WO2017056732A1 - 電池制御装置及び電池システム - Google Patents

電池制御装置及び電池システム Download PDF

Info

Publication number
WO2017056732A1
WO2017056732A1 PCT/JP2016/073216 JP2016073216W WO2017056732A1 WO 2017056732 A1 WO2017056732 A1 WO 2017056732A1 JP 2016073216 W JP2016073216 W JP 2016073216W WO 2017056732 A1 WO2017056732 A1 WO 2017056732A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
voltage
charge state
soc
Prior art date
Application number
PCT/JP2016/073216
Other languages
English (en)
French (fr)
Inventor
亮平 中尾
大川 圭一朗
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017542993A priority Critical patent/JP6534746B2/ja
Publication of WO2017056732A1 publication Critical patent/WO2017056732A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery control device and a battery system.
  • a battery control circuit for managing the state of the battery.
  • Representative examples of battery states managed by the battery control circuit include the state of charge of the battery (State of Charge: SOC) and the state of deterioration of the battery (State of Health: SOH).
  • SOC state of charge of the battery
  • SOH state of deterioration of the battery
  • One method for estimating the SOC is to measure and integrate the current value entering and exiting the battery. In this method, since the measurement error included in the current measurement value is also integrated, the SOC error increases with the passage of time.
  • SOC (hereinafter referred to as SOCi) is calculated by integrating the charge / discharge current of the secondary battery.
  • OCV open circuit voltage
  • V is obtained from the battery voltage and charge / discharge current of the secondary battery, and the OCV is converted to SOC based on the correspondence between this OCV and SOC. Is calculated.
  • SOCi is corrected.
  • the difference between SOCv and SOCi is greater than or equal to a predetermined value, the SOC error that expands as the current measurement value is integrated is reset, so that the SOC error is prevented from being accumulated and expanded.
  • Patent Document 1 since the calculation error is also included in the SOCv at the time of resetting, it is necessary to ensure the calculation accuracy itself of the SOCv, and the state of charge SOC of the battery cannot be estimated with high accuracy.
  • a battery control device includes a detection unit that detects a state quantity including a battery current and a voltage, and a battery control unit that outputs a charge state of the battery based on the state quantity.
  • the battery control unit is configured to perform a first charge state of the battery based on the voltage including a polarization voltage in a discharge direction detected when the absolute value of the current is equal to or less than a predetermined value after the battery is discharged.
  • An initial value is calculated, a first charge state of the battery is estimated based on the first charge state initial value and the state quantity, and the absolute value of the current becomes a predetermined value or less, Detecting a first elapsed time until obtaining a first charge state initial value, and including a polarization voltage in a charge direction detected when the absolute value of the current is equal to or less than a predetermined value after charging the battery; Based on the voltage, a second charge state initial value of the battery is calculated. The second charge state of the battery is estimated based on the second charge state initial value and the state quantity, and the second charge is performed after the absolute value of the current becomes a predetermined value or less.
  • the battery control device includes a detection unit that detects a state quantity including a battery current and a voltage, and a battery control unit that outputs a charge state of the battery based on the state quantity.
  • the battery control unit includes: a first charge state calculation unit that calculates a first charge state of the battery based on a charge state of the battery after discharge and a charge state change amount of the battery; A second charging state calculation unit that calculates a second charging state of the battery based on the charging state of the battery and the amount of change in the charging state; a first charging state calculated by the first charging state calculation unit; A third charging state calculation unit that calculates a charging state of the battery based on the second charging state calculated by the second charging state calculation unit.
  • the state of charge of the battery can be estimated with high accuracy.
  • FIG. 1 is a diagram showing a configuration of a battery control device and its surroundings according to an embodiment of the present invention.
  • the overall configuration will be described with reference to FIG.
  • an inverter 400 is connected to the battery system 100 via relays 300 and 310.
  • a motor generator 410 is connected to the inverter 400.
  • Battery system 100 is connected to charger 500 via relays 320 and 330.
  • Motor generator 410 is a drive source for an electric vehicle (not shown).
  • the battery control unit 200 is connected to the battery system 100, and the inverter control unit 420 is connected to the vehicle control unit 200.
  • the inverter control unit 420 outputs a drive signal to the inverter 400.
  • Inverter 400 drives motor generator 410 based on this drive signal.
  • Signals such as the rotational position of motor generator 410 are input to inverter control unit 420.
  • the vehicle control unit 200 drives the motor generator 410 based on information related to the battery such as the SOC (charge state) of the battery system 100, signals from the inverter 400 and the motor generator 410, and information on the vehicle engine (not shown). Determine the distribution of
  • the battery system 100 includes an assembled battery 110 composed of a plurality of single cells 111, a single battery control unit 120 that monitors the state of the single cells 111, a current detection unit 130 that detects a current flowing through the battery system 100, and a set. Stores information related to battery characteristics of the voltage detector 140 that detects the total voltage of the battery 110, the battery controller 150 that controls the battery 110, and the battery 110, the battery 111, and the battery groups 112a and 112b.
  • the storage unit 180 and a vehicle stop time measuring unit 190 that measures the time from when the vehicle is stopped to when the vehicle is next started.
  • the assembled battery 110 is configured by electrically connecting a plurality of unit cells 111 (for example, lithium ion batteries) capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • unit cells 111 for example, lithium ion batteries
  • One unit cell 111 has an output voltage of 3.0 to 4.2 V (average output voltage: 3.6 V), and the OCV (open voltage) and SOC (state of charge) of the unit cell 111 are as shown in FIG.
  • OCV open voltage
  • SOC state of charge
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units for managing and controlling the state.
  • the grouped unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b.
  • the predetermined number of units may be equal, for example 1, 4, 6, etc., or may be combined, such as a combination of 4 and 6. is there.
  • the unit cell control unit 120 that monitors the state of the unit cell 111 that constitutes the assembled battery 110 includes a plurality of unit cell control units 121a and 121b. For the unit cell group 112a grouped as described above, One single cell control unit 121a is assigned. The unit cell control units 121a and 121b operate by receiving power from the allocated unit cell groups 112a and 112b, and monitor and control the states of the unit cells 111 constituting the unit cell groups 112a and 112b.
  • the assembled battery 110 includes four unit cells 111 electrically connected in series to form unit cell groups 112a and 112b, and further electrically connected in series, for a total of eight unit cells.
  • a battery 111 is provided.
  • unit cell control units 121a and 121b for monitoring the state of the unit cell 111 are installed in the unit cell groups 112a and 112b.
  • These configurations are examples for simplifying the description, and other configurations may be employed, such as the number of unit cells 111 and unit cell groups 112a and 112b, the number of unit cell control units 121a and 121b, and the like.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell controller 121a. Since the single battery control unit 121b has the same circuit configuration, the description thereof is omitted.
  • the unit cell control unit 121a includes a voltage detection circuit 122, a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the voltage between the terminals of each unit cell 111.
  • the temperature detection unit 125 measures the temperature of the cell group 112a.
  • the control circuit 123 receives the measurement results from the voltage detection circuit 122 and the temperature detection unit 125 and transmits the measurement results to the assembled battery control unit 150 via the signal input / output circuit 124. Note that a circuit configuration that is generally mounted in the unit cell control unit 121a and that equalizes voltage and SOC variations between the unit cells 111 that occur due to self-discharge and variations in consumption current is well known. Omitted.
  • the temperature detection unit 125 measures one temperature as a whole in the unit cell group 112a, and handles the temperature as a representative temperature value of the unit cells 111 constituting the unit cell group 112a.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the cell 111, the cell group 112 a, or the assembled battery 110. Since FIG. 2 assumes this, the single battery control unit 121a is provided with one temperature detection unit 125.
  • a temperature detection unit 125 may be provided for each single cell 111 to measure the temperature for each single cell 111, and various calculations may be performed based on the temperature for each single cell 111. In this case, the number of temperature detection units 125 Therefore, the configuration of the unit cell control unit 121a becomes complicated.
  • the temperature detection unit 125 is simply illustrated. Specifically, a temperature sensor is installed on the temperature measurement target, the installed temperature sensor outputs temperature information as a voltage, and the measurement result is transmitted to the signal input / output circuit 124 via the control circuit 123, and the signal input is performed. The output circuit 124 outputs the measurement result outside the unit cell control unit 121a.
  • a function for realizing this series of flows can be implemented as the temperature detection unit 125 in the single cell control unit 121a, and the voltage detection circuit 122 can be used for measuring temperature information (voltage).
  • the assembled battery control unit 150 shown in FIG. 1 includes a battery voltage and temperature of the unit cell 111 transmitted from the unit cell control unit 120, a diagnosis result indicating whether the unit cell 111 is overcharged or overdischarged, and current detection.
  • the current value flowing through the battery transmitted from the unit 130, the total voltage value of the assembled battery 110 transmitted from the voltage detection unit 140, and the vehicle stop time measured by the vehicle stop time measurement unit 190 are input.
  • the battery pack control unit 150 calculates various battery states including the SOC and SOH of the battery cell 111 and the input / output power of the battery pack 110, and outputs the SOC and SOH calculation results and instructions based on the results. It outputs to the control part 120 and the vehicle control part 200. Since calculation of SOH, input / output possible power, and the like is publicly known, the calculation of SOC will be described in the following description.
  • the storage unit 180 includes information such as the internal resistance characteristics of the assembled battery 110, the single battery 111, and the single battery groups 112a and 112b, the capacity at full charge, the polarization resistance characteristics, the deterioration characteristics, the individual difference information, and the correspondence between SOC and OCV. Is stored.
  • FIG. 3 is a diagram illustrating a correspondence relationship between the SOC and the OCV. The horizontal axis of FIG. 3 is SOC, and the vertical axis is OCV. The correspondence relationship between the SOC and the OCV shown in FIG. 3 is stored in the storage unit 180. In this embodiment, as shown in FIG.
  • the storage unit 180 is configured to be installed outside the assembled battery control unit 150 or the single cell control unit 120, but the assembled battery control unit 150 or the single cell control is used.
  • the storage unit 180 may be included in the unit 120, and the above information may be stored in the storage unit 180.
  • the vehicle stop time measuring unit 190 calculates the vehicle stop time based on the time information when the vehicle is stopped and the time information when the vehicle is next started, and outputs the vehicle stop time to the assembled battery control unit 150.
  • the assembled battery control unit 150 and the single cell control unit 120 perform signal transmission / reception by the signal communication unit 160 via an insulating element 170 such as a photocoupler.
  • the reason why the insulating element 170 is provided is that the assembled battery control unit 150 and the unit cell control unit 120 have different operating power sources. That is, the unit cell control unit 120 operates by receiving electric power from the assembled battery 110, whereas the assembled battery control unit 150 uses a battery for in-vehicle auxiliary equipment (for example, a 12V system battery) as a power source.
  • the insulating element 170 may be mounted on a circuit board constituting the single battery control unit 120 or may be mounted on a circuit board constituting the assembled battery control unit 150. Depending on the system configuration, the insulating element 170 may be omitted.
  • the cell control units 121a and 121b are connected in series according to the order of potential of the cell groups 112a and 112b monitored by each.
  • the signal transmitted by the assembled battery control unit 150 is input to the single cell control unit 121a by the signal communication unit 160 via the insulating element 170.
  • the signal communication unit 160 connects the output of the single cell control unit 121a and the input of the single cell control unit 121b to transmit signals.
  • the unit cell controllers 121a and 121b are not provided with the insulating element 170, but may be provided with the insulating element 170.
  • the output of the cell control unit 121b is transmitted by the signal communication unit 160 via the insulating element 170 and the input of the battery pack control unit 150.
  • the assembled battery control unit 150, the unit cell control unit 121a, and the unit cell control unit 121b are connected in a loop by the signal communication unit 160.
  • This loop connection may be referred to as a daisy chain connection, a daisy chain connection, or a random connection.
  • the battery system 100 is connected to the inverter 400 and drives the motor generator 410 based on the energy stored in the assembled battery 110.
  • the battery system 100 is connected to the charger 500 and is charged by supplying power from a household power supply or a desk lamp.
  • SOC calculation performed by the assembled battery control unit 150 will be described. There are the following two methods for calculating the SOC. In the following description, the charging current flowing through the battery is treated as positive and the discharging current is treated as negative. First, the calculation 1 of SOC which is the 1st method is demonstrated. In the calculation 1, the OCV of the battery is sequentially calculated from the battery voltage and current of the assembled battery 110 or the single battery 111 being charged / discharged. Then, based on the correspondence relationship between the SOC and the OCV stored in the storage unit 180, the calculated OCV is converted into the SOC.
  • FIG. 5 is a diagram showing a change in voltage of the unit cell 111 during charging.
  • the horizontal axis in FIG. 5 is time, and the vertical axis is voltage.
  • the voltage changes by Vo immediately after energization according to the above formula (1), and thereafter the component of Vp is transiently generated.
  • the voltage change for Vo is eliminated, and then the Vp component gradually decreases and finally converges to OCV.
  • OCV (t) CCV (t)-Vo (t)-Vp (t) (2)
  • the resistance components Ro, Rp, and C shown in FIG. 4 are characteristic information extracted from the unit cell 111, and are experimentally obtained in advance by charging and discharging the unit cell 111, and according to the SOC, temperature, current, and the like. It is stored in the storage unit 180 as characteristic data.
  • the inter-terminal voltage CCV is a measurement result by the voltage detection unit 140, and the current I is a measurement result by the current detection unit 130, and the OCV is calculated using CCV, I, and battery characteristic data.
  • FIG. 6 (a) shows the time variation of the current, with the horizontal axis representing time, the positive side of the vertical axis representing charging, and the negative side of the vertical axis representing discharging.
  • the horizontal axis represents time
  • the vertical axis represents the estimated value of SOC by current integration.
  • calculation 2 calculation is performed based on the correspondence between SOC and OCV from the battery voltage measured before the relays 300, 310, 320, and 330 are closed, that is, before the battery is charged / discharged.
  • the starting SOCv (SOCv (0)) is the starting point (the time at this time is 0).
  • FIG. 7 shows a state in which the calculation error of SOC during discharge increases.
  • the current value measured by the current detector 130 includes a current measurement error
  • the current measurement error is also integrated and the SOC error increases.
  • As one method for preventing the increase in the SOC error there is a method of resetting with SOCv (0) calculated from the battery voltage before the relay is turned on every time the vehicle is started and recalculating the current integration process. That is, the SOC calculated from the battery voltage before the relay is turned on is input as an initial value to SOCv (0) in Expression (4).
  • the battery voltage at the start of the vehicle is not always OCV.
  • the battery voltage after charging / discharging is not immediately stabilized. That is, the polarization voltage Vp relaxes and does not converge immediately to the OCV.
  • SOCv (0) is estimated from the battery voltage including the remaining polarization voltage with respect to OCV. An error occurs in SOCv (0) by the amount corresponding to the polarization voltage. For this reason, until the time until the polarization voltage relaxes between the end of travel and the next start-up, a reset based on the SOC (SOCv (0)) based on the voltage acquired before turning on the relay is performed. I can't do it. If reset is not possible with SOCv (0), the SOC at the end of the previous run is restarted and SOCi is calculated.
  • FIG. 8 is a diagram showing an enlargement of SOC calculation error due to current integration.
  • the horizontal axis represents time, and as an example, shows a running pattern in which pausing (vehicle stop), running (discharging), pausing (vehicle stopping), and charging (charging by a charger) are repeated.
  • shaft of FIG. 8 shows SOC.
  • FIG. 8 shows how the calculation error of the SOC increases when the SOCv (0) cannot be reset as described above.
  • the graph indicated by the solid line indicates the true value of the SOC
  • the graph indicated by the dotted line indicates the calculated value of the SOC. As shown in FIG.
  • Fig.9 (a) is a figure which shows the voltage change of the cell 111 at the time of discharge.
  • the horizontal axis in FIG. 9 (a) indicates that the discharge is performed from the rest (no load) or when the current absolute value is equal to or less than the predetermined value, and then the rest (no load) or the current absolute value is equal to or smaller than the predetermined value. Shows the case.
  • the current absolute value is equal to or smaller than a predetermined value is a current value measured by the current detection unit 130 and is a current value that can be considered to be small enough that the voltage change due to the internal resistance can be ignored.
  • the current during charging is described as positive and the current during discharging is described as negative. Therefore, in order to express a state of about 0 A (ampere) in which no current flows, the current absolute value is set to a predetermined value or less.
  • FIG.9 (b) is a figure which shows the voltage change of the cell 111 at the time of charge. The horizontal axis in FIG.
  • the polarization voltage Vp after discharge shown in FIG. 9 (a) gradually increases from a voltage lower than OCV and approaches the OCV as time passes.
  • the polarization voltage Vp after charging shown in FIG. 9B gradually decreases from a voltage higher than the OCV with time and approaches the OCV. Therefore, the calculated value of SOC when converted directly to SOC from the voltage change after discharge is always lower than the true value, and approaches the true value of SOC as time passes.
  • the calculated value of SOC when converted directly to SOC from the voltage change after charging is always higher than the true value, and approaches the true value of SOC as time passes.
  • the property of voltage change described above is used. That is, a lower value than the true value of SOC calculated from the voltage including the polarization voltage after discharge, that is, the calculated value of SOC having an error on the minus side and the SOC calculated from the voltage including the polarization voltage after charging. The value higher than the true value, that is, the calculated value of the SOC having an error on the plus side is averaged. Thereby, the influence of the error due to the remaining polarization voltage after discharging or charging is canceled. Specifically, using the SOC (SOCv1) calculated from the voltage when the relaxation behavior is shown after charging as an initial value, the calculated value ⁇ SOC calculated by current integration as shown in equation (4) is calculate.
  • the calculated value ⁇ SOC calculated by current integration as described in equation (4) is set in parallel. calculate. For the two SOCv1 and SOCv2 that are the starting points, based on the elapsed time from when the current absolute value falls below the specified value until the SOCv1 and SOCv2 are acquired (rest period or period when the current absolute value is less than the specified value) The weighting coefficient described later is calculated, and the weighted average is calculated using the calculated weighting coefficient. As a result, even when the polarization voltage remains without being relaxed, SOCi is obtained without increasing the error while avoiding the error due to the polarization voltage included in SOCv (0).
  • FIG. 10 is a functional block diagram of the assembled battery control unit 150.
  • the assembled battery control unit 150 has a function of calculating SOH, input / output possible power, and the like. In the following description, it is assumed that the SOC is calculated for each single cell 111 constituting the assembled battery 110.
  • the SOC initial value calculation unit 151 calculates the SOC initial value of each cell by using the startup cell voltage Va of each cell acquired at startup.
  • the calculation result of the SOC initial value at the time of current activation by the SOC initial value calculation unit 151 is output to the first SOCi calculation unit 153 as SOC01, and the calculation result of the SOC initial value at the previous activation is stored in the storage unit 180 as SOC02.
  • the ⁇ SOC calculation unit 152 calculates the SOC change amount ( ⁇ SOC (t)) of each cell based on the current Ic flowing through the battery and the full charge capacity Qmax of each cell.
  • the current Ic flowing through the battery is acquired from the current detection unit 130, and the full charge capacity Qmax of each cell is read from the storage unit 180.
  • the first SOCi calculation unit 153 calculates the SOC of each cell using the SOC initial value of each cell from the SOC initial value calculation unit 151 and ⁇ SOC (t) from the ⁇ SOC calculation unit 152 as inputs.
  • Second SOCi calculation unit 154 calculates the SOC of each cell based on the SOC (SOC02) of each cell at the end of the previous travel stored in storage unit 180 and ⁇ SOC (t) from ⁇ SOC calculation unit 152.
  • the polarity determination unit 155 receives as input the average cell voltage Vb at startup obtained from the average value of the cell voltage Va at startup of each cell and the average cell voltage Vc at the end of the previous run, that is, the polarity of the polarization voltage at startup, that is, Whether the polarization voltage in the charging direction remains or whether the polarization voltage in the discharge direction remains is determined.
  • the polarity determination result of the polarization voltage at the time of current activation by the polarity determination unit 155 is output to the weighting factor calculation unit 156 as the charge / discharge history determination result 1, and the polarity determination result of the polarization voltage at the previous activation is the charge / discharge history.
  • the determination result 2 is stored in the storage unit 180.
  • the SOCv1 described above is used as the SOC initial value. It is calculated by the value calculation unit 151.
  • the SOCv2 described above is used as the SOC initial value. It is calculated by the value calculation unit 151.
  • the vehicle stop time measuring unit 190 measures the time from when the vehicle is stopped until it is next started as the vehicle stop time.
  • the measurement result of the vehicle stop time at the current start by the vehicle stop time measuring unit 190 is output to the weighting factor calculation unit 156 as the vehicle stop time 1, and the measurement result of the vehicle stop time at the previous start is the vehicle stop time 2.
  • the weighting factor calculation unit 156 includes the charge / discharge history determination result 1 output from the polarity determination unit 155, the vehicle stop time 1 output from the vehicle stop time measurement unit 190, and the charge / discharge stored in the storage unit 180.
  • the weighting coefficient w is calculated using the discharge history determination result 2 and the vehicle stop time 2 as inputs.
  • the SOCc calculation unit 157 performs weighted averaging of the two SOCs based on SOCi1 (t), SOCi2 (t), and the weighting coefficient w, and outputs a weighted averaged result (hereinafter referred to as SOCc (t)).
  • the time from when the vehicle is stopped until the next vehicle is started is the above-described elapsed time (the pause period or the period when the current absolute value is equal to or less than a predetermined value).
  • the vehicle stop time measuring unit 190 described above is configured to measure the vehicle stop time.
  • the polarity determining unit 155 determines whether the acquired cell voltage Va at the start of each cell is polarized in either the discharging direction or the charging direction. Determine whether the voltage is included. Specifically, when (starting average cell voltage Vb ⁇ previous running end average cell voltage Vc)> 0, the polarity determination unit 155 determines that the polarity of the polarization voltage at startup is negative, that is, the polarization voltage in the discharge direction is Judge that it remains.
  • the polarity determination unit 155 sets “1” when the polarization voltage in the charge direction remains, and sets “2” when the polarization voltage in the discharge direction remains, The result is output to the weighting factor calculation unit 156 as the discharge history determination result 1.
  • the weighting factor calculation unit 156 determines that the charge / discharge history determination result 1 and the charge / discharge history determination result 2 are combinations of “1” and “2”, that is, SOC and discharge side including errors due to residual polarization on the charge side.
  • the weight coefficient w is calculated based on the vehicle stop time 1 and the vehicle stop time 2. Note that when the charge / discharge history determination result 1 is “1” and the charge / discharge history determination result 2 is “2”, the vehicle stop time 1 is determined after the absolute value of the current becomes a predetermined value or less.
  • the elapsed time until SOCv1 is acquired is represented, and the vehicle stop time 2 represents the elapsed time from when the current absolute value becomes a predetermined value or less until SOCv2 is acquired.
  • SOCi1 (t) calculated by the first SOCi calculation unit 153 represents an SOC calculation value by current integration calculated using SOCv1 as an initial value
  • SOCi2 (t) calculated by the second SOCi calculation unit 154 is The SOC calculation value by the current integration calculated with SOCv2 as an initial value is shown.
  • the charge / discharge history determination result 1 is “2” and the charge / discharge history determination result 2 is “1”
  • the absolute value of the current is less than or equal to a predetermined value during the vehicle stop time 1.
  • SOCi1 (t) calculated by the first SOCi calculation unit 153 represents a SOC calculation value by current integration calculated using SOCv2 as an initial value
  • SOCi2 (t) calculated by the second SOCi calculation unit 154 is The SOC calculation value by current integration calculated with SOCv1 as an initial value is shown.
  • FIG. 11A is a diagram illustrating a voltage change of the single cell 111 after discharging
  • FIG. 11B is a diagram illustrating a voltage change of the single cell 111 after charging.
  • the SOCc operation unit 157 weights SOCi1 (t) and SOCi2 (t) with the weighting coefficient w and the weighting coefficient (1-w), respectively, and outputs the addition result.
  • SOCi1 (t) is an SOC including an error due to the residual polarization voltage after charging
  • SOCi2 (t) is an SOC including an error due to the residual polarization after discharging
  • the output SOCc (t of the SOCc calculation unit 157 is obtained.
  • FIG. 12A shows the transition of voltage when charging / discharging of the unit cell 111 is performed in the order of discharge, vehicle stop time 2 (stop), charge, vehicle stop time 1 (stop), and discharge.
  • the CCV gradually approaches the OCV at the vehicle stop time 2 from the time t2 to the time t3 after the discharge from the time t1 to the time t2, but the remaining portion of the polarization voltage remains at the time t3.
  • the CCV gradually approaches the OCV at the vehicle stop time 1 from time t4 to time t5, but the remaining portion of the polarization voltage remains at time t5.
  • FIG. 12B is a diagram showing the transition of the SOC when charging / discharging of the unit cell 111 is performed in the order of discharge, vehicle stop time 2 (rest), charge, vehicle stop time 1 (stop), and discharge.
  • Sa represents a graph of the true value of SOC
  • S1 represents a graph of SOCi1 (t) starting from time t3
  • S2 represents a graph of SOCi2 (t) starting from time t5
  • S3 A graph of SOCc (t) ⁇ ⁇ ⁇ starting from time t5 is shown.
  • Sb is an SOC graph obtained by a conventional calculation to which the present embodiment is not applied, and is described for comparison with the present embodiment.
  • the SOC is calculated by the conventional SOCi calculation.
  • the discharge is terminated, and the SOC initial value including the residual polarization after the discharge is acquired immediately before the start of charging shown at time t3.
  • the combination calculation is not executed.
  • the first SOCi computing unit 153 obtains SOC01 that is the SOC initial value including the remaining polarization voltage after charging.
  • SOCi1 (t) the calculation result SOCi1 (t) is obtained from time t5 as shown in the graph S2.
  • the second SOCi computing unit 154 computes SOCi2 (t) based on SOC02, which is the SOC initial value including the residual polarization voltage after discharge obtained at time t3.
  • the calculation result SOCi2 (t) is obtained from time t3 as shown in the graph S1.
  • the weighting factor calculation unit 156 calculates a weighting factor based on Equation 5. Then, SOCc calculation unit 157 calculates SOCc (t) based on equation (6) based on SOCi1 (t), SOCi2 (t), and weighting coefficient w. As a result, the calculation result SOCc (t) is obtained from time t5 as shown in the graph S3.
  • the conventional SOC error When comparing the conventional SOC error to which the present embodiment is not applied with the SOC error to which the present embodiment is applied, the conventional SOC error accumulates and expands as shown in the graph Sb.
  • the SOC error to which the present embodiment is applied can reduce the accumulation of errors as shown in the graph S3.
  • the error due to the polarization voltage can be reduced without relying on an advanced equivalent circuit model. Since the influence can be reduced and the SOC can be estimated with high accuracy, the reliability of the electric vehicle system can be ensured and the battery can be used efficiently.
  • a method for weighted averaging of two SOCs based on the time from when the vehicle is stopped until the next time the vehicle is started has been described.
  • two SOCs to be weighted and averaged are determined only at the time of starting the vehicle. Therefore, it is not possible to reset the current integration error that occurs during vehicle travel. For example, when the vehicle has traveled for a long time, the current error may accumulate, and the SOC error may increase. Therefore, in the present embodiment, during the start-up and running of the vehicle, two SOCs including the effects of the residual polarization after discharging and the residual polarization after charging are detected, and the weighted average is calculated to calculate the SOC. Preventing error expansion while driving.
  • the SOC initial value is acquired from the battery voltage immediately before the current becomes larger than the predetermined value.
  • the elapsed time until acquisition is measured, and the calculated SOC value is obtained from the initial value of the acquired SOC and current integration.
  • the weight is based on the elapsed time of each of the two SOC initial values. The coefficient is calculated and the two SOC calculation values are weighted averaged.
  • FIG. 13 shows a configuration of the assembled battery control unit 150 ′ in this embodiment.
  • the assembled battery control unit 150 ′ determines whether or not the absolute value of the current is equal to or less than a predetermined value, and inputs the result of the determination by the current absolute value determination unit 158 and the current absolute value determination unit 158 that output the determination result.
  • the polarity determination unit 155 ′ according to the present embodiment is different from the first embodiment in that the output from the current absolute value determination unit 158 is input.
  • FIG. 14 shows (a) voltage transition, (b) current absolute value determination result, and (c) elapsed time calculation result when current flows in the order of discharge, small current, charge, and small current.
  • the current absolute value determination unit 158 calculates the absolute value of the current, determines whether the calculation result is equal to or smaller than a predetermined value, and outputs “1”, for example, when the value is equal to or smaller than the predetermined value. Outputs “0” (FIG. 14B).
  • the elapsed time measurement unit 159 starts counting the elapsed time from the point when the result output from the current absolute value determination unit 158 changes from “0” to “1”, that is, when the current absolute value becomes equal to or less than a predetermined value. When the change from “1” to “0” is detected, the count is stopped.
  • the polarity determination unit 155 ′ receives the voltage and the output result from the current absolute value determination unit 158 as input, and the battery voltage at the time when the output result from the current absolute value determination unit 158 rises from “0” to “1” ( (Battery voltage immediately after the current absolute value becomes a predetermined value or less) is acquired.
  • the battery voltage at the time when the output result from the current absolute value determination unit 158 falls from “1” to “0” battery voltage immediately before the current absolute value becomes larger than the predetermined value
  • the difference between the two is calculated, and the battery voltage immediately before the current absolute value becomes larger than the predetermined value-the battery voltage immediately after the current absolute value becomes lower than the predetermined value> 0, the polarization voltage after discharge remains.
  • the battery voltage immediately before the current absolute value becomes larger than the predetermined value minus the battery voltage immediately after the current absolute value becomes equal to or lower than the predetermined value ⁇ 0 it is determined that the polarization voltage after charging remains.
  • the current absolute value becomes less than the predetermined value and then the current absolute value becomes larger than the predetermined value. That is, the output result from the current absolute value determination unit 158 changes from “1” to “0”.
  • the SOC initial value calculation unit 151 outputs the SOC initial value based on the battery voltage immediately before the fall, and either the first SOCi calculation unit 153 or the second SOCi calculation unit 154 is output based on the output result of the polarity determination unit 155 ′. Entered.
  • the output SOCi1 (t) of the first SOCi calculation unit 153 is an SOC including an error due to the residual polarization on the discharge side
  • the output SOCi2 (t) of the second SOCi calculation unit 154 is an SOC including an error due to the residual polarization on the charge side
  • polarity determination When the unit 155 ′ determines that the residual polarization on the discharge side remains, to the first SOCi calculation unit 153, and when the unit 155 ′ determines that the residual polarization on the charge side remains, the second SOCi calculation unit 154 The output result of the SOC initial value calculation unit 151 is input.
  • the output SOCi1 (t) of the first SOCi calculation unit 153 is an SOC including an error due to the residual polarization on the charge side
  • the output SOCi2 (t) of the second SOCi calculation unit 154 is an SOC including an error due to the residual polarization on the discharge side.
  • the polarity determination unit 155 ′ determines that the charge-side residual polarization remains
  • the second SOCi calculation unit determines that the discharge-side residual polarization remains to the first SOCi calculation unit 153.
  • the output result of the SOC initial value calculation unit 151 is input to 154.
  • FIG. 15 shows the order of discharge, small current (absolute current value is a predetermined value or less), charging, small current (absolute current value is a predetermined value or less), discharge, small current (absolute current value is a predetermined value or less), and charging.
  • the voltage waveform (FIG. 15A) and the SOC waveform (FIG. 15B) when the assembled battery 110 is charged and discharged are shown. It is assumed that immediately before the first discharge, the immediately preceding polarization is sufficiently relaxed.
  • the SOC calculation is compared when the SOC calculation based on the SOC initial value acquired before the first discharge is continued, that is, when there is no resetting and when the present invention is applied.
  • the SOC is calculated by the conventional SOCi calculation. After discharging, the scene has a small absolute value of current, and the SOC initial value including the residual polarization after discharging is acquired immediately before the start of charging. However, since there is no SOC calculation value including the residual polarization after charging, the combination calculation is not executed at this timing. Therefore, the SOCi calculation after the end of the first discharge is continued, and at the same time, SOCi (SOCi1 (t)) based on the SOC initial value including the residual polarization after the discharge is also calculated in parallel.
  • the SOC initial value including the remanent polarization after charging is acquired immediately before the second discharge, the charge / discharge pairs are prepared, so that the combination calculation according to the present embodiment is possible.
  • the SOCi calculation value (SOCi2 (t)) based on the SOC initial value including the remanent polarization after charging and SOCi1 (t) are calculated in parallel, and the weighting factor calculated based on Equation (7) is 2
  • the SOC is calculated by averaging the two SOCs (SOCc (t)). Since the initial SOC value including the residual polarization on the discharge side can be obtained again after the second discharge and before the second charge, it is used for SOCc (t) during the first charge.
  • SOCi1 (t) instead of SOCi1 (t), SOCi1 (t) with newly acquired SOC01 as an initial value is calculated and combined using SOCi2 (t) and weight w. Comparing the case where this embodiment is not applied and the case where it is applied, the error accumulates and expands when it is not applied, but when this embodiment is applied, the accumulation of error is reduced and applied. It can be seen that the SOC calculation error is small compared to the case of none.
  • the weighted average of two SOCs including the effects of the residual polarization after discharge and the residual polarization after charge is obtained without depending on an advanced resistance model.
  • the effect of errors due to polarization can be reduced.
  • the SOC can be obtained including the effects of unreduced polarization for both discharge and charge, ensuring more timing for correcting SOC errors due to accumulation of current errors. Therefore, it is possible to more reliably suppress the expansion of the SOC error due to the accumulation of the current error while avoiding the influence of the SOC error due to the polarization.
  • the SOC can be calculated with high accuracy, the reliability of the electric vehicle system can be ensured and the battery can be used efficiently.
  • the current absolute value during charging / discharging is detected as an elapsed time from the time when the current becomes equal to or less than a predetermined value, and the weighting coefficient is calculated based on the detected elapsed time.
  • the relaxation time of polarization depends on the state of the battery, for example, the battery temperature and the SOC.
  • FIG. 16 shows the transition of voltage when the charging current flows for each temperature. On the high temperature side where the internal resistance is low, the polarization relaxation time is short.
  • the transition of the voltage when the charging current flows is shown for each SOC. Since the SOC dependency of the internal resistance varies depending on various materials constituting the battery, in FIG. 17, as an example, the lower the SOC, the higher the resistance, that is, the case where the polarization relaxation time becomes longer. I picked up. Therefore, when the information related to the two times at the time of calculating the weighting coefficient described in the first embodiment and the second embodiment (the vehicle stop time in the first embodiment and the elapsed time in the second embodiment) is detected. When the temperature and SOC of the battery are different, it is desirable to reflect the temperature and SOC dependency of the polarization relaxation time. Therefore, in the present embodiment, a method for adjusting the weighting coefficient according to temperature and SOC will be described.
  • FIG. 18 shows a configuration of the assembled battery control unit 150 ′′ in the present embodiment.
  • FIG. 18 shows a block configuration for realizing the adjustment of the weighting coefficient according to the temperature.
  • the battery temperature battery temperature 1, battery temperature 2
  • the weighting factor calculation unit 156 ′ of the battery pack control unit 150 ′′ Is added as an input to '.
  • the battery temperature 1 and the battery temperature 2 are any of the temperatures immediately after the current absolute value becomes equal to or less than the predetermined value or when the current exceeding the predetermined value starts flowing again after the current absolute value becomes equal to or less than the predetermined value. Either temperature may be used.
  • the weighting factor calculation unit 156 ′′ calculates weight adjustment factors kT1 and kT2 corresponding to the battery temperature 1 and the battery temperature 2, and calculates the weighting factor w based on the following equation (8).
  • FIG. 19 (a) shows the temperature dependence of the polarization relaxation time
  • FIG. 19 (b) shows the temperature dependence of the weight adjustment coefficient kT.
  • the polarization relaxation time tends to become longer as the temperature decreases. Therefore, the weighting coefficient for the SOC calculation result detected at a low temperature when the polarization relaxation time is long becomes small.
  • An adjustment factor was provided. That is, as the temperature becomes lower as shown in FIG.
  • an adjustment coefficient that becomes smaller as the temperature becomes lower is mounted by a table or function according to temperature, and adjustment coefficients kT1, kT2 according to battery temperature 1 and battery temperature 2 And the weighting coefficient is calculated based on the equation (8). Based on the equation (8), using the calculated weighting coefficient w, the SOC is estimated by weighted averaging the two SOCs from the equation (6).
  • the weighting coefficient w may be calculated based on the expression shown in Expression (10).
  • Formula (10) In the case where the polarization relaxation time differs depending on the deterioration state in addition to the battery temperature and SOC described above, the adjustment coefficient of the weight coefficient may be set based on the same idea as the battery temperature and SOC described above.
  • the weighting factor that more accurately reflects the relaxation time of polarization can be calculated, it is possible to avoid the influence of SOC error due to residual polarization. Accordingly, it is possible to calculate the SOC with higher accuracy, and as a result, the reliability of the electric vehicle system can be ensured and the battery can be used efficiently.
  • the battery control apparatus includes a detection unit (single cell control unit 120) that detects a state quantity including a battery current and voltage, and a battery control that outputs a charge state of the battery based on the state quantity. (Battery control unit 150), and the battery control unit (battery control unit 150) has a current absolute value equal to or less than a predetermined value and a polarization voltage in a discharging direction with respect to a stable battery voltage.
  • the first charge state initial value calculated from the battery voltage including, the first charge state initial value calculated from the first charge state initial value and the state quantity, and the current absolute value is below a predetermined value
  • the state of charge of the battery can be estimated with high accuracy. Therefore, when the battery control device is applied to an electric vehicle system, the reliability of the electric vehicle system can be ensured and the battery can be used efficiently.
  • the battery control device includes a detection unit (single cell control unit 120) that detects a state quantity including the current and voltage of the battery (single battery 111), and a charge state of the battery ( SOC control unit (battery control unit 150), and the battery control unit (battery control unit 150) includes a state of charge of the battery after discharge (SOC01) and a change in state of charge of the battery (
  • a first charge state calculation unit (first SOCi calculation unit 153) that calculates a first charge state (SOCi1 (t)) of the battery based on ⁇ SOC (t)), and a charge state (SOC02) of the battery after charge
  • a second charge state calculation unit for calculating a second charge state (SOCi2 (t)) of the battery based on the state of charge change ( ⁇ SOC (t)), and a first charge state calculation Calculated by the first charge state (SOCi1 (t)) calculated by the unit (first SOCi calculation unit
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

SOCを高精度に推定することができない。時刻t5で示す2回目の放電直前に、充電後の残存分極電圧を含むSOC初期値を取得すると、SOCi2(t)が演算され、グラフS2に示すように、時刻t5から演算結果のSOCi2(t) が得られる。その結果、充電/放電のペアが揃うため、本実施形態による組合せ演算が可能となる。充電後の残存分極電圧を含むSOC初期値に基づく、SOCi演算値(SOCi2(t))と、SOCi1(t)を並行して演算し、式5に基づいて算出される重み係数により、2つのSOCを重み付け平均してSOCc(t)を求める。この結果、グラフS3に示すように、時刻t5から演算結果のSOCc(t)が得られる。

Description

電池制御装置及び電池システム
 本発明は、電池制御装置及び電池システムに関する。
 蓄電手段として電池を用いた電動車両等では、電池の状態を管理する電池制御回路が搭載されている。電池制御回路が管理する電池の状態として、電池の充電状態(State of Charge:SOC)や、電池の劣化状態(State of Health:SOH)が代表的な例である。SOCを推定する方法の一つとして、電池に出入りした電流値を測定して積分する方法がある。この方法では、電流測定値に含まれる測定誤差も積分してしまうため、時間の経過と共にSOC誤差が拡大する。
 そのために、特許文献1では、二次電池の充放電電流を積算してSOC(以下、SOCi)を算出する。また、二次電池の電池電圧と充放電電流から開放電圧(Open Circuit Voltage:OCV) を求め、このOCVとSOCの対応関係に基づいて、OCVをSOCへ換算することによりSOC(以下、SOCv)を算出する。そして、SOCiとSOCvに所定値以上の乖離が発生した場合に、SOCiを補正する。このようにして、SOCvとSOCiの差分が所定値以上の時に、電流測定値を積算していくに従って拡大するSOC誤差をリセットするため、SOCの誤差が累積されて拡大することを抑制している。
特許第3864590号公報
 しかしながら、特許文献1では、リセット時におけるSOCvにも演算誤差が含まれるため、SOCvの演算精度そのものを確保する必要があり、電池の充電状態SOCを高精度に推定することができない。
 本発明の第1の態様による電池制御装置は、電池の電流及び電圧を含む状態量を検出する検出部と、前記状態量に基づき、前記電池の充電状態を出力する電池制御部と、を有し、前記電池制御部は、前記電池の放電後に前記電流の絶対値が所定値以下であるときに検出された放電方向の分極電圧を含む前記電圧に基づいて、前記電池の第1の充電状態初期値を算出し、前記第1の充電状態初期値と前記状態量とに基づいて、前記電池の第1の充電状態を推定し、前記電流の絶対値が所定値以下となってから、前記第1の充電状態初期値を取得するまでの第1の経過時間を検出し、前記電池の充電後に前記電流の絶対値が所定値以下であるときに検出された充電方向の分極電圧を含む前記電圧に基づいて、前記電池の第2の充電状態初期値を算出し、前記第2の充電状態初期値と前記状態量とに基づいて、前記電池の第2の充電状態を推定し、前記電流の絶対値が所定値以下となってから、前記第2の充電状態初期値を取得するまでの第2の経過時間を検出し、前記第1の充電状態および前記第2の充電状態と、前記第1の経過時間および前記第2の経過時間とに基づいて、前記電池の第3の充電状態を算出し、出力する。
 また、本発明の第2の態様による電池制御装置は、電池の電流及び電圧を含む状態量を検出する検出部と、前記状態量に基づき、前記電池の充電状態を出力する電池制御部とを備え、前記電池制御部は、放電後の前記電池の充電状態と、前記電池の充電状態変化量とに基づいて前記電池の第1充電状態を演算する第1充電状態演算部と、充電後の前記電池の充電状態と、前記充電状態変化量とに基づいて前記電池の第2充電状態を演算する第2充電状態演算部と、前記第1充電状態演算部で演算された第1充電状態と前記第2充電状態演算部で演算された第2充電状態とに基づいて前記電池の充電状態を演算する第3充電状態演算部とを備える。
 本発明によれば、電池の充電状態を高精度に推定することができる。
電池制御装置とその周辺の構成を示す図である。 単電池制御部の回路構成を示す図である。 SOCとOCVの対応関係を示す図である。 電池の等価回路を示す図である。 充電時における単電池の電圧変化を示す図である。 (a)(b)電流積算によるSOCの推定を示す図である。 電流積算によるSOC変化量の演算誤差の拡大を示す図である。 電流積算によるSOCの演算誤差の拡大を示す図である。 (a)(b)充電時と放電時における単電池の電圧変化を示す図である。 第1の実施形態に係る組電池制御部の機能ブロック図である。 (a)(b)第1の実施形態に係る充電後と放電後における単電池の電圧変化を示す図である。 (a)(b)第1の実施形態に係る充放電における単電池の電圧及びSOCの推移を示す図である。 第2の実施形態に係る組電池制御部の機能ブロック図である。 第2の実施形態に係る単電池の電圧変化を示す図である。 第2の実施形態に係る充放電における単電池の電圧及びSOCの推移を示す図である。 分極緩和時間の温度依存性を示す図である。 分極緩和時間のSOC依存性を示す図である。 第3の実施形態に係る組電池制御部の機能ブロック図である。 温度に応じた重み調整係数を示す図である SOCに応じた重み調整係数を示す図である
 以下、図面を参照して本発明の一実施形態を説明する。図1は、本発明の実施形態に係る電池制御装置とその周辺の構成を示す図である。
 図1を基に全体の構成を説明する。図1に示すように、電池システム100には、リレー300、310を介して、インバータ400が接続される。インバータ400には、モータジェネレータ410が接続される。また、電池システム100は、リレー320、330を介して充電器500と接続される。なお、モータジェネレータ410は図示省略した電動車両の駆動源となるものである。
 電池システム100には、車両制御部200が接続され、車両制御部200にはインバータ制御部420が接続される。インバータ制御部420は、インバータ400に駆動信号を出力する。インバータ400は、この駆動信号に基づいてモータジェネレータ410を駆動する。モータジェネレータ410の回転位置などの信号は、インバータ制御部420へ入力される。車両制御部200は、電池システム100のSOC (充電状態)などの電池に関する情報とインバータ400やモータジェネレータ410からの信号と、車両のエンジン(図示省略)の情報を基にモータジェネレータ410の駆動力の配分等を決定する。
 次に、図1を基に電池システム100の構成について説明する。
 電池システム100は、複数の単電池111から構成される組電池110と、単電池111の状態を監視する単電池制御部120と、電池システム100に流れる電流を検知する電流検知部130と、組電池110の総電圧を検知する電圧検知部140と、組電池110の制御を行う組電池制御部150と、組電池110、単電池111、単電池群112a、112bの電池特性に関する情報を格納する記憶部180と、車両停止時から次回車両起動時までの時間を計測する車両停止時間計測部190で構成される。
 組電池110は、電気エネルギーの蓄積及び放出(直流電力の充放電)が可能な複数の単電池111(例えば、リチウムイオン電池)を電気的に直列に接続して構成される。1つの単電池111は、出力電圧が3.0~4.2V(平均出力電圧:3.6V)であり、単電池111のOCV (開放電圧)とSOC(充電状態)には後述の図3に示すような相関関係がある場合を例に説明するが、その他の相関関係でも同様である。
 組電池110を構成する単電池111は、状態の管理・制御を行う上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成する。所定の単位数は、例えば1個、4個、6個・・・というように、等区分にする場合もあれば、4個と6個とを組み合わせる、というように、複合区分にする場合もある。
 組電池110を構成する単電池111の状態を監視する単電池制御部120は、複数の単電池制御部121a、121bから構成されており、上記のようにグループ分けされた単電池群112aに対して1つの単電池制御部121aが割り当てられている。単電池制御部121a、121bは割り当てられた単電池群112a、112bからの電力を受けて動作し、単電池群112a、112bを構成する単電池111の状態を監視及び制御する。
 本実施形態では、組電池110は、4個の単電池111を電気的に直列に接続して、単電池群112a及び112bを構成し、さらに電気的に直列に接続し、合計8個の単電池111を備える。また、単電池群112a及び112bには、単電池111の状態を監視するための単電池制御部121a及び121bが設置されている。これらの構成は説明を簡単にするための一例であり、単電池111や単電池群112a、112bの個数、単電池制御部121a、121bの設置数などはその他の構成であってもよい。
 図2は、単電池制御部121aの回路構成を示す図である。単電池制御部121bも同様な回路構成であるのでその説明を省略する。単電池制御部121aは、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。温度検知部125は、単電池群112aの温度を測定する。制御回路123は、電圧検出回路122および温度検知部125からの測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121aに一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCのばらつきを均等化する回路構成は、周知であるので記載を省略した。
 温度検知部125は、単電池群112aで全体として1つの温度を測定し、単電池群112aを構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112a、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121aに1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121aの構成が複雑となる。
 図2では、簡易的に温度検知部125を図示した。具体的には温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力し、これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121aの外に測定結果を出力する。なお、この一連の流れを実現する機能が単電池制御部121aに温度検知部125として実装し、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 図1に示す組電池制御部150には、単電池制御部120から送信される単電池111の電池電圧や温度、更には単電池111が過充電もしくは過放電であるかの診断結果、電流検知部130から送信されるバッテリに流れる電流値、電圧検知部140から送信される組電池110の総電圧値、車両停止時間計測部190が計測した車両停止時間が入力される。そして、組電池制御部150は、単電池111のSOCやSOH、組電池110の入出力可能電力を始めとする各種電池状態を演算し、SOC、SOH演算結果やこれに基づく指令を、単電池制御部120や車両制御部200に出力する。尚、SOHや入出力可能電力等の演算については公知であるので、以降の説明では、SOCの演算について説明する。
 記憶部180は、組電池110、単電池111、単電池群112a、112bの内部抵抗特性、満充電時の容量、分極抵抗特性、劣化特性、個体差情報、SOCとOCVの対応関係などの情報を格納する。図3は、SOCとOCVの対応関係を示す図である。図3の横軸はSOCであり、縦軸はOCVである。図3に示すSOCとOCVの対応関係は、記憶部180に記憶されている。なお、本実施形態では図1に示すように、記憶部180は、組電池制御部150または単電池制御部120の外部に設置されている構成としたが、組電池制御部150または単電池制御部120内に記憶部180を備える構成とし、これに上記情報を格納してもよい。
 車両停止時間計測部190は、車両停止時の時刻情報と次回車両起動時の時刻情報に基づき、車両停止時間を演算し、組電池制御部150へ出力する。
 組電池制御部150と単電池制御部120は、フォトカプラのような絶縁素子170を介して、信号通信部160により信号の送受信を行う。絶縁素子170を設けるのは、組電池制御部150と単電池制御部120とで、動作電源が異なるためである。すなわち、単電池制御部120は、組電池110から電力をうけて動作するのに対して、組電池制御部150は、車載補機用のバッテリ(例えば12V系バッテリ)を電源として用いている。絶縁素子170は、単電池制御部120を構成する回路基板に実装しても良いし、組電池制御部150を構成する回路基板に実装しても良い。尚、システム構成によっては、絶縁素子170を省略することも可能である。
 本実施形態における組電池制御部150と、単電池制御部121a及び121bとの通信について説明する。単電池制御部121a及び121bは、それぞれが監視する単電池群112a及び112bの電位の高い順に従って直列に接続されている。組電池制御部150が送信した信号は、絶縁素子170を介して、信号通信部160により単電池制御部121aに入力される。単電池制御部121aの出力と単電池制御部121bの入力との間も同様に、信号通信部160により接続され、信号の伝送を行う。尚、本実施形態では、単電池制御部121aと121b間は、絶縁素子170を介していないが、絶縁素子170を介していても良い。そして、単電池制御部121bの出力は、絶縁素子170を介して、組電池制御部150の入力を経て、信号通信部160により伝送される。このように、組電池制御部150と、単電池制御部121aと単電池制御部121bは、信号通信部160により、ループ状に接続されている。このループ接続は、デイジーチェーン接続あるいは数珠繋ぎ接続もしくは芋づる式接続と呼ぶ場合もある。
 車両走行中では、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーをもとに、モータジェネレータ410を駆動する。充電の際には、電池システム100は充電器500と接続され、家庭用の電源または電気スタンドからの電力供給で充電される。
<SOCの演算1>
 次に、組電池制御部150で行うSOCの演算について説明する。SOCを演算する手法には、以下の2つの手法がある。尚、以降の説明では、電池に流れる充電電流を正、放電電流を負として取り扱う。
 まず、1つ目の手法であるSOCの演算1について説明する。この演算1では、充放電中の組電池110もしくは単電池111の電池電圧と電流から、電池のOCVを逐次演算する。
そして、記憶部180に記憶されているSOCとOCVの対応関係に基づいて、演算したOCVをSOCへ換算する。
 充放電中のOCVを得るには、図4に示した単電池111の等価回路を用いる。図4で、OCV は単電池111の起電力成分を、Roは電池の電極や電解液等の部材の抵抗成分を、RpとCを並列に接続した抵抗成分は、電池の電気化学的な反応に伴う抵抗成分を示している。単電池111に電流Iを印加すると、単電池111の端子間電圧CCVは式(1)のように計算できる。
(数1)
   CCV(t) = OCV(t) + Vo(t) + Vp(t)     ・・・  式(1)
 ここで、t は時刻であり、Vo(t)は、電流とRoの積から計算される電圧変化分である。Vp(t)は、RpとCの並列回路で模擬される過渡的な電圧変化分を示す。図5は、充電時における単電池111の電圧変化を示す図である。図5の横軸は時間、縦軸は電圧である。図5に示すように、休止後に一定時間充電し、その後休止した場合、上記式(1)に従って、通電直後にVo分だけ電圧が変化し、その後、過渡的にVpの成分が発生する。充電が休止し、電流が0になると、Vo分の電圧変化が解消され、その後、Vpの成分が徐々に減少し、最終的にはOCVへと収束していく。
 式(1)のCCVを示す式から、OCVを算出する式へ変形すると以下の式(2)となる。
(数2)
   OCV(t) = CCV(t) - Vo(t) - Vp(t)    ・・・  式(2)
 図4に示した抵抗成分Ro、Rp、Cは単電池111から抽出した特性情報であり、単電池111を充放電させることで実験的に予め求めておき、SOCや温度、電流などに応じた特性データとして記憶部180に格納されている。端子間電圧CCVは電圧検知部140による計測結果であり、電流Iは電流検知部130による計測結果であり、CCVとIと電池特性データとを用いて、OCVを算出する。そして、図3に示すSOCとOCVの対応関係から、算出したOCVをSOCへ換算することで、式(3)に示すように、単電池111のSOCを推定することができる。
(数3)
   SOCv(t) = f(OCV(t))         ・・・   式(3)
 式(2)、式(3)から、SOCvの演算には、RoやRp、Cに基づき演算される抵抗成分の演算精度に依存することが分かる。各種抵抗成分は、SOCや温度、劣化状態、更には負荷パターンによって様々に異なる。このため、図4に示した等価回路では表現しきれない可能性があり、表現しきれない抵抗成分がSOCvの大きな演算誤差要因となる。このため、SOCvの演算精度を確保するには、目標精度によっては、等価回路モデルの高度化が必要となり、これに伴う演算処理の複雑化や、等価回路モデルの各種抵抗成分を抽出するための試験工数がかかり、開発工数が拡大することが懸念される。
<SOCの演算2>
 次に、SOCを演算する2つ目の手法であるSOCの演算2について説明する。図6(a)は、電流の時間変化を示すもので、横軸に時間を、縦軸の+側は充電を、縦軸の-側は放電を表す。図6(b)は、横軸に時間を、縦軸に電流積算によるSOCの推定値を示す。演算2では、リレー300、310、320、330を閉じる前、すなわち、電池を充放電する前の電流が流れていない状態で測定される電池電圧から、SOCとOCVとの対応関係に基づき、算出したSOCv(SOCv(0))を起点 (この時の時刻を0とする)とする。その後は単電池111に出入りする電流を積分(∫I(t)dt)して単電池111の満充電容量(Qmax)で除算することでSOCv(0)からのSOC変化(ΔSOC(t))を求める。そして、SOCv(0)とΔSOC(t)に基づいて、式(4)に示すように、SOCを演算する。以下では、この演算2で得られるSOCをSOCiとする。
(数4)
   SOCi(t) = SOCv(0) + ΔSOC(t)      ・・・  式(4)
   SOCv(0) = f(OCV(0))
   ΔSOC(t) = 100×∫I(t)dt / Qmax 
 図7は、放電中におけるSOCの演算誤差が拡大する様子を示す。ここでは、電流検知部130が測定した電流値には電流測定誤差が含まれるため、電流測定誤差も積分されてSOCの誤差が拡大していく。このSOCの誤差の拡大を防ぐ一つの方法として、車両起動時に毎時に、リレー投入前の電池電圧から算出したSOCv(0)でリセットし、電流積算処理を再計算する方法がある。すなわち、リレー投入前の電池電圧から算出したSOCを、式(4)のSOCv(0)に、初期値として入力する。
 しかしながら、車両起動時の電池電圧は必ずしも、OCVであるとは限らない。図5に示すように、充放電が終了した後の電池電圧は、直ぐには安定しない。すなわち、分極電圧Vpが緩和し、OCVへと直ぐには収束しない。次回車両起動時に前回の充放電終了後の分極電圧成分が残存していた場合、OCVに対して残存分の分極電圧を含めた電池電圧から、SOCv(0)を推定してしまうため、残存分の分極電圧に相当する分、SOCv(0)に誤差が発生する。このため、走行終了時から次回起動時までの間に、分極電圧が緩和するまでの時間が十分に経過するまでは、リレー投入前に取得した電圧に基づくSOC(SOCv(0))でリセットを行うことが出来ない。SOCv(0)でリセットが出来ない場合、前回走行終了時のSOCを再開してSOCiを演算することになる。
 図8は、電流積算によるSOCの演算誤差の拡大を示す図である。図8において、横軸は時間であり、一例として、休止(車両停止)、走行(放電)、休止(車両停止)、充電(充電器による充電)を繰り返す走行パターンを示す。図8の縦軸はSOCを示す。この図8は、上述のように、SOCv(0)でリセット出来ない場合のSOCの演算誤差の拡大の様子を示している。図8で、実線で示すグラフはSOCの真値を示し、点線で示すグラフはSOCの演算値を示す。図8に示すように、車両の走行開始時等において、SOCv(0)によるリセット処理が行われなかった場合は、電流検知部130が測定した電流値に含まれる電流測定誤差の累積により、SOCの真値に対してSOCの演算値の誤差が拡大し続けることになる。
 分極電圧の緩和に要する時間は、抵抗成分Rpが大きくなり、低温時に長くなることが知られており、分極電圧が緩和せず、SOCv(0)によるリセットがされない状況が継続して、結果として、図8に示すようにSOCの誤差の拡大の発生が懸念される。このため、分極電圧が緩和しきれていない状況が継続した場合においても、SOCの誤差の拡大を防止する処理が必要となる。このためには、分極電圧の緩和挙動を正確に再現するためのモデルを構築し、OCVを予測する手法が考えられるが、SOCや温度、劣化状態、更には負荷パターンによって様々に異なる分極電圧の緩和挙動を表現するには、抵抗成分の高度なモデル化が必要となる。
<第1の実施形態によるSOCの演算>
 本実施形態では、高度なモデルを用いず、簡素な処理で、誤差を拡大させることなくSOCiを求める。以下、その手法について説明する。
 図9(a)は、放電時における単電池111の電圧変化を示す図である。図9(a)の横軸は、休止(無負荷)もしくは電流絶対値が所定値以下の場合から放電が行われ、その後、再び休止(無負荷)もしくは電流絶対値が所定値以下になった場合を示している。ここで、電流絶対値が所定値以下とは、電流検知部130が測定した電流値であって、内部抵抗による電圧変化が無視出来る程、十分に小さいと見做せる電流値である。本実施形態では、充電時の電流を正、放電時の電流を負として説明しているため、電流が流れていない約0A(アンペア)の状態を表現するために電流絶対値が所定値以下と表現する。図9(b)は、充電時における単電池111の電圧変化を示す図である。図9(b)の横軸は、休止(無負荷)もしくは電流絶対値が所定値以下の場合から充電が行われ、その後、再び休止(無負荷)もしくは電流絶対値が所定値以下になった場合を示している。
 図9(a)に示した放電後の分極電圧Vpは、OCVよりも低い電圧から徐々に上昇し、時間の経過と共にOCVへと近づいていく。一方で、図9(b)に示した充電後の分極電圧Vpは、OCVよりも高い電圧から、時間の経過と共に徐々に低下し、OCVへと近づいていく。従って、放電後の電圧変化から直接、SOCへ換算した場合のSOCの演算値は、真値よりも必ず低い値となり、時間の経過と共にSOCの真値へと近づいていくことになる。一方で、充電後の電圧変化から直接、SOCへ換算した場合のSOCの演算値は、真値よりも必ず高い値となり、時間の経過と共にSOCの真値へと近づいていくことになる。
 本実施形態では、上述の電圧変化の性質を利用する。すなわち、放電後の分極電圧を含む電圧から算出したSOCの真値に対して低い値、つまり、マイナス側の誤差を持つSOCの演算値と、充電後の分極電圧を含む電圧から算出したSOCの真値に対して高い値、つまり、プラス側の誤差を持つSOCの演算値とを平均化する。これにより、放電もしくは充電後の分極電圧の残存分による誤差の影響を打ち消す。具体的には、充電後における緩和挙動を示している場合の電圧から算出したSOC(SOCv1とする)を初期値として、式(4)に記載のように電流積算により算出される演算値ΔSOCを算出する。更に、放電後における緩和挙動を示している場合の電圧から算出したSOC(SOCv2とする)を初期値として、式(4)に記載のように電流積算により算出される演算値ΔSOCを並行して算出する。起点とする2つのSOCv1とSOCv2について、電流絶対値が所定値以下となってから、SOCv1及びSOCv2を取得するまでの経過時間(休止期間、もしくは、電流絶対値が所定値以下の期間)に基づき、後述する重み付け係数を算出し、算出した重み係数を用いて重み付け平均する。これにより、分極電圧が緩和しきれずに残存している場合においても、SOCv(0)に含まれる分極電圧による誤差を回避しつつ、誤差を拡大させることなくSOCiを求める。
 図10は、組電池制御部150の機能ブロック図である。なお、組電池制御部150は、SOCの他に、SOHや入出力可能電力等を演算する機能を備えているが、これらの機能は周知であるので説明を省略する。また以下の説明では、組電池110を構成する単電池111毎にSOCを演算するものとする。
 図10に示すように、SOC初期値演算部151は、起動時に取得した各セルの起動時セル電圧Vaを入力として、各セルのSOC初期値を演算する。SOC初期値演算部151による今回起動時のSOC初期値の演算結果は、SOC01として第1SOCi演算部153に出力され、前回起動時のSOC初期値の演算結果は、SOC02として記憶部180に格納される。また、ΔSOC演算部152は、電池に流れる電流Icと各セルの満充電容量Qmaxとに基づき、各セルのSOC変化量(ΔSOC(t))を演算する。電池に流れる電流Icは、電流検知部130より取得され、各セルの満充電容量Qmaxは、記憶部180より読み出される。
 第1SOCi演算部153は、SOC初期値演算部151からの各セルのSOC初期値と、ΔSOC演算部152からのΔSOC(t)とを入力として、各セルのSOCを演算する。第2SOCi演算部154は、記憶部180に格納された前回走行終了時の各セルのSOC(SOC02)と、ΔSOC演算部152からのΔSOC(t)とに基づき、各セルのSOCを演算する。
 極性判定部155は、各セルの起動時セル電圧Vaの平均値から求めた起動時平均セル電圧Vbと前回走行終了時の平均セル電圧Vcとを入力として、起動時の分極電圧の極性、つまり、充電方向の分極電圧が残存しているのか、放電方向の分極電圧が残存しているのかを判定する。極性判定部155による今回起動時の分極電圧の極性判定結果は、充電/放電履歴判定結果1として重み係数演算部156に出力され、前回起動時の分極電圧の極性判定結果は、充電/放電履歴判定結果2として記憶部180に格納される。なお、極性判定部155により起動時の分極電圧の極性が正であると判定された場合、すなわち充電方向の分極電圧が残存している場合には、SOC初期値として、前述のSOCv1がSOC初期値演算部151により演算される。一方、極性判定部155により起動時の分極電圧の極性が負であると判定された場合、すなわち放電方向の分極電圧が残存している場合には、SOC初期値として、前述のSOCv2がSOC初期値演算部151により演算される。
 車両停止時間計測部190は、車両が停止されてから次に起動されるまでの時間を車両停止時間として計測する。車両停止時間計測部190による今回起動時の車両停止時間の計測結果は、車両停止時間1として重み係数演算部156に出力され、前回起動時の車両停止時間の計測結果は、車両停止時間2として記憶部180に格納される。
 重み係数演算部156は、極性判定部155から出力された充電/放電履歴判定結果1と、車両停止時間計測部190から出力された車両停止時間1と、記憶部180に格納されている充電/放電履歴判定結果2と、車両停止時間2とを入力として、重み係数wを演算する。SOCc演算部157は、SOCi1(t)とSOCi2(t)と重み係数wを基に、2つのSOCを重み付け平均し、重み付け平均した結果(以下、SOCc(t)と称す)を出力する。尚、本実施例では、車両が停止してから、次回車両が起動するまでの時間(車両停止時間)を、上述した経過時間(休止期間、もしくは、電流絶対値が所定値以下の期間)として取り扱うこととし、上述した車両停止時間計測部190が、車両停止時間を計測する構成としている。
 以上の構成における組電池制御部150の動作を説明する。
 極性判定部155は、充放電終了時のセル電圧と、その後の充放電開始時のセル電圧との差分に基づいて、取得した各セルの起動時セル電圧Vaが放電方向と充電方向いずれの分極電圧を含むものであるかを判断する。具体的には、極性判定部155は、(起動時平均セル電圧Vb - 前回走行終了時平均セル電圧Vc) > 0のとき、起動時の分極電圧の極性が負、すなわち放電方向の分極電圧が残存していると判断する。逆に、(起動時平均セル電圧Vb - 前回走行終了時平均セル電圧Vc) < 0のとき、起動時の分極電圧の極性が正、すなわち充電方向の分極電圧が残存していると判断する。尚、起動時平均セル電圧Vb、前回走行終了時平均セル電圧Vcは共に電圧検出誤差を含むので、これらの差分にも誤差が含まれる。このため、起動時平均セル電圧Vbと前回走行終了時平均セル電圧Vcの差分に対して無視する範囲を設けても良い。極性判定部155は、例えば、充電方向の分極電圧が残存している場合には、「1」を、放電方向の分極電圧が残存している場合には、「2」を設定し、充電/放電履歴判定結果1として、重み係数演算部156へ出力する。
 重み係数演算部156は、充電/放電履歴判定結果1と充電/放電履歴判定結果2が、「1」と「2」の組合せ、つまり、充電側の残存分極による誤差を含んだSOCと放電側の残存分極による誤差を含んだSOCが共に取得出来ていると判定した場合に、車両停止時間1と車両停止時間2に基づき、重み係数wを演算する。なお、充電/放電履歴判定結果1が「1」であり、充電/放電履歴判定結果2が「2」である場合には、車両停止時間1は、電流絶対値が所定値以下となってからSOCv1を取得するまでの経過時間を表し、車両停止時間2は、電流絶対値が所定値以下となってからSOCv2を取得するまでの経過時間を表している。この場合、第1SOCi演算部153により演算されたSOCi1(t)は、SOCv1を初期値として算出された電流積算によるSOC演算値を表し、第2SOCi演算部154により演算されたSOCi2(t)は、SOCv2を初期値として算出された電流積算によるSOC演算値を表している。反対に、充電/放電履歴判定結果1が「2」であり、充電/放電履歴判定結果2が「1」である場合には、車両停止時間1は、電流絶対値が所定値以下となってからSOCv2を取得するまでの経過時間を表し、車両停止時間2は、電流絶対値が所定値以下となってからSOCv1を取得するまでの経過時間を表している。この場合、第1SOCi演算部153により演算されたSOCi1(t)は、SOCv2を初期値として算出された電流積算によるSOC演算値を表し、第2SOCi演算部154により演算されたSOCi2(t)は、SOCv1を初期値として算出された電流積算によるSOC演算値を表している。このように、いずれの場合であっても、SOCi1(t)、SOCi2(t)を取得することで、充電側の残存分極による誤差を含んだSOCと、放電側の残存分極による誤差を含んだSOCとを、共に取得することができる。
 次に、図11(a)と図11(b)を参照して、重み係数の演算について説明する。
 図11(a)は、放電後の単電池111の電圧変化を示す図であり、図11(b)は、充電後の単電池111の電圧変化を示す図である。
 ここで、前回の起動時には、放電直後に車両の走行が終了し、その後に車両が起動されたとする。また、今回の起動時には、充電直後に車両の走行が終了し、その後に車両が起動されたとする。この場合、図11(a)に示すように、前回の走行終了時から車両起動時までの時間が車両停止時間2として取得され、放電後の残存分極による誤差を含むSOCがSOCi2(t)として取得される。また、図11(b)に示すように、今回の走行終了時から車両起動時までの時間が車両停止時間1として取得され、充電後の残存分極による誤差を含むSOCがSOCi1(t)として取得される。ここで、車両停止時間1と車両停止時間2が異なる場合、例えば、車両停止時間1が車両停止時間2より長い場合の重み係数の演算について説明する。分極電圧の残存量は、単電池111への通電終了後からの経過時間、ここでは、車両停止時間が長ければ長い程、少なくなる。そこで、2つのSOC初期値取得時における車両停止時間が長い方のSOC初期値を起点したSOC演算値への重みが大きくなるように重みを決定する。例えば、以下の演算式に基づき、重み係数wを演算する。
(数5)
  w = 車両停止時間1 / ( 車両停止時間1+車両停止時間2 ) ・・・式(5)
 SOCc演算部157は、SOCi1(t)とSOCi2(t)とをそれぞれ重み係数wと重み係数(1-w)で重み付けを行い、加算した結果を出力する。上記のように、SOCi1(t)が充電後の残存分極電圧による誤差を含むSOCとし、SOCi2(t)が放電後の残存分極による誤差を含むSOCとすると、SOCc演算部157の出力SOCc(t)は以下の式(6)で演算される。なお、上記とは反対に、放電後の残存分極電圧による誤差を含むSOCがSOCi1(t)として取得され、充電後の残存分極による誤差を含むSOCがSOCi2(t)として取得された場合であっても、同じく式(6)でSOCc(t)を演算することができる。
(数6)
  SOCc(t) = w×SOCi1(t) + (1-w)×SOCi2(t)     ・・・ 式(6)
 図12(a)は、放電、車両停止時間2(休止)、充電、車両停止時間1(休止)、放電の順番に単電池111の充放電が行われた場合の電圧の推移であり、実線はCCVを、点線はOCVを示す。CCVは、時刻t1から時刻t2の放電後、時刻t2から時刻t3の車両停止時間2で、徐々にOCVへと近づいていくが、時刻t3で分極電圧の残存分が残っている。さらに、CCVは、時刻t3から時刻t4の充電後、時刻t4から時刻t5の車両停止時間1で、徐々にOCVへと近づいていくが、時刻t5で分極電圧の残存分が残っている。
 図12(b)は、放電、車両停止時間2(休止)、充電、車両停止時間1(休止)、放電の順番に単電池111の充放電が行われた場合のSOCの推移を示す図である。図12(b)において、SaはSOCの真値のグラフを表し、S1は時刻t3から始まるSOCi1(t) のグラフを表し、S2は時刻t5から始まるSOCi2(t) のグラフを表し、S3は時刻t5から始まるSOCc(t) のグラフを表わす。なお、Sbは本実施形態を適用しない従来の演算によるSOCのグラフであり、本実施形態との比較のために記載したものである。
 始めの放電直前の時刻t1では、直前の分極電圧が十分に緩和された状態であるものとし、車両停止時間1、車両停止時間2は何れも分極電圧が緩和するのに十分な時間が経過していないものとする。
 時刻t1~t2で示す、始めの放電時においては、直前の分極電圧が十分に緩和されているため、従来のSOCi演算でSOCを演算する。放電を終了し、時刻t3で示す充電開始直前に放電後の残存分極を含むSOC初期値を取得する。しかし、この時点では充電後の残存分極を含むSOC演算値がないため、組合せ演算は実行されない。
 次に、時刻t5で示す2回目の放電直前に、充電後の残存分極電圧を含むSOC初期値を取得すると、第1SOCi演算部153は、充電後の残存分極電圧を含むSOC初期値であるSOC01に基づいてSOCi(SOCi1(t))を演算する。その結果、グラフS2に示すように、時刻t5から演算結果のSOCi1(t)が得られる。また、第2SOCi演算部154は、時刻t3で得られた放電後
の残存分極電圧を含むSOC初期値であるSOC02に基づいてSOCi2(t)を演算する。その結果、グラフS1に示すように、時刻t3から演算結果のSOCi2(t)が得られる。その結果、充電/放電のペアが揃うため、本実施形態による組合せ演算が可能となる。重み係数演算部156は、式5に基づいて重み係数を算出する。そして、SOCc演算部157は、SOCi1(t)とSOCi2(t)と重み係数wを基に、式(6)に基づいてSOCc(t)を演算する。この結果、グラフS3に示すように、時刻t5から演算結果のSOCc(t)が得られる。
 本実施形態を適用していない従来のSOC誤差と、本実施形態を適用したSOC誤差とを比較すると、従来のSOC誤差は、グラフSbに示すように誤差が累積し、拡大していく。一方、本実施形態を適用したSOC誤差は、グラフS3に示すように、誤差が累積されるのを軽減することができる。
 本実施形態によれば、放電後の残存分極電圧と充電後の残存分極電圧による影響を含んだ2つのSOCを重み付け平均することで、高度な等価回路モデルに頼ることなく、分極電圧による誤差の影響を軽減でき、SOCを高精度に推定することが可能なため、電動車両システムの信頼性を確保すると共に効率的に電池を使用することが出来る。
<第2の実施形態によるSOCの演算>
 第2の実施形態について、図13から図15に基づき述べる。本実施形態におけるプラグインハイブリッド自動車の電動システムの構成例は、第1の実施形態で述べた図1と同様の構成とし、第1の実施形態と比較して異なる点を中心に述べる。
 第1の実施形態では、車両停止後から次回、車両起動時までの時間に基づき、2つのSOCを重み付け平均する手法について述べた。第1の実施形態は、車両起動時にのみ、重み付け平均する2つのSOCを決定するため、車両走行中に発生した電流積算誤差をリセットすることが出来ない。例えば、長時間、車両が走行していた場合等に、電流の誤差が累積し、SOC誤差が拡大する可能性がある。そこで、本実施形態では、車両起動中及び走行中において、放電後の残存分極と充電後の残存分極による影響を含んだ2つのSOCを検出し、重み付け平均してSOCを算出することにより、車両走行中における、誤差拡大の防止を図る。具体的には、車両走行中に、電流絶対値が所定値以下となったことを検出し、電流が所定値よりも大きくなる直前の電池電圧からSOC初期値を取得すると共に、SOC初期値の取得までの経過時間を計測し、取得したSOCの初期値と、電流積算によりSOC演算値を求める。このステップで、放電後の残存分極と充電後の残存分極による影響を含んだ2つのSOC演算値を計算出来るようになった場合に、2つのSOC初期値それぞれの経過時間に応じた基づき、重み係数を算出し、2つのSOC演算値を重み付け平均する。
 図13に本実施形態における組電池制御部150’の構成を示す。組電池制御部150’は、電流の絶対値が所定値以下かを判定し、判定結果を出力する電流絶対値判定部158と電流絶対値判定部158が判定した結果を入力として、電流絶対値が所定値以下となっている時間を計測する経過時間計測部159から構成されている。尚、本実施形態における極性判定部155’は、実施の形態1と比較して、電流絶対値判定部158からの出力を入力としている点が異なっている。
 電流絶対値判定部158、経過時間計測部159及び本実施の形態における、極性判定部155’の動作を図14に基づき述べる。
 図14は、放電、電流小、充電、電流小の順番で電流流れた場合の(a)電圧の推移、(b)電流絶対値判定結果、(c)経過時間の算出結果を示している。
 電流絶対値判定部158は、電流の絶対値を算出し、算出結果が所定値以下かを判定し、所定値以下の場合、例えば、「1」を出力し、所定値よりも大きな値の場合は、「0」を出力する(図14(b))。経過時間計測部159は、電流絶対値判定部158が出力した結果が「0」から「1」へ変化した点、つまり、電流絶対値が所定値以下になった時点から経過時間のカウントを開始し、「1」から「0」への変化を検知したら、カウントを停止する。そして、カウントの回数から経過時間を求めると共に、カウント値を「0」にクリアし、求めた経過時間を、重み係数演算部156へと出力する(図14(c))。
 極性判定部155’は、電圧と電流絶対値判定部158からの出力結果を入力とし、電流絶対値判定部158からの出力結果が「0」から「1」へ立ち上がった時点での電池電圧(電流絶対値が所定値以下となった直後の電池電圧)を取得する。この後、電流絶対値判定部158からの出力結果が「1」から「0」へ立ち下がった時点での電池電圧(電流絶対値が所定値より大きくなる直前の電池電圧)を取得して、両者の差分を算出し、電流絶対値が所定値より大きくなる直前の電池電圧 -電流絶対値が所定値以下となった直後の電池電圧> 0のとき、放電後の分極電圧が残存していると判断する。逆に、電流絶対値が所定値より大きくなる直前の電池電圧-電流絶対値が所定値以下となった直後の電池電圧< 0のとき、充電後の分極電圧が残存していると判断する。
 放電後もしくは充電後に、電流絶対値が所定値以下となってから、電流絶対値が所定値よりも大きくなる、つまり、電流絶対値判定部158からの出力結果が「1」から「0」へ立ち下がる直前の電池電圧に基づく、SOC初期値を、SOC初期値演算部151は出力し、極性判定部155’の出力結果に基づき、第1SOCi演算部153、第2SOCi演算部154の何れかに入力される。第1SOCi演算部153の出力SOCi1(t)を放電側の残存分極による誤差を含むSOC、第2SOCi演算部154の出力SOCi2(t)を充電側の残存分極による誤差を含むSOCとすると、極性判定部155’が放電側の残存分極が残っていると判断した場合には、第1SOCi演算部153へ、充電側の残存分極が残っていると判断した場合には、第2SOCi演算部154へ、SOC初期値演算部151の出力結果が入力される。反対に、第1SOCi演算部153の出力SOCi1(t)を充電側の残存分極による誤差を含むSOC、第2SOCi演算部154の出力SOCi2(t)を放電側の残存分極による誤差を含むSOCとすると、極性判定部155’が充電側の残存分極が残っていると判断した場合には、第1SOCi演算部153へ、放電側の残存分極が残っていると判断した場合には、第2SOCi演算部154へ、SOC初期値演算部151の出力結果が入力される。
 重み係数演算部156’は、経過時間計測部159からの出力を入力とし、放電及び充電側それぞれの経過時間を取得した場合に、下記式(7)に従って、重み係数wを演算する。
(数7)
  w = 経過時間1 / ( 経過時間1+ 経過時間2 )  ・・・式(7)
 SOCi1(t)、SOCi2(t)、wを基に、式(6)に基づいて、SOC(SOCc(t))を演算する。次に、図15に基づき、本実施の形態によるSOC演算結果例を示す。図15は、放電、電流小(電流絶対値が所定値以下)、充電、電流小(電流絶対値が所定値以下)、放電、電流小(電流絶対値が所定値以下)、充電の順番に組電池110の充放電が行われた場合の電圧波形(図15(a))とSOCの波形(図15(b))を示している。始めの放電直前は、直前の分極が十分に緩和された状態であるものとする。SOC演算は、始めの放電前に取得したSOC初期値に基づくSOC演算を継続し続けた場合、つまり、リセットなしの場合と、本発明を適用した場合とで比較する。
 第1の実施形態で述べた図12の説明と同様、始めの放電時においては、直前の分極が十分に緩和されていることを想定しているため、従来のSOCi演算でSOCを演算する。放電後に電流の絶対値が小さいシーンとなり、充電開始直前に放電後の残存分極を含むSOC初期値を取得する。しかし、充電後の残存分極を含むSOC演算値がないため、組合せ演算はこのタイミングでは、実行されない。従って、始めの放電終了後のSOCi演算を継続することになるが、これと共に、放電後の残存分極を含むSOC初期値に基づく、SOCi(SOCi1(t))も並行して演算する。2回目の放電直前に、充電後の残存分極を含むSOC初期値を取得すると、充電/放電のペアが揃うため、本実施形態による組合せ演算が可能となる。充電後の残存分極を含むSOC初期値に基づく、SOCi演算値(SOCi2(t))と、SOCi1(t)を並行して演算し、式(7)に基づき、算出される重み係数により、2つのSOCを重み付け平均してSOCを演算する(SOCc(t))。また、2回目の放電終了後、2回目の充電前に、再度、放電側の残存分極を含む、SOC初期値を取得することが出来るため、1回目の充電時のSOCc(t)に用いていた、SOCi1(t)に変えて、新規に取得したSOC01を初期値とするSOCi1(t)を演算し、SOCi2(t)と重みwを用いて組み合わせる。本実施形態を適用していない場合と適用した場合とで比較すると、適用なしの場合は、誤差が累積し、拡大していくが、本実施形態を適用すると、誤差の累積を軽減し、適用なしの場合と比較すると、SOC演算誤差が小さいことが分かる。
 本実施形態によれば、第1の実施形態と同様、放電後の残存分極と充電後の残存分極による影響を含んだ2つのSOCを重み付け平均することで、高度な抵抗のモデルに頼ることなく、分極による誤差の影響を軽減できる。また、車両起動中(充放電中)においても、放電/充電それぞれの分極未緩和分の影響を含めたSOCを取得可能な構成としたため、電流誤差の累積によるSOC誤差の補正タイミングをより多く確保することができることから、分極によるSOC誤差の影響を回避しつつ、より確実に電流誤差の累積によるSOC誤差の拡大を抑制することが可能となる。結果として、SOCを高精度に演算することが可能なため、電動車両システムの信頼性を確保すると共に効率的に電池を使用することが出来る。
<第3の実施形態によるSOCの演算>
 第3の実施形態について、図16から図20に基づき述べる。本実施形態におけるプラグインハイブリッド自動車の電動システムの構成例は、第1の実施形態及び第2の実施形態で述べた図1と同様の構成とし、第1の実施形態及び第2の実施形態と比較して異なる点を中心に述べる。
 第1の実施形態及び第2の実施形態では、それぞれ、電流絶対値が所定値以下となった状態がどの程度継続したかを、第1の実施形態では車両停止期間、第2の実施形態では、充放電中の電流絶対値が所定値以下となった時点からの経過時間として検出し、検出した経過時間に基づき、重み付け係数を算出していた。しかしながら、分極の緩和時間は、電池の状態、例えば、電池温度やSOCに依存する。図16に充電電流が流れた時の電圧の推移を、温度毎に記載した。内部抵抗の小さい高温側では分極の緩和時間は短く、逆に、内部抵抗の大きい低温側では分極の緩和時間は長い。また、図17には、充電電流が流れた時の電圧の推移をSOC毎に記載した。内部抵抗のSOC依存性は、電池を構成する各種材料に応じて異なるため、図17では、一例として、SOCが低い程、抵抗が大きくなる、つまり、分極の緩和時間が長くなる場合を例に取り上げた。従って、第1の実施形態及び第2の実施形態で述べた重み係数算出時の2つの時間に関する情報(第1の実施形態では車両停止時間、第2の実施形態では経過時間)を検出した時点での電池の温度やSOCが異なる場合、分極緩和時間の温度やSOC依存性を反映することが望ましい。そこで、本実施形態では、温度やSOCに応じて、重み係数を調整する方法について述べる。
 図18に本実施形態における組電池制御部150’’の構成を示す。図18では、温度に応じて重み係数の調整を実現するためのブロック構成を示した。図10に示した構成との異なる点は、重み係数算出時に用いる2つの時間情報に対応した電池温度(電池温度1、電池温度2)が組電池制御部150’’の重み係数演算部156’’に入力として追加されている点である。電池温度1及び電池温度2は、電流絶対値が所定値以下となった直後もしくは、電流絶対値が所定値以下となってから、再び、所定値を上回る電流が流れ始めた時点の温度の何れか一方の温度を用いれば良い。
 重み係数演算部156’’は、電池温度1及び電池温度2に応じた重み調整係数kT1及びkT2を算出し、以下の式(8)に基づき、重み係数wを算出する。
(数8)
 w = kT1×車両停止時間1 /
   (kT1×車両停止時間1+kT2×車両停止時間2)  ・・・式(8)
 次に、kT1及びkT2の決定方法について述べる。kT1及びkT2は、分極の緩和時間の温度依存性に基づいて決定される。図19(a)に分極緩和時間の温度依存性を、図19(b)に重み調整係数kTの温度依存性を示した。図19(a)に示すように、分極の緩和時間は、温度の低下に伴い、長くなる傾向がある、そこで、分極緩和時間が長い低温時に検出したSOC演算結果に対する重み係数が小さくなるような調整係数を設けた。つまり、図19(b)に示すような低温になるに従って、小さくなるような調整係数を温度に応じたテーブルもしくは関数等で実装し、電池温度1および電池温度2に応じた調整係数kT1、kT2を求め、式(8)に基づき、重み係数を算出するようにした。式(8)に基づき、算出された重み係数wを用いて、式(6)から2つのSOCを重み付け平均することにより、SOCを推定する。
 また、分極緩和時間のSOC依存性についても、同様に重み係数に反映することが出来る。つまり、分極緩和時間が長いSOCに基づく、SOC演算結果に対する重み係数が小さくなるような調整係数kSOCを設ければ良く、kSOCに基づき、式(9)に基づき、重み係数wを算出すればよい。
(数9)
  w = kSOC1×車両停止時間1 /
    (kSOC1×車両停止時間1+kSOC2×車両停止時間2)  ・・・式(9)
 尚、分極緩和時間の電池温度依存性とSOC依存性を両方とも重み係数へ反映する場合は、式(10)に示す式に基づき、重み係数wを算出すればよい。
(数10)
  w = kT1×kSOC1×車両停止時間1 /
 (kT1×kSOC1×車両停止時間1+kT2×kSOC2×車両停止時間2) ・式(10)
 上述した、電池温度、SOCの他にも劣化状態に応じて分極緩和時間が異なる場合は、上述した電池温度やSOCと同様の考え方で、重み係数の調整係数を設定すればよい。
 本実施形態によれば、分極の緩和時間をより正確に反映した重み係数を算出出来るため、残存分極によるSOC誤差の影響を回避できる。従って、より高精度にSOCを演算することが可能となり、結果として、電動車両システムの信頼性を確保すると共に効率的に電池を使用することが出来る。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)本実施形態による電池制御装置は、電池の電流及び電圧を含む状態量を検出する検出部(単電池制御部120)と、前記状態量に基づき、電池の充電状態を出力する電池制御部(組電池制御部150)と、を有し、前記電池制御部(組電池制御部150)は、電流絶対値が所定値以下、かつ、安定した電池電圧に対して放電方向の分極電圧を含む電池電圧から算出した第1の充電状態初期値と、前記第1の充電状態初期値と前記状態量から推定される第1の充電状態と、電流絶対値が所定値以下となってから、第1の充電状態初期値を取得するまでの第1の経過時間と、電流絶対値が所定値以下、かつ、安定した電池電圧に対して充電方向の分極電圧を含む電池電圧から算出した第2の充電状態初期値と、前記第2の充電状態初期値と前記状態量から推定される第2の充電状態と、電流絶対値が所定値以下となってから、第2の充電状態初期値を取得するまでの第2の経過時間と、を検出し、前記第1の充電状態と前記第2の充電状態に基づき、前記第1の経過時間と前記第2の経過時間に応じた、第3の充電状態を算出し、出力する。これにより、電池の充電状態を高精度に推定することができる。そのため、電池制御装置を電動車両システムに適用した場合は、電動車両システムの信頼性を確保すると共に効率的に電池を使用することが出来る。 
(2)本実施形態による電池制御装置は、電池(単電池111)の電流及び電圧を含む状態量を検出する検出部(単電池制御部120)と、状態量に基づき、電池の充電状態(SOC)を出力する電池制御部(組電池制御部150)とを備え、電池制御部(組電池制御部150)は、放電後の電池の充電状態(SOC01)と、電池の充電状態変化量(ΔSOC(t))とに基づいて電池の第1充電状態(SOCi1(t))を演算する第1充電状態演算部(第1SOCi演算部153)と、充電後の電池の充電状態(SOC02)と、充電状態変化量(ΔSOC(t))とに基づいて電池の第2充電状態(SOCi2(t))を演算する第2充電状態演算部(第2SOCi演算部154)と、第1充電状態演算部(第1SOCi演算部153)で演算された第1充電状態(SOCi1(t))と第2充電状態演算部(第2SOCi演算部154)で演算された第2充電状態(SOCi2(t))とに基づいて電池の充電状態(SOC)を演算する第3充電状態演算部(SOCc演算部157)とを備える。これにより、電池の充電状態を高精度に推定することができる。そのため、電池制御装置を電動車両システムに適用した場合は、電動車両システムの信頼性を確保すると共に効率的に電池を使用することが出来る。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
100 電池システム
110 組電池
111 単電池
112a、112b 単電池群
120 単電池制御部
121a、121b 単電池制御部
122 電圧検出回路
123 制御回路
124 信号入出力回路
125 温度検知部
130 電流検知部
140 電圧検知部
150 組電池制御部
151 SOC初期値演算部
152 ΔSOC演算部
153 第1SOCi演算部
154 第2SOCi演算部
155、155’極性判定部
156 重み係数演算部
157 SOCc演算部
158 電流絶対値判定部
159 経過時間計測部、
160 信号通信部
170 絶縁素子
180 記憶部
190 車両停止時間計測部
200 車両制御部
300、310、320、330 リレー
400 インバータ
410 モータジェネレータ
420 インバータ制御部
500 充電器

Claims (9)

  1.  電池の電流及び電圧を含む状態量を検出する検出部と、 
     前記状態量に基づき、前記電池の充電状態を出力する電池制御部と、を有し、 
     前記電池制御部は、 
     前記電池の放電後に前記電流の絶対値が所定値以下であるときに検出された放電方向の分極電圧を含む前記電圧に基づいて、前記電池の第1の充電状態初期値を算出し、
     前記第1の充電状態初期値と前記状態量とに基づいて、前記電池の第1の充電状態を推定し、
     前記電流の絶対値が所定値以下となってから、前記第1の充電状態初期値を取得するまでの第1の経過時間を検出し、 
     前記電池の充電後に前記電流の絶対値が所定値以下であるときに検出された充電方向の分極電圧を含む前記電圧に基づいて、前記電池の第2の充電状態初期値を算出し、
     前記第2の充電状態初期値と前記状態量とに基づいて、前記電池の第2の充電状態を推定し、
     前記電流の絶対値が所定値以下となってから、前記第2の充電状態初期値を取得するまでの第2の経過時間を検出し、 
     前記第1の充電状態および前記第2の充電状態と、前記第1の経過時間および前記第2の経過時間とに基づいて、前記電池の第3の充電状態を算出し、出力する電池制御装置。
  2.  請求項1に記載の電池制御装置において、
     前記電池制御部は、
     前記第1の充電状態初期値と前記電池の電流を積算した結果に基づき、前記第1の充電状態を推定し、
     前記第2の充電状態初期値と前記電池の電流を積算した結果に基づき、前記第2の充電状態を推定する電池制御装置。
  3.  請求項1または2に記載の電池制御装置において、
     前記電池制御部は、前記第1の経過時間と前記第2の経過時間のうち、経過時間が長い方の充電状態に基づいて推定された前記第1の充電状態または前記第2の充電状態に対する重みが大きくなるような重み係数を設定し、前記重み係数に基づいて、前記第1の充電状態と前記第2の充電状態を重み付け合成して、前記第3の充電状態を算出し、出力する電池制御装置。
  4.  請求項1から3の何れか一項に記載の電池制御装置において、
     前記電池制御部は、前記電池の充放電終了時の前記電圧と充放電開始時の前記電圧との差分、または前記電流の絶対値が前記所定値以下となった直後の前記電圧と前記所定値より大きくなる直前の前記電圧との差分に基づいて、前記電圧が前記放電方向の分極電圧または前記充電方向の分極電圧のいずれを含むかを判断する電池制御装置。
  5.  請求項3に記載の電池制御装置において、
     前記電池の温度を検出する温度検出部を有し、
     前記電池制御部は、前記第1の経過時間及び前記第2の経過時間内におけるそれぞれの前記電池の温度に応じた温度補正係数を算出し、前記算出した温度補正係数をもとに、前記重み係数を設定する電池制御装置。
  6.  請求項3に記載の電池制御装置において、
     前記電池制御部は、前記第1の経過時間及び前記第2の経過時間内におけるそれぞれの前記電池の充電状態に応じた充電状態補正係数を算出し、前記算出した充電状態補正係数をもとに、前記重み係数を設定する電池制御装置。
  7.  請求項1に記載の電池制御装置と、
     前記電池が複数接続された組電池と、を備え、
     前記電池制御装置は、前記電池および前記組電池を制御することを特徴とする電池システム。
  8.  電池の電流及び電圧を含む状態量を検出する検出部と、 
     前記状態量に基づき、前記電池の充電状態を出力する電池制御部とを備え、 
     前記電池制御部は、 
     放電後の前記電池の充電状態と、前記電池の充電状態変化量とに基づいて前記電池の第1充電状態を演算する第1充電状態演算部と、
     充電後の前記電池の充電状態と、前記充電状態変化量とに基づいて前記電池の第2充電状態を演算する第2充電状態演算部と、
     前記第1充電状態演算部で演算された第1充電状態と前記第2充電状態演算部で演算された第2充電状態とに基づいて前記電池の充電状態を演算する第3充電状態演算部とを備える電池制御装置。
  9.  請求項8に記載の電池制御装置において、
     前記電池の放電後からの第1経過時間および充電後からの第2経過時間を計測する計測部を備え、
     前記第3充電状態演算部)は、前記第1充電状態と前記第2充電状態に、前記計測部で計測された前記第1経過時間と前記第2経過時間に基づく重み付けを行って前記電池の充電状態を演算する電池制御装置。
PCT/JP2016/073216 2015-09-30 2016-08-08 電池制御装置及び電池システム WO2017056732A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017542993A JP6534746B2 (ja) 2015-09-30 2016-08-08 電池制御装置及び電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192514 2015-09-30
JP2015192514 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017056732A1 true WO2017056732A1 (ja) 2017-04-06

Family

ID=58427363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073216 WO2017056732A1 (ja) 2015-09-30 2016-08-08 電池制御装置及び電池システム

Country Status (2)

Country Link
JP (1) JP6534746B2 (ja)
WO (1) WO2017056732A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075784A (ja) * 2015-10-13 2017-04-20 トヨタ自動車株式会社 プラグイン車両用バッテリの管理システム
WO2017130673A1 (ja) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
DE102017213020A1 (de) * 2017-07-28 2019-01-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
WO2020203457A1 (ja) * 2019-04-03 2020-10-08 株式会社デンソー 制御装置
JP2021056095A (ja) * 2019-09-30 2021-04-08 株式会社デンソー 電池状態推定装置
CN112840220A (zh) * 2018-10-12 2021-05-25 日本汽车能源株式会社 电池控制装置
WO2021217662A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置
JP2022523930A (ja) * 2019-10-18 2022-04-27 エルジー エナジー ソリューション リミテッド 充電状態推定装置及び方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196668B1 (ko) * 2019-07-09 2020-12-30 한국전력공사 배터리 충전 상태 추정 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164373A (ja) * 2012-02-13 2013-08-22 Gs Yuasa Corp 状態推定装置及び状態推定方法
WO2014119328A1 (ja) * 2013-02-01 2014-08-07 三洋電機株式会社 電池状態推定装置
WO2015129117A1 (ja) * 2014-02-25 2015-09-03 三菱電機株式会社 二次電池のsoc推定装置
JP2015158412A (ja) * 2014-02-24 2015-09-03 日立オートモティブシステムズ株式会社 二次電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164373A (ja) * 2012-02-13 2013-08-22 Gs Yuasa Corp 状態推定装置及び状態推定方法
WO2014119328A1 (ja) * 2013-02-01 2014-08-07 三洋電機株式会社 電池状態推定装置
JP2015158412A (ja) * 2014-02-24 2015-09-03 日立オートモティブシステムズ株式会社 二次電池システム
WO2015129117A1 (ja) * 2014-02-25 2015-09-03 三菱電機株式会社 二次電池のsoc推定装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075784A (ja) * 2015-10-13 2017-04-20 トヨタ自動車株式会社 プラグイン車両用バッテリの管理システム
WO2017130673A1 (ja) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
JPWO2017130673A1 (ja) * 2016-01-29 2018-07-12 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
US10845417B2 (en) 2016-01-29 2020-11-24 Vehicle Energy Japan, Inc. Battery state estimation device, battery control device, battery system, battery state estimation method
DE102017213020A1 (de) * 2017-07-28 2019-01-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
DE102017213020B4 (de) 2017-07-28 2024-10-02 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
US11411411B2 (en) 2017-07-28 2022-08-09 Bayerische Motoren Werke Aktiengesellschaft Device and method for balancing an energy storage module
CN112840220A (zh) * 2018-10-12 2021-05-25 日本汽车能源株式会社 电池控制装置
WO2020203457A1 (ja) * 2019-04-03 2020-10-08 株式会社デンソー 制御装置
JP7183922B2 (ja) 2019-04-03 2022-12-06 株式会社デンソー 制御装置
JP2020169898A (ja) * 2019-04-03 2020-10-15 株式会社デンソー 制御装置
WO2021065231A1 (ja) * 2019-09-30 2021-04-08 株式会社デンソー 電池状態推定装置
JP2021056095A (ja) * 2019-09-30 2021-04-08 株式会社デンソー 電池状態推定装置
JP7124812B2 (ja) 2019-09-30 2022-08-24 株式会社デンソー 電池状態推定装置
US11860235B2 (en) 2019-09-30 2024-01-02 Denso Corporation Battery state estimation apparatus
JP2022523930A (ja) * 2019-10-18 2022-04-27 エルジー エナジー ソリューション リミテッド 充電状態推定装置及び方法
JP7302798B2 (ja) 2019-10-18 2023-07-04 エルジー エナジー ソリューション リミテッド 充電状態推定装置及び方法
US12013440B2 (en) 2019-10-18 2024-06-18 Lg Energy Solution, Ltd. SOC estimating apparatus and method
WO2021217662A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置

Also Published As

Publication number Publication date
JPWO2017056732A1 (ja) 2018-03-22
JP6534746B2 (ja) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2017056732A1 (ja) 電池制御装置及び電池システム
US11124072B2 (en) Battery control device and electric motor vehicle system
JP6588632B2 (ja) 電池制御装置
JP6033155B2 (ja) 電池制御装置
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
US8054045B2 (en) Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP5784108B2 (ja) 充電制御装置
JP6101714B2 (ja) 電池制御装置、電池システム
WO2016009757A1 (ja) 電池状態検知装置、二次電池システム、プログラム製品、電池状態検知方法
WO2012169061A1 (ja) 電池制御装置、電池システム
JP2015158412A (ja) 二次電池システム
WO2016009756A1 (ja) 電池状態検知装置、二次電池システム、プログラム製品、電池状態検知方法
JP7016704B2 (ja) 二次電池システム
WO2014147899A1 (ja) 満充電容量推定方法及び装置
JP6171128B2 (ja) 電池制御システム、車両制御システム
JP5851514B2 (ja) 電池制御装置、二次電池システム
JP6446880B2 (ja) バッテリ制御装置
JPWO2012169061A1 (ja) 電池制御装置、電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850909

Country of ref document: EP

Kind code of ref document: A1