WO2015152100A1 - ポリカーボネート樹脂組成物、及び成形体 - Google Patents

ポリカーボネート樹脂組成物、及び成形体 Download PDF

Info

Publication number
WO2015152100A1
WO2015152100A1 PCT/JP2015/059797 JP2015059797W WO2015152100A1 WO 2015152100 A1 WO2015152100 A1 WO 2015152100A1 JP 2015059797 W JP2015059797 W JP 2015059797W WO 2015152100 A1 WO2015152100 A1 WO 2015152100A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
group
resin composition
pentadecylphenol
Prior art date
Application number
PCT/JP2015/059797
Other languages
English (en)
French (fr)
Inventor
正己 瀧本
菅 浩一
慶彦 堀尾
康宣 山崎
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201580016762.3A priority Critical patent/CN106133058A/zh
Publication of WO2015152100A1 publication Critical patent/WO2015152100A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention relates to a polycarbonate resin composition and a molded body. More specifically, the polycarbonate resin composition has improved fluidity and color tone and excellent high-temperature molding stability, and is an optical molded product, particularly as a light guide plate. Useful polycarbonate resin composition and molded article using the same
  • Aromatic polycarbonate resins are excellent in transparency, mechanical properties, thermal properties, electrical properties, weather resistance, etc., and are used in optical molded products such as light guide plates, lenses, optical fibers, etc., taking advantage of these properties. Since materials for optical molded products are required to have high light guiding performance, development of copolymer polycarbonate resins and performance improvement by various additives have been performed. In recent years, display products with a larger screen and thinner thickness than conventional products such as smartphones and tablet PCs have become widespread, and further improvement in fluidity is required for the materials.
  • Patent Document 3 describes an optical recording medium using a polycarbonate having m-pentadecylphenoxy end groups, but the color tone is not sufficiently satisfactory.
  • An object of the present invention is to provide a polycarbonate resin composition with improved fluidity and color tone and excellent molding stability at high temperatures, and a molded product thereof.
  • the present invention relates to the following 1 to 15. 1. 1% by mass or less of the resorcinol derivative represented by the following general formula (I) and / or 2.5% by mass or less of the phenol derivative represented by the following general formula (II), the total content of the resorcinol derivative and the phenol derivative 380 nm light transmission in a 3 mm-thick molded body molded at 350 ° C.
  • Polycarbonate resin (A) comprising a polycarbonate resin (A-1) having a ratio of 85.0% or more and 10 to 100% by mass, and a polycarbonate resin (A-2) other than the above (A-1) 90 to 0% by mass
  • R 1 and R 2 are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different.
  • the component (C) is 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, 1,2-epoxy-4- (2,2-bis (hydroxymethyl) -1-butanol.
  • 9. The polycarbonate resin composition according to any one of 1 to 8, further comprising 0.02 to 0.15 parts by mass of a polyorganosiloxane (D) having a functional group with respect to 100 parts by mass of the component (A). . 10. 10. 10.
  • the function according to 9, wherein the functional group is at least one selected from the group consisting of an alkoxy group, an aryloxy group, a polyoxyalkylene group, a carboxyl group, a silanol group, an amino group, a mercapto group, an epoxy group, and a vinyl group.
  • Polycarbonate resin composition 11. The polycarbonate resin composition according to 9 or 10, wherein a difference between a refractive index of the polyorganosiloxane (D) having the functional group and a refractive index of the polycarbonate resin (A) is 0.13 or less. 12 12.
  • the polycarbonate resin composition of the present invention comprises a polycarbonate resin (A) comprising 10 to 100% by mass of a polycarbonate resin (A-1) and 90 to 0% by mass of a polycarbonate resin (A-2) other than (A-1). It contains 0.005 to 0.5 parts by mass of the phosphorus-based antioxidant (B) with respect to 100 parts by mass.
  • A polycarbonate resin
  • B phosphorus-based antioxidant
  • the polycarbonate resin (A-1) contains 1% by mass or less of a resorcinol derivative represented by the following general formula (I) and / or 2.5% by mass or less of a phenol derivative represented by the following general formula (II). It is obtained using as a raw material a terminal terminator containing 3-pentadecylphenol having a total content of the derivative and the phenol derivative of 2.5% by mass or less and a purity of 97.5% by mass or more. . It is preferable that 3-pentadecylphenol having a purity of 97.5% by mass or more used as a terminal stopper of the polycarbonate resin (A-1) is obtained from a natural product. In the present specification, 3-pentadecylphenol having a purity of 97.5% by mass or more is sometimes referred to as “high purity 3-pentadecylphenol”.
  • the high purity 3-pentadecylphenol used in the present invention is required to have a purity of 97.5% by mass or more.
  • the purity is less than 97.5% by mass, the yellowness is high when used as a raw material for a polymer material such as a polycarbonate resin, and the transparency and appearance may be deteriorated.
  • the purity of the high purity 3-pentadecylphenol is preferably 99.0% by mass or more.
  • an extract derived from a natural product of cashew nut shell liquid is used.
  • Cardanol contained in a cashew nut shell liquid is mainly 3-pentadecylphenol, 3-pentadecylphenol monoene, 3-pentadecylphenoldiene, and 3-pentadecylphenoltriene represented by the following general formula (III): It is a mixture of
  • R 4 when R 4 is — (CH 2 ) 14 CH 3 , it is 3-pentadecylphenol, and R 4 is — (CH 2 ) 7 CH ⁇ CH (CH 2 ) 5 CH 3 Is 3-pentadecylphenol monoene, and when R 4 is — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CH (CH 2 ) CH 3 , it is 3-pentadecylphenol diene, When R 4 is — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CHCH 2 CH ⁇ CH 2 , it is 3-pentadecylphenoltriene.
  • the main component of cardanol contained in the cashew nut shell liquid is phenol having a saturated bond and 1 to 3 unsaturated double bonds and having a hydrocarbon group having 15 carbon atoms in the 3-position (meta-position). It consists of a derivative.
  • a method of directly purifying cashew nut shell liquid and using a crude pentadecylphenol obtained by distilling the obtained hydrogenation treatment liquid may be used.
  • commercially available pentadecylphenol is obtained by hydrogenating cardanol contained in cashew nut shell liquid, its purity is usually less than 97.5% by mass, so when using commercially available pentadecylphenol. It is necessary to increase the purity.
  • the residual ratio of unsaturated bonds in cardanol after hydrogenation is preferably 0.2 or less, more preferably 0.1 or less.
  • the method for hydrogenation is not particularly limited, and a normal method can be used.
  • the catalyst include noble metals such as palladium, ruthenium, rhodium and platinum, or nickel or a metal selected from these metals supported on a support such as activated carbon, activated alumina or diatomaceous earth.
  • a reaction system a batch system in which a reaction is performed while suspending and stirring a powdered catalyst, or a continuous system using a reaction tower filled with a molded catalyst can be employed.
  • the solvent for hydrogenation may not be used depending on the method of hydrogenation. However, when a solvent is used, alcohols, ethers, esters, and saturated hydrocarbons are usually used.
  • the reaction temperature at the time of hydrogenation is not particularly limited, but can usually be set to 20 to 250 ° C, preferably 50 to 200 ° C. If the reaction temperature is too low, the hydrogenation rate will be slow, whereas if it is too high, the decomposition products will tend to increase.
  • the hydrogen pressure at the time of hydrogenation is usually normal pressure to 80 kgf / cm 2 (normal pressure to 78.4 ⁇ 10 5 Pa), preferably 3 to 50 kgf / cm 2 (2.9 ⁇ 10 5 to 49.0). ⁇ 10 5 Pa).
  • the purity of crude pentadecylphenol (low-purity pentadecylphenol) obtained by the above hydrogenation treatment method is usually 90 to 93% by mass, and various resorcinol derivatives and phenol derivatives other than 3-pentadecylphenol are used as impurities.
  • a phenol derivative is a compound having a structure having one OR group in the benzene ring.
  • a method for purifying crude pentadecylphenol obtained by the above-described hydrogenation treatment method by distillation examples thereof include a method for purification by crystallization, a method for purification by crystallization after distillation, and the like. In these, the method of crystallizing, after distilling crude pentadecyl phenol is preferable. Further, by using 3-pentadecylphenol having a purity of 97.5% by mass or more and further repeating distillation and crystallization, higher-purity 3-pentadecylphenol can be obtained.
  • the main fraction is preferably treated at a temperature of 200 to 260 ° C. and a pressure of 1 to 10 mmHg and treated with a filler in the vacuum distillation column.
  • the flow rate / distillation amount) is preferably 0.5 to 10.
  • a filler used in the vacuum distillation column a filler such as McMahon packing, Dixon packing, Raschig ring, ball ring, coil pack, helipak or the like can be used, but it is preferable to use McMahon packing.
  • the temperature of a solution in which crude pentadecylphenol is dissolved in a crystallization solvent is lowered in a crystallization tank to increase the purity of 3-pentadecylphenol.
  • 3-pentadecylphenol is precipitated to form crystals of 3-pentadecylphenol, and then 3-pentadecylphenol in the crystalline state Can be obtained from the solution by solid-liquid separation to obtain high-purity 3-pentadecylphenol.
  • the crystallization operation can be performed in a wide temperature range from the boiling point to the melting point of the crystallization solvent used.
  • the crystallization solvent is not particularly limited as long as it can dissolve 3-pentadecylphenol, and acetone, ethyl acetate, hydrocarbon solvents, acetonitrile, methanol, ethanol, and the like can be used. Among these, hydrocarbon solvents are preferable, and hexane and heptane are more preferable.
  • the amount of the crystallization solvent to be used can be appropriately set, but it is preferably 2 to 20 parts by mass, more preferably 4 to 10 parts by mass with respect to 1 part by mass of 3-pentadecylphenol. It is possible to produce efficiently while ensuring the purity.
  • crystallization is possible without adding seed crystals, crystallization can be efficiently performed by introducing seed crystals.
  • a controlled cooling method, a linear cooling method, a natural cooling method, and the like are known for reducing the temperature of a solution obtained by dissolving crude pentadecylphenol in a crystallization solvent in a crystallization tank, but the cooling method is particularly limited.
  • the cooling rate can be appropriately set.
  • the controlled cooling method reduces the temperature change at the initial stage when the amount of crystals is small (slow cooling rate), and increases the temperature change at the end of the period when the amount of crystals increases (faster the cooling rate).
  • the cooling rate is preferably set to 0 ° C. (constant temperature) to ⁇ 10 ° C./h in the initial stage, more preferably 0 ° C. (constant temperature) to ⁇ 5 ° C./h. It is preferable to lower the temperature at ⁇ 5 ° C./h to ⁇ 30 ° C./h, more preferably ⁇ 10 ° C. to ⁇ 20 ° C./h.
  • 3-pentadecylphenol having a purity of 97.5% by mass or more can be obtained from crude pentadecylphenol.
  • the content of the resorcinol derivative and the phenol derivative is within the above range, the transparency and appearance of the polycarbonate resin (A-1) can be improved.
  • the content of the resorcinol derivative is 0.8% by mass or less and / or the content of the phenol derivative is 0.8% by mass or less.
  • the total amount of the resorcinol derivative and the phenol derivative is desirably 0.8% by mass or less.
  • R 1 and R 2 are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different.
  • R 1 and R 2 as the aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group And alkyl groups such as dodecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group.
  • Examples of the saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms as R 3 include, in addition to the alkyl groups exemplified as R 1 and R 2 above, a carbon-carbon unsaturated divalent group. Examples thereof include an unsaturated aliphatic hydrocarbon group which is a monoene, diene or triene having one or more heavy bonds.
  • Examples of the compound included in the general formula (I) include compounds in which R 1 and R 2 are both hydrogen atoms, such as 5-pentadecyl resorcinol, 5-methyl resorcinol, 5-ethyl resorcinol, 5-propyl resorcinol, 5 R 3 such as butylresorcinol, 5-hexylresorcinol, 5-octylresorcinol, 5-decylresorcinol, 5-dodecylresorcinol, 5-tetradecylresorcinol, 5-octadecylresorcinol, 5-nonyldecylresorcinol, etc. has 1 to 20 carbon atoms And an unsaturated aliphatic hydrocarbon such as a monoene, diene, or triene having one or more carbon-carbon unsaturated double bonds in the alkyl group. It may be a group.
  • R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 is a hydrogen atom
  • R 3 is a saturated or unsaturated fatty acid having 1 to 20 carbon atoms.
  • the compound which is an aromatic hydrocarbon group include 3-methoxy-5-pentadecylphenol, 3-ethoxy-5-pentadecylphenol, 3-propoxy-5-pentadecylphenol, 3-butoxy-5-pentadecylphenol , 3-methoxy-5-hexylphenol, 3-methoxy-5-octylphenol, 3-methoxy-5-decylphenol, 3-methoxy-5-dodecylphenol, 3-methoxy-5-tetradecylphenol, 3-methoxy- 5-heptadecylphenol, 3-methoxy-5-octadecylphenol, 3-methoxy-5-nonyldecylphenol Nord, 3-ethoxy-5-hexylphenol,
  • the compound contained in the general formula (II) is a compound in which R 1 is a hydrogen atom and R 3 is a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as 3-hexylphenol.
  • Alkyl groups such as 3-octylphenol, 3-decylphenol, 3-dodecylphenol, 3-tridecylphenol, 3-tetradecylphenol, 3-hexadecylphenol, 3-octadecylphenol, 3-nonyldecylphenol, etc.
  • an unsaturated aliphatic hydrocarbon group such as monoene, diene, or triene having one or more carbon-carbon unsaturated double bonds in the alkyl group.
  • Examples of the compound in which R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms include, for example, 1-methoxy-3-hexylbenzene and 1-ethoxy-3-hexylbenzene when the 3-position is a hexyl group.
  • Examples thereof include compounds such as 3-hexylbenzene, 1-dodeoxy-3-hexylbenzene, and 1-butyrodeoxy-3-hexylbenzene.
  • 3-position is a pentadecyl group, 1-methoxy-3-pentadecylbenzene, 1-ethoxy-3-pentadecylbenzene, 1-propoxy-3-pentadecylbenzene, 1-butoxy-3-pentadecylbenzene, -Pentoxy-3-pentadecylbenzene, 1-hexoxy-3-pentadecylbenzene, 1-octoxy-3-pentadecylbenzene, 1-deoxy-3-pentadecylbenzene, 1-dodecoxy-3-pentadecylbenzene, 1 There may be mentioned compounds such as -butyrodeoxy-3-pentadecylbenzene.
  • the exemplified alkyl group may be a linear alkyl group or a branched alkyl group.
  • the polycarbonate resin (A-1) is preferably an aromatic polycarbonate resin, and the main chain includes a repeating unit represented by the following general formula (IV).
  • the polycarbonate resin (A-1) one type may be used alone, or two or more types may be used in combination.
  • R 5 and R 6 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon An arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—; a and b each independently represent an integer of 0 to 4. ]
  • Examples of the halogen atom independently represented by R 5 and R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group independently represented by R 5 and R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups.
  • Examples of the alkoxy group independently represented by R 5 and R 6 include a case where the alkyl group moiety is the alkyl group.
  • R 5 and R 6 are each preferably an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the alkylene group represented by X include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 5 carbon atoms is preferable.
  • Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group.
  • Examples of the cycloalkylene group represented by X include a cyclopentanediyl group, a cyclohexanediyl group, and a cyclooctanediyl group, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
  • Examples of the cycloalkylidene group represented by X include a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferable.
  • a cycloalkylidene group having 5 to 8 carbon atoms is more preferred.
  • Examples of the aryl moiety of the arylalkylene group represented by X and the aryl moiety of the arylalkylidene group represented by X include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group.
  • a and b each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.
  • phenol, p-cresol, pt-butylphenol, p-cumylphenol, Tribromophenol, nonylphenol, pt-octylphenol and the like can be mentioned.
  • pt-butylphenol and p-cumylphenol are preferred.
  • the molar ratio of (3-pentadecylphenol) :( other terminal terminator) is preferably 99: 1 to 20:80, more preferably 90:10 to 30:70.
  • dihydric phenol for constituting the main chain.
  • Various known dihydric phenols can be used as the dihydric phenol, but it is preferable to use a dihydric phenol represented by the following general formula (1).
  • R ⁇ 5 >, R ⁇ 6 >, X, a and b are the same as the above.
  • the dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis (hydroxyaryl) alkanes such as propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-
  • a dihydric phenol not contained in the dihydric phenol represented by the general formula (1) a dihydric phenol containing a structural unit represented by the following general formula (2) is represented by the above general formula (1). Can be used in combination with the dihydric phenol. By using a copolymer having such a structural unit, the flame retardancy and impact resistance of the obtained polycarbonate resin (A-1) can be improved.
  • the dihydric phenol containing a structural unit represented by the following general formula (2) is represented by a polyorganosiloxane represented by the following general formula (2-1).
  • R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • Z represents a phenol residue having a trimethylene group, which is derived from a phenol compound having an allyl group.
  • n represents 70 to 1000.
  • the polyorganosiloxane represented by the general formula (2-1) is obtained by modifying the terminal of a polyorganosiloxane having a terminal hydrogen with a phenol compound having an allyl group at the terminal, such as 2-allylphenol and eugenol. It is.
  • a polyorganosiloxane modified with a phenol compound having an allyl group at the terminal can be synthesized by the method described in Japanese Patent No. 2662310.
  • polydimethylsiloxane is preferred.
  • a branching agent may be used in the main chain of the polycarbonate resin by using a branching agent for the dihydric phenol.
  • the amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol.
  • branching agent examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl]- Examples thereof include compounds having three or more functional groups such as 4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene, phloroglucin, trimellitic acid, and isatin bis (o-cresol).
  • the polycarbonate resin (A-1) is produced by reacting a carbonate raw material with a dihydric phenol.
  • a carbonate raw material is a compound which can produce
  • generation reactions such as a condensation reaction and an exchange reaction.
  • Such compounds include phosgene, triphosgene, bromophosgene, bis (2,4,6-trichlorophenyl) carbonate, bis (2,4-dichlorophenyl) when producing polycarbonate by interfacial polycondensation. Examples thereof include phosgene derivatives such as carbonate, bis (2-cyanophenyl) carbonate, and trichloromethyl chloroformate.
  • a carbonate diester is used as the carbonate raw material, and examples of the carbonate diester include a diaryl carbonate compound, a carbon dialkyl compound, and an alkylaryl carbonate compound.
  • specific examples of the diaryl carbonate compound include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, bisphenol A bisphenyl carbonate, and the like.
  • dialkyl carbonate compound examples include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
  • alkyl aryl carbonate compound examples include methyl phenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, cyclohexyl phenyl carbonate, bisphenol A methyl phenyl carbonate, and the like.
  • the polycarbonate resin (A-1) is produced by a method commonly used in the production of a normal polycarbonate resin, for example, an interfacial polycondensation method using phosgene or a phosgene derivative, and a transesterification method (melting method). Of these, interfacial polycondensation is preferred.
  • an interfacial polycondensation method using phosgene or a phosgene derivative for example, a polycarbonate oligomer of the dihydric phenol is synthesized in advance from the dihydric phenol and phosgene or a phosgene derivative, and an inert organic solvent solution of the oligomer is used.
  • a method of reacting by adding an aqueous alkali solution containing the dihydric phenol and a terminal stopper containing the high purity 3-pentadecylphenol, or an aqueous alkali solution of the dihydric phenol, containing the high purity 3-pentadecylphenol examples thereof include a method in which phosgene or a phosgene derivative is added to a mixed liquid of a terminal terminator and an inert organic solvent and reacted, and among these, the former oligomer method is preferable.
  • the dihydric phenol is dissolved in an aqueous solution of an alkali metal hydroxide, and then an aqueous alkali solution of dihydric phenol (sodium hydroxide or the like). The aqueous solution).
  • phosgene or a phosgene derivative is introduced into a mixed solution of the alkaline aqueous solution and an inert organic solvent (an organic solvent such as methylene chloride) to synthesize the polycarbonate oligomer of the dihydric phenol.
  • the alkali concentration of the aqueous alkali solution is preferably in the range of 1 to 15% by mass, and the volume ratio of the organic phase to the aqueous phase is usually 5: 1 to 1: 7, preferably 2: 1 to 1: 4. It is desirable to be in range.
  • the reaction temperature is cooled in a water bath and is usually selected in the range of 0 to 50 ° C., preferably 5 to 40 ° C.
  • the reaction time is usually about 15 minutes to 4 hours, preferably about 30 minutes to 2 hours.
  • the degree of polymerization of the polycarbonate oligomer thus obtained is usually 20 or less, preferably about 2 to 10.
  • the organic phase containing the polycarbonate oligomer thus obtained is added with an alkaline aqueous solution of the dihydric phenol, a terminal terminator containing the high-purity 3-pentadecylphenol, and optionally an inert organic solvent and stirred.
  • an alkaline aqueous solution of the dihydric phenol, a terminal terminator containing the high-purity 3-pentadecylphenol, and optionally an inert organic solvent to stirred.
  • the alkali concentration of the aqueous alkali solution is preferably 1 to 15% by mass
  • the volume ratio of the organic phase to the aqueous phase is usually 7: 1 to 1: 2, preferably 4: 1 to 1: 1. It is desirable.
  • the ratio of the dihydric phenol to the polycarbonate oligomer is such that the molar ratio of (dihydric phenol) / (chloroformate group of the polycarbonate oligomer) is usually 0.4 to 0.55, preferably 0.45 to 0. .5 is chosen.
  • the ratio of alkali metal hydroxide and polycarbonate oligomer is such that the molar ratio of (alkali metal hydroxide) / (chloroformate group of polycarbonate oligomer) is usually 1.0 to 2.0, preferably 1. It is selected to be 2 to 1.7.
  • the amount of the terminal stopper used is such that the molar ratio of (terminal stopper) / (chloroformate group of polycarbonate oligomer) is usually 0.02 to 0.20, preferably 0.04 to 0.17. So chosen. Furthermore, in this reaction, a catalyst can be used as desired. The amount of catalyst used is such that the molar ratio of (catalyst) / (chloroformate group of polycarbonate oligomer) is usually 1.0 ⁇ 10 ⁇ 3 to 10.0 ⁇ 10 ⁇ 3 , preferably 1.0 ⁇ 10 ⁇ 3. It is selected to be ⁇ 5.0 ⁇ 10 ⁇ 3 .
  • alkali metal hydroxide used in the production of the polycarbonate resin (A-1) examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide. Of these, sodium hydroxide and potassium hydroxide are preferred. There are various kinds of inert organic solvents.
  • dichloromethane methylene chloride
  • chloroform 1,1-dichloroethane; 1,2-dichloroethane; 1,1,1-trichloroethane; 1,1,2-trichloroethane; 1,1,1,2-tetrachloroethane; 1,2,2,2-tetrachloroethane
  • chlorinated hydrocarbons such as pentachloroethane and chlorobenzene, and acetophenone.
  • organic solvents may be used alone or in combination of two or more.
  • chloroform and methylene chloride are preferable, and methylene chloride is particularly preferable.
  • quaternary ammonium salts examples include quaternary ammonium salts, quaternary phosphonium salts, and tertiary amines.
  • the quaternary ammonium salt examples include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide and the like.
  • the quaternary phosphonium salt examples include tetrabutylphosphonium chloride and tetrabutylphosphonium bromide.
  • tertiary amine examples include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, and dimethylaniline. Etc.
  • tertiary amines are preferable, and triethylamine is particularly preferable.
  • the polycarbonate resin (A-1) can be obtained from the organic solvent solution containing the polycarbonate resin thus obtained by performing a recovery operation according to a usual method.
  • a terminal terminator containing a dihydric phenol, a carbonic acid diester, and the high-purity 3-pentadecylphenol, and a branching agent or the like as necessary are used.
  • the polycarbonate resin (A-1) can be obtained by transesterification in a molten state and removing by-product phenol out of the system under reduced pressure conditions.
  • a transesterification catalyst may be used to accelerate the reaction.
  • salts such as sodium, calcium and cesium, ammonium salts, and phosphonium salts are preferable.
  • the polycarbonate resin (A-1) is obtained using high-purity 3-pentadecylphenol as a terminal terminator and has a terminal group derived from 3-pentadecylphenol.
  • the polycarbonate resin (A-1) has a 380 nm light transmittance of 85.0% or more in a 3 mm-thick molded product molded at 350 ° C.
  • the light transmittance of 380 nm is 85.0% or more, it can be suitably used for a light guide member for liquid crystal that requires transparency, and further for a light guide member for liquid crystal having a thin and large screen.
  • the 380 nm light transmittance is preferably 86% or more, and more preferably 87% or more.
  • the viscosity average molecular weight of the polycarbonate resin (A-1) is not particularly limited, but is preferably 8,000 to 19,000, from the viewpoint of maintaining fluidity and strength when molding a thin molded product. More preferably, it is 9,000 to 17,000, and even more preferably 10,000 to 15,000.
  • the yellow index (YI) of the polycarbonate resin (A-1) is preferably 1.5 or less. If the YI of the polycarbonate resin (A-1) is 1.5 or less, it can be suitably used for a liquid crystal member that is excellent in color tone and requires transparency. From the above viewpoint, the YI of the polycarbonate resin (A-1) is more preferably 1.3 or less, and further preferably 1.1 or less.
  • the polycarbonate resin composition of the present invention may contain a polycarbonate resin (A-2) other than the polycarbonate resin (A-1).
  • the polycarbonate resin (A-2) is not particularly limited, and various known polycarbonate resins can be used, but an aromatic polycarbonate resin is preferable. From the viewpoint of physical properties, the viscosity average molecular weight of the polycarbonate resin as the component (A-2) is preferably 10,000 to 40,000, more preferably 11,000 to 17,000.
  • the aromatic polycarbonate resin preferably has a main chain composed of repeating units represented by the following general formula (V).
  • R 9 and R 10 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X ′ is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, —S—, —SO -, -SO 2- , -O- or -CO- is shown.
  • d and e each independently represents an integer of 0 to 4.
  • Specific examples of R 9 and R 10 include the same as R 5 and R 6 .
  • R 9 and R 10 are preferably an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • Specific examples of X ′ include the same as X described above, and preferable examples are also the same.
  • d and e are each independently preferably 0 to 2, more preferably 0 or 1.
  • the aromatic polycarbonate resin is prepared by reacting with an aromatic dihydric phenol compound and phosgene in the presence of an organic solvent inert to the reaction, an aqueous alkaline solution, and then a tertiary amine or quaternary ammonium.
  • Conventional methods such as an interfacial polymerization method in which a polymerization catalyst such as a salt is added and polymerized, and a pyridine method in which an aromatic dihydric phenol compound is dissolved in pyridine or a mixed solution of pyridine and an inert solvent, and phosgene is directly introduced, etc.
  • a molecular weight regulator terminal terminator
  • branching agent a branching agent and the like are used as necessary.
  • said aromatic dihydric phenol type compound what is represented by following General formula (3) is mentioned.
  • R 9 , R 10 , X ′, d and e are as defined above, and preferred ones are also the same.
  • Specific examples of the aromatic dihydric phenol compound include the same divalent phenol represented by the general formula (1), and preferred ones are also the same.
  • the dihydric phenol not contained in the dihydric phenol represented by the general formula (3) is a dihydric phenol containing the structural unit represented by the general formula (2).
  • the polyorganosiloxane represented by 1) can be used in combination with the dihydric phenol represented by the general formula (3).
  • the said bihydric phenol may be used individually by 1 type, and may use 2 or more types together.
  • branching agent examples include those exemplified above.
  • the terminal stopper a conventionally used terminal stopper for producing a polycarbonate resin can be used.
  • phenol, p-cresol, pt-butylphenol, p-cumylphenol, tribromo Phenol, nonylphenol, pt-octylphenol and the like can be mentioned. Of these, pt-butylphenol and p-cumylphenol are preferred.
  • the polycarbonate resin (A) comprises 10 to 100% by mass of the polycarbonate resin (A-1) and 90 to 0% by mass of the polycarbonate resin (A-2).
  • the content of the polycarbonate resin (A-1) in the component (A) is 10 to 100% by mass, preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and still more preferably 70 to 100% by mass. It is.
  • the polycarbonate resin (A-2) other than the component (A-1) is contained in the polycarbonate resin composition of the present invention, the content thereof is 90% by mass or less, preferably 70% by mass in the component (A). % Or less, More preferably, it is 50 mass% or less, More preferably, it is 30 mass% or less.
  • the content of 3-pentadecylphenoxy group in the component (A) is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, still more preferably 0.8 to 7% by mass. is there.
  • the viscosity average molecular weight of the polycarbonate resin (A) is not particularly limited, but is preferably 8,000 to 19,000, more preferably from the viewpoint of maintaining fluidity and strength when molding a thin molded product. Is preferably 9,000 to 17,000, more preferably 10,000 to 15,000.
  • the polycarbonate resin composition of the present invention contains a phosphorus-based antioxidant (B).
  • a phosphorus-based antioxidant B
  • phosphorous antioxidant phosphorous acid, phosphonous acid, phosphonic acid and esters thereof, tertiary phosphine, and the like can be used.
  • those having a pentaerythritol structure are preferable, and phosphites having a pentaerythritol structure represented by the following general formula (4) are more preferable.
  • R 7 and R 8 each represent hydrogen, an alkyl group, a cycloalkyl group, or an aryl group.
  • the cycloalkyl group and the aryl group may be substituted with an alkyl group.
  • R 7 and R 8 are aryl groups
  • R 7 and R 8 are preferably aryl groups represented by the following general formula (a), (b) or (c).
  • R 9 represents an alkyl group having 1 to 10 carbon atoms.
  • R 10 represents an alkyl group having 1 to 10 carbon atoms.
  • phosphite ester having a pentaerythritol structure represented by the general formula (4) include bis (2,6-di-tert-butyl-4-methylphenyl) represented by the following general formula (5):
  • bis (2,4-dicumylphenyl) pentaerythritol diphosphite of the following general formula (6) compounds of the following general formulas (7) to (10) can be exemplified. .
  • phosphorus-based antioxidant (B) bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite of the general formula (5) [for example, ADK STAB PEP -36: manufactured by ADEKA Corporation], and bis (2,4-dicumylphenyl) pentaerythritol diphosphite of the general formula (6) [for example, Doverphos S-9228PC: manufactured by Dover Chemical Corporation] is preferable.
  • the bis (2,4-dicumylphenyl) pentaerythritol diphosphite of the general formula (6) is more preferable.
  • the content of the phosphorus antioxidant (B) in the polycarbonate resin composition of the present invention is 0.005 to 0.5 parts by mass, preferably 0.01 to 100 parts by mass of the component (A).
  • the amount is from 0.2 to 0.2 parts by mass, and more preferably from 0.02 to 0.1 parts by mass. If the amount is less than 0.005 parts by mass, an increase in the YI value cannot be suppressed, and a good color tone cannot be maintained if the resin composition is retained at a high temperature during the molding process. On the other hand, when the amount exceeds 0.5 parts by mass, hydrolysis of the polycarbonate by the decomposition product is promoted, and desired performance cannot be expressed.
  • the polycarbonate resin composition of this invention can contain an aliphatic cyclic epoxy compound (C) as needed.
  • the aliphatic cyclic epoxy resin (C) include compounds in which a part of the structure is epoxidized.
  • the content of the aliphatic cyclic epoxy compound (C) in the polycarbonate resin composition of the present invention is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the component (A).
  • the content is 0.001 part by mass or more, the durability is sufficiently improved, and when it is 0.5 part by mass or less, white turbidity is suppressed and the color tone is improved.
  • the content of the aliphatic cyclic epoxy compound (C) is more preferably 0.005 to 0.3 parts by mass, and still more preferably 0.01 to 0.1 parts by mass.
  • the polycarbonate resin composition of this invention can contain the polyorganosiloxane (D) which has a functional group as needed.
  • the polyorganosiloxane having the functional group is at least one functional group selected from the group consisting of alkoxy groups, aryloxy groups, polyoxyalkylene groups, carboxyl groups, silanol groups, amino groups, mercapto groups, epoxy groups, and vinyl groups. It preferably has a group.
  • the viscosity of the polyorganosiloxane (D) having the above functional group is preferably 10 mm 2 / sec or more at 25 ° C. from the viewpoint of lubricity effect, and more from the viewpoint of dispersibility in the polycarbonate resin (A). Preferably it is 200 mm ⁇ 2 > / sec or less. From the above viewpoint, the viscosity range of the polyorganosiloxane (D) having the functional group is more preferably 20 to 150 mm 2 / sec, particularly preferably 40 to 120 mm 2 / sec.
  • the difference in refractive index from the polycarbonate resin (A) is preferably as small as possible.
  • the difference between the refractive index of the polyorganosiloxane (D) having the functional group and the refractive index of the polycarbonate resin (A) is preferably 0.13 or less, more preferably 0.08 or less. More preferably, it is 0.05 or less.
  • the refractive index of the polycarbonate resin is about 1.58, the refractive index of the polyorganosiloxane (D) having the functional group is preferably 1.45 or more, more preferably 1.50 or more, and still more preferably. Is 1.51 or more.
  • the content of the polyorganosiloxane (D) having a functional group in the polycarbonate resin composition of the present invention is preferably 0.02 to 0.15 parts by mass, more preferably 100 parts by mass of the polycarbonate resin (A). Is 0.03 to 0.12 parts by mass. If content of (D) component mix
  • the polycarbonate resin composition of the present invention has the effects of the present invention in addition to the component (A) and the component (B) described above and the component (C) and the component (D) added as necessary.
  • conventionally known various additives which are conventionally added to the polycarbonate resin composition can be blended as required. These additives include antioxidants other than phosphorus antioxidants, UV absorbers, flame retardants, mold release agents, inorganic fillers (glass fibers, talc, titanium oxide, mica, etc.), colorants, light diffusion Agents and the like.
  • the molded body made of the polycarbonate resin composition of the present invention can be obtained by molding and kneading the above-mentioned components.
  • the kneading method is not particularly limited, and examples thereof include a method using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, and the like. .
  • the heating temperature at the time of kneading is usually selected in the range of 240 to 330 ° C., preferably 250 to 320 ° C.
  • the molding method conventionally known various molding methods can be used, for example, injection molding method, injection compression molding method, extrusion molding method, blow molding method, press molding method, vacuum molding method and foam molding method. It is done.
  • the components other than the polycarbonate resin can be added in advance as a masterbatch by melt-kneading with the polycarbonate resin or other thermoplastic resin. Further, it is preferably pelletized and injection molded, and special molding methods such as general injection molding method or injection compression molding method and gas assist molding method can be used, and various molded products can be produced. .
  • the molded body formed by molding the polycarbonate resin composition of the present invention can be suitably used as a resin for a light guide member or a light diffusion plate.
  • a light guide member for a liquid crystal device such as a light guide plate of a liquid crystal display device used in a mobile phone, a liquid crystal television, a personal computer, an electronic dictionary, an electronic book, a smartphone, a tablet PC, etc., a daytime attached to a headlamp
  • the light guide member used for a running light, LED lighting, etc. is mentioned. Since the polycarbonate resin composition of the present invention is excellent in fluidity, it is desirable to form it by injection molding, particularly when producing a thin molded body, and a resin for a light guide plate or a light diffusion plate of a liquid crystal display device. Can be suitably used.
  • the phenol derivative was measured by “JMS-Q1000GC” manufactured by JEOL Ltd. using a column “VF-1” having a length of 30 m, an inner diameter of 250 ⁇ m and a film thickness of 0.25 ⁇ m.
  • ⁇ Measurement of viscosity number (VN)> The viscosity number (VN) of the polycarbonate resin (A) was measured in accordance with ISO 1628-4 (1999).
  • McMahon Packing (Mc. MAHON Packing, standard size: 6 mm) is packed in a column with an inner diameter of 30 mm and a volume of 500 mL to form a rectification column, which is attached to a 2 L flask equipped with an internal temperature measuring device, and a reflux ratio ( A device for adjusting the reflux amount / distillation amount), a device for measuring the tower top temperature, and a depressurization degree adjusting device were attached.
  • the obtained crude 3-pentadecylphenol was melted in a 60 ° C. hot water bath and weighed 70 g in a standard bottle, and 420 g of n-hexane was added and dissolved. After standing at room temperature for 12 hours, the precipitated solid was filtered under reduced pressure, and then dried under reduced pressure at room temperature for 8 hours to obtain 48 g of the corresponding 3-pentadecylphenol.
  • the 3-pentadecylphenol content in the obtained 3-pentadecylphenol was 97.75% by mass. 70 g of 3-pentadecylphenol having a purity of 97.75% by mass was melted in a 60 ° C.
  • Production Example 1 [Production of polycarbonate resin (A-1)] (1) Production of polycarbonate oligomer 0.2% by mass of sodium dithionite with respect to bisphenol A (BPA) to be dissolved later is added to a 5.6% by mass sodium hydroxide aqueous solution, and the BPA concentration is 13 BPA was dissolved so that it might become 5 mass%, and the sodium hydroxide aqueous solution of BPA was prepared.
  • BPA bisphenol A
  • a sodium hydroxide aqueous solution of BPA was continuously passed through a tubular reactor having an inner diameter of 6 mm and a pipe length of 30 m at a flow rate of 40 L / hr and methylene chloride at a flow rate of 15 L / hr, and phosgene was continuously supplied at a flow rate of 4.0 kg / hr. Passed through.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction liquid sent out from the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further BPA sodium hydroxide aqueous solution was added at 2.8 L / hr, 0.07 L / hr of 25 mass% sodium hydroxide aqueous solution, 17 L / hr of water, 0.64 L / hr of 1 mass% triethylamine aqueous solution, and 149.methylene chloride solution of 20 mass% pt-butylphenol (PTBP).
  • the reaction was carried out at 29 to 32 ° C. at a flow rate of 2 kg / hr.
  • the reaction liquid was continuously extracted from the tank reactor and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer solution thus obtained had an oligomer concentration of 321 g / L and a chloroformate group concentration of 0.75 mol / L.
  • BPA aqueous solution of sodium hydroxide (701 g of NaOH and 2.9 g of sodium dithionite dissolved in 10.8 L of water in which 1462 g of BPA was dissolved) was added, and a polymerization reaction was carried out for 50 minutes.
  • 4 L of methylene chloride was added and stirred for 10 minutes.
  • the organic phase was separated into an organic phase containing polycarbonate and an aqueous phase containing excess bisphenol A and NaOH, and the organic phase was isolated.
  • the obtained methylene chloride solution of the polycarbonate resin was washed with 15 vol% 0.03 mol / L aqueous sodium hydroxide solution and 0.2 mol / L hydrochloric acid successively with respect to the solution, and then the electric conduction in the aqueous phase after washing. The washing was repeated with pure water until the degree became 0.5 mS / m or less.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • the composition ratio of m-PDP determined by 1 H-NMR was 4.07 mol%, and the composition ratio of PTBP was 4.24 mol%.
  • the polycarbonate resin had a light transmittance of 87.95% at 380 nm.
  • Production Example 2 [Production of polycarbonate resin (A-1)] A polycarbonate resin was obtained in the same manner as in Production Example 1 except that PTBP 64 g was not used in the production of (2) polycarbonate resin in Production Example 1.
  • the composition ratio of m-PDP determined by 1 H-NMR was 4.08 mol%, and the composition ratio of PTBP was 2.89 mol%.
  • the polycarbonate resin had a light transmittance of 87.90% at 380 nm.
  • Production Example 3 [Production of polycarbonate resin (A-1)] The same method as in Production Example 1 except that the amount of m-PDP used was changed from 361 g to 72 g and the amount of PTBP was changed from 64 g to 171 g in the production of (2) polycarbonate resin in Production Example 1 Thus, a polycarbonate resin was obtained.
  • the composition ratio of m-PDP determined by 1 H-NMR was 0.80 mol%, and the composition ratio of PTBP was 6.74 mol%.
  • the polycarbonate resin had a 380 nm light transmittance of 86.92%.
  • Production Example 4 [Production of polycarbonate resin (A-1)]
  • the same method as in Production Example 1 except that the amount of m-PDP used was changed from 361 g to 217 g and the amount of PTBP used was changed from 64 g to 100 g.
  • a polycarbonate resin was obtained.
  • the composition ratio of m-PDP determined by 1 H-NMR was 2.41 mol%, and the composition ratio of PTBP was 5.14 mol%.
  • the polycarbonate resin had a light transmittance of 380 nm of 87.60%.
  • Production Example 5 [Production of polycarbonate resin (A-1)] A polycarbonate resin was obtained in the same manner as in Production Example 1 except that the amount of PTBP used was changed from 64 g to 29 g in the production of (2) polycarbonate resin in Production Example 1.
  • the composition ratio of m-PDP determined by 1 H-NMR was 4.06 mol%, and the composition ratio of PTBP was 3.27 mol%.
  • the polycarbonate resin had a 380 nm light transmittance of 87.86%.
  • Examples 1 to 14 and Comparative Examples 1 to 4 [Production of polycarbonate resin composition] To 100 parts by mass of the polycarbonate resin (A) described in Table 1, 0.05 part by mass of the phosphorus-based antioxidant (B) described in Table 1 is blended, and the aliphatic cyclic epoxy compound (C ) And a polyorganosiloxane (D) having a functional group are blended in the proportions shown in Table 1, and melt-kneaded and extruded at a resin temperature of 280 ° C. and a screw rotation speed of 1000 ppm using a 40 mm ⁇ single-screw extruder with a vent, and granulation As a result, pellets of the polycarbonate resin composition were obtained.
  • the molding material used and the performance evaluation method of the molded body are shown below. The results are shown in Table 1.
  • the obtained sample was placed on a 50 mm wide jig set at a fulcrum of 30 mm, the test was performed at a test speed of 0.5 mm / m, and the bending strength of the formed product was measured.
  • a resin composition comprising a polycarbonate resin belonging to the present invention and produced using high-purity 3-pentadecylphenol as a terminal stopper is a conventional resin composition.
  • a resin composition containing a polycarbonate resin it is understood that the fluidity is excellent, the YI value is low, the color tone and transparency are excellent, and the molding stability at high temperature is excellent.
  • the polycarbonate resin composition of the present invention is excellent in fluidity, excellent in light transmittance and brightness, excellent in molding stability at high temperatures, and can be obtained in excellent light transmittance. Discoloration and deterioration do not occur even in a humid environment for a long time. Therefore, the polycarbonate resin composition of the present invention is particularly useful as an optical molded product, particularly as a light guide plate, and further as a light guide plate for a thin-walled large-screen liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 流動性と色調が改善され、高温での成形安定性に優れるポリカーボネート樹脂組成物、及びその成形体を提供する。 (1)レゾルシノール誘導体1質量%以下及び/又はフェノール誘導体2.5質量%以下を含有し、該レゾルシノール誘導体と該フェノール誘導体との合計含有量が2.5質量%以下であり、かつ純度が97.5質量%以上の3-ペンタデシルフェノールを含む末端停止剤を原料として用い、350℃で成形した3mm厚の成形体における380nm光線透過率が85.0%以上であるポリカーボネート樹脂(A-1)10~100質量%、及び前記(A-1)以外のポリカーボネート樹脂(A-2)90~0質量%からなるポリカーボネート樹脂(A)100質量部に対して、リン系酸化防止剤(B)0.005~0.5質量部を含有するポリカーボネート樹脂組成物、及び(2)前記ポリカーボネート樹脂組成物を成形してなる成形体である。

Description

ポリカーボネート樹脂組成物、及び成形体
 本発明は、ポリカーボネート樹脂組成物、及び成形体に関し、より詳細には、流動性と色調が改善され、高温成形安定性に優れるポリカーボネート樹脂組成物であって、光学成形品、特に、導光板として有用なポリカーボネート樹脂組成物及びそれを用いた成形体に関する
 芳香族ポリカーボネート樹脂は、透明性、機械的性質、熱的性質、電気的性質及び耐候性等に優れ、その特性を活かして導光板、レンズ、光ファイバー等の光学成形品に使用されている。光学成形品用の材料には、高い導光性能が要求されることから、共重合ポリカーボネート樹脂の開発や、各種添加剤による性能改良が行われてきた。近年、スマートフォンやタブレットPC等、従来製品と比べて大画面かつ薄型の表示商品が普及しだしたことから、さらにその材料には流動性の向上が必要となっている。
 芳香族ポリカーボネート樹脂の流動性を上げるために、例えば、芳香族ポリカーボネート樹脂の分子量を下げる方法、あるいは、特許文献1及び2に開示されるように、ポリテトラメチレングリコール等のポリエーテルジオールを共重合した高流動の共重合ポリカーボネート樹脂と組み合わせてポリカーボネート樹脂組成物とする方法が提案されている。しかしながら、このような方法によって流動性を上げると成形体の耐湿性能が低下するという問題があった。更には、高温成形に対応するためにホスファイト(亜リン酸エステル)系の酸化防止剤を芳香族ポリカーボネート樹脂に添加すると、ホスファイト系の酸化防止剤は加水分解し易く、導光板に加工した後も、一定以上の温度、湿度条件で行う耐湿熱試験で加水分解して、導光板の導光性能が低下してしまうという問題があった。また、流動性を上げた低分子量のポリカーボネート樹脂を用いた導光板は、耐湿熱試験後に、導光板内部にクラックが発生し易く、内部欠陥を作り易いという問題もあった。
 また、特許文献3には、m-ペンタデシルフェノキシ末端基を有するポリカーボネートを用いた光学記録媒体が記載されているが、色調が十分満足できるものではなかった。
特開2009-298994号公報 特開2009-40843号公報 特開2003-41011号公報
 本発明は、流動性と色調が改善され、高温での成形安定性に優れるポリカーボネート樹脂組成物、及びその成形体を提供することを目的とする。
 本発明は、下記1~15に関する。
1. 下記一般式(I)で表わされるレゾルシノール誘導体1質量%以下及び/又は下記一般式(II)で表わされるフェノール誘導体2.5質量%以下を含有し、該レゾルシノール誘導体と該フェノール誘導体との合計含有量が2.5質量%以下であり、かつ純度が97.5質量%以上の3-ペンタデシルフェノールを含む末端停止剤を原料として用い、350℃で成形した3mm厚の成形体における380nm光線透過率が85.0%以上であるポリカーボネート樹脂(A-1)10~100質量%、及び前記(A-1)以外のポリカーボネート樹脂(A-2)90~0質量%からなるポリカーボネート樹脂(A)100質量部に対して、リン系酸化防止剤(B)0.005~0.5質量部を含有するポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
                  
[式中R、Rは、水素原子、又は炭素数1~20の脂肪族炭化水素基である。Rは、水素原子、又は飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である。R、R、Rは同一であっても異なっていてもよい。但し、上記一般式(II)において、R=H、R=C1531で表される3-ペンタデシルフェノールは除く。]
2.前記(A)成分100質量部に対して、さらに脂肪族環状エポキシ化合物を(C)0.001~0.5質量部含有する、前記1に記載のポリカーボネート樹脂組成物。
3.前記3-ペンタデシルフェノールの純度が99.0質量%以上である、前記1又は2に記載のポリカーボネート樹脂組成物。
4.前記3-ペンタデシルフェノールが蒸留の後、晶析を行うことで得られる、前記1~3のいずれかに記載のポリカーボネート樹脂組成物。
5.前記(A)成分中の3-ペンタデシルフェノキシ基の含有量が0.1~10質量%である、前記1~4のいずれかに記載のポリカーボネート樹脂組成物。
6.前記(B)成分がペンタエリスリトール構造を有する、前記1~5のいずれかに記載のポリカーボネート樹脂組成物。
7.前記(B)成分が下記一般式で表される、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトである、前記1~6のいずれかに記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 
8.前記(C)成分が、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、及びこれらの混合物の群から選ばれる少なくとも1種である、前記2~7のいずれかに記載のポリカーボネート樹脂組成物。
9.前記(A)成分100質量部に対して、さらに官能基を有するポリオルガノシロキサン(D)0.02~0.15質量部を含有する、前記1~8のいずれかに記載のポリカーボネート樹脂組成物。
10.前記官能基が、アルコキシ基、アリールオキシ基、ポリオキシアルキレン基、カルボキシル基、シラノール基、アミノ基、メルカプト基、エポキシ基及びビニル基の群から選ばれる少なくとも1種である、前記9に記載のポリカーボネート樹脂組成物。
11.前記官能基を有するポリオルガノシロキサン(D)の屈折率と前記ポリカーボネート樹脂(A)との屈折率との差が0.13以下である、前記9又は10に記載のポリカーボネート樹脂組成物。
12.前記ポリカーボネート樹脂(A)の粘度平均分子量が8,000~19,000である、前記1~11のいずれかに記載のポリカーボネート樹脂組成物。
13.前記1~12のいずれかに記載のポリカーボネート樹脂組成物を成形してなる成形体。
14.成形体が導光部材である、前記13に記載の成形体。
15.導光部材が導光板である、前記14に記載の成形体。
 本発明によれば、流動性と色調が改善され、高温での成形安定性に優れるポリカーボネート樹脂組成物、及び成形体を提供することができる。
[ポリカーボネート樹脂組成物]
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A-1)10~100質量%、及び前記(A-1)以外のポリカーボネート樹脂(A-2)90~0質量%からなるポリカーボネート樹脂(A)100質量部に対して、リン系酸化防止剤(B)0.005~0.5質量部を含有する。以下、本発明のポリカーボネート樹脂組成物について説明する。
〔ポリカーボネート樹脂(A-1)〕
 ポリカーボネート樹脂(A-1)は、下記一般式(I)で表わされるレゾルシノール誘導体1質量%以下及び/又は下記一般式(II)で表わされるフェノール誘導体2.5質量%以下を含有し、該レゾルシノール誘導体と該フェノール誘導体との合計含有量が2.5質量%以下であり、かつ純度が97.5質量%以上の3-ペンタデシルフェノールを含む末端停止剤を原料として用いて得られるものである。
 ポリカーボネート樹脂(A-1)の末端停止剤として用いられる純度が97.5質量%以上の3-ペンタデシルフェノールは天然物から得られることが好ましい。
 なお、本明細書において、純度が97.5質量%以上の3-ペンタデシルフェノールを「高純度3-ペンタデシルフェノール」ということがある。
<高純度3-ペンタデシルフェノール>
 本発明に使用される高純度3-ペンタデシルフェノールは、その純度が97.5質量%以上であることを要する。その純度が97.5質量%未満であると、ポリカーボネート樹脂等の高分子材料の原料として用いた際に、黄色度が高く、透明性や外観を悪化させる恐れがある。以上の観点から、高純度3-ペンタデシルフェノールの純度は、99.0質量%以上であることが好ましい。
 このような高純度3-ペンタデシルフェノールを得るためには、カシューナッツの殻液の天然物に由来する抽出物が用いられる。特に、カシューナッツの殻液に10質量%程度含まれるカルダノールを製造原料として用いることが効率的である。カシューナッツ殻液に含まれるカルダノールは、主に、下記一般式(III)で表される、3-ペンタデシルフェノール、3-ペンタデシルフェノールモノエン、3-ペンタデシルフェノールジエン、および3-ペンタデシルフェノールトリエンの混合物である。
Figure JPOXMLDOC01-appb-C000005
                  
 上記式(III)中、Rが-(CH14CHである場合は、3-ペンタデシルフェノールであり、Rが-(CHCH=CH(CHCHである場合は、3-ペンタデシルフェノールモノエンであり、Rが-(CHCH=CHCHCH=CH(CH)CHである場合は、3-ペンタデシルフェノールジエンであり、Rが-(CHCH=CHCHCH=CHCHCH=CHである場合は、3-ペンタデシルフェノールトリエンである。
 上述したとおり、カシューナッツ殻液に含まれるカルダノールの主成分は、飽和結合及び1~3個の不飽和二重結合を有する、炭素数が15の炭化水素基を3位(メタ位)に有するフェノール誘導体からなる。
 本発明に使用する純度が97.5質量%以上の高純度3-ペンタデシルフェノールを効率的に得るためには、カシューナッツ殻液に含まれるカルダノールを用いることが好ましく、このカルダノールを水素添加反応処理することにより得られる粗ペンタデシルフェノール(低純度ペンタデシルフェノール)を用いて高純度化する方法が望ましい。また、カシューナッツ殻液を直接、水素添加処理し、得られた水素添加処理液を蒸留することによって得られる粗ペンタデシルフェノールを用いて高純度化する方法を用いることもできる。なお、市販のペンタデシルフェノールは、カシューナッツ殻液に含まれるカルダノールを水素添加処理して得ているが、その純度は通常97.5質量%未満であるので、市販のペンタデシルフェノールを用いる場合は、高純度化することが必要である。
<水素添加処理方法>
 3-ペンタデシルフェノールを得るためには、上述の通りカルダノールの直鎖状炭化水素部分の不飽和結合(二重結合)が水素添加され、飽和結合に変換されることが望ましい。直鎖状炭化水素部分に不飽和結合が多く含まれた状態で3-ペンタデシルフェノール純度を上げるためには、蒸留もしくは晶析を繰り返し行わなければならない場合があり、生産性が低下する。そのため水素添加による不飽和結合の変換率(水添率)は、90モル%以上が好ましく、95モル%以上がより好ましい。水素添加後のカルダノール中の不飽和結合の残存率(カルダノールの1分子当たりの不飽和結合の数)は、0.2個/分子以下が好ましく、0.1個/分子以下がより好ましい。
 水素添加する方法としては、特に限定されるものではなく、通常の方法を用いることができる。触媒としては、パラジウム、ルテニウム、ロジウム、白金などの貴金属またはニッケル、或いはこれらから選ばれる金属を活性炭素、活性アルミナ、珪藻土などの担体上に担持したものが挙げられる。反応方式としては、粉末状の触媒を懸濁攪拌しながら反応を行うバッチ方式や、成形した触媒を充填した反応塔を用いた連続方式を採用することができる。水素添加の際の溶媒は、水素添加の方式によっては用いなくてもよいが、溶媒を使用する場合は、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類が挙げられる。水素添加の際の反応温度は、特に限定されないが、通常20~250℃、好ましくは50~200℃に設定できる。反応温度が低すぎると水素化速度が遅くなり、逆に高すぎると分解生成物が多くなる傾向がある。水素添加の際の水素圧は、通常、常圧~80kgf/cm(常圧~78.4×10Pa)、好ましくは3~50kgf/cm(2.9×10~49.0×10Pa)に設定できる。
<高純度化方法>
 上記の水素添加処理方法によって得られる粗ペンタデシルフェノール(低純度ペンタデシルフェノール)の純度は、通常、90~93質量%であり、不純物として種々のレゾルシノール誘導体や3-ペンタデシルフェノール以外のフェノール誘導体を含有している。
 なお、本明細書において、レゾルシノール誘導体とは、OR基(R=水素原子、又は炭素数1~20の脂肪族炭化水素基を示す。)をベンゼン環のメタ位に2個有する構造を持つ化合物であり、フェノール誘導体とは、該OR基をベンゼン環に1個有する構造を持つ化合物である。
 本発明に使用される純度が97.5質量%以上の高純度3-ペンタデシルフェノールを得る方法としては、前述した水素添加処理方法によって得られる粗ペンタデシルフェノールを、蒸留によって高純度化する方法、晶析によって高純度化する方法、蒸留した後に晶析によって高純度化する方法等を挙げることができる。これらの中では、粗ペンタデシルフェノールを蒸留した後に晶析を行う方法が好ましい。また、純度が97.5質量%以上に高純度化した3-ペンタデシルフェノールを使用して、更に蒸留や晶析を繰り返すことにより、より高純度の3-ペンタデシルフェノールを得ることができる。
 蒸留によって高純度化する方法としては、例えば常圧蒸留や減圧蒸留によって高純度化することができ、中でも減圧蒸留によって高純度化することが好ましい。減圧蒸留で高純度化するに当たっては、主分画を200~260℃の温度及び1~10mmHgの圧力とし、減圧蒸留塔内に充填剤を用いて処理することが好ましく、このとき還流比(還流量/留出量)を0.5~10とするのが好ましい。減圧蒸留塔内に用いられる充填剤としては、マクマホンパッキング、ディクソンパッキング、ラシヒリング、ボールリング、コイルパック、ヘリパック等の充填剤を用いることができるが、マクマホンパッキングを用いることが好ましい。
 晶析によって3-ペンタデシルフェノールを高純度化する方法としては、晶析槽中で粗ペンタデシルフェノールを晶析溶媒に溶解した溶液の温度を低下させ、高純度化を目的とする3-ペンタデシルフェノール溶液の過飽和状態と、該化合物の飽和濃度との差を利用して、3-ペンタデシルフェノールを析出させて3-ペンタデシルフェノールの結晶を生成させ、次いで結晶状態の3-ペンタデシルフェノールを溶液から固液分離することにより、高純度の3-ペンタデシルフェノールを得ることができる。晶析操作は、用いる晶析溶媒の沸点から融点までの幅広い温度域で行なうことができる。また、晶析溶媒は3-ペンタデシルフェノールを溶解することのできる溶媒であれば、特に限定されず、アセトン、酢酸エチル、炭化水素系溶媒、アセトニトリル、メタノール、エタノールなどを用いることができる。これらの中でも、炭化水素系溶媒好ましく、ヘキサン、へプタンがより好ましい。晶析溶媒の使用量は適宜設定することが出来るが、好ましくは3-ペンタデシルフェノール1質量部に対し2~20質量部、より好ましくは4~10質量部の晶析溶媒を用いることで所望の純度を確保しつつ効率よく生産できる。また、種晶を添加しなくても晶析は可能であるが、種晶を投入することで効率よく晶析が可能となる。
 また、晶析槽中で粗ペンタデシルフェノールを晶析溶媒に溶解した溶液の温度を低下させるに当たって、制御冷却法、直線冷却法、自然冷却法などが知られているが、冷却法は特に限定されず、また冷却速度は適宜設定することが出来る。その中でも、制御冷却法は結晶量が少ない初期には温度変化を小さく(冷却速度を遅く)し、結晶量が多くなる終期には温度変化を大きく(冷却速度を速く)することにより、飽和溶液の過飽和度が終始低く一定に保たれるので、二次核の発生が抑制されて、単分散粒子のみが得られるため好ましい。冷却速度として初期段階では好ましくは0℃(温度一定)~-10℃/h、より好ましくは0℃(温度一定)~-5℃/hに設定することが好ましく、終期ではによって高純度化する-5℃/h~-30℃/h、より好ましくは-10℃~-20℃/hで降温させることが好ましい。
 上記に記載した高純度化方法により、粗ペンタデシルフェノールから、純度が97.5質量%以上である3-ペンタデシルフェノールを得ることができる。
 本発明に使用される高純度3-ペンタデシルフェノール中には、下記一般式(I)で表わされるレゾルシノール誘導体を1質量%以下及び/又は下記一般式(II)で表わされるフェノール誘導体を2.5質量%以下含有し、かつ該レゾルシノール誘導体と該フェノール誘導体との合計量が2.5質量%以下であることを要する。該レゾルシノール誘導体及び該フェノール誘導体の含有量が、上記範囲内であると、ポリカーボネート樹脂(A-1)の透明性や外観を向上させることができる。また、高純度3-ペンタデシルフェノールの純度が99.0質量%以上の場合、該レゾルシノール誘導体の含有量が0.8質量%以下及び/又は該フェノール誘導体の含有量が0.8質量%以下であり、かつ該レゾルシノール誘導体と該フェノール誘導体との合計量が0.8質量%以下であることが望ましい。
Figure JPOXMLDOC01-appb-C000006
                  
[上記一般式(I)及び一般式(II)中、R、Rは、水素原子、又は炭素数1~20の脂肪族炭化水素基である。Rは、水素原子、又は飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である。R、R、Rは同一であっても異なっていてもよい。但し、上記一般式(II)において、R=H、R=C1531で表される3-ペンタデシルフェノールは除く。]
 R、Rが、炭素数1~20の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等のアルキル基を例示することができる。Rが、飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基としては、上記R、Rで例示したアルキル基の他に、前記アルキル基中に炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエンである不飽和脂肪族炭化水素基を例示することができる。
 上記一般式(I)に含まれる化合物としては、R、Rが共に水素原子である化合物としては、5-ペンタデシルレゾルシノール、5-メチルレゾルシノール、5-エチルレゾルシノール、5-プロピルレゾルシノール、5-ブチルレゾルシノール、5-ヘキシルレゾルシノール、5-オクチルレゾルシノール、5-デシルレゾルシノール、5-ドデシルレゾルシノール、5-テトラデシルレゾルシノール、5-オクタデシルレゾルシノール、5-ノニルデシルレゾルシノール等のRが炭素数1~20のアルキル基である化合物を例示することができ、また前記アルキル基中に、炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 また、上記一般式(I)において、Rが炭素数1~20の脂肪族炭化水素基であり、Rが水素原子であり、Rが炭素数1~20の飽和もしくは不飽和の脂肪族炭化水素基である化合物として、例えば、3-メトキシ-5-ペンタデシルフェノール、3-エトキシ-5-ペンタデシルフェノール、3-プロポキシ-5-ペンタデシルフェノール、3-ブトキシ-5-ペンタデシルフェノール、3-メトキシ-5-ヘキシルフェノール、3-メトキシ-5-オクチルフェノール、3-メトキシ-5-デシルフェノール、3-メトキシ-5-ドデシルフェノール、3-メトキシ-5-テトラデシルフェノール、3-メトキシ-5-ヘプタデシルフェノール、3-メトキシ-5-オクタデシルフェノール、3-メトキシ-5-ノニルデシルフェノール、3-エトキシ-5-ヘキシルフェノール、3-エトキシ-5-オクチルフェノール、3-エトキシ-5-デシルフェノール、3-エトキシ-5-ドデシルフェノール、3-エトキシ-5-テトラデシルフェノール、3-エトキシ-5-ヘプタデシルフェノール、3-エトキシ-5-オクタデシルフェノール、3-エトキシ-5-ノニルデシルフェノール等の化合物を例示することができ、また前記5位のアルキル基中に、炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 上記一般式(II)に含まれる化合物としては、Rが水素原子であり、Rが飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である化合物としては、3-ヘキシルフェノール、3-オクチルフェノール、3-デシルフェノール、3-ドデシルフェノール、3-トリデシルフェノール、3-テトラデシルフェノール、3-ヘキサデシルフェノール、3-オクタデシルフェノール、3-ノニルデシルフェノール等のアルキル基を3位に有する化合物や前記アルキル基中に炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 また、Rが炭素数1~20の脂肪族炭化水素基である化合物としては、例えば、3位がヘキシル基である場合、1-メトキシ-3-ヘキシルベンゼン、1-エトキシ-3-ヘキシルベンゼン、1-プロポキシ-3-ヘキシルベンゼン、1-ブトキシ-3-ヘキシルベンゼン、1-ペントキシ-3-ヘキシルベンゼン、1-ヘキトキシ-3-ヘキシルベンゼン、1-オクトキシ-3-ヘキシルベンゼン、1-デトキシ-3-ヘキシルベンゼン、1-ドデトキシ-3-ヘキシルベンゼン、1-ブチロデトキシ-3-ヘキシルベンゼン等の化合物を挙げることができる。3位がペンタデシル基である場合、1-メトキシ-3-ペンタデシルベンゼン、1-エトキシ-3-ペンタデシルベンゼン、1-プロポキシ-3-ペンタデシルベンゼン、1-ブトキシ-3-ペンタデシルベンゼン、1-ペントキシ-3-ペンタデシルベンゼン、1-ヘキトキシ-3-ペンタデシルベンゼン、1-オクトキシ-3-ペンタデシルベンゼン、1-デトキシ-3-ペンタデシルベンゼン、1-ドデトキシ-3-ペンタデシルベンゼン、1-ブチロデトキシ-3-ペンタデシルベンゼン等の化合物を挙げることができる。
 なお、前記一般式(I)及び一般式(II)中において、例示したアルキル基は、直鎖状アルキル基であってもよいし、分岐鎖状アルキル基であってもよい。
<ポリカーボネート樹脂(A-1)>
 ポリカーボネート樹脂(A-1)は、好ましくは芳香族ポリカーボネート樹脂であり、主鎖が下記一般式(IV)で表される繰り返し単位を含む。
 ポリカーボネート樹脂(A-1)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000007
                  
〔式中、R及びRは、それぞれ独立にハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。a及びbは、それぞれ独立に0~4の整数を示す。〕
 R及びRがそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R及びRがそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、各種ヘキシル基が挙げられる。R及びRがそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。
 R及びRとしては、いずれも、好ましくは炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。
 Xが表すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。Xが表すアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Xが表すシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。Xが表すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5-トリメチルシクロヘキシリデン基、2-アダマンチリデン基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、炭素数5~8のシクロアルキリデン基がより好ましい。
 Xが表すアリールアルキレン基のアリール部位、及びXが表すアリールアルキリデン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6~14のアリール基が挙げられる。
 a及びbは、それぞれ独立に0~4の整数を示し、好ましくは0~2、より好ましくは0又は1である。
<ポリカーボネート樹脂(A-1)の製造方法>
 次に、ポリカーボネート樹脂(A-1)の製造方法について説明する。ポリカーボネート樹脂(A-1)を製造するためには、末端基となる前記高純度3-ペンタデシルフェノールを末端停止剤として用いることが必要である。
 末端停止剤としては、高純度3-ペンタデシルフェノール以外の末端停止剤(他の末端停止剤)を高純度3-ペンタデシルフェノールと併用して用いてもよい。他の末端停止剤としては、従来から使用されているポリカーボネート樹脂を製造するための末端停止剤を用いることができ、例えば、フェノール,p-クレゾール,p-t-ブチルフェノール,p-クミルフェノール,トリブロモフェノール,ノニルフェノール,p-t-オクチルフェノールなどが挙げられる。これらの中では、p-t-ブチルフェノールとp-クミルフェノールが好ましい。高純度3-ペンタデシルフェノールと他の末端停止剤とを併用して用いる場合、その使用比率は、(3-ペンタデシルフェノール):(他の末端停止剤)のモル比は、好ましくは99:1~20:80、より好ましくは90:10~30:70である。
 ポリカーボネート樹脂(A-1)を製造するためには、主鎖を構成するための二価フェノールを用いる必要がある。二価フェノールとしては、各種の公知の二価フェノールを用いることができるが、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000008
                  
 ここで、上記一般式(1)中、R、R、X、a及びbは前記と同じである。
 上記一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。
 これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
 さらに、上記一般式(1)で表される二価フェノールに含まれない二価フェノールとして、下記一般式(2)で表される構成単位を含む二価フェノールを上記一般式(1)で表される二価フェノールと併用して用いることができる。このような構成単位を有する共重合体とすることにより、得られるポリカーボネート樹脂(A-1)の難燃性および耐衝撃性を向上させることができる。下記一般式(2)で表される構成単位を含む二価フェノールは、下記一般式(2-1)で表されるポリオルガノシロキサンで表わされる。
Figure JPOXMLDOC01-appb-C000009
                  
 上記一般式(2)又は一般式(2-1)中、R、R、R及びR10は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Zは、アリル基を有するフェノール化合物から誘導される、トリメチレン基を有するフェノール残基を示す。nは70~1000を示す。
 上記一般式(2-1)で表されるポリオルガノシロキサンは、末端が水素のポリオルガノシロキサンの末端を、例えば、2-アリルフェノール及びオイゲノール等の末端にアリル基を有するフェノール化合物で変性したものである。末端にアリル基を有するフェノール化合物で変性されたポリオルガノシロキサンは、特許第2662310号公報に記載の方法により合成することができる。
 上記ポリオルガノシロキサンとしては、ポリジメチルシロキサンが好適である。
 更に、上記の二価フェノールに対して、分岐化剤を用いて、該ポリカーボネート樹脂の主鎖中に分岐構造を有することもできる。この分岐化剤の添加量は、上記の二価フェノールに対して、好ましくは0.01~3モル%、より好ましくは0.1~1.0モル%である。
 分岐化剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
 ポリカーボネート樹脂(A-1)は、カーボネート原料と二価フェノールとを反応させることによって製造される。カーボネート原料とは、縮合反応や交換反応などの重合体生成反応によってポリカーボネート主鎖中にカーボネート結合を生成し得る化合物のことである。このような化合物としては、界面重縮合法によりポリカーボネートを製造する場合には、ホスゲンをはじめ、トリホスゲン、ブロモホスゲン、ビス(2,4,6-トリクロロフェニル)カーボネート、ビス(2,4-ジクロロフェニル)カーボネート、ビス(2-シアノフェニル)カーボネート、クロロギ酸トリクロロメチル等のホスゲン誘導体が挙げられる。
 また、エステル交換反応法(溶融法)によるポリカーボネートの製造においては、カーボネート原料としては炭酸ジエステルが使用され、炭酸ジエステルとしては、炭酸ジアリール化合物、炭素ジアルキル化合物、炭酸アルキルアリール化合物等が挙げられる。
 ここで、炭酸ジアリール化合物の具体例としては、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ビスフェノールAビスフェニルカーボネート等が挙げられる。炭酸ジアルキル化合物の具体例としては、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート、ビスフェノールAビスメチルカーボネート等が挙げられる。炭酸アルキルアリール化合物の具体例としては、メチルフェニルカーボネート、エチルフェニルカーボネート、ブチルフェニルカーボネート、シクロヘキシルフェニルカーボネート、ビスフェノールAメチルフェニルカーボネート等が挙げられる。
 ポリカーボネート樹脂(A-1)は、通常のポリカーボネート樹脂の製造において慣用されている方法、例えば、ホスゲンまたはホスゲン誘導体を使用する界面重縮合法、およびエステル交換法(溶融法)などを用いて製造することができるが、これらの中で界面重縮合法が好ましい。
 ホスゲンまたはホスゲン誘導体を用いる界面重縮合法としては、例えば、予め前記二価フェノールのポリカーボネートオリゴマーを前記二価フェノールとホスゲンまたはホスゲン誘導体とから合成しておき、このオリゴマーの不活性有機溶剤溶液に、前記二価フェノールを含有するアルカリ水溶液及び前記高純度3-ペンタデシルフェノールを含む末端停止剤を加えて反応させる方法、または、前記二価フェノールのアルカリ水溶液、前記高純度3-ペンタデシルフェノールを含む末端停止剤及び不活性有機溶剤との混合液にホスゲンまたはホスゲン誘導体を加えて反応させる方法などが挙げられるが、これらの中で前者のオリゴマー法が好適である。
 次に、オリゴマー法によりポリカーボネート樹脂(A-1)を製造する方法について説明すると、先ず、アルカリ金属水酸化物の水溶液に前記二価フェノールを溶解させ、二価フェノールのアルカリ水溶液(水酸化ナトリウム等の水溶液)を調整する。次いで、このアルカリ水溶液と不活性有機溶剤(塩化メチレン等の有機溶剤)との混合液にホスゲンまたはホスゲン誘導体を導入して、前記二価フェノールのポリカーボネートオリゴマーを合成する。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%の範囲が好ましく、また有機相と水相との容積比は通常5:1~1:7、好ましくは2:1~1:4の範囲にあるのが望ましい。反応温度は水浴冷却し、通常0~50℃、好ましくは5~40℃の範囲で選ばれ、反応時間は通常15分~4時間、好ましくは30分~2時間程度である。このようにして得られたポリカーボネートオリゴマーの重合度は、通常20以下、好ましくは2~10程度である。
 次いで、このようにして得られたポリカーボネートオリゴマーを含む有機相に、前記二価フェノールのアルカリ水溶液、前記高純度3-ペンタデシルフェノールを含む末端停止剤、所望により不活性有機溶剤を加えて攪拌等を行うことにより接触させて、通常0~50℃、好ましくは5~40℃の範囲の温度において、通常10分~6時間程度界面重縮合させる。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%が好ましく、また有機相と水相との容積比は通常7:1~1:2、好ましくは4:1~1:1の範囲にあるのが望ましい。そして、前記二価フェノールとポリカーボネートオリゴマーとの割合は、(二価フェノール)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.4~0.55、好ましくは0.45~0.5になるように選ばれる。また、アルカリ金属水酸化物とポリカーボネートオリゴマーとの割合は、(アルカリ金属水酸化物)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0~2.0、好ましくは1.2~1.7になるように選ばれる。また、末端停止剤の使用量は、(末端停止剤)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.02~0.20、好ましくは0.04~0.17になるように選ばれる。さらに、この反応において、所望に応じて触媒を用いることができる。触媒の使用量は、(触媒)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0×10-3~10.0×10-3、好ましくは1.0×10-3~5.0×10-3になるように選ばれる。
 ポリカーボネート樹脂(A-1)の製造において用いられるアルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、及び水酸化セシウムなどが挙げられる。これらの中では、水酸化ナトリウムと水酸化カリウムが好適である。また、不活性有機溶剤としては、各種のものがある。例えば、ジクロロメタン(塩化メチレン);クロロホルム;1,1-ジクロロエタン;1,2-ジクロロエタン;1,1,1-トリクロロエタン;1,1,2-トリクロロエタン;1,1,1,2-テトラクロロエタン;1,1,2,2-テトラクロロエタン;ペンタクロロエタン,クロロベンゼンなどの塩素化炭化水素や、アセトフェノンなどが挙げられる。これらの有機溶剤はそれぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよい。これらの中では、クロロホルムや塩化メチレンが好ましく、特に塩化メチレンが好適である。
 前記触媒としては、各種のものを用いることができる。具体的には四級アンモニウム塩,四級ホスホニウム塩あるいは三級アミンなどが挙げられる。四級アンモニウム塩としては、例えば、トリメチルベンジルアンモニウムクロライド,トリエチルベンジルアンモニウムクロライド,トリブチルベンジルアンモニウムクロライド,トリオクチルメチルアンモニウムクロライド,テトラブチルアンモニウムクロライド,テトラブチルアンモニウムブロマイドなどが挙げられる。また、四級ホスホニウム塩としては、例えば、テトラブチルホスホニウムクロライド,テトラブチルホスホニウムブロマイドなどが、そして、三級アミンとしては、例えば、トリエチルアミン,トリブチルアミン,N,N-ジメチルシクロヘキシルアミン,ピリジン,ジメチルアニリンなどが挙げられる。
 前記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。このようにして得られたポリカーボネート樹脂を含む有機溶媒溶液から、通常の方法に従って回収操作を行うことにより、ポリカーボネート樹脂(A-1)を得ることができる。
 エステル交換反応法(溶融法)によるポリカーボネート樹脂の製造においては、二価フェノール、炭酸ジエステル、及び前記高純度3-ペンタデシルフェノールを含む末端停止剤と、必要に応じ分岐化剤等とを用いて、溶融状態でエステル交換反応させ、副生するフェノールを減圧条件等で系外に除去することで、ポリカーボネート樹脂(A-1)を得ることができる。エステル交換反応法では、反応促進のためエステル交換触媒を使用することもできる。エステル交換触媒としては、ナトリウム、カルシウム及びセシウム等の塩やアンモニウム塩、ホスホニウム塩が好ましい。
 ポリカーボネート樹脂(A-1)は、高純度3-ペンタデシルフェノールを末端停止剤として用いて得られるものであり、3-ペンタデシルフェノールに由来する末端基を有する。
 ポリカーボネート樹脂(A-1)は、350℃で成形した3mm厚の成形体における380nm光線透過率が85.0%以上である。前記380nm光線透過率が85.0%以上であると、透明性が要求される液晶用導光部材、更には薄肉かつ大画面の液晶用導光部材に好適に使用することができる。以上の観点から、前記380nm光線透過率は、86%以上であることが好ましく、87%以上であることがより好ましい。
 ポリカーボネート樹脂(A-1)の粘度平均分子量は、特に限定されるものではないが、薄肉の成形品を成形する際の流動性と強度を保つ観点から、好ましくは8,000~19,000、より好ましくは9,000~17,000、更に好ましくは10,000~15,000とすることが望ましい。
 ポリカーボネート樹脂(A-1)のイエローインデックス(YI)は、好ましくは1.5以下である。ポリカーボネート樹脂(A-1)のYIが1.5以下であると色調に優れ、透明性が要求される液晶用部材に好適に使用することができる。以上の観点から、ポリカーボネート樹脂(A-1)のYIは、1.3以下であることがより好ましく、1.1以下であることが更に好ましい。
〔ポリカーボネート樹脂(A-2)〕
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A-1)以外のポリカーボネート樹脂(A-2)を含有していてもよい。
 前記ポリカーボネート樹脂(A-2)としては、特に制限はなく種々の公知のポリカーボネート樹脂を使用できるが、芳香族ポリカーボネート樹脂が好ましい。
 該(A-2)成分のポリカーボネート系樹脂の粘度平均分子量は、物性面の観点から、好ましくは10,000~40,000、より好ましくは11,000~17,000である。
 上記芳香族ポリカーボネート樹脂は、主鎖が下記一般式(V)で表される繰り返し単位からなるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
                  
[式中、R及びR10は、それぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。X’は単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。d及びeは、それぞれ独立に0~4の整数を示す。]
 R及びR10の具体例としては、前記R及びRと同じものが挙げられる。R及びR10としては、好ましくは、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基である。X’の具体例としては、前記Xと同じものが挙げられ、好ましいものも同じである。d及びeは、それぞれ独立に、好ましくは0~2、より好ましくは0又は1である。
 上記芳香族ポリカーボネート樹脂は、具体的には、反応に不活性な有機溶媒、アルカリ水溶液の存在下、芳香族二価フェノール系化合物及びホスゲンと反応させた後、第三級アミンもしくは第四級アンモニウム塩等の重合触媒を添加して重合させる界面重合法や、芳香族二価フェノール系化合物をピリジン又はピリジンと不活性溶媒の混合溶液に溶解し、ホスゲンを導入し直接製造するピリジン法等、従来の芳香族ポリカーボネートの製造法により得られるものを使用できる。
 上記の反応に際し、必要に応じて、分子量調節剤(末端停止剤)、分岐化剤等が使用される。
 なお、上記芳香族二価フェノール系化合物としては、下記一般式(3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
                  
[式中、R、R10、X’、d及びeは前記定義の通りであり、好ましいものも同じである。]
 該芳香族二価フェノール系化合物の具体例としては、上記一般式(1)で表される二価フェノールと同じものが挙げられ、好ましいものも同じである。また、上記一般式(3)で表される二価フェノールに含まれない二価フェノールとして、上記一般式(2)で表される構成単位を含む二価フェノールである、上記一般式(2-1)で表されるポリオルガノシロキサンを一般式(3)で表される二価フェノールと併用して用いることができる。
 上記二価フェノールは1種を単独で用いてもよいし、2種以上を併用してもよい。
 分岐化剤としては、前記で例示したものが同様に挙げられる。
 末端停止剤としては、従来から使用されているポリカーボネート樹脂を製造するための末端停止剤を用いることができ、例えば、フェノール,p-クレゾール,p-t-ブチルフェノール,p-クミルフェノール,トリブロモフェノール,ノニルフェノール,p-t-オクチルフェノールなどが挙げられる。これらの中では、p-t-ブチルフェノールとp-クミルフェノールが好ましい。
〔ポリカーボネート樹脂(A)〕
 ポリカーボネート樹脂(A)は、前記ポリカーボネート樹脂(A-1)10~100質量%、及び前記ポリカーボネート樹脂(A-2)90~0質量%からなる。
 前記ポリカーボネート樹脂(A-1)の含有量は、(A)成分中、10~100質量%、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%である。
 本発明のポリカーボネート樹脂組成物に上記(A-1)成分以外のポリカーボネート系樹脂(A-2)を含有させる場合、その含有量は、(A)成分中、90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下、更に好ましくは30質量%以下である。
 前記(A)成分中の3-ペンタデシルフェノキシ基の含有量は、好ましくは0.1~10質量%、より好ましくは0.5~8質量%、更に好ましくは0.8~7質量%である。(A)成分中の3-ペンタデシルフェノキシの含有量が前記の範囲であれば、流動性が向上し、色調が改善するとともに、耐久性が向上する。
 ポリカーボネート樹脂(A)の粘度平均分子量は、特に限定されるものではないが、薄肉の成形品を成形する際の流動性と強度を保つ観点から、好ましくは8,000~19,000、より好ましくは9,000~17,000、更に好ましくは10,000~15,000とすることが望ましい。
〔リン系酸化防止剤(B)〕
 本発明のポリカーボネート樹脂組成物は、リン系酸化防止剤(B)を含む。リン系酸化防止剤(B)を含むことで、ポリカーボネート樹脂組成物のYI値の上昇を抑え、さらに成形加工時に樹脂組成物を高温で滞留しても、良好な色調を保持することができ、優れた加工安定性をポリカーボネート樹脂組成物に付与することができる。
 リン系酸化防止剤としては、亜リン酸、亜ホスホン酸、ホスホン酸及びこれらのエステル並びに第3級ホスフィンなどを用いることができる。中でも、ペンタエリスリトール構造を有するものが好ましく、下記一般式(4)で表されるペンタエリスリトール構造を有する亜リン酸エステルがより好ましい。
Figure JPOXMLDOC01-appb-C000012
                  
 一般式(4)中、R及びRは、それぞれ水素、アルキル基、シクロアルキル基又はアリール基を示す。なお、シクロアルキル基及びアリール基は、アルキル基で置換されていてもよい。
 R及びRがアリール基である場合、R及びRは下記一般式(a)、(b)または(c)で表されるアリール基が好ましい。
Figure JPOXMLDOC01-appb-C000013
                  
[式(a)中、Rは炭素数1~10のアルキル基を表す。]
Figure JPOXMLDOC01-appb-C000014
                  
[式(b)中、R10は炭素数1~10のアルキル基を表す。]
Figure JPOXMLDOC01-appb-C000015
                  
 前記一般式(4)で表されるペンタエリスリトール構造を有する亜リン酸エステルとしては、具体的には、下記一般式(5)のビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、下記一般式(6)のビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトの他、下記一般式(7)~(10)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000016
                  
 これらの中で、リン系酸化防止剤(B)としては、前記一般式(5)のビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[例えば、アデカスタブPEP-36:(株)ADEKA(株)製]、前記一般式(6)のビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト[例えば、Doverphos S-9228PC:Dover Chemical Corporation製]が好ましく、前記一般式(6)のビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトがより好ましい。
 本発明のポリカーボネート樹脂組成物における、リン系酸化防止剤(B)の含有量は、(A)成分100質量部に対して、0.005~0.5質量部であり、好ましくは0.01~0.2質量部、より好ましくは0.02~0.1質量部である。0.005質量部未満であると、YI値の上昇を抑えることができないとともに、成形加工時に樹脂組成物を高温で滞留すると、良好な色調を保持することができない。一方、0.5質量部を超えると、分解物によるポリカーボネートの加水分解が促進され、所望の性能を発現できなくなる。
〔脂肪族環状エポキシ化合物(C)〕
 本発明のポリカーボネート樹脂組成物は、必要に応じて脂肪族環状エポキシ化合物(C)を含有することができる。
 脂肪族環状エポキシ樹脂(C)としては、構造の一部がエポキシ化された化合物が挙げられる。本発明のポリカーボネート樹脂組成物に脂肪族環状エポキシ化合物(C)を含有させることにより、成形体の耐久性を向上させることができる。
 そのような脂肪族環状エポキシ化合物(C)の中でも、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(ダイセル化学工業社製の商品名「セロキサイド2021P」等)、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(ダイセル化学工業社製の商品名「EHPE3150」等)、これら2種の混合物(ダイセル化学工業社製の商品名EHPE3150CE)の群から選ばれる少なくとも1種であることが好ましい。
 本発明のポリカーボネート樹脂組成物における、脂肪族環状エポキシ化合物(C)の含有量は、(A)成分100質量部に対して、好ましくは0.001~0.5質量部である。前記含有量が0.001質量部以上であると、耐久性が十分に向上し、0.5質量部以下であると、白濁が抑えられ、色調が良好となる。以上の観点から、脂肪族環状エポキシ化合物(C)の含有量は、より好ましくは0.005~0.3質量部であり、更に好ましくは0.01~0.1質量部である。
〔官能基を有するポリオルガノシロキサン(D)〕
 本発明のポリカーボネート樹脂組成物は、必要に応じて官能基を有するポリオルガノシロキサン(D)を含有することができる。
 上記官能基を有するポリオルガノシロキサンは、アルコキシ基、アリールオキシ基、ポリオキシアルキレン基、カルボキシル基、シラノール基、アミノ基、メルカプト基、エポキシ基及びビニル基の群から選択される少なくとも1種の官能基を有することが好ましい。
 上記官能基を有するポリオルガノシロキサン(D)の粘度は、滑性効果の観点から、25℃において、好ましくは10mm/秒以上であり、ポリカーボネート樹脂(A)への分散性の観点から、より好ましくは200mm/秒以下である。上記観点から、上記官能基を有するポリオルガノシロキサン(D)の粘度範囲は、さらに好ましくは20~150mm/秒、特に好ましくは40~120mm/秒である。
 上記官能基を有するポリオルガノシロキサン(D)の屈折率は、本発明のポリカーボネート樹脂組成物の透明性を低下させないために、ポリカーボネート樹脂(A)との屈折率の差をできるだけ小さくすることが好ましい。以上の観点から、上記官能基を有するポリオルガノシロキサン(D)の屈折率と前記ポリカーボネート樹脂(A)との屈折率との差は、好ましくは、0.13以下、より好ましくは0.08以下、更に好ましくは0.05以下である。また、ポリカーボネート樹脂の屈折率は約1.58であることから、上記官能基を有するポリオルガノシロキサン(D)の屈折率は、好ましくは1.45以上、より好ましくは1.50以上、更に好ましくは1.51以上である。
 本発明のポリカーボネート樹脂組成物における、官能基を有するポリオルガノシロキサン(D)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.02~0.15質量部、より好ましくは0.03~0.12質量部である。(D)成分の含有量が上記の範囲で配合すれば、他の成分と共に、離型性を向上させることができる。さらに300℃を大きく超えるような高温成形条件下、特に連続成形条件下であっても、シルバーの発生や、金型付着物を大幅に低減することができる。
[ポリカーボネート樹脂組成物/成形体]
 本発明のポリカーボネート樹脂組成物には、上述の(A)成分、及び(B)成分、及び必要に応じて添加される上述の(C)成分、及び(D)成分の他、本発明の効果を損なわない範囲で、必要に応じて、従来、ポリカーボネート樹脂組成物に添加される公知の種々の添加剤の配合が可能である。
 これらの添加剤としては、リン系酸化防止剤以外の酸化防止剤、紫外線吸収剤、難燃剤、離型剤、無機充填材(ガラス繊維、タルク、酸化チタン、マイカ等)、着色剤、光拡散剤等が挙げられる。
 本発明のポリカーボネート系樹脂組成物からなる成形体は、上述の各成分を配合し、混練したものを成形することで得られる。
 混練方法としては、特に制限されず、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法が挙げられる。また、混練の際の加熱温度は、通常240~330℃、好ましくは250~320℃の範囲で選択される。
 成形方法としては、従来公知の各種成形方法を用いることができ、例えば、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等が挙げられる。
 なお、ポリカーボネート樹脂以外の含有成分は、あらかじめ、ポリカーボネート樹脂又は他の熱可塑性樹脂と溶融混練、即ち、マスターバッチとして添加することもできる。
 また、ペレット化させ、射出成形することが好ましく、一般的な射出成形法又は射出圧縮成形法、そしてガスアシスト成形法等の特殊成形法を用いることができ、各種成形品を製造することができる。
 本発明のポリカーボネート樹脂組成物を成形してなる成形体は、導光部材や光拡散板用の樹脂として好適に用いることができる。導光部材としては、携帯電話、液晶テレビ、パソコン、電子辞書、電子書籍、スマートフォンやタブレットPC等に用いられる液晶表示装置の導光板等の液晶機器用導光部材、ヘッドランプに付随するデイタイムランニングライトやLED照明等に用いられる導光部材が挙げられる。本発明のポリカーボネート樹脂組成物は、流動性に優れるため、特に、厚みの薄い成形体を製造する場合は、射出成形により成形することが望ましく、液晶表示装置の導光板や光拡散板用の樹脂として好適に用いることができる。
 以下に実施例を挙げ、本発明をさらに詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例中の測定評価は以下に示す方法でおこなった。
<3-ペンタデシルフェノールの純度及び不純物量の測定方法>
 3-ペンタデシルフェノール、及びレゾルシノール誘導体は、アジレント・テクノロジー製;「AGILENT1200」にて、カラムに「L-column ODS」(4.6mmID×150mm,粒径3μm)、移動相にアセトニトリル/ギ酸バッファー=95/5(vol/vol)を用いて測定した。
 フェノール誘導体は、日本電子株式会社製;「JMS-Q1000GC」にて、長さ30m×内径250μm×膜厚0.25μmのカラム「VF-1」を用いて測定した。
<粘度数(VN)の測定>
 ポリカーボネート樹脂(A)の粘度数(VN)は、ISO1628-4(1999)に準拠して測定した。
<粘度平均分子量(Mv)の測定>
 ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
<光線透過率の測定>
 得られたポリカーボネート樹脂(A-1)100質量部に、アデカスタブPEP36〔株式会社ADEKA製、ビス(2,6-ジーt-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト〕を500質量ppm添加し、ベント付き40mmφの単軸押出機によって樹脂温度280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、シリンダー温度350℃で射出成形した3mm厚の成形体の380nm光線透過率を日立ハイテクノロジーズ社製のU-4100分光光度計で測定した。合格基準は、380nmの透過率が85%以上である。
<末端基組成量の測定>
 日本電子株式会社製;「JNM-LA500」を用い、H-NMRを測定して、ポリカーボネート樹脂の末端基組成量を算出した。また、末端基組成量からポリカーボネート樹脂中の3-ペンタデシルフェノキシ基の含有量(質量%)を算出した。
調製例1
 内径30mm、容量500mLのカラムにマクマホンパッキング(Mc.MAHON Packing、規格サイズ:6mm)を充填して精留塔とし、内温測定装置の付いた2Lフラスコに取り付け、充填塔頂には還流比(還流量/留出量)を調整する器具と塔頂温度を測定する装置、更には減圧度調整装置を取り付けた。3-ペンタデシルフェノール(東京化成工業株式会社製、純度92.10質量%、レゾルシノール誘導体:2.15質量%、フェノール誘導体5.11質量%)1006.96gをフラスコに供給し、窒素置換後、加熱減圧を開始した。減圧度2mmHg、還流量/留出量=1に設定し、塔頂温度205~210℃の留分を分取した。この時、フラスコ温度は230~245℃であった。分取量は825.71g(仕込みの82質量%)、3-ペンタデシルフェノールの純度は93.61質量%であった。
 次に、得られた粗3-ペンタデシルフェノールを60℃の湯浴にて融解させ規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより対応する3-ペンタデシルフェノール48gを得た。得られた3-ペンタデシルフェノール中の3-ペンタデシルフェノール含有率は97.75質量%であった。得られた純度97.75質量%の3-ペンタデシルフェノール70gを60℃の湯浴にて融解させ、規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより、純度99.33質量%の3-ペンタデシルフェノール54gを得た。得られた3-ペンタデシルフェノール中のレゾルシノール誘導体含有率は0.23質量%、フェノール誘導体は0.02質量%であった。
製造例1
〔ポリカーボネート樹脂(A-1)の製造〕
(1)ポリカーボネートオリゴマーの製造
 濃度5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(BPA)に対して0.2質量%の亜二チオン酸ナトリウムを加え、ここにBPA濃度が13.5質量%になるようにBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。内径6mm、管長30mの管型反応器に、上記BPAの水酸化ナトリウム水溶液を40L/hr及び塩化メチレンを15L/hrの流量で連続的に通すと共に、ホスゲンを4.0kg/hrの流量で連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器から送出された反応液は、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここにさらにBPAの水酸化ナトリウム水溶液を2.8L/hr、25質量%水酸化ナトリウム水溶液を0.07L/hr、水を17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr、20質量%p-t-ブチルフェノール(PTBP)の塩化メチレン溶液を149.2kg/hrの流量で供給し、29~32℃で反応を行った。槽型反応器から反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。このようにして得られたポリカーボネートオリゴマー溶液は、オリゴマー濃度321g/L、クロロホーメート基濃度0.75mol/Lであった。
(2)ポリカーボネート樹脂の製造
 邪魔板、パドル型攪拌翼を備えた内容積50Lの槽型反応器に上記オリゴマー溶液19L、塩化メチレン11Lを仕込み、調製例1で得られた純度99.33質量%の3-ペンタデシルフェノール(m-PDP)361g、及びPTBP64gを溶解後、トリエチルアミン5.6mLを加え、ここに6.4質量%水酸化ナトリウム水溶液1814gを攪拌下で添加し、10分間反応を行った。BPAの水酸化ナトリウム水溶液(NaOH701gと亜二チオン酸ナトリウム2.9gを水10.8Lに溶解した水溶液に、BPA1462gを溶解したもの)を添加し、50分間重合反応を行った。
 希釈のため塩化メチレン4Lを加え10分間攪拌した後、ポリカーボネートを含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液を、その溶液に対し順次15容量%の0.03mol/L水酸化ナトリウム水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.5mS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。H-NMRにより求めたm-PDPの組成比は4.07mol%であり、PTBPの組成比は4.24mol%であった。ポリカーボネート樹脂の380nm光線透過率は87.95%であった。
製造例2
〔ポリカーボネート樹脂(A-1)の製造〕
 製造例1の(2)ポリカーボネート樹脂の製造において、PTBP64gを使用しなかったこと以外は、製造例1と同様の方法により、ポリカーボネート樹脂を得た。H-NMRにより求めたm-PDPの組成比は4.08mol%であり、PTBPの組成比は2.89mol%であった。ポリカーボネート樹脂の380nm光線透過率は87.90%であった。
製造例3
〔ポリカーボネート樹脂(A-1)の製造〕
 製造例1の(2)ポリカーボネート樹脂の製造において、m-PDPの使用量を361gから72gに変更し、かつPTBPの使用量を64gから171gに変更したこと以外は、製造例1と同様の方法により、ポリカーボネート樹脂を得た。H-NMRにより求めたm-PDPの組成比は0.80mol%であり、PTBPの組成比は6.74mol%であった。ポリカーボネート樹脂の380nm光線透過率は86.92%であった。
製造例4
〔ポリカーボネート樹脂(A-1)の製造〕
 製造例1の(2)ポリカーボネート樹脂の製造において、m-PDPの使用量を361gから217gに変更し、かつPTBPの使用量を64gから100gに変更したこと以外は、製造例1と同様の方法により、ポリカーボネート樹脂を得た。H-NMRにより求めたm-PDPの組成比は2.41mol%であり、PTBPの組成比は5.14mol%であった。ポリカーボネート樹脂の380nm光線透過率は87.60%であった。
製造例5
〔ポリカーボネート樹脂(A-1)の製造〕
 製造例1の(2)ポリカーボネート樹脂の製造において、PTBPの使用量を64gから29gに変更したこと以外は、製造例1と同様の方法により、ポリカーボネート樹脂を得た。H-NMRにより求めたm-PDPの組成比は4.06mol%であり、PTBPの組成比は3.27mol%あった。ポリカーボネート樹脂の380nm光線透過率は87.86%であった。
実施例1~14、比較例1~4
〔ポリカーボネート樹脂組成物の製造〕
 表1に記載のポリカーボネート樹脂(A)100質量部に、表1に記載のリン系酸化防止剤(B)0.05質量部を配合し、さらに表1に記載の脂肪族環状エポキシ化合物(C)及び官能基を有するポリオルガノシロキサン(D)を表1に記載の割合で配合し、ベント付き40mmφの単軸押出機を用いて樹脂温度280℃、スクリュー回転数1000ppmで溶融混練押出し、造粒し、ポリカーボネート樹脂組成物のペレットを得た。
 用いた成形材料及び成形体の性能評価方法を次に示す。結果を表1に示す。
(A-1)成分
 「PDP1100-5」製造例1で得られたポリカーボネート樹脂
 「PDP1300-5」製造例2で得られたポリカーボネート樹脂
 「PDP1200-1」製造例3で得られたポリカーボネート樹脂
 「PDP1200-3」製造例4で得られたポリカーボネート樹脂
 「PDP1200-5」製造例5で得られたポリカーボネート樹脂
(A-2)成分
 「タフロン FN1200」(出光興産(株)製、ビスフェノールAポリカーボネート樹脂、粘度平均分子量(Mv)=11500)
 「タフロン FN1500」(出光興産(株)製、ビスフェノールAポリカーボネート樹脂、粘度平均分子量(Mv)=14500)
(B)成分
 「アデカスタブPEP-36」((株)ADEKA製、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト)
 「Doverphos S-9228PC」(Dover Chemical社製、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト)
(C)成分
 「セロキサイド2021P」(ダイセル化学工業(株)製、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート)
(D)成分
 「KR511」(信越シリコーン(株)製、メトキシ基、フェニル基及びビニル基を有するオルガノポリシロキサン、屈折率=1.518)
[性能評価]
(1)MVR
 上記方法で得られたペレットを、安田精機株式会社製、機器名MFR計 E号機を用い、300℃、荷重1.2kgで、溶融流動性MVR(cm/10分)を測定した。
(2)YI値
 上記で得られたペレットを用い、320℃のシリンダー温度設定で、金型温度80℃、サイクル時間50秒にて50mm×90mm×厚さ5mmの平板状成形体を成形した。得られた成形体について、分光光度計を用い、C光源、2度視野の条件でYI値を測定した。
(3)YI値(350℃、3分)及びYI値(350℃、10分)
 上記方法で得られたペレットについて、射出成形により以下のように滞留熱安定性試験を行い、滞留時間3分及び10分の成形品のYI値を測定した。
〈射出成形〉
射出成形機:東芝機械(株)製 EC40N(商品名)
成形品形状:80mm×40mm×3.2mm
成形機シリンダー温度:350℃
シリンダー内滞留時間:3分又は10分
金型温度:80℃
(4)曲げ強度
 350℃のシリンダー温度設定で、金型温度110℃、サイクル時間50秒にて50mm×90mm×厚さ0.5mmの平板状成形体を成形した。得られた成形体を支点間30mmに設定した50mm幅の治具の上に、上記サンプルを載せて、試験速度0.5mm/mで試験を実施し、成形体の曲げ強度を測定した。
Figure JPOXMLDOC01-appb-T000017
                  
 上記実施例1~14と比較例1~4との対比から、本発明に属する、末端停止剤として高純度3-ペンタデシルフェノールを用いて製造されたポリカーボネート樹脂を含む樹脂組成物は、従来のポリカーボネート樹脂を含む樹脂組成物と比較して、流動性に優れ、YI値が低く、色調及び透明性に優れ、高温での成形安定性に優れていることがわかる。
 本発明のポリカーボネート樹脂組成物は、流動性に優れ、光線透過率及び輝度に優れ、高温での成形安定性に優れ、光透過性に優れた成形体を得ることができ、成形体が高温高湿環境下に長時間あっても、変色や劣化が起きない。そのため、本発明のポリカーボネート樹脂組成物は、特に、光学成形品、特に、導光板として有用であり、さらに薄肉大画面の液晶表示装置用の導光板として有用である。

Claims (15)

  1.  下記一般式(I)で表わされるレゾルシノール誘導体1質量%以下及び/又は下記一般式(II)で表わされるフェノール誘導体2.5質量%以下を含有し、該レゾルシノール誘導体と該フェノール誘導体との合計含有量が2.5質量%以下であり、かつ純度が97.5質量%以上の3-ペンタデシルフェノールを含む末端停止剤を原料として用い、350℃で成形した3mm厚の成形体における380nm光線透過率が85.0%以上であるポリカーボネート樹脂(A-1)10~100質量%、及び前記(A-1)以外のポリカーボネート樹脂(A-2)90~0質量%からなるポリカーボネート樹脂(A)100質量部に対して、リン系酸化防止剤(B)0.005~0.5質量部を含有するポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
                      
    [式中R、Rは、水素原子、又は炭素数1~20の脂肪族炭化水素基である。Rは、水素原子、又は飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である。R、R、Rは同一であっても異なっていてもよい。但し、上記一般式(II)において、R=H、R=C1531で表される3-ペンタデシルフェノールは除く。]
  2.  前記(A)成分100質量部に対して、さらに脂肪族環状エポキシ化合物を(C)0.001~0.5質量部含有する、請求項1に記載のポリカーボネート樹脂組成物。
  3.  前記3-ペンタデシルフェノールの純度が99.0質量%以上である、請求項1又は2に記載のポリカーボネート樹脂組成物。
  4.  前記3-ペンタデシルフェノールが蒸留の後、晶析を行うことで得られる、請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。
  5.  前記(A)成分中の3-ペンタデシルフェノキシ基の含有量が0.1~10質量%である、請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。
  6.  前記(B)成分がペンタエリスリトール構造を有する、請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。
  7.  前記(B)成分が下記一般式で表される、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトである、請求項1~6のいずれかに記載のポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     
  8.  前記(C)成分が、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、及びこれらの混合物の群から選ばれる少なくとも1種である、請求項2~7のいずれかに記載のポリカーボネート樹脂組成物。
  9.  前記(A)成分100質量部に対して、さらに官能基を有するポリオルガノシロキサン(D)0.02~0.15質量部を含有する、請求項1~8のいずれかに記載のポリカーボネート樹脂組成物。
  10.  前記官能基が、アルコキシ基、アリールオキシ基、ポリオキシアルキレン基、カルボキシル基、シラノール基、アミノ基、メルカプト基、エポキシ基及びビニル基の群から選ばれる少なくとも1種である、請求項9に記載のポリカーボネート樹脂組成物。
  11.  前記官能基を有するポリオルガノシロキサン(D)の屈折率と前記ポリカーボネート樹脂(A)との屈折率との差が0.13以下である、請求項9又は10に記載のポリカーボネート樹脂組成物。
  12.  前記ポリカーボネート樹脂(A)の粘度平均分子量が8,000~19,000である、請求項1~11のいずれかに記載のポリカーボネート樹脂組成物。
  13.  請求項1~12のいずれかに記載のポリカーボネート樹脂組成物を成形してなる成形体。
  14.  成形体が導光部材である、請求項13に記載の成形体。
  15.  導光部材が導光板である、請求項14に記載の成形体。
PCT/JP2015/059797 2014-03-31 2015-03-27 ポリカーボネート樹脂組成物、及び成形体 WO2015152100A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580016762.3A CN106133058A (zh) 2014-03-31 2015-03-27 聚碳酸酯树脂组合物及成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073470A JP6397645B2 (ja) 2014-03-31 2014-03-31 ポリカーボネート樹脂組成物、及び成形体
JP2014-073470 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152100A1 true WO2015152100A1 (ja) 2015-10-08

Family

ID=54240423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059797 WO2015152100A1 (ja) 2014-03-31 2015-03-27 ポリカーボネート樹脂組成物、及び成形体

Country Status (4)

Country Link
JP (1) JP6397645B2 (ja)
CN (1) CN106133058A (ja)
TW (1) TW201542679A (ja)
WO (1) WO2015152100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022115604A3 (en) * 2020-11-24 2022-07-14 The Brigham And Women's Hospital, Inc. Long-acting and long-circulating delivery vehicles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019301A (ja) * 2016-11-28 2019-02-07 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
CN113683877A (zh) 2016-11-28 2021-11-23 三菱工程塑料株式会社 聚碳酸酯树脂组合物
JP6960799B2 (ja) * 2016-11-28 2021-11-05 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
US11168199B2 (en) 2016-11-28 2021-11-09 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324796A (ja) * 1997-05-23 1998-12-08 Mitsubishi Chem Corp 芳香族ポリカーボネート樹脂組成物およびそれからなる光学製品部材
JP2002332400A (ja) * 2001-05-10 2002-11-22 Teijin Chem Ltd 高精密転写性ポリカ光学用成形材料、およびそれより形成された光ディスク基板
JP2004331688A (ja) * 2003-04-30 2004-11-25 Teijin Chem Ltd ポリカーボネート共重合体より形成された光学部材
WO2013088796A1 (ja) * 2011-12-13 2013-06-20 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
WO2014171509A1 (ja) * 2013-04-19 2014-10-23 出光興産株式会社 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
JP2014224245A (ja) * 2013-04-19 2014-12-04 出光興産株式会社 ポリカーボネート樹脂の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1363850A (en) * 1970-10-26 1974-08-21 Imp Chemocal Ind Ltd Purification ltd
JP3516908B2 (ja) * 2000-08-18 2004-04-05 出光石油化学株式会社 芳香族ポリカーボネート樹脂組成物および成形品
US6734277B2 (en) * 2002-05-09 2004-05-11 General Electric Company Method of enhancing pit replication in optical disks
DE102007004332A1 (de) * 2007-01-29 2008-07-31 Bayer Materialscience Ag Mehrschichtverbundwerkstoff mit einer Schicht aus Polycarbonat
WO2013130752A1 (en) * 2012-02-28 2013-09-06 Sabic Innovative Plastics Ip B.V. Processes for preparing polycarbonates with enhanced optical properties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324796A (ja) * 1997-05-23 1998-12-08 Mitsubishi Chem Corp 芳香族ポリカーボネート樹脂組成物およびそれからなる光学製品部材
JP2002332400A (ja) * 2001-05-10 2002-11-22 Teijin Chem Ltd 高精密転写性ポリカ光学用成形材料、およびそれより形成された光ディスク基板
JP2004331688A (ja) * 2003-04-30 2004-11-25 Teijin Chem Ltd ポリカーボネート共重合体より形成された光学部材
WO2013088796A1 (ja) * 2011-12-13 2013-06-20 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
WO2014171509A1 (ja) * 2013-04-19 2014-10-23 出光興産株式会社 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
JP2014224245A (ja) * 2013-04-19 2014-12-04 出光興産株式会社 ポリカーボネート樹脂の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022115604A3 (en) * 2020-11-24 2022-07-14 The Brigham And Women's Hospital, Inc. Long-acting and long-circulating delivery vehicles

Also Published As

Publication number Publication date
JP2015196694A (ja) 2015-11-09
JP6397645B2 (ja) 2018-09-26
TW201542679A (zh) 2015-11-16
CN106133058A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5547953B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体、その製造方法及び該共重合体を含むポリカーボネート樹脂
JP5938419B2 (ja) 芳香族ポリカーボネート樹脂組成物及び光学成形品
JP6072841B2 (ja) ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形体
US9365683B2 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing same
JP6397645B2 (ja) ポリカーボネート樹脂組成物、及び成形体
JP6699860B2 (ja) ポリカーボネート系樹脂組成物及びその成形体
JP6355951B2 (ja) ポリオルガノシロキサン、ポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法
WO2005085320A1 (ja) ポリカーボネート共重合体、ポリカーボネート共重合体組成物及びそれらからなる光学成形品
JPWO2017110598A1 (ja) ポリカーボネート系樹脂組成物
WO2018159790A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体、それを含むポリカーボネート系樹脂組成物及びその成形品
JP2014062203A (ja) 芳香族ポリカーボネート樹脂組成物及び該樹脂組成物を用いた成形品
JP6589248B2 (ja) ポリオルガノシロキサン、ポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法
JP2019135314A (ja) ポリカーボネート樹脂の製造方法及びポリカーボネート樹脂組成物の製造方法
WO2014171509A1 (ja) 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
JP5997903B2 (ja) 末端変性ポリカーボネート樹脂
JP2014224244A (ja) ポリカーボネート樹脂、ポリカーボネート樹脂組成物、及び成形体
WO2015159958A1 (ja) ポリカーボネート樹脂の製造方法
WO2015147198A1 (ja) 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
JP2014224245A (ja) ポリカーボネート樹脂の製造方法
JP2009040843A (ja) ポリカーボネート系樹脂組成物及びそれからなる光学成形品
JP6035182B2 (ja) ポリカーボネート共重合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772906

Country of ref document: EP

Kind code of ref document: A1