t) in FIG. 2 is also taken into consideration. From this, if the current change ⁇ I considered as a battery system is about 100 (A) at the maximum, the error of the cell voltage ratio in the time range of 10 ms is about 0.05%, which can be regarded as almost constant. 10 ms can be set as the allowable time range Tp.
  • the allowable time range Tp is not a value fixed at 10 ms, but a value that varies depending on an allowable error range.
  • the allowable time range Tp is 50 ms.
  • the cell voltage ratio a (k, t2) can be regarded as being constant as shown in FIG. 5 (c). That is, when the cell voltage ratio a (k, t2) and the total voltage Vt (t0) are acquired within the allowable time range Tp, the cell voltage ratio a (k, t2) and the total voltage Vt ( By calculating the product with t0), a cell voltage calculation value vc (t0) corresponding to the measurement time t0 of the total voltage Vt (t0) is obtained as shown in FIG.
  • any one of the N battery cells C (1) to C (N) is selected by the selection circuit 21a provided in the cell voltage measuring unit 21 for the sake of simplicity.
  • One is selected, and the cell voltage of the selected battery cell is shown in a simplified form as measured by the voltage detection circuit 21b.
  • the selection circuit 21a and the voltage detection circuit 21b are circuits having functions similar to those of the selection circuit 210 and the voltage detection circuit 211 shown in FIG.
  • the cell voltage measuring section 21 may be composed of a plurality of cell voltage detection circuits CC1 to CCL as shown in FIG. The same applies to FIG. 9, FIG. 10, FIG. 11, and FIG.
  • the cell voltage measurement unit 21 sequentially selects the battery cells C (1) to C (N) by the selection circuit 21a, and measures the voltage of the battery cell selected by the selection circuit 21a by the voltage detection circuit 21b. Since the actual configuration of the cell voltage measuring unit 21 is the same as that shown in FIG. 1, the time required to measure the cell voltages of the battery cells C (1) to C (N) is about 1 ms as described above. The cell voltage measurement value measured by the cell voltage measurement unit 21 is transferred to the control unit 24 via a signal line.
  • the calculation unit 240 of the control unit 24 uses the cell voltage measurement value measured by the voltage detection circuit 21b and the above-described equation (1) to calculate the cell voltage ratio a (k, t) from the battery cells C (1) to C (C). Calculate every (N).
  • the control unit 24 transmits the voltage measurement trigger signal Svt to the second voltage measurement unit 22 and transmits the current measurement trigger signal Sit to the current measurement unit 23.
  • the second voltage measurement unit 22 receives the voltage measurement trigger signal Svt and measures the voltage between the second voltage input terminals 220a and 220b at time t0. Since the voltage between the second voltage input terminals 220a and 220b is the voltage between the terminals of the entire assembled battery, it corresponds to the total voltage Vt (t0). The measured voltage value (that is, the total voltage Vt (t0)) is transmitted to the control unit 24.
  • the current measurement unit 23 receives the current measurement trigger signal Sit and measures the current value of the assembled battery 10 at time t0. The measured current value I (t0) is transmitted to the control unit 24.
  • the control unit 24 uses the transmitted cell voltage ratio a (k, t), the total voltage Vt (t0), and the equation (2), and the battery cells C (1) to C (N) at the time t0.
  • the cell voltage calculation value vc (k, t0) is calculated.
  • the second voltage measurement unit 22 and the current measurement unit 23 receive the trigger signals Svt and Sit, respectively, and start measurement.
  • the trigger signal includes not only a pulse signal but also a transmission signal of a software command. That is, the microcomputer included in the control unit 24 transmits a software command for instructing the start of measurement to each of the second voltage measuring unit 22 and the current measuring unit 23, and the second voltage is set using the software command as a trigger signal.
  • the measurement unit 22 and the current measurement unit 23 perform measurement so that the measurement times are equal to each other is also included in the present invention.
  • the current is measured at time t1 and the voltage (total voltage Vt) is measured at time t2.
  • FIG. 7B shows a change in current
  • FIG. 7A shows a change in voltage.
  • the allowable time deviation depends on the maximum change rate of the current waveform to be measured. For example, when a low-pass filter is provided in the second voltage measuring unit 22 and the current measuring unit 23 and the time change of the observed voltage waveform and current waveform is delayed, the measurement that is allowed by the time change is delayed. The time gap also increases. This point will be described quantitatively next.
  • the allowable measurement time deviation ⁇ t is expressed by the following equation (3).
  • the maximum time change amount Imax ′ is an amount defined by the following equation (4), and the function max () is a function that returns a maximum value.
  • is a measurement error allowed for the measured value of the internal resistance
  • I 0 is an average current value.
  • the allowable measurement error ⁇ is preferably ⁇ 20%, more preferably ⁇ 1%.
  • the current measurement time is substantially the same based on the cell voltage ratio a (k, t) and the total voltage Vt (the voltage of the entire assembled battery) measured by the second voltage measurement unit 22.
  • the cell voltage at the time was calculated by equation (2).
  • the voltage measured by the second voltage measuring unit 22 is not the total voltage Vt of the assembled battery 10 but the intermediate voltage Vm (the voltages of M battery cells connected in series: M Is a natural number of 2 to N-1.
  • any one of the N battery cells C (1) to C (N) is selected by the selection circuit 21a provided in the cell voltage measurement unit 21.
  • One is selected, and the cell voltage of the selected battery cell is shown in a simplified form as measured by the voltage detection circuit 21b.
  • the cell voltage measuring section 21 may be composed of a plurality of cell voltage detection circuits CC1 to CCL.
  • the second voltage input terminal 220a is connected to the negative side of the battery cell C (1), and the second voltage input terminal 220b is connected to the positive side of the battery cell C (2).
  • the sum of the voltage of the cell C (1) and the voltage of the battery cell C (2) is measured as the intermediate voltage Vm.
  • the second voltage measurement unit 22 and the current measurement unit 23 receive the trigger signals Svt and Sit so that the measurement times are substantially equal to each other. To measure.
  • the cell voltage vc (k, t0) at time t0 (voltage measurement time at the second voltage measurement unit 22) is calculated as follows.
  • Vt (t0) is related by the following equation (5).
  • B (t2) is a correction coefficient calculated from the cell voltage ratio, and is defined by the following equation (7).
  • the correction coefficient B (t2) is calculated from the cell voltage ratio, and thus can be regarded as being constant in the allowable period range Tp as with the cell voltage ratio. Therefore, as shown in Equation (6), the cell voltage calculation value vc (k, t0) at time t0 is obtained from the intermediate voltage Vm (t0) measured at time t0.
  • the timing for calculating the correction coefficient B (t2) may be calculated when the cell voltage measurement unit 21 measures the cell voltages C (1) to C (N) of each battery cell.
  • the calculation of the correction coefficient B (t2) is performed by the calculation unit 240 of the control unit 24. In the example shown in FIG.
  • the voltage across the battery cells C (1) to C (2) is used as the intermediate voltage Vm, but any continuous M voltage across the assembled battery 10 is used as the intermediate voltage. Can do.
  • the magnitude of the voltage value to be measured by the second voltage measuring unit 22 is the total voltage Vt (t0). Since it is smaller than the case of measurement, there is an effect that it is easy to make a voltage measurement circuit. In particular, since the withstand voltage required for the circuit is reduced, the circuit area of the second voltage measuring unit 22 can be reduced.
  • the cell voltage measuring unit 21 includes a cell voltage filter 21c.
  • the cell voltage filter 21c is a filter that functions to temporally average cell voltage signals, and a low-pass filter is typically used.
  • the cell voltage measurement unit 21 that measures the cell voltage may have a slow response time. Therefore, by providing the cell voltage filter 21c and temporally averaging the cell voltage signal, electrical noise is reduced, and the cell voltage ratio a (k, t) can be accurately measured.
  • any one of the N battery cells C (1) to C (N) is selected by the selection circuit 21a provided in the cell voltage measurement unit 21.
  • One is selected, and the cell voltage of the selected battery cell is shown in a simplified form as measured by the voltage detection circuit 21b.
  • the cell voltage measuring section 21 may be composed of a plurality of cell voltage detection circuits CC1 to CCL.
  • the measurement of the cell voltage requires a time of the cell voltage measurement period Tm.
  • Tm the period of the cell voltage measurement period
  • an accurate cell voltage can be measured when the cell voltage does not change. Therefore, by providing the cell voltage filter 21c to limit the signal band and smooth the signal, the accuracy of the cell voltage ratio a (k, t) can be increased.
  • the cell voltage measurement period Tm refers to the time required to measure all the voltages of the battery cells C (1) to C (N) constituting the assembled battery 10.
  • the cell voltage measuring unit 21 is composed of a plurality of cell voltage measuring circuits CC1 to CCL, and each of the cell voltage measuring circuits CC1 to CCL is a multiplexer or the like as shown in FIG.
  • the selection circuit 210 and the voltage detection circuit 211 are configured.
  • the cell voltage measurement circuits CC1 to CCL can start measurement almost simultaneously, so that the battery cells to which the cell voltage measurement circuits CC1 to CCL are connected are connected.
  • the time for measuring the cell voltage is the cell voltage measurement period Tm.
  • the period from the measurement of the cells C (1) to C (4) is the cell voltage measurement period Tm.
  • circuit calibration processing such as zero correction may be performed after this period, but the circuit calibration processing period is not included in the cell voltage measurement period Tm. Not included. This is because even if the cell voltage value fluctuates during the circuit calibration process, the measurement of the cell voltage is not affected.
  • the second voltage measuring unit 22 is also provided with a second voltage input filter 22a having a low-pass transmission characteristic, and the characteristic time constant of the cell voltage filter 21c and the characteristic time constant of the second voltage input filter 22a are obtained. They were set differently.
  • the voltage signal input to the second voltage measurement unit 22 passes through the second voltage input filter 22a, and then is input to the voltage detection circuit 22b that is an AD converter, and the analog signal is converted into a digital signal.
  • the current measuring unit 23 is provided with a current input filter 23a.
  • any one of the N battery cells C (1) to C (N) is selected by the selection circuit 21a provided in the cell voltage measuring unit 21.
  • One is selected, and the cell voltage of the selected battery cell is shown in a simplified form as measured by the voltage detection circuit 21b.
  • the cell voltage measuring section 21 may be composed of a plurality of cell voltage detection circuits CC1 to CCL.
  • the second voltage measurement circuit 22 can be used even when the characteristic time constant of the cell voltage filter 21c is long as described above.
  • the characteristic time constant of the second voltage input filter 22a can be set short.
  • the measurement time constant of the cell voltage (the cell voltage calculation value calculated by the above formula (2) or formula (6)) in the present invention is the response of the second voltage measurement circuit 22. Dominated by time constant. Therefore, by setting the characteristic time constant of the second voltage input filter 22a to be shorter than the characteristic time constant of the cell voltage filter 21c as described above, the cell voltage is increased even if the characteristic time constant of the cell voltage filter is increased. It can be measured with the response time constant of the two voltage measurement circuit.
  • the characteristic time constant of the cell voltage filter 21c it is preferable to increase the characteristic time constant of the cell voltage filter 21c from the viewpoint of accurately measuring the cell voltage ratio a (k, t). Therefore, according to the configuration of the present embodiment, it is possible to achieve both high measurement accuracy and high-speed response characteristics. In order to further enhance this effect, it is more preferable to set the characteristic time constant of the second voltage filter 22a of the second voltage measuring unit 22 to 1 ⁇ 2 or less of the characteristic time constant of the cell voltage filter 21c.
  • the fifth embodiment of the battery monitoring apparatus is characterized in that the response characteristics of the second voltage measuring unit 22 and the current measuring unit 23 in FIG. 1 are equal to each other.
  • “response characteristics are equal to each other” is defined as making the characteristic frequency of the transfer function of the second voltage measurement unit 22 equal to the characteristic frequency of the transfer function of the current measurement unit 23.
  • the transfer function of each measurement unit is the ratio of the voltage amplitude of the input signal to the measurement unit and the output signal. The transfer function is also called gain.
  • FIG. 12 is a diagram schematically showing the transfer function GV of the second voltage measuring unit 22 and the transfer function GI of the current measuring unit 23.
  • the horizontal axis indicates the frequency on a logarithmic axis
  • the vertical axis indicates the voltage amplitude ratio on the logarithmic axis.
  • the transfer functions GV and GI shown in FIG. 12 have characteristics that take a constant value in a low frequency range (low frequency range) but decrease in a high frequency range (high frequency range) as the frequency increases. This is the low-pass transmission characteristic.
  • the characteristic frequency fc (characteristic frequency) of the transfer function is defined as a frequency at which the amplitude of the transfer function decreases by 3 dB.
  • the characteristic time constant ⁇ c is defined by the following equation (8).
  • the characteristic frequency of the transfer function GV of the second voltage measuring unit 22 is fc (V)
  • the characteristic frequency of the transfer function GI of the current measuring unit 23 is fc (I).
  • the gain error ⁇ G at the frequency f satisfying f >> fc (V) and f >> fc (V) is expressed by the following equation (10).
  • ⁇ defined by the equation (11) has different characteristic frequencies. Represents the measurement error caused.
  • the measurement error is preferably set to ⁇ 20% or less, it is preferable that the characteristic frequencies of the second voltage measurement unit 22 and the current measurement unit 23 are equal to each other within a range of ⁇ 20%, as can be seen from the equation (11). More preferably, since the measurement error is desired to be ⁇ 5% or less, it is preferable that the characteristic frequencies of the second voltage measurement unit 22 and the current measurement unit 23 are equal to each other within a range of ⁇ 5%, as can be seen from Equation (11). .
  • the output signal amplitude is attenuated more than the input signal amplitude.
  • the amplitude ratio between the voltage signal and the current signal is the correct value. Therefore, the internal resistance of the battery cell can be correctly measured.
  • the characteristic frequency (that is, the characteristic time constant ⁇ c) of the transfer function is set to be equal to each other in the second voltage measuring unit 22 and the current measuring unit 23, whereby the characteristic frequency is low (the characteristic time constant is long). Even if the circuit is used, there is an effect that the internal resistance can be accurately obtained.
  • the voltage detection circuit (digital / analog converter) 22b of the second voltage measurement unit 22 and the current detection circuit (current AD converter) 23b of the current measurement unit 23 are the same.
  • the integrated circuit (IC) 25 was formed.
  • the integrated circuit 25 includes an AD conversion control unit 250 that controls the voltage detection circuit 22b and the current detection circuit 23b. In this way, by forming the voltage detection circuit 22b and the current detection circuit 23b on the same integrated circuit 25, the simultaneous measurement performance of the second voltage measurement unit 22 and the current measurement unit 23 can be improved, and the characteristics of the transfer functions can be mutually improved. It becomes easier to equalize.
  • any one of the N battery cells C (1) to C (N) is selected by the selection circuit 21a provided in the cell voltage measurement unit 21 for the sake of simplicity.
  • One is selected, and the cell voltage of the selected battery cell is shown in a simplified form as measured by the voltage detection circuit 21b.
  • the cell voltage measuring section 21 may be composed of a plurality of cell voltage detection circuits CC1 to CCL.
  • the voltage detection circuit 22b and the current detection circuit 23b each receive a trigger signal from the AD conversion control unit 250 and start AD conversion.
  • the AD conversion control unit 250 generates a trigger signal so that the conversion timings of the voltage detection circuit 22b and the current detection circuit 23b are equal to each other. Furthermore, it is preferable that the voltage detection circuit 22b and the current detection circuit 23b are configured to start conversion with the same trigger signal.
  • ⁇ type AD converter for the voltage detection circuit 22b and the current detection circuit 23b. It is preferable to use a ⁇ type AD converter because highly accurate AD conversion can be performed.
  • the decimation filter of the ⁇ type AD converter is a decimation filter having the same characteristics in the voltage detection circuit 22b and the current detection circuit 23b, so that the transfer functions of these two AD converters are equal to each other. be able to.
  • an input filter (second voltage input filter 22a, current input filter 23a) may be provided in each of the second voltage measurement unit 22 and the current measurement unit 23.
  • the characteristic frequency of the second voltage input filter 22a included in the second voltage measurement unit 22 and the characteristic frequency of the current input filter 23a included in the current measurement unit 23 are equal to each other.
  • the battery monitoring device 2 that monitors the assembled battery 10 in which a plurality of battery cells C (1) to C (N) are connected in series has each of the battery cells C (1) to C (N).
  • the cell voltage measurement unit 21 that measures the voltage between the terminals of the battery cell and the voltage across the battery cell group in which at least two of the battery cells C (1) to C (N) are connected in series are measured.
  • the current measuring unit 23 that measures the current flowing through the assembled battery 10 and the cell voltage measuring unit 21, the battery cells C (1) to C (N)
  • a cell voltage ratio calculation unit 240 for calculating the cell voltage ratio a (k, t), and the cell voltage ratio a (k, t) and the voltage across the second voltage measurement unit 22.
  • trigger signals Svt and Sit for acquiring the both-end voltage measured by the second voltage measurement unit 22 and the current value measured by the current measurement unit 23 as a set, the second voltage measurement unit 22 and the current measurement.
  • a control unit 24 as a trigger signal generation unit that is input to each unit 23.
  • the cell voltage calculation value vc (k, t0) of each battery cell C (1) to C (N) is based on the cell voltage ratio a (k, t) and the both-end voltage measured by the second voltage measuring unit 22. Therefore, it can be regarded as the cell voltage at the same time, and the measurement time of a plurality of cell voltages can be made to coincide with the measurement time of the current.
  • the trigger signal for acquiring the both-end voltage and the current value measured by the current measuring unit 23 as a set is to generate the trigger signal so that the cell voltage and current value required for internal resistance calculation are acquired. This means that the measurement time of the both-end voltage and current value is controlled to be the same time or almost the same time. Thereby, calculation errors of the internal resistance value calculated from the cell voltage calculation value vc (k, t0) and the measured current value can be reduced.
  • the trigger signals Svt and Sit to be acquired as a set as trigger signals whose input times are adjusted so that the measurement times of the second voltage measurement unit 22 and the current measurement unit 23 are substantially equal.
  • the internal resistance value can be calculated with higher accuracy.
  • the number of battery cells in the battery cell group is made smaller than the total number of battery cells of the assembled battery 10, and the intermediate voltage Vm (t0) is used instead of the total voltage Vt (t0).
  • the magnitude of the voltage value to be measured by the second voltage measuring unit 22 is smaller than that when the total voltage Vt (t0) is measured.
  • the withstand voltage required for the circuit is reduced, and the second voltage is reduced.
  • the circuit area of the measurement unit 22 can be reduced.
  • the calculation load of the cell voltage calculation value vc (k, t0) can be reduced.
  • the battery system 1 of the electric vehicle drive device 100 shown in FIG. 1 includes the battery monitoring device 2 as described above, so that the internal resistances of the plurality of battery cells C (1) to C (N) are set for each cell. Since it can be measured, the deterioration degree of each of the battery cells C (1) to C (N) constituting the assembled battery 10 can be measured with high accuracy. That is, since the degree of deterioration of the battery can be monitored for each cell, the battery can be controlled with high accuracy.
  • the embodiments described above may be used alone or in combination. This is because the effects of the respective embodiments can be achieved independently or synergistically.
  • the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.
  • the battery monitoring device provided in the battery system of the electric vehicle drive device has been described as an example.
  • the present invention is not limited to the electric vehicle drive device, and is provided in battery systems of various devices. It can be applied to a battery monitoring device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電池監視装置は、複数の電池セルが直列に接続された組電池を監視する電池監視装置であって、複数の電池セルの各々の端子間電圧を計測する第1電圧計測部と、複数の電池セルの内の、少なくとも2以上の電池セルが直列接続している電池セル群の両端電圧を計測する第2電圧計測部と、組電池を流れる電流を計測する電流計測部と、第1電圧計測部により計測された端子間電圧に基づいて、複数の電池セルのセル電圧比をそれぞれ算出するセル電圧比算出部と、セル電圧比と第2電圧計測部で計測された両端電圧とに基づいて、両端電圧の計測時における複数の電池セルのセル電圧をそれぞれ算出するセル電圧算出部と、第2電圧計測部で計測される両端電圧と電流計測部で計測される電流値とをセットとして取得するためのトリガ信号を、第2電圧計測部および電流計測部にそれぞれ入力するトリガ信号発生部と、を備える。

Description

電池監視装置
 本発明は、電池の状態を監視する電池監視装置に関する。
 リチウムイオン2次電池やニッケル水素電池、鉛電池などの2次電池の電池セルを複数個直並列して構成した組電池は、通常、電池監視装置とともに用いられる。電池監視装置は、組電池を構成する各電池セルのセル電圧を検出したり、電池セルに流れる電流を検出したりすることで、電池の状態を検出する。これにより、組電池が適切な状態にあるかを監視する。電池監視装置によっては、適切な状態を保つために、通電状態を制御するなどの、制御装置としての働きを持つ場合もある。
 一般的な電池監視装置では、各セルが過充電・過放電されていないかを知るために、各電池セルの電圧や通電電流を検知または計測する。また、電池の劣化状態を知るために、電池セルの内部抵抗を検知することもある。電池が劣化すると内部抵抗が上昇するので、内部抵抗を知ることで電池の劣化状態がわかるためである。
 電池の内部抵抗の検出は、電池セルの電圧の測定値と通電電流の測定値とから求まる。ただし、この際、電圧検出手段にて電池セルのセル電圧を検出するタイミングと、電流検出手段にて電池セルを流れる電流を検出するタイミングとを同期させる必要がある。
 一般的な電池状態検出回路では、複数の電池セルのセル電圧を順に計測する構成であるため、セル電圧の計測にはある時間幅のセル電圧計測期間が必要である。そのため、セル電圧の計測時刻と電流の計測時刻との同時性を、このセル電圧計測期間の時間幅よりも小さくすることは困難である。このため、従来の電池監視回路では、電圧と電流の計測時刻を電池セル毎に合わせることは困難であり、そのために、電池の内部抵抗をセル毎に測定することは難しい。
 セル電圧の検出タイミングと電流の検出タイミングとを同期させる構成としては、電圧検出手段が設けられた監視回路中に電流検出手段を設け、監視回路側のクロックに基づいて、セル電圧の検出および電流の検出を実行する構成が考えられる。
 しかし、このような構成では、監視回路にて電池セル毎にセル電圧を検出すると共に、電流を検出する必要があるため、監視回路で取り扱うデータが膨大になってしまうという問題がある。
 これに対して、監視回路での電圧検出タイミングと制御回路での電流検出タイミングのずれを許容し、そのずれを補正する補正手段を用いる構成が特許文献1に示されている。
日本国特開2012-154641号公報
 しかしながら、検出タイミングのずれ幅と補正量との関係は、電流や電圧の変化速度に依存して変化するので、この方法では正確な補正を行うことができないという課題があった。特に、電流、電圧が急速に時間変化する場合に誤差が大きくなるという課題があった。
 本発明の態様によると、複数の電池セルが直列に接続された組電池を監視する電池監視装置は、複数の電池セルの各々の端子間電圧を計測する第1電圧計測部と、複数の電池セルの内の、少なくとも2以上の電池セルが直列接続している電池セル群の両端電圧を計測する第2電圧計測部と、組電池を流れる電流を計測する電流計測部と、第1電圧計測部により計測された端子間電圧に基づいて、複数の電池セルのセル電圧比をそれぞれ算出するセル電圧比算出部と、セル電圧比と第2電圧計測部で計測された両端電圧とに基づいて、両端電圧の計測時における複数の電池セルのセル電圧をそれぞれ算出するセル電圧算出部と、第2電圧計測部で計測される両端電圧と電流計測部で計測される電流値とをセットとして取得するためのトリガ信号を、第2電圧計測部および電流計測部にそれぞれ入力するトリガ信号発生部と、を備える。
 本発明によれば、複数の電池セルの内部抵抗をセル毎に検知することが可能となる。
図1は、電動車両駆動装置100の構成の一例を示す図である。 図2は、組電池10の通電電流が変化したときのセル電圧の変化を示す図である。 図3は、図1に示したセル電圧計測回路CC1~CCLの典型的な構成例を示す図である。 図4は、セル電圧計測回路CC1における計測シーケンスを模式的に示す図である。 図5は、許容時間範囲Tpを説明する図である。 図6は、電池監視装置2における内部抵抗導出動作を説明する図である。 図7は、計測時刻ズレの許容値を説明する図である。 図8は、計測時刻ズレΔtと内部抵抗の計測誤差ΔRとの関係を示す図である。 図9は、電池監視装置の第2の実施形態を示す図である。 図10は、電池監視装置の第3の実施形態を示す図である。 図11は、電池監視装置の第4の実施形態を示す図である。 図12は、第2電圧計測部22の伝達関数GVと電流計測部23の伝達関数GIとを、模式的に示した図である。 図13は、電池監視装置の第6の実施形態を示す図である。
 以下、図を参照して本発明を実施するための形態について説明する。
 -第1の実施形態-
 本発明に係る電池監視装置は、電池システム(蓄電装置とも呼ばれる)に設けられた組電池の電池状態を検出し、組電池を適切な状態に保つ装置である。図1は、本実施の形態の電池監視装置2が設けられた電池システム1を搭載する電動車両駆動装置100を示したものである。ここで、電動車両駆動装置とは、ハイブリッド自動車(HEV)や電気自動車(EV)などの電動車両を駆動する回転機システムである。
 電動車両駆動装置100には、電池監視装置2および組電池10等を備える電池システム1、車両全体の制御を行う車両コントローラ30、インバータ40,回転電機50等を備えている。電池システム1はリレー60,61を介してインバータ40に接続されている。電池監視装置2は、インバータ40及び上位の車両コントローラ30との通信を、CAN(Controller Area Network)の通信バスを介して行う。
 回転電機50はインバータ40からの電力により駆動される。車両の発進および加速時には電池システム1から放電電力がインバータ40を通じて回転電機50に供給され、回転電機50の駆動力によりエンジン(不図示)をアシストする。車両停止および減速時には、回転電機50からの回生電力がインバータ40を通じて電池システム1に設けられた組電池10を充電する。なお、インバータ40は、モータコントローラ41を内蔵し、インバータ40のDC-AC変換およびAC-DC変換を制御することによって、回転電機50の駆動制御並びに組電池10の充放電制御を行う。
 電池システム1は、組電池10、電池監視装置2,電流計測素子9を備えている。組電池10は、最小単位である電池セルC(C(1)~C(N))が複数直列に接続されて構成されている。なお、本実施形態の組電池10は、例えば、50個~100個程度の電池セルCが直列接続されて構成される。以下の説明では、組電池10を構成する電池セルCの個数をNとし、以下では、N個の電池セルC(1)~C(N)の一つを代表して表す場合には電池セルCのように呼ぶ場合がある。組電池10を構成する電池セルCとしては、例えば充放電可能なリチウムイオン二次電池が用いられる。図1に示す例では、複数の電池セルCを備える組電池10は、所定数の電池セル(図1に示す例では4個)にグループ化された複数(図1に示す例ではL個)のセルブロックB1~BLを、直列に接続して成る接続体を構成している。
(電池監視装置2の構成)
 電池監視装置2は、組電池10の状態を監視する装置であり、組電池10の各電池セルCの過充電および過放電を検出する過充放電検出機能、組電池10の各電池セルCの内部抵抗を検知する内部抵抗検出機能等を有する。電池監視装置2は、セル電圧計測部21、第2電圧計測部22、電流計測部23、制御部24等を備える。
 セル電圧計測部21は、組電池10を構成する各電池セルCのセル毎の電圧(以下、セル電圧と呼ぶ)を計測する回路である。セル電圧計測部21は、セルブロックB1~BLに対応する複数のセル電圧計測回路CC1~CCLを備えている。セル電圧計測回路CC1~CCLは、4~12個程度の電池セルCのセル電圧を計測できる回路であり、集積回路(IC)として構成されたものを用いてもよい。
 第2電圧計測部22は、組電池10を構成するN個の電池セル全体の電圧(以下では総電圧Vtと呼ぶ)を計測する回路である。N個の電池セルCを組電池負極側から符号C(1),C(2),・・・・,C(N-1),C(N)で表すと、第2電圧計測部22の第2電圧入力端子220a,220bは、電池セルC(1)の負極と、電池セルC(N)の正極とにそれぞれ接続されている。各セル電圧計測回路CC1~CCLは、セルブロックB1~BL毎に各電池セルの電圧を測定する。なお、図示は省略したが、セル電圧計測回路CC1~CCLは、各電池セルC(1)~C(N)のセル電圧のバランシング動作を行うバランシング抵抗とバランシングスイッチ、制御部24と通信を行って制御を行うロジック部を備えている。
 組電池10に流れる電流を計測する電流計測部23には、電流計測素子9から計測信号(電気信号)が入力される。電流計測素子9は、電流の大きさを電気信号に変換する素子であり、具体的には、ホール素子センサやシャント抵抗素子などがある。電流計測素子9からは電流の大きさに対応した電気信号が出力され、その電気信号は電流計測部23で計測される。
 なお、シャント抵抗素子は以下の点で、ホール素子センサに比べて優れている。シャント抵抗素子はオフセット電流が小さいので、組電池10の充電状態(SOC)を正確(高精度に)に計測することができる。また、シャント抵抗素子は応答特性(電流変化に対する電圧値の追従性)が速いので、電流計測部23の測定時定数を速くすれば、それに応じて時間分解能を高くすることができる。すなわち、計測の同時性を達成しやすいという点で優れている。
 制御部24は電池監視装置2の全体の制御を行うものであり、例えば、セル電圧計測回路CC1~CCLの動作制御や状態判定などを行う。制御部24は、セル電圧計測部21、第2電圧計測部22、電流計測部23のそれぞれから送られる信号を受け取り、それらの信号値を用いて、各電池セルC(1)~C(N)の内部抵抗を検知する。
 組電池10を構成する電池セルC(1)~C(N)の個数Nが多い場合には、電池監視装置2内の高電圧側と低電圧側との接続に電気的絶縁が必要になる。例えば、リチウムイオン2次電池をN=96個直列に接続した場合を考える。この場合、組電池10の両端の電圧は400V程度になる。そのため、電池セルC(1)が接続されているセル電圧計測回路CC1と、電池セルC(N)が接続されているセル電圧計測回路CCLとでは、400V程度の電圧差があることになる。したがって、セル電圧計測回路CC1~CCLと制御部24とを電気的に絶縁する必要がある。具体的には、図1に示すように、絶縁素子6を接続ライン(信号ライン)に挿入する。
 同様に、第2電圧計測部22と制御部24との間、および電流計測部23と制御部24との間にも絶縁素子6を挿入する。これらの絶縁素子6は必要に応じて入れるものであって、例えばN=4個の場合など、組電池10の電圧が電気的絶縁を必要とするほど高くない場合には、絶縁素子6を入れる必要はない。
(電流変化に対する計測時刻ズレの説明)
 電池システム1における組電池10の通電電流の時間変化の、計測時刻ズレへの影響について説明する。図1に示す電動車両(HEV)においては、電動車両の走行状態に応じて回転電機50の出力トルクが時間的に変動する。例えば、回転電機50によるエンジンのアシストが必要になると、回転電機50の出力トルクが増加するため、それに応じてインバータ40の出力電力が増加する。そして、インバータ40への入力電流、すなわち、組電池10の通電電流も増加する。逆に、電動車両が回生ブレーキを使用して回生状態になると、回転電機50が発電機として動作して、回生電力が回転電機50(発電機)からインバータ40、そして組電池10へと流れる。このため、組電池10への充電電流が増加する。このように、電池システム1においては、組電池10への通電電流が時間変化をする。
 図2は、組電池10の通電電流が変化したときのセル電圧の変化を示す図である。図2(a)は電流変化を示し、図2(b)はセル電圧の変化を示す。図2(a)のように電流I(t)がある時刻でΔIだけ変化すると、この時のセル電圧の変化は、図2(b)に示すように電流変化に直ちに応答する成分と、時間的に遅れて変化する成分とで表される。直ちに応答する成分を直流内部抵抗成分(DCR、Direct-Current Resistance)と呼び、遅れて変化する成分を分極成分(Polarization)と呼ぶ。直流内部抵抗成分は、電池セルCの内部抵抗Rに起因する電圧変化であり、R×ΔIで表される。分極成分は、電池セルCが持つ静電容量やインダクタンス、さらには電解液中でのイオンの挙動などの要因に起因する電圧変化成分である。
 ところで、電池監視装置2では、上述したように電池セルCの内部抵抗の検知が行われる。内部抵抗は電池セルCの電圧(セル電圧)と電池セルCを流れる電流に基づいて算出されるので、内部抵抗を精度良く求めるためには、セル電圧および電流を正確に計測する必要がある。
 ここで、図2に示したように、セル電圧計測部21におけるセル電圧計測の時刻t1と、電流計測部23における電流計測の時刻t0とがずれたと仮定する。そして、時刻t1でのセル電圧計測値vc(t1)と時刻t0での電流計測値I(t0)とから、電池セルCの内部抵抗Rcをvc(t1)/I(t0)として求めた場合を考える。vc(t1)は、時刻t0でのセル電圧値vc(t0)よりも小さいので、vc(t1)/I(t0)は正しい内部抵抗値(vc(t0)/I(t0))よりも小さくなってしまう。このように、セル電圧の測定時刻と電流の測定時刻とにズレがあると、正しい内部抵抗を求めることが出来ない。
(セル電圧計測の所要時間)
 次に、電池監視装置2におけるセル電圧計測について説明する。図3は、図1に示したセル電圧計測回路CC1~CCLの典型的な構成例を示す図である。セル電圧計測回路CC1~CCLは同一構成であり、図3はセル電圧計測回路CC1を示している。なお、図1に示す例では、セルブロックB1を構成する電池セルCの数を4個としているが、説明の関係上、図3では電池セルCの数が6個の場合を示した。
 前述の通り、セル電圧計測回路CC1~CCLは4~12個程度の電池セルCのセル電圧を計測することができ、計測する電池セルC(1)~C(6)を選択する選択回路210と電圧検出回路211を備えている。具体的には、選択回路210としてはマルチプレクサなどが用いられ、電圧検出回路211は、一般的にアンプとアナログ・デジタル変換器で構成される。
 図4は、図3に示すセル電圧計測回路CC1における、典型的な計測シーケンスを模式的に示した図である。図4(a)は電池セルC(1)~C(6)のセル電圧計測タイミングを示すタイミングチャートであり、図4(b)は電流の変化を示す。選択回路210は、図4(a)に示すように、電池セルC(1)→電池セルC(2)→電池セルC(3)→電池セルC(4)→電池セルC(5)→電池セルC(6)のように順に電池セルを選択する。そして、電圧検出回路211によりセル電圧を1セル毎に順に計測する。以下では、電圧検出回路211により計測されたセル電圧をセル電圧計測値と呼ぶことにする。
 したがって、6個の電池セルC(1)~C(6)のセル電圧を計測する場合、セル電圧の計測に必要な時間(ここでは、セル電圧計測期間と呼ぶ)Tmは、1セルの計測所要時間の6倍の時間が必要になる。例えば、1セルの計測所要時間の典型的な値は200μsなので、この場合、セル電圧計測期間Tmは1.2msとなる。
 ここで、図4(b)のように、セル電圧計測期間Tmの間に電流がΔIだけ変化した場合を考える。時刻t0で電流を計測した場合、電池セルC(5)は電圧と電流が同時に計測される。しかし、電池セルC(2)の場合には、時刻t1においてセル電圧が計測されるので、電圧と電流が別時刻(時刻t1と時刻t0)に計測され、その間に電流がΔIだけ変化している。そのため、電池セルC(2)に関しては、正しい内部抵抗が計測できないことになる。
 そこで、本発明では、後述するように「セル電圧比」の時間変化が小さいことを利用して、セル電圧値と電流値とを実質的に同時に計測することを可能にした。これにより、図4(b)のように電流が時間変化する場合であっても、セル毎に内部抵抗を精度良く計測することが可能になった。
 本発明において、「セル電圧比」とは、N個のセル電圧計測値vc(1,t)~vc(N,t)の総計に対する個々のセル電圧計測値の比率であり、本明細書では、時刻tにおける電池セルC(k)のセル電圧比をa(k,t)と表すことにする。セル電圧比a(k,t)は、次式(1)により求まる。なお、式(1)において、vc(k,t)は時刻tにおける電池セルC(k)のセル電圧計測値である。
Figure JPOXMLDOC01-appb-M000001
 式(1)によりセル電圧比a(k,t)が求まると、そのセル電圧比と第2電圧計測部22によって計測される総電圧Vtとから、次式(2)により各電池セルC(1)~C(N)のセル電圧を算出することができる。ここでは、式(2)により算出されるセル電圧vc(k,t0)を、セル電圧演算値と呼ぶことにする。式(2)において、時刻t0は第2電圧計測部22による総電圧Vtの計測時刻である。一方、セル電圧比a(k,t2)における時刻t2は、各セル電圧計測回路CC1~CCLにおける各電池セルC(1)~C(N)の計測時刻である。各セル電圧計測回路CC1~CCLはほぼ同じタイミングでセル電圧計測を開始するので、N個のセル電圧計測値vc(1,t)~vc(N,t)は、図4のセル電圧計測期間Tm内において計測される。
Figure JPOXMLDOC01-appb-M000002
 ここで重要なことは、セル電圧比a(k,t2)における計測時刻(セル電圧計測時刻)t2と総電圧Vtの計測時刻t0との時刻ズレが、後述する許容時間範囲Tpの期間内であれば許容されるということである。これは、後述するように、許容時間範囲Tpの期間においては、セル電圧比a(k,t2)の時間変化が充分に小さいためである。なお、式(1)によるセル電圧比a(k,t)の算出、および、式(2)による各電池セルC(k)のセル電圧演算値vc(k,t0)の算出は、制御部24の演算部240において行われる。
(許容時間範囲Tp)
 次に、セル電圧比a(k,t2)の時間変化が充分に小さいとみなせる許容時間範囲Tpについて、図5を用いて説明する。リチウムイオン電池の典型的な特性値を用いて、組電池10の挙動を計算した結果、セル電圧比は10msの時間範囲において、5×10-6×ΔIの誤差範囲で一定になることを発明者は見出した。ここで、ΔIは、10msの時間範囲での電流の変化量をアンペア単位(A)で表した値である。
 例えば、ΔI=100(A)の場合、10msの時間範囲におけるセル電圧比の誤差は5×10-4=0.05%程度となる。なお、この誤差の計算に当たっては、電池セルCの直流抵抗(DCR)成分の他にも、分極成分(図2のP(t))も考慮している。このことから、電池システムとして考えられる電流変化ΔIが最大で100(A)程度であれば、10msの時間範囲におけるセル電圧比の誤差は0.05%程度であって、ほぼ一定とみなせるので、10msを許容時間範囲Tpとすることができる。
 ただし、許容時間範囲Tpは10msに固定された値ではなく、許容される誤差範囲などにより変化する値である。例えば、0.3%程度の誤差を許容する電池監視装置の場合には、許容時間範囲Tpは50msとなる。
 このように、許容時間範囲Tpの期間内では、図5(c)に示すようにセル電圧比a(k,t2)は一定であると見なせる。すなわち、許容時間範囲Tp内においてセル電圧比a(k,t2)および総電圧Vt(t0)を取得した場合には、式(2)に従ってセル電圧比a(k,t2)と総電圧Vt(t0)との積を求めることにより、図5(d)に示すように、総電圧Vt(t0)の計測時刻t0に対応したセル電圧演算値vc(t0)が得られる。
(同時刻のセル電圧としてのセル電圧演算値)
 上述したように、本実施の形態では、セル電圧比算出の際には、セル電圧計測部21で計測されたセル電圧計測値vc(1,t)~vc(N,t)に代えて、式(2)により算出されるセル電圧演算値vc(1,t0)~vc(N,t0)を用いるようにした。これにより、第2電圧計測部22による総電圧Vt(t0)の計測時刻t0と同時刻におけるセル電圧(すなわち、セル電圧演算値vc(1,t0)~vc(N,t0))を高精度に算出することができる。そして、算出されたセル電圧演算値vc(1,t0)~vc(N,t0)と電流計測部23で計測された電流値とに基づいて、各電池セルC(1)~C(N)の内部抵抗を求めるようにしている。
 図6を参照しながら、電池監視装置2における内部抵抗導出動作を説明する。なお、図6に示す電池監視装置2では、説明を簡単にするために、セル電圧計測部21に設けられた選択回路21aによりN個の電池セルC(1)~C(N)のいずれか一つを選択し、選択した電池セルのセル電圧を電圧検出回路21bで計測する構成に簡略化して示した。選択回路21aおよび電圧検出回路21bは、図3に示した選択回路210および電圧検出回路211と同様の機能を有する回路である。
 なお、本実施形態においても、図1に示したように、セル電圧計測部21を複数個のセル電圧検出回路CC1~CCLで構成しても良いことは言うまでもない。図9,図10,図11、図13についても同様である。
 セル電圧計測部21は、選択回路21aにより電池セルC(1)~C(N)を順に選択し、選択回路21aにより選択された電池セルの電圧を電圧検出回路21bにより計測する。セル電圧計測部21の実際の構成は図1と同様なので、各電池セルC(1)~C(N)のセル電圧計測に要する時間は、前述したように1ms程度である。セル電圧計測部21で計測されたセル電圧計測値は、信号線を介して制御部24に転送される。
 制御部24の演算部240では、電圧検出回路21bにより計測されたセル電圧計測値と上述した式(1)を用いて、セル電圧比a(k,t)を電池セルC(1)~C(N)毎に計算する。制御部24は、電圧計測トリガ信号Svtを第2電圧計測部22に送信し、電流計測トリガ信号Sitを電流計測部23に送信する。
 第2電圧計測部22は、電圧計測トリガ信号Svtを受けて、時刻t0において第2電圧入力端子220a,220b間の電圧を計測する。第2電圧入力端子220a,220b間の電圧は組電池全体の端子間電圧であるから、総電圧Vt(t0)に対応する。計測された電圧値(すなわち総電圧Vt(t0))は、制御部24に送信される。電流計測部23は、電流計測トリガ信号Sitを受けて、時刻t0における組電池10の電流値を計測する。計測された電流値I(t0)は、制御部24に送信される。制御部24は、送信されたセル電圧比a(k,t)と総電圧Vt(t0)と式(2)式を用いて、各電池セルC(1)~C(N)の時刻t0におけるセル電圧演算値vc(k,t0)をそれぞれ算出する。
 上述のように、第2電圧計測部22と電流計測部23はそれぞれトリガ信号Svt,Sitを受けて計測を開始する。本明細書において、トリガ信号とは、パルス的な信号のみならず、ソフトウエア命令の送信信号も含む。すなわち、制御部24に含まれるマイクロコンピュータから、第2電圧計測部22と電流計測部23のそれぞれに計測開始を指示するソフトウエア命令を送信し、このソフトウエア命令をトリガ信号として、第2電圧計測部22と電流計測部23とが、互いに計測時刻が等しくなるように計測する場合も、本発明に含まれる。
 前述の通り、許容時間範囲Tpにおけるセル電圧比a(k,t)の時間変化は充分に小さいので、このようにして求めた複数のセル電圧演算値は、いずれも時刻t0(第2電圧計測部22による総電圧計測時刻)に計測されるセル電圧に対応している。このようにして求めた時刻t0でのセル電圧演算値vc(k,t0)と、時刻t0での電流値I(t0)とを用いて、各電池セルC(1)~C(N)の内部抵抗を求める。この場合、セル電圧演算値vc(k,t0)と電流値I(t0)とは、いずれも時刻t0での値であるから、許容時間範囲Tpにおいてセル電圧や電流が時間変化をしていても、正しい(高精度な)内部抵抗が得られる。
(総電圧計測と電流計測の同時性について)
 上述のように、複数の電池セルC(1)~C(N)に関して同時刻におけるセル電圧(セル電圧演算値)が得られたので、さらに内部抵抗の演算誤差を低減するためには、総電圧計測と電流計測の同時性が問題となる。本実施の形態の特徴は、第2電圧計測部22および電流計測部23の計測時刻が、実質的に等しくなるように制御する点にある。
 以下では、第2電圧計測部22と電流計測部23との計測時刻ズレがどれだけ許容されるかについて、すなわち、内部抵抗を所望の精度で算出するために許容される計測時刻ズレについて説明する。まず、図7(b)に示すように、1msの期間で電流がΔI=100A変化する場合を考える。そして、時刻t1において電流を計測し、時刻t2において電圧(総電圧Vt)を計測した場合を考える。図7(b)は電流の変化を示し、図7(a)は電圧の変化を示す。
 図8は、計測時刻ズレΔt=t2-t1と、内部抵抗の計測誤差ΔRとの関係を示したものである。電池セルの内部抵抗は±20%の誤差範囲で計測するのが好ましいので、図8の関係から、許容される時刻ズレは±200μs以内となる。この場合、本発明における「第2電圧計測部22の計測時刻と電流計測部23の計測時刻が実質同時」とは、時刻ズレが±200μs以内であれば「同時」とみなすことを意味する。さらに、より好ましくは、内部抵抗を±1%の誤差範囲で計測したいので、許容される時刻ズレは±10μs以内となる。
 また、許容される時刻ズレは、計測する電流波形の最大変化速度にも依存する。例えば、第2電圧計測部22と電流計測部23に低域透過フィルタを設けて、観測する電圧波形と電流波形の時間変化を遅くした場合には、時間変化を遅くした分だけ許容される計測時刻ズレも大きくなる。この点を次に定量的に述べる。
 ここで、観測する電流の最大時間変化量をImax’とすると、許容される計測時刻ズレΔtは次式(3)で表される。最大時間変化量Imax’は次式(4)で定義される量であり、関数max( )は、最大値を返す関数である。式(3)において、αは内部抵抗の計測値に許容される計測誤差であり、I0は平均電流値である。上述したように、許容される計測誤差αは、好ましくは±20%であり、さらに好ましくは±1%である。式(3)から分かるように、低域透過フィルタを設けると電流波形の時間変化であるImax’が小さくなるので、許容される時刻ズレΔtは大きくなる。
Figure JPOXMLDOC01-appb-M000003
-第2の実施形態-
 本発明の第2の実施形態について、図9を用いて説明する。上述した第1の実施形態では、セル電圧比a(k,t)と第2電圧計測部22により計測された総電圧Vt(組電池全体の電圧)とに基づいて、電流計測時刻と実質同時刻におけるセル電圧を式(2)により算出した。以下に説明する第2の実施形態では、第2電圧計測部22で計測される電圧として、組電池10の総電圧Vtではなく中間電圧Vm(直列接続されたM個の電池セルの電圧:Mは2~N-1の自然数)を用いるようにした。
 なお、図9に示す電池監視装置2では、説明を簡単にするために、セル電圧計測部21に設けられた選択回路21aによりN個の電池セルC(1)~C(N)のいずれか一つを選択し、選択した電池セルのセル電圧を電圧検出回路21bで計測する構成に簡略化して示した。本実施形態においても、図1に示したように、セル電圧計測部21を複数個のセル電圧検出回路CC1~CCLで構成しても良いことは言うまでもない。
 図9に示す例では、第2電圧入力端子220aを電池セルC(1)の負極側に接続し、第2電圧入力端子220bを電池セルC(2)の正極側に接続しており、電池セルC(1)の電圧と電池セルC(2)の電圧との和が中間電圧Vmとして計測される。第2の実施形態においても、第1の実施形態の場合と同様に、第2電圧計測部22および電流計測部23は、互いに計測時刻が実質的に等しくなるようにトリガ信号Svt,Sitを受けて計測を行う。
 本実施形態では、以下のようにして時刻t0(第2電圧計測部22での電圧計測時刻)におけるセル電圧vc(k,t0)を算出する。例えば、1番目の電池セルC(1)からM番目の電池セルC(M)までのM個の電池セルの両端電圧を中間電圧Vmとする場合、中間電圧Vm(t0)と上述した総電圧Vt(t0)とは以下の式(5)で関係付けられる。上述した式(3)に式(5)から求まる総電圧Vt(t0)を代入すると、セル電圧vc(k,t0)は次式(6)により求まる。式(6)において、B(t2)はセル電圧比から算出される補正係数であり、次式(7)で定義される。
 
 
 
Figure JPOXMLDOC01-appb-M000004

Figure JPOXMLDOC01-appb-I000005
 式(6)からも分かるように、補正係数B(t2)は、セル電圧比から算出されるものなので、セル電圧比と同様に許容期間範囲Tpでは一定と見なすことができる。したがって、式(6)に示したように、時刻t0で計測した中間電圧Vm(t0)から、時刻t0でのセル電圧演算値vc(k,t0)が求まる。補正係数B(t2)の算出処理を行うタイミングは、セル電圧計測部21において各々の電池セルのセル電圧C(1)~C(N)を計測した時点で算出すればよい。補正係数B(t2)の演算は制御部24の演算部240において行われる。図9に示す例では、電池セルC(1)~C(2)の両端電圧を中間電圧Vmとして用いたが、組電池10のうち連続する任意のM個の両端電圧を中間電圧として用いることができる。例えば、i番目の電池セルC(i)からi+M番目の電池セルC(i+M)までのM個の電池セルの両端電圧を中間電圧Vmとする場合、補正係数B(t2)として、式(7)の分母の総和(Σ)として、j=iからj=M+iまでの総和を取ればよい。
 本実施の形態では、総電圧Vt(t0)の代わりに中間電圧Vm(t0)を用いることにより、第2電圧計測部22で計測すべき電圧値の大きさが、総電圧Vt(t0)を計測する場合と比べて小さくなるので、電圧計測回路が作りやすくなるという効果がある。特に、回路に要求される絶縁耐圧が小さくなるので、第2電圧計測部22の回路面積を小さくできる。
-第3の実施形態-
 本発明による電池監視装置の第3の実施形態について、図10を用いて説明する。本実施の形態では、図10に示すように、セル電圧計測部21はセル電圧フィルタ21cを備えている。セル電圧フィルタ21cは、セル電圧の信号を時間的に平均化する働きをするフィルタであり、典型的には低域透過フィルタが用いられる。前述したようにセル電圧比a(k,t)は時間的な変化が遅いので、セル電圧を計測するセル電圧計測部21は応答時間が遅くても良い。そのため、セル電圧フィルタ21cを設けてセル電圧信号を時間的に平均化することで、電気的なノイズが低減され、セル電圧比a(k,t)を正確に測定することができる。
 なお、図10に示す電池監視装置2では、説明を簡単にするために、セル電圧計測部21に設けられた選択回路21aによりN個の電池セルC(1)~C(N)のいずれか一つを選択し、選択した電池セルのセル電圧を電圧検出回路21bで計測する構成に簡略化して示した。本実施例においても、図1に示したように、セル電圧計測部21を複数個のセル電圧検出回路CC1~CCLで構成しても良いことは言うまでもない。
 さらに、図4に示したように、セル電圧の測定にはセル電圧計測期間Tmの時間を要する。このセル電圧計測期間Tmの期間においては、セル電圧が変化しない方が正確なセル電圧が計測できる。そのため、セル電圧フィルタ21cを設けて信号帯域を制限して信号を平滑化することで、セル電圧比a(k,t)の精度を高めることができる。さらにこの効果をより高めるためには、セル電圧計測期間Tmにおけるセル電圧信号の時間変化が小さくなるようにセル電圧フィルタの特性時定数を定めることが、好ましい。具体的には、セル電圧フィルタ21cの低域透過時定数をセル電圧計測期間Tmの2倍以上に設定することが好ましい。このようにすることで、セル電圧計測期間Tmの間に電流が変化しても、セル電圧フィルタ通過後の電圧信号はほとんど変化しないので、セル電圧比a(k,t)を精度良く求めることが出来る。
 なお、セル電圧計測期間Tmとは、組電池10を構成する電池セルC(1)~C(N)の電圧を一通り計測するのに要する時間を指す。例えば、図1に示したように、セル電圧計測部21が複数のセル電圧計測回路CC1~CCLで構成され、それぞれのセル電圧計測回路CC1~CCLが、図3に示したように、マルチプレクサなどの選択回路210と電圧検出回路211とで構成された場合を考える。セル電圧計測回路CC1~CCLにトリガ信号を与えることで、それぞれのセル電圧計測回路CC1~CCLはほぼ同時に計測を開始することが出来るので、各セル電圧計測回路CC1~CCLが接続された電池セルのセル電圧を一通り計測する時間がセル電圧計測期間Tmとなる。図1の場合には、セルC(1)~セルC(4)を測るまでの期間がセル電圧計測期間Tmである。
 なお、セル電圧計測回路CC1~CCLの構成によっては、この期間の後に、ゼロ点補正を行うなどの回路校正処理を行う場合もあるが、その回路校正処理期間は、セル電圧計測期間Tmには含まない。なぜなら、回路校正処理の間に、セル電圧値が変動しても、セル電圧の計測には影響しないからである。
-第4の実施形態-
 本発明による電池監視装置の第4の実施形態を、図11を用いて説明する。本実施の形態では、第2電圧計測部22にも低域透過特性を持つ第2電圧入力フィルタ22aを設け、セル電圧フィルタ21cの特性時定数と第2電圧入力フィルタ22aの特性時定数とが互いに異なるように設定した。第2電圧計測部22に入力された電圧信号は、第2電圧入力フィルタ22aを経由した後、AD変換器である電圧検出回路22bに入力され、アナログ信号がデジタル信号に変換される。なお、電流計測部23には電流入力フィルタ23aが設けられている。
 なお、図11に示す電池監視装置2では、説明を簡単にするために、セル電圧計測部21に設けられた選択回路21aによりN個の電池セルC(1)~C(N)のいずれか一つを選択し、選択した電池セルのセル電圧を電圧検出回路21bで計測する構成に簡略化して示した。本実施例においても、図1に示したように、セル電圧計測部21を複数個のセル電圧検出回路CC1~CCLで構成しても良いことは言うまでもない。
 図11のように、第2電圧計測部22に第2電圧入力フィルタ22aを設けることによって、上述のようにセル電圧フィルタ21cの特性時定数が長い場合であっても、第2電圧計測回路22の第2電圧入力フィルタ22aの特性時定数を短く設定することが出来る。図5を用いて説明したように、本発明におけるセル電圧(上述した式(2)や式(6)により算出されるセル電圧演算値)の測定時定数は、第2電圧計測回路22の応答時定数で支配される。そのため、上述のように第2電圧入力フィルタ22aの特性時定数をセル電圧フィルタ21cの特性時定数よりも短く設定することにより、セル電圧フィルタの特性時定数を長くしても、セル電圧を第2電圧計測回路の応答時定数で測定することが出来る。
 前述の通り、セル電圧比a(k,t)を精度良く計測出来るという観点から、セル電圧フィルタ21cの特性時定数は長くするのが好ましい。したがって、本実施形態の構成によれば、高い測定精度と高速な応答特性とを両立させることが可能になる。この効果をさらに高めるために、さらに好ましくは、第2電圧計測部22の第2電圧フィルタ22aの特性時定数を、セル電圧フィルタ21cの特性時定数の1/2以下にすると良い。
-第5の実施形態-
 本発明による電池監視装置の第5の実施形態では、図1における第2電圧計測部22および電流計測部23の応答特性を互いに等しくしたことを特徴とする。ここで「応答特性を互いに等しく」とは、第2電圧計測部22の伝達関数の特性周波数と電流計測部23の伝達関数の特性周波数とを互いに等しくすることである、と定義する。各計測部の伝達関数とは、その計測部への入力信号と出力信号の電圧振幅の比率である。伝達関数はゲインとも呼ぶ。
 図12は、第2電圧計測部22の伝達関数GVと電流計測部23の伝達関数GIとを、模式的に示した図である。図12において、横軸は周波数を対数軸で示しており、縦軸は電圧振幅の比率を対数軸で示している。図12に示す伝達関数GV,GIは、低域(周波数が低い領域)では一定値を取るが、高域(周波数が高い領域)では、周波数が高いほど小さくなるという特性を示す。これが低域透過特性である。
 伝達関数の特性周波数fc (characteristic frequency」とは、本明細書においては、一般的な規約に従い、伝達関数の振幅が3dB低下する周波数と定義する。「3dB低下する」とは、「振幅が1/√2になる」ことである。そして、特性時定数τcは次式(8)で定義する。
Figure JPOXMLDOC01-appb-M000006
 次に、「特性周波数を互いに等しくする」の許容範囲を説明する。伝達関数が1次の低域透過特性(Low-Pass filter)を持つ場合を説明する。この場合、伝達関数は次式(9)で表される。ここで、|G0|は、低周波数領域でのゲインを表す。すなわち、G0=G(f→0)である。
Figure JPOXMLDOC01-appb-M000007
 図12に示すように、第2電圧計測部22の伝達関数GVの特性周波数をfc(V)とし、電流計測部23の伝達関数GIの特性周波数をfc(I)とする。f≫fc(V)、f≫fc(V)を満たす周波数fにおけるゲイン誤差ΔGは、次式(10)で表される。式(10)からわかるように、本来のゲインである|GV0/GI0|にβを乗じたものが計測誤差であるから、式(11)で定義されるβは、特性周波数が互いに異なることに起因する計測誤差を表す。
Figure JPOXMLDOC01-appb-M000008
 計測誤差は好ましくは±20%以下にしたいので、式(11)からわかるように、第2電圧計測部22と電流計測部23の特性周波数は±20%の範囲で互いに等しいことが好ましい。さらに好ましくは、計測誤差を±5%以下にしたいので、式(11)からわかるように、第2電圧計測部22と電流計測部23の特性周波数は±5%の範囲で互いに等しいことが好ましい。
 低域透過特性の特性周波数よりも高い周波数領域では、出力信号振幅は入力信号振幅よりも減衰する。しかし、伝達関数の特性周波数を第2電圧計測部22と電流計測部23とで互いに等しく設定すると、式(10)、(11)において、β=1になるので、特性周波数よりも高い周波数領域でも電圧信号と電流信号の振幅比は正しい値になる。したがって、電池セルの内部抵抗を正しく計測することが出来る。このように、伝達関数の特性周波数(すなわち、特性時定数τc)を第2電圧計測部22と電流計測部23とで互いに等しく設定することにより、特性周波数が低い(特性時定数の長い)計測回路を用いても、内部抵抗を正確に求めることができるという効果がある。
-第6の実施形態-
 本発明による電池監視装置の第6の実施形態を、図13を用いて説明する。第6の実施形態の電池監視装置2では、第2電圧計測部22の電圧検出回路(デジタル・アナログ変換器)22bと、電流計測部23の電流検出回路(電流AD変換器)23bとを同一の集積回路(IC)25上に形成した。集積回路25は、電圧検出回路22bおよび電流検出回路23bを制御するAD変換制御部250を備えている。このように、電圧検出回路22bおよび電流検出回路23bを同一集積回路25上に形成することで、第2電圧計測部22と電流計測部23の同時測定性能を高めたり、伝達関数の特性を互いに等しくすることが容易になる。
 なお、図13に示す電池監視装置2では、説明を簡単にするために、セル電圧計測部21に設けられた選択回路21aによりN個の電池セルC(1)~C(N)のいずれか一つを選択し、選択した電池セルのセル電圧を電圧検出回路21bで計測する構成に簡略化して示した。本実施例においても、図1に示したように、セル電圧計測部21を複数個のセル電圧検出回路CC1~CCLで構成しても良いことは言うまでもない。
 電圧検出回路22bおよび電流検出回路23bは、それぞれAD変換制御部250からのトリガ信号を受けてAD変換を開始する。AD変換制御部250は、電圧検出回路22bおよび電流検出回路23bの変換タイミングが互いに等しくなるようにトリガ信号を発生する。さらには、電圧検出回路22bおよび電流検出回路23bが同一のトリガ信号で変換を開始するように構成するのが好ましい。
 また、電圧検出回路22bおよび電流検出回路23bに、ΔΣ型のAD変換器を用いるのが好ましい。ΔΣ型のAD変換器を用いると、高精度なAD変換を行えるので好ましい。
 さらに好ましくは、ΔΣ型のAD変換器のデシメーション・フィルタを電圧検出回路22bと電流検出回路23bとで同じ特性のデシメーション・フィルタとすることで、これら2つのAD変換器の伝達関数を互いに等しくすることができる。
 また、図11に示すように、第2電圧計測部22と電流計測部23のそれぞれに入力フィルタ(第2電圧入力フィルタ22a、電流入力フィルタ23a)を設けても良い。この場合、第2電圧計測部22が備える第2電圧入力フィルタ22aの特性周波数と、電流計測部23が備える電流入力フィルタ23aの特性周波数とが、互いに等しくなるように構成すると、さらに好ましい。
 以上説明したように、複数の電池セルC(1)~C(N)が直列に接続された組電池10を監視する電池監視装置2は、電池セルC(1)~C(N)の各々の端子間電圧を計測するセル電圧計測部21と、電池セルC(1)~C(N)の内の、少なくとも2以上の電池セルが直列接続している電池セル群の両端電圧を計測する第2電圧計測部22と、組電池10を流れる電流を計測する電流計測部23と、セル電圧計測部21により計測された端子間電圧に基づいて、電池セルC(1)~C(N)のセル電圧比a(k,t)をそれぞれ算出するセル電圧比算出部としての演算部240と、セル電圧比a(k,t)と第2電圧計測部22で計測された両端電圧とに基づいて、両端電圧計測時における電池セルC(1)~C(N)のセル電圧演算値vc(k,t0)をそれぞれ算出するセル電圧算出部としての演算部240と、第2電圧計測部22で計測される両端電圧と電流計測部23で計測される電流値とをセットとして取得するためのトリガ信号Svt,Sitを、第2電圧計測部22および電流計測部23にそれぞれ入力するトリガ信号発生部としての制御部24と、を備える。
 各電池セルC(1)~C(N)のセル電圧演算値vc(k,t0)は、セル電圧比a(k,t)と第2電圧計測部22で計測された両端電圧とに基づいて算出されるので、同一時刻におけるセル電圧とみなすことができ、複数のセル電圧の計測時刻と電流の計測時刻と一致させることが可能となる。両端電圧と電流計測部23で計測される電流値とをセットとして取得するためのトリガ信号とは、内部抵抗算出に要求されるセル電圧および電流値が取得されるようにトリガ信号を発生させること意味し、両端電圧及び電流値の計測時刻が同時刻又はほぼ同時刻となるように制御される。それにより、セル電圧演算値vc(k,t0)と計測された電流値とによって算出される内部抵抗値の算出誤差を低減することができる。
 さらに、セットとして取得するためのトリガ信号Svt,Sitを、第2電圧計測部22および電流計測部23の各計測時刻が実質的に等しくなるように入力時刻が調整されたトリガ信号とすることで、内部抵抗値をより高精度に算出することができる。
 なお、図9に示すように前記電池セル群における電池セルの個数を組電池10の電池セルの総数よりも少なくし、総電圧Vt(t0)の代わりに中間電圧Vm(t0)を用いることで、第2電圧計測部22で計測すべき電圧値の大きさが、総電圧Vt(t0)を計測する場合と比べて小さくなり、例えば、回路に要求される絶縁耐圧が小さくなり、第2電圧計測部22の回路面積を小さくできる。逆に、図1のように総電圧Vt(t0)を用いることで、セル電圧演算値vc(k,t0)の演算負荷を低減することができる。
 また、図1に示す電動車両駆動装置100の電池システム1では、上述のような電池監視装置2を備えることにより、複数の電池セルC(1)~C(N)の内部抵抗をセル毎に計測できるので、組電池10を構成する各電池セルC(1)~C(N)の劣化度をそれぞれ高精度に測定することができる。すなわち、電池の劣化度を各セル毎にモニタできるので、高精度に電池を制御できる。
 上述した各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。例えば、上述した実施形態では、電動車両駆動装置の電池システムに設けられた電池監視装置を例に説明したが、本発明は、電動車両駆動装置に限らず、種々の装置の電池システムに設けられる電池監視装置に適用することができる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2014年第81975号(2014年4月11日出願)
 1…電池システム、2…電池監視装置、9…電流計測素子、10…組電池、21…セル電圧計測部、21c…セル電圧フィルタ、22…第2電圧計測部、22a…第2電圧入力フィルタ、22b,211…電圧検出回路、23a…電流入力フィルタ、23b…電流検出回路、23…電流計測部、24…制御部、25…集積回路、30…車両コントローラ、40…インバータ、50…回転電機、100…電動車両駆動装置、210…選択回路、240…演算部、C,C(1)~C(N) …電池セル、CC1~CCL…セル電圧計測回路、Sit…電流計測トリガ信号、Svt…電圧計測トリガ信号

Claims (9)

  1.  複数の電池セルが直列に接続された組電池を監視する電池監視装置であって、
     前記複数の電池セルの各々の端子間電圧を計測する第1電圧計測部と、
     前記複数の電池セルの内の、少なくとも2以上の電池セルが直列接続している電池セル群の両端電圧を計測する第2電圧計測部と、
     前記組電池を流れる電流を計測する電流計測部と、
     前記第1電圧計測部により計測された前記端子間電圧に基づいて、前記複数の電池セルのセル電圧比をそれぞれ算出するセル電圧比算出部と、
     前記セル電圧比と前記第2電圧計測部で計測された両端電圧とに基づいて、前記両端電圧の計測時における前記複数の電池セルのセル電圧をそれぞれ算出するセル電圧算出部と、
     前記第2電圧計測部で計測される両端電圧と前記電流計測部で計測される電流値とをセットとして取得するためのトリガ信号を、前記第2電圧計測部および前記電流計測部にそれぞれ入力するトリガ信号発生部と、を備える電池監視装置。
  2.  請求項1に記載の電池監視装置において、
     前記セットとして取得するためのトリガ信号は、前記第2電圧計測部および前記電流計測部の各計測時刻が実質的に等しくなるように入力時刻が調整されたトリガ信号である、電池監視装置。
  3.  請求項1に記載の電池監視装置において、
     前記第1電圧計測部は、応答時定数が前記第2電圧計測部の応答時定数よりも大きなセル電圧フィルタを備える、電池監視装置。
  4.  請求項3に記載の電池監視装置において、
     前記第2電圧計測部の応答時定数が前記セル電圧フィルタの応答時定数の1/2以下である、電池監視装置。
  5.  請求項1に記載の電池監視装置において、
     前記第1電圧計測部は、低域遮断特性時間が端子間電圧計測期間の2倍以上であるセル電圧フィルタを備える、電池監視装置。
  6.  請求項1に記載の電池監視装置において、
     前記第2電圧計測部の伝達関数と前記電流計測部の伝達関数とは、それらの特性時定数が互いに等しい、電池監視装置。
  7.  請求項6に記載の電池監視装置において、
     前記第2電圧計測部に設けられたアナログ・デジタル変換器と、前記電流計測部に設けられたアナログ・デジタル変換器とを、同一の集積回路上に形成した、電池監視装置。
  8.  請求項1に記載の電池監視装置において、
     前記電池セル群における電池セルの個数は、前記組電池の電池セルの総数よりも少ない、電池監視装置。
  9.  請求項1に記載の電池監視装置において、
     前記電流計測部に接続される電流計測素子が抵抗素子である、電池監視装置。
PCT/JP2015/061126 2014-04-11 2015-04-09 電池監視装置 WO2015156360A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580017218.0A CN106461730B (zh) 2014-04-11 2015-04-09 电池监视装置
US15/302,187 US10101404B2 (en) 2014-04-11 2015-04-09 Battery monitoring device that monitors a plurality of battery cells connected in series
EP15777200.5A EP3130934B1 (en) 2014-04-11 2015-04-09 Battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014081975A JP6312508B2 (ja) 2014-04-11 2014-04-11 電池監視装置、電池システムおよび電動車両駆動装置
JP2014-081975 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156360A1 true WO2015156360A1 (ja) 2015-10-15

Family

ID=54287932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061126 WO2015156360A1 (ja) 2014-04-11 2015-04-09 電池監視装置

Country Status (5)

Country Link
US (1) US10101404B2 (ja)
EP (1) EP3130934B1 (ja)
JP (1) JP6312508B2 (ja)
CN (1) CN106461730B (ja)
WO (1) WO2015156360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416391A (zh) * 2016-07-12 2019-03-01 宝马股份公司 用于确定电池单体的内阻的方法、电池模块和装置
WO2021065443A1 (ja) * 2019-10-02 2021-04-08 株式会社日立製作所 電池状態推定装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429450B2 (en) * 2014-05-22 2019-10-01 Navitas Solutions, Inc. Battery sensing method and apparatus
KR101680297B1 (ko) 2016-01-11 2016-11-29 태성전장주식회사 자동차 고전압 배터리의 전류 측정 장치
KR102523045B1 (ko) * 2016-01-12 2023-04-17 삼성전자주식회사 고장 셀 검출 장치 및 방법
US10720672B2 (en) * 2017-04-24 2020-07-21 Autel Robotics Co., Ltd Series-multiple battery pack management system
CN207117205U (zh) * 2017-04-24 2018-03-16 深圳市道通智能航空技术有限公司 多串电池组管理系统
JPWO2019043792A1 (ja) * 2017-08-29 2020-05-28 株式会社東芝 バッテリシステムおよび車両
JP7213187B2 (ja) * 2017-08-29 2023-01-26 ヌヴォトンテクノロジージャパン株式会社 電圧検出回路
CN110740897B (zh) * 2017-09-26 2022-11-08 株式会社东芝 混合动力车辆
KR102256602B1 (ko) 2017-12-14 2021-05-26 주식회사 엘지에너지솔루션 전압 측정 장치 및 방법
JP7152420B2 (ja) * 2017-12-19 2022-10-12 三洋電機株式会社 管理装置、及び蓄電システム
WO2019140609A1 (zh) 2018-01-18 2019-07-25 深圳市道通智能航空技术有限公司 目标检测方法及无人机
JP2019132765A (ja) * 2018-02-01 2019-08-08 株式会社デンソー 電池監視装置
WO2019207626A1 (ja) * 2018-04-23 2019-10-31 株式会社東芝 電池システム
JP7077204B2 (ja) * 2018-10-31 2022-05-30 株式会社豊田中央研究所 電源装置
JP7172838B2 (ja) * 2019-04-26 2022-11-16 株式会社デンソー 電池監視装置
JP7314855B2 (ja) * 2020-04-21 2023-07-26 トヨタ自動車株式会社 組電池の状態判定装置および状態判定方法
EP4165421A1 (en) 2020-06-16 2023-04-19 Black & Decker Inc. Battery charger
KR102630222B1 (ko) * 2020-11-05 2024-01-25 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185078A (ja) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd 組電池の充放電制御方法と制御装置
JP2011069782A (ja) * 2009-09-28 2011-04-07 Panasonic Corp 電圧監視回路、及び電池電源装置
JP2012154641A (ja) * 2011-01-21 2012-08-16 Denso Corp 電池状態監視装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020743A (en) * 1997-10-21 2000-02-01 Compaq Computer Corporation Method and apparatus for detecting failed batteries
JP4628019B2 (ja) 2004-05-31 2011-02-09 三洋電機株式会社 データ収集装置
KR101136151B1 (ko) * 2010-01-27 2012-04-16 에스비리모티브 주식회사 이차 전지
JP5594893B2 (ja) * 2010-12-22 2014-09-24 日立オートモティブシステムズ株式会社 電池制御装置およびこれを備えた蓄電装置
US8922165B2 (en) * 2012-05-14 2014-12-30 Freescale Semiconductor, Inc. Cell balance configuration for pin count reduction
EP2972436B1 (en) * 2013-03-13 2018-05-02 Tiax Llc System and methods for detection of internal shorts in batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185078A (ja) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd 組電池の充放電制御方法と制御装置
JP2011069782A (ja) * 2009-09-28 2011-04-07 Panasonic Corp 電圧監視回路、及び電池電源装置
JP2012154641A (ja) * 2011-01-21 2012-08-16 Denso Corp 電池状態監視装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416391A (zh) * 2016-07-12 2019-03-01 宝马股份公司 用于确定电池单体的内阻的方法、电池模块和装置
CN109416391B (zh) * 2016-07-12 2024-05-10 宝马股份公司 用于确定电池单体的内阻的方法、电池模块和装置
WO2021065443A1 (ja) * 2019-10-02 2021-04-08 株式会社日立製作所 電池状態推定装置
US11841402B2 (en) 2019-10-02 2023-12-12 Hitachi, Ltd. Battery state estimation device

Also Published As

Publication number Publication date
CN106461730A (zh) 2017-02-22
JP2015203593A (ja) 2015-11-16
EP3130934A4 (en) 2017-12-27
US20170030976A1 (en) 2017-02-02
CN106461730B (zh) 2019-09-10
EP3130934A1 (en) 2017-02-15
EP3130934B1 (en) 2020-06-10
US10101404B2 (en) 2018-10-16
JP6312508B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6312508B2 (ja) 電池監視装置、電池システムおよび電動車両駆動装置
US11124072B2 (en) Battery control device and electric motor vehicle system
JP6023312B2 (ja) 電池システム監視装置
JP5393837B2 (ja) バッテリの充電率推定装置
US9910097B2 (en) Battery monitoring system using time-based signals
US20190288344A1 (en) Battery Control Device
WO2013111231A1 (ja) 電池の状態推定装置
WO2017056732A1 (ja) 電池制御装置及び電池システム
CN107889526B (zh) 电池系统监视装置
JP2010019595A (ja) 蓄電デバイスの残存容量演算装置
JP2017070024A (ja) 電池監視装置
JP2018096803A (ja) 内部抵抗算出装置、内部抵抗算出方法および内部抵抗算出プログラム
WO2016178308A1 (ja) 二次電池の充電率算出装置、及び蓄電池システム
WO2013057784A1 (ja) 電池制御装置、二次電池システム
JP2012149949A (ja) バッテリの充電率推定装置
JP6383496B2 (ja) 電池監視装置
JP7107707B2 (ja) 電池監視装置及び電池監視方法
JP7467337B2 (ja) 集積回路、電池監視装置、及び、電池監視システム
JP2019169471A (ja) 電池システム監視装置
JP6449585B2 (ja) 電池監視システム
JP2015102444A (ja) 電池状態検出装置及び電池状態検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777200

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015777200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15302187

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE