WO2015147419A1 - 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 - Google Patents

리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 Download PDF

Info

Publication number
WO2015147419A1
WO2015147419A1 PCT/KR2014/012800 KR2014012800W WO2015147419A1 WO 2015147419 A1 WO2015147419 A1 WO 2015147419A1 KR 2014012800 W KR2014012800 W KR 2014012800W WO 2015147419 A1 WO2015147419 A1 WO 2015147419A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
negative electrode
lithium ion
secondary battery
ion secondary
Prior art date
Application number
PCT/KR2014/012800
Other languages
English (en)
French (fr)
Inventor
임태은
김영준
조용남
정구진
최수정
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2015147419A1 publication Critical patent/WO2015147419A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/44Alloys based on cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode mixture for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion secondary battery having the same. More specifically, the present invention relates to peeling by volume expansion and contraction of a silicon-based negative electrode material of a negative electrode of a lithium ion secondary battery. Including a binder containing a substance containing dicarboxylic acid to prevent or inhibit, as well as to improve the process characteristics while improving the sedimentation characteristics of the separation of solids in the solvent to achieve a uniform electrode density The present invention relates to a negative electrode mixture for a lithium ion secondary battery, a manufacturing method thereof, and a lithium ion secondary battery having the same.
  • the lithium ion secondary battery is one of energy storage devices for storing energy.
  • Lithium-ion secondary batteries have a higher energy density than nickel cadmium batteries, have a non-memory effect, are environmentally friendly, have a long life cycle, can output high voltage, and above all, they can be miniaturized. And small portable electronic products such as camcorders.
  • Conventional lithium ion secondary batteries include a positive electrode, a negative electrode, a separator and an electrolyte as main components.
  • the positive electrode of a conventional lithium ion secondary battery includes lithium oxide, the negative electrode contains a carbon compound, such as graphite that can store the lithium ion, the separator prevents the positive electrode and the negative electrode directly contact, the electrolyte solution in the positive electrode and the negative electrode It acts as a vehicle to allow lithium ions to move.
  • a carbon compound such as graphite that can store the lithium ion
  • the separator prevents the positive electrode and the negative electrode directly contact, the electrolyte solution in the positive electrode and the negative electrode It acts as a vehicle to allow lithium ions to move.
  • the negative electrode material of the lithium ion secondary battery is changed from the carbon-based material to the silicon-based material as described above, the reversible capacity of the lithium ion secondary battery having the silicon-based negative electrode can be greatly increased. Deterioration of the electrode due to volume expansion and contraction of the material and the binder of the silicon-based material is peeled from the negative electrode has a problem that the battery life is greatly reduced.
  • Korean Patent Publication No. 2007-0110569 published on November 20, 2007, includes a polyacrylic acid physically mixed with polyurethane as a binder
  • a binder in which a polyurethane is physically mixed with polyacrylic acid is disclosed.
  • Korean Patent Publication No. 2014-0012464 published on February 3, 2014 to solve the problems caused by employing a silicon-based negative electrode of a lithium ion secondary battery, a silicon alloy-based negative electrode active material, a negative electrode active material composition comprising the same and The technique which uses the organic binder containing polyamideimide for the manufacturing method and lithium secondary battery is disclosed.
  • the negative electrode mixture is prepared using a binder having polyacrylic acid, a silicon-based active material, a conductive material, and a solvent as a binder of a silicon-based negative electrode of a lithium ion secondary battery, precipitation of solid content including the silicon-based active material, a binder, and a conductive material in a solvent And a negative electrode mixture having a sedimentation phenomenon are applied to the negative electrode, resulting in a non-uniform electrode density of the negative electrode.
  • the present invention prevents the decrease of battery life due to the volume expansion and contraction due to the charge and discharge while the silicon-based negative electrode mixture, prevents the sedimentation of solid content, uniformly distribute the negative electrode mixture to the negative electrode and excellent binding strength compared to the conventional binder
  • a negative electrode mixture for a lithium ion secondary battery having excellent recovery rate and excellent rigidity a method for preparing the same, and a lithium ion secondary battery having the same.
  • the negative electrode mixture for a lithium ion secondary battery includes a binder containing a dicarboxylic acid (dicarboxylic acid), an active material containing silicon, a conductive agent and a solvent to increase the conductivity of the active material.
  • the binder of the negative electrode mixture for a lithium ion secondary battery includes poly (maleic) acid (PMA).
  • the binder of the negative electrode mixture for a lithium ion secondary battery includes a first binder including a poly (maleic) acid (PMA) and a first synthetic binder obtained by synthesizing a second binder.
  • a first binder including a poly (maleic) acid (PMA) and a first synthetic binder obtained by synthesizing a second binder.
  • the second binder of the negative electrode mixture for lithium ion secondary batteries is polyacrylic acid (PAA), poly (arylether ketone), poly (aryl amide), aromatic polyimide, aromatic poly (amide-imide), aromatic poly Urethane, aromatic polyester (polyarylate), polybenzimidazole, polybenzoxazole, aromatic polysulfone, aromatic poly (ether sulfone), aromatic poly (phenylene sulfide), aromatic polyphosphazene and At least one selected from the group consisting of modified polymers of these polymers.
  • the binder of the negative electrode mixture for a lithium ion secondary battery includes a second synthetic binder obtained by chemically synthesizing the first synthetic binder into a third binder.
  • the third binder of the negative electrode mixture for lithium ion secondary batteries is polyacrylic acid (PAA), poly (arylether ketone), poly (aryl amide), aromatic polyimide, aromatic poly (amide-imide), aromatic poly Urethane, aromatic polyester (polyarylate), polybenzimidazole, polybenzoxazole, aromatic polysulfone, aromatic poly (ether sulfone), aromatic poly (phenylene sulfide), aromatic polyphosphazene and At least one selected from the group consisting of modified polymers of these polymers.
  • Method for producing a negative electrode mixture of a lithium ion secondary battery comprises the steps of dissolving a first binder containing carboxylic acid (-COOH) in a solvent; Providing a second binder comprising dicarboxylic acid in the solvent in which the first binder is dissolved; And synthesizing a synthetic binder by providing a reaction inducing agent for inducing a reaction of the first and second binders to the solvent.
  • a first binder containing carboxylic acid (-COOH) in a solvent Providing a second binder comprising dicarboxylic acid in the solvent in which the first binder is dissolved
  • synthesizing a synthetic binder by providing a reaction inducing agent for inducing a reaction of the first and second binders to the solvent.
  • the first binder includes poly (acrylic acid), and the second binder includes poly (maleic acid) (PMA). do.
  • the lithium ion secondary battery includes a positive electrode coated with a positive electrode mixture including a positive electrode active material, a conductive agent and a binder on a positive electrode, a negative electrode spaced apart from the positive electrode, and a negative electrode mixture mixed with a negative electrode active material, a conductive agent and a binder on a negative electrode; A separator separating the positive electrode and the negative electrode; And an electrolyte solution for ion migration between the positive electrode and the negative electrode, wherein the binder included in the negative electrode mixture includes a first binder including carboxylic acid (—COOH) and a second binder including dicarboxylic acid. It includes a synthetic binder formed by chemically synthesized.
  • the first binder of the lithium ion secondary battery includes poly (acrylic acid, PAA), and the second binder includes poly (maleic acid) (PMA).
  • the binder for a lithium ion secondary battery according to the present invention, a method for manufacturing the same, and a lithium ion secondary battery having the same suppress the volume expansion and contraction caused by charge and discharge generated by using a negative electrode mixture containing silicon to increase capacity. It prevents the decrease of lifespan, prevents the sedimentation of solids, and evenly distributes the negative electrode mixture to the electrodes to uniformly form the electrode density, and has excellent binding capacity, excellent recovery rate, and excellent rigidity compared to conventional binders. Greatly improve.
  • 1 is a chemical formula of a binder included in a negative electrode mixture according to an embodiment of the present invention.
  • FIG. 2 is a chemical formula of a first synthetic binder using the binder of FIG. 1.
  • FIG. 3 is a chemical formula illustrating a process of synthesizing a second synthetic binder using the first synthetic binder of FIG. 2.
  • FIG. 4 is a flowchart illustrating a process of manufacturing the second synthetic binder shown in FIG. 3.
  • FIG. 5 is a cross-sectional view conceptually illustrating a lithium ion secondary battery including a negative electrode to which a negative electrode mixture including the second synthetic binder shown in FIG. 3 is applied.
  • 6 and 7 are SEM images of cracks generated after charging and discharging of the lithium ion secondary battery illustrated in FIG. 5.
  • 1 is a chemical formula of a binder included in a negative electrode mixture according to an embodiment of the present invention.
  • the negative electrode mixture of the lithium ion secondary battery may include a binder 100, an active material, a conductive agent, and a solvent.
  • the active material used in the negative electrode mixture of the lithium ion secondary battery is to flow the electrons (current) through an external circuit while reversibly absorb or release the lithium ions provided from the positive electrode of the lithium ion secondary battery It plays a role.
  • the active material included in the negative electrode mixture of the lithium ion secondary battery includes silicon (silicon) and graphite, the active material included in the negative electrode mixture is silicon and graphite, for example, 3: 7 Mixed in proportions.
  • the conductive agent serves to improve the conductivity of the active material included in the negative electrode mixture, and the solvent allows the binder, the active material, and the conductive agent included in the negative electrode mixture to be mixed at a uniform density to have a slurry form suitable for coating on the negative electrode.
  • the lithium ion secondary battery When the active material included in the negative electrode mixture of the lithium ion secondary battery includes silicon, the lithium ion secondary battery has a much higher theoretical capacity and a reversible capacity than the active material including only graphite.
  • the negative electrode mixture is repeatedly expanded or contracted so that the negative electrode mixture is separated or detached from the negative electrode, thereby greatly shortening the life of the lithium ion secondary battery and greatly reducing the performance of the lithium ion secondary battery.
  • the binder 100 to prevent cracks, tearing, peeling and desorption generated in the negative electrode mixture in a lithium ion battery containing an active material containing silicon.
  • the binder 100 is used with an active material containing silicon in the negative electrode mixture to be dicarboxyl containing at least two carboxyl groups to prevent cracking, tearing, peeling and detachment of the negative electrode mixture It includes acid (dicarboxylic acid), the chemical material containing dicarboxylic acid may include poly (maleic acid, PMA).
  • the binder 100 may be used alone or by mixing or polymerizing polymalic acid (PMA) with other chemicals.
  • PMA polymalic acid
  • the binder 100 containing polymalic acid (PMA) When the binder 100 containing polymalic acid (PMA) is mixed with the negative electrode mixture of the lithium ion secondary battery, the solid mixture is prevented from sedimentation (sedimentation) in the solvent to prevent the negative electrode mixture from the negative electrode of the lithium ion secondary battery. When formed, very uniform electrode densities can be realized in the negative electrode mixture.
  • PMA polymalic acid
  • FIG. 2 is a chemical formula of a first synthetic binder using the binder of FIG. 1.
  • the first synthetic binder 200 forming the negative electrode mixture of the lithium ion secondary battery includes a first binder 210 and a second binder 220, and the first synthetic binder 200 is formed of a first composite binder 200. It is formed by synthesizing the first binder 210 and the second binder 220.
  • the first binder 210 comprises a dicarboxylic acid (dicarboxylic acid) containing at least two carboxyl groups, polycarboxylic acid (Poly malic acid) as a chemical containing dicarboxylic acid (Poly (maleic acid), PMA).
  • the second binder 220 may include poly acrylic acid (PAA) including a carboxyl group.
  • PAA poly acrylic acid
  • the negative electrode mixture including the first synthetic binder 200 obtained by synthesizing polyacrylic acid (PAA), which is a second binder 220 synthesized with polymalic acid (PMA), which is a first binder 210 is applied to the cathode electrode, When sintered it serves to lower the sintering temperature can greatly improve the process characteristics.
  • PAA polyacrylic acid
  • PMA polymalic acid
  • the second binder 220 synthesized with the first binder 210 polymalic acid (PMA) is a poly (arylether ketone), poly (aryl amide) in addition to polyacrylic acid (PAA) Type, aromatic polyimide type, aromatic poly (amide-imide) type, aromatic polyurethane type, aromatic polyester (polyarylate) type, polybenzimidazole type, polybenzoxazole type, aromatic polysulfone type, aromatic poly ( Ether sulfone) based, aromatic poly (phenylene sulfide) based, aromatic polyphosphazene and modified ones of these polymers.
  • PAA polyacrylic acid
  • PAA polyacrylic acid
  • aromatic polyimide type aromatic poly (amide-imide) type
  • aromatic polyurethane type aromatic polyester (polyarylate) type
  • polybenzimidazole type polybenzoxazole type
  • aromatic polysulfone type aromatic poly ( Ether sulfone) based
  • the first mixture binder 200 formed by synthesizing the first binder 210 and the second binder 220 includes an active material containing silicon and graphite, a conductive agent for improving the conductivity of the active material, and a negative electrode mixture. Is a very uniform electrode in the negative electrode mixture when the negative electrode mixture is formed on the negative electrode of the lithium ion secondary battery by preventing the solids including the active material, the conductive agent and the first synthetic binder from being separated (precipitated) in the solvent. Not only the density can be realized, but also the polyacrylic acid (PAA), which is the second binder 220 included in the first synthetic binder 200, can greatly reduce the sintering temperature of the negative electrode mixture to improve process characteristics.
  • PAA polyacrylic acid
  • FIG. 3 is a chemical formula of a second synthetic binder using the binder of FIG. 2.
  • the second synthetic binder 300 forming the negative electrode mixture of the lithium ion secondary battery is formed by synthesizing the first synthetic binder 325 and the third binder 230.
  • the second synthetic binder 200 is formed by synthesizing the first binder 310 and the second binder 320.
  • the first binder 310 comprises a dicarboxylic acid (dicarboxylic acid) containing at least two carboxyl groups, polycarboxylic acid (Polylic acid) as a chemical material containing a dicarboxylic acid (Poly (maleic acid), PMA).
  • the second binder 320 may include, for example, poly acrylic acid (PAA) including a carboxyl group.
  • PAA poly acrylic acid
  • a third binder 330 is synthesized in the first synthetic binder 325 to form a second synthetic binder 300.
  • the third binder 330 synthesized with the first synthetic binder 325 may be polyacrylic acid (PAA).
  • PAA polyacrylic acid
  • the third binder 330 that may be used as the third binder 330 may be a poly (arylether ketone), poly (aryl amide), aromatic polyimide, aromatic poly (amide-imide), aromatic poly Urethane, aromatic polyester (polyarylate), polybenzimidazole, polybenzoxazole, aromatic polysulfone, aromatic poly (ether sulfone), aromatic poly (phenylene sulfide), aromatic polyphosphazene and It may include one or more selected from the group consisting of modified materials of these polymers.
  • the second composite binder 300 formed by synthesizing the first synthetic binder 325 and the third binder 330 includes an active material containing silicon and graphite, a conductive agent for improving the conductivity of the active material, and a negative electrode mixed with a solvent.
  • the mixture prevents the solids comprising the active material, the conductive agent, and the second synthetic binder from being separated (precipitated) in the solvent so that the negative electrode mixture is very uniform in the negative electrode mixture when the negative electrode mixture is formed on the negative electrode of the lithium ion secondary battery.
  • Not only the electrode density but also the polyacrylic acid (PAA) of the third binder 330 included in the second synthetic binder 300 may greatly reduce the sintering temperature of the negative electrode mixture, thereby improving process characteristics.
  • PAA polyacrylic acid
  • the settling solid content in the negative electrode mixture including the polyacrylic acid (PAA), the first synthetic binder and the second synthetic binder is compared to the binder containing the polyacrylic acid (PAA), the first synthesis
  • PAA polyacrylic acid
  • the settling rate at which the active material, the conductive agent, and the binder, which are solids included in the negative electrode mixture, is separated (precipitated) in the solvent was about 2.3%.
  • the settling rate at which the active material, the conductive agent, and the binder, which are the solids included in the negative electrode mixture, was separated (precipitated) in the solvent was about 3.8%.
  • the sedimentation rate was very low compared to the binder using polyacrylic acid (PAA) alone, and thus the solid content included in the negative electrode mixture was negative electrode. It is formed at a very uniform density at can realize a very uniform electrode density.
  • PAA polyacrylic acid
  • FIG. 4 is a flowchart illustrating a process of manufacturing a synthetic binder included in a negative electrode mixture according to an embodiment of the present invention.
  • the manufacturing process of the synthetic binder shown in FIG. 4 will be described as an example of forming the synthetic binder shown in FIG. 3.
  • a third binder 330 of A [g] is provided in a solvent that is water, and the third binder 330 is dissolved in water.
  • the third binder 330 may include polyacrylic acid (PAA).
  • PAA polyacrylic acid
  • the third binder 330 may be poly (arylether ketone), poly (aryl amide), aromatic polyimide, aromatic poly (amide-imide), aromatic polyurethane, aromatic polyester (polyaryl) Tri), polybenzimidazoles, polybenzoxazoles, aromatic polysulfones, aromatic poly (ether sulfone) s, aromatic poly (phenylene sulfides), aromatic polyphosphazenes, and modified products of these polymers. It may include one or more selected from the group consisting of.
  • the first synthetic binder 325 shown in FIG. 3 is provided with B [g] in the solvent in which the third binder 330 is dissolved.
  • the first synthetic binder 325 is formed by synthesizing the first binder 310 and the second binder 320, and the first binder 310 included in the first synthetic binder 325 may be formed of poly to improve sedimentation characteristics. It includes maleic acid (PMA), and the second binder 320 includes polyacrylic acid (PAA) to improve process characteristics.
  • PMA maleic acid
  • PAA polyacrylic acid
  • the second binder 320 is poly (arylether ketone), poly (aryl amide), aromatic polyimide, aromatic poly (amide-imide), aromatic polyurethane, aromatic Polyester (polyarylate) type, polybenzimidazole type, polybenzoxazole type, aromatic polysulfone type, aromatic poly (ether sulfone) type, aromatic poly (phenylene sulfide) type, aromatic polyphosphazene and these polymers It may include one or more selected from the group consisting of modified materials.
  • the reaction inducing agent may be, for example, sulfuric acid, and the ratio of the third binder 330, the first synthetic binder 325, and the reaction inducing agent may be 1: 1: 0.02.
  • the third binder 330 is about 10 [g]
  • the first synthetic binder 325 may be about 10 [g]
  • the reaction inducing agent may be about 0.2 [g].
  • step S40 After the third binder 300, the first synthetic binder 325 and sulfuric acid as a reaction inducing agent are added to the solvent, the mixed solution is stirred for 24 hours under reflux conditions (step S40).
  • the second binder 300 After dissolving the third binder 330, the first synthetic binder 325, and the reaction inducing agent in water and stirring to generate the second synthetic binder 300, the second binder 300 failed to participate in the production of the second synthetic binder 300.
  • the unreacted third binder 330 and the first synthetic binder 325 are filtered out from the second synthetic binder 300 by filtration, and the remaining water is also removed using a pressure distillation apparatus.
  • trace impurities that may be formed during the synthesis of the second synthetic binder 300 are removed by decantation several times with ethyl acetate and diethyl ether.
  • step S50 prepare a synthetic binder (300).
  • FIG. 5 is a cross-sectional view conceptually illustrating a lithium ion secondary battery including a negative electrode to which a negative electrode mixture including the synthetic binder shown in FIG. 3 is applied.
  • the lithium ion secondary battery 500 includes a positive electrode 510, a negative electrode 520, a separator 530, and an electrolyte 540.
  • the anode 510 includes an anode electrode 511 and a cathode mixture 515.
  • the positive electrode mixture 515 includes a positive electrode active material including lithium oxide, a conductive agent to improve conductivity of the positive electrode active material, and the second synthetic binder 300 shown in FIG. 3, and the positive electrode mixture 515 includes the positive electrode 511. Is applied or formed on the surface.
  • the negative electrode 520 includes a negative electrode 521 and a negative electrode mixture 525.
  • the negative electrode 521 is disposed to be spaced apart from the positive electrode 511, and the negative electrode mixture 525 is a negative electrode active material in which silicon and graphite are mixed at a ratio of 3: 7, a conductive agent to improve conductivity of the negative electrode active material, and an example.
  • the second synthetic binder 300 shown in FIG. 3 is included.
  • the active material, the second synthetic binder 300 and the conductive agent included in the negative electrode mixture 525 is prepared in a ratio of 8: 1: 1.
  • the negative electrode mixture 525 is applied and formed on the surface of the negative electrode 511.
  • the separator 530 has a structure having pores through which the electrolyte passes, and for example, PE (poly (ethylene)) is used.
  • PE poly (ethylene)
  • the electrolyte 540 includes EC: EMC in a ratio of 1: 2, and the electrolyte 540 includes 1 M of LiPF 6 and 10% of F-EC.
  • the second synthetic binder 300 included in the negative electrode mixture 525 is the third binder 330 and the first synthetic binder including polyacrylic acid (PAA) as shown in FIG. 325 is formed, and the first synthetic binder 325 synthesizes the first binder 310 including polyamic acid (PMA) d and the second binder 320 including polyacrylic acid (PAA). Is formed.
  • PAA polyacrylic acid
  • FIG. 6 is a SEM photograph of cracks generated after charging and discharging of a lithium ion secondary battery including a binder including polyacrylic acid according to a comparative example.
  • the volume expansion or contraction of the negative electrode mixture may occur. It was observed that very large cracks occurred. As such, when the volume expansion or contraction of the negative electrode mixture is not controlled, as the charging or discharging of the lithium ion secondary battery is repeated, the negative electrode mixture is torn or detached from the negative electrode.
  • PAA polyacrylic acid
  • FIG. 7 is a SEM photograph of cracks after charge and discharge of a lithium ion secondary battery including a negative electrode mixture including the second synthetic binder shown in FIG. 3.
  • the lithium ion secondary battery is charged or discharged in a state in which the second synthetic binder (PAA-PAA / PMA) is included in a binder included in the negative electrode mixture applied to the negative electrode of the lithium ion secondary battery
  • the negative electrode By controlling the volume expansion or contraction of the mixture by the second synthetic binder, it was observed that a crack of a very small size compared to the crack shown in FIG. 6 was generated.
  • the second synthetic binder controls the volume expansion or contraction of the negative electrode mixture to prevent the negative electrode mixture from being torn or detached from the negative electrode even when the lithium ion secondary battery is repeatedly charged or discharged.
  • Table 2 discloses electrochemical evaluation results of a lithium ion secondary battery including a binder according to a comparative example including polyacrylic acid (PAA) and a lithium ion secondary battery including a second synthetic binder of FIG. 3.
  • PAA polyacrylic acid
  • Figure 8 is a graph showing the results of the electrochemical evaluation of Table 2
  • Figure 9 is a graph showing the holding capacity in the comparative example and Example according to the charge and discharge.
  • FIG. 8 and FIG. 9 in the case of the lithium ion secondary battery including the second synthetic binder synthesized as an example of the evaluation result, a high charge of 1291.3 [mAh / g] was obtained at the first charge.
  • the capacity was 1122.5 [mAh / g] at the first charge, and 90 charge / discharge cycles were performed according to the present invention.
  • the lithium ion secondary battery including the second synthetic binder exhibited a capacity of 948.5 [mAh / g), and the lithium ion secondary battery including the binder using polyacrylic acid (PAA) according to a comparative example 798.4 [mAh / g], the capacity of the lithium ion secondary battery including the second synthetic binder was tested to have an excellent performance compared to the lithium ion secondary battery according to the comparative example.
  • PAA polyacrylic acid
  • the lithium ion secondary battery including the second synthetic binder was tested to have excellent retention after 90 charge / discharge cycles compared to the lithium ion secondary battery including the binder including polyacrylic acid as a comparative example.
  • the present invention can be used in the field of negative electrode mixture of lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬이온 이차전지의 음극의 실리콘계 음극 소재의 부피 팽창 및 수축에 의한 박리를 방지 또는 억제 할 뿐만 아니라 용제 내에서 고형분이 분리되는 침강 특성을 개선하여 균일한 전극 밀도를 구현하면서 공정 특성을 개선하기 위해 디카르복실산(dicarboxylic acid)을 포함하는 물질을 포함하는 바인더를 제공하며, 리튬이온 이차전지용 음극 합제는 디카르복실산(dicarboxylic acid)을 포함하는 바인더, 실리콘을 포함하는 활물질, 상기 활물질의 도전성을 증가시키는 도전제 및 용제를 포함한다.

Description

리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지
본 발명은 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지에 관한 것으로, 보다 구체적으로, 본 발명은 리튬이온 이차전지의 음극의 실리콘계 음극 소재의 부피 팽창 및 수축에 의한 박리를 방지 또는 억제 할 뿐만 아니라 용제 내에서 고형분이 분리되는 침강 특성을 개선하여 균일한 전극 밀도를 구현하면서 공정 특성을 개선하기 위해 디카르복실산(dicarboxylic acid)을 포함하는 물질을 포함하는 바인더를 포함하는 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지에 관한 것이다.
리튬이온 이차전지는 에너지를 저장하는 에너지 저장 장치의 하나이다.
리튬이온 이차전지는 니켈 카드뮴 전지 등에 비해 높은 에너지 밀도를 가지면서 비메모리 효과를 갖고, 친환경적이며, 수명 주기가 길고, 높은 전압을 출력할 수 있으며, 무엇보다도 소형화가 가능하기 때문에 최근 휴대폰, 태블릿 PC 및 캠코더와 같은 소형 휴대용 전자 제품에 널리 사용되고 있다.
종래 리튬이온 이차전지는 주요 구성 요소로서 양극, 음극, 분리막 및 전해액을 포함한다.
종래 리튬이온 이차전지의 양극은 리튬산화물을 포함하며, 음극은 리튬이온을 저장할 수 있는 흑연과 같은 탄소화합물을 포함하며, 분리막은 양극과 음극이 직접 접촉되는 것을 방지하며, 전해액은 양극과 음극에서 리튬 이온이 이동할 수 있도록 하는 매개체로서 역할한다.
최근에는 리튬이온 이차전지의 음극 소재를 탄소계 소재로부터 실리콘계 소재로 변경하여 리튬이온 이차전지의 가역 용량을 증가시키는 기술이 연구되고 있다.
그러나, 이와 같이 리튬이온 이차전지의 음극 소재를 탄소계 소재로부터 실리콘계 소재로 변경할 경우, 실리콘계 음극을 갖는 리튬이온 이차전지의 가역 용량을 크게 증가시킬 수 있는 반면, 리튬이온 이차전지의 충방전시 실리콘계 소재의 부피 팽창 및 수축에 따른 전극 열화 및 실리콘계 소재의 바인더가 음극으로부터 박리되어 전지 수명이 크게 감소되는 문제점을 갖는다.
이와 같은 리튬이온 이차전지의 실리콘계 음극을 채용함에 따라 발생되는 문제점을 해결하기 위하여 2007년 11월 20일 공개된 한국공개특허 제2007-0110569호, 바인더로서 폴리우레탄을 물리적으로 혼합한 폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로 하는 리튬 이차전지에는 폴리아크릴산에 폴리우레탄을 물리적으로 혼합한 바인더가 개시되어 있다.
또한, 리튬이온 이차전지의 실리콘계 음극을 채용함에 따라 발생되는 문제점을 해결하기 위하여 2014년 2월 3일 공개된 한국공개특허 제2014-0012464호, 실리콘 합금계 음극활물질, 이를 포함하는 음극 활물질조성물 및 그 제조 방법과 리튬 이차 전지에는 폴리아미드이미드를 포함하는 유기계 바인더가 사용되는 기술이 개시되어 있다.
리튬이온 이차전지의 실리콘계 음극의 바인더로서 폴리아크릴산을 갖는 바인더, 실리콘계 활물질, 도전재 및 용매를 이용하여 음극 합제를 제조할 경우, 용매 내에서 실리콘계 활물질, 바인더 및 도전재를 포함하는 고형분의 침강 현상이 발생되고 침강 현상이 발생된 음극 합제를 음극에 도포할 경우 음극의 전극 밀도가 불균일해지는 문제점을 갖는다.
본 발명은 실리콘계 음극 합제를 사용하면서 충방전에 따른 부피 팽창 및 수축에 의한 박리에 따른 전지 수명의 감소를 방지, 고형분의 침강 현상을 방지하여 음극 합제를 음극에 균일하게 분포시키며 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖는 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지를 제공한다.
일실시예로서, 리튬이온 이차전지용 음극 합제는 디카르복실산(dicarboxylic acid)을 포함하는 바인더, 실리콘을 포함하는 활물질, 상기 활물질의 도전성을 증가시키는 도전제 및 용제를 포함한다.
리튬이온 이차전지용 음극 합제의 상기 바인더는 폴리말릭산(poly(maleic)acid, PMA)를 포함한다.
리튬이온 이차전지용 음극 합제의 상기 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함하는 제1 바인더 및 제2 바인더를 합성한 제1 합성 바인더를 포함한다.
리튬이온 이차전지용 음극 합제의 상기 제2 바인더는 폴리아크릴산(PAA), 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함한다.
리튬이온 이차전지용 음극 합제의의 상기 바인더는 상기 제1 합성 바인더를 제3 바인더로 화학적으로 합성한 제2 합성 바인더를 포함한다.
리튬이온 이차전지용 음극 합제의 상기 제3 바인더는 폴리아크릴산(PAA), 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함한다.
리튬이온 이차전지의 음극 합제의 제조 방법은 카르복실산(-COOH)을 포함하는 제1 바인더를 용매에 용해시키는 단계; 상기 제1 바인더가 용해된 상기 용매에 디카르복실산을 포함하는 제2 바인더를 제공하는 단계; 및 상기 제1 및 제2 바인더들의 반응을 유도하기 위한 반응유도제를 상기 용매에 제공하여 합성 바인더를 합성하는 단계를 포함한다.
리튬이온 이차전지의 음극 합제의 제조 방법에서 상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함한다.
리튬이온 이차전지는 양극 전극에 양극 활물질과 도전제 및 바인더를 포함하는 양극 합제가 도포된 양극, 상기 양극과 이격되며 음극 전극에 음극 활물질, 도전제 및 바인더가 혼합된 음극 합제가 도포된 음극; 상기 양극 및 음극을 분리하는 분리막; 및 상기 양극 및 음극 사이에서 이온 이동을 위한 전해액을 포함하며, 상기 음극 합체에 포함된 상기 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 디카르복실산을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함한다.
리튬이온 이차전지의 상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함한다.
본 발명에 따른 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지는 용량을 증가시키기 위해 실리콘을 포함하는 음극 합제를 사용함에 따라 발생되는 충방전에 따른 부피 팽창 및 수축을 억제하여 전지 수명 감소를 방지하고, 고형분의 침강 현상을 방지하여 음극 합제를 전극에 균일하게 분포시켜 전극 밀도를 균일하게 형성하며 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖도록 함으로써 리튬 이온 이차 전지의 성능을 크게 향상시킨다.
도 1은 본 발명의 일실시예에 따른 음극 합제에 포함되는 바인더의 화학식이다.
도 2는 도 1의 바인더를 이용한 제1 합성 바인더의 화학식이다.
도 3은 도 2의 제1 합성 바인더를 이용한 제2 합성 바인더를 합성하는 과정을 도시한 화학식이다.
도 4는 도 3에 도시된 제2 합성 바인더를 제조하는 과정을 도시한 순서도이다.
도 5는 도 3에 도시된 제2 합성 바인더를 포함하는 음극 합제가 도포된 음극을 포함하는 리튬 이온 이차전지를 개념적으로 도시한 단면도이다.
도 6 및 도 7은 도 5에 도시된 리튬이온 이차전지의 충방전 후 발생된 크랙을 촬영한 SEM 사진이다.
도 8은 표 2의 전기화학적 평가 결과를 도시한 그래프이다.
도 9는 충방전에 따른 비교예 및 실시예에서의 유지용량을 도시한 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일실시예에 따른 음극 합제에 포함되는 바인더의 화학식이다.
도 1을 참조하면, 리튬이온 이차전지의 음극 합제는 바인더(100), 활물질, 도전제 및 용제를 포함할 수 있다.
본 발명의 일실시예에서, 리튬이온 이차전지의 음극 합제에 사용되는 활물질은 리튬이온 이차전지의 양극으로부터 제공된 리튬이온을 가역적으로 흡수 또는 방출하면서 외부 회로를 통해 전자(전류)를 흐르게 하여 전기를 발생시키는 역할을 한다.
본 발명의 일실시예에서, 리튬이온 이차전지의 음극 합제에 포함되는 활물질에는 실리콘(silicon) 및 흑연이 포함되며, 음극 합제에 포함되는 활물질에는 실리콘 및 흑연이, 예를 들어, 3:7의 비율로 혼합된다.
도전제는 음극 합제에 포함된 활물질의 도전성을 향상시키는 역할을 하며, 용제는 음극 합제에 포함되는 바인더, 활물질 및 도전제가 균일한 밀도로 혼합되어 음극 전극에 도포되기에 적합한 슬러리 형태를 갖도록 한다.
리튬이온 이차전지의 음극 합제에 포함된 활물질이 실리콘을 포함할 경우, 리튬이온 이차전지는 흑연만을 포함하는 활물질 대비 매우 높은 이론 용량 및 가역 용량을 갖는다.
그러나, 리튬이온 이차전지의 음극 합제에 포함된 활물질에 실리콘을 포함시킬 경우, 이론 용량 및 가역 용량이 비약적으로 증가되는 반면, 리튬 이온 이차전지의 충전 또는 방전시 음극 합제에 부피 팽창 또는 수축이 발생된다. 실리콘을 포함하는 활물질을 포함하는 음극 합제의 경우, 충전 또는 방전시 약 400% 이상의 부피 팽창 또는 수축이 발생된다.
충전 또는 방전시 실리콘을 포함하는 활물질이 포함된 음극 합제에 과도한 부피 팽창 또는 부피 수축이 발생될 경우, 음극 합제의 표면에 크랙 또는 찢어짐이 발생된다.
또한 충전 또는 방전이 반복됨에 따라 음극 합제가 반복하여 팽창 또는 수축되어 음극 합제가 음극 전극으로부터 분리 또는 탈리되어 리튬이온 이차전지의 수명이 크게 단축되고 리튬이온 이차전지의 성능 역시 크게 감소된다.
본 발명의 일실시예에서는 바인더(100)를 이용하여 실리콘을 포함하는 활물질을 포함하는 리튬이온 배터리에서 음극 합제에 발생되는 크랙, 찢어짐, 박리 및 탈리를 방지한다.
본 발명의 일실시예에서, 바인더(100)는 음극 합제에 실리콘을 포함하는 활물질과 함께 사용되어 음극 합제의 크랙, 찢어짐, 박리 및 탈리를 방지하기 위해 적어도 2개의 카로복실기를 포함하는 디카르복실산(dicarboxylic acid)을 포함하며, 디카르복실산을 포함하는 화학 물질로서는 폴리말릭산(Poly(maleic acid), PMA)을 포함할 수 있다.
본 발명의 일실시예에서, 바인더(100)는 폴리말릭산(PMA)을 단독으로 사용 또는 다른 화학 물질에 폴리말릭산(PMA)를 혼합 또는 중합하여 사용하여도 무방하다.
리튬이온 이차전지의 음극 합제에 폴리말릭산(PMA)을 포함하는 바인더(100)를 혼합할 경우, 용제 내에서 고형분이 분리(침강)되는 것을 방지하여 음극 합제가 리튬이온 이차전지의 음극 전극에 형성될 때 음극 합제 내에 매우 균일한 전극 밀도를 구현할 수 있다.
도 2는 도 1의 바인더를 이용한 제1 합성 바인더의 화학식이다.
도 2를 참조하면, 리튬이온 이차전지의 음극 합제를 형성하는 제1 합성 바인더(200)는 제1 바인더(210) 및 제2 바인더(220)를 포함하며, 제1 합성 바인더(200)는 제1 바인더(210) 및 제2 바인더(220)를 합성하여 형성된다.
본 발명의 일실시예에서, 제1 바인더(210)는 적어도 2개의 카로복실기를 포함하는 디카르복실산(dicarboxylic acid)을 포함하며, 디카르복실산을 포함하는 화학 물질로서는 폴리말릭산(Poly(maleic acid), PMA)을 포함할 수 있다.
제2 바인더(220)는 카르복실기를 포함하는 폴리아크릴산(Poly acrylic acid, PAA)을 포함할 수 있다.
제1 바인더(210)인 폴리말릭산(PMA)과 합성되는 제2 바인더(220)인 폴리아크릴산(PAA)을 합성한 제1 합성 바인더(200)를 포함하는 음극 합제가 음극 전극에 도포된 후 소결될 때 소결 온도를 낮추는 역할을 하여 공정 특성을 크게 개선할 수 있다.
본 발명의 일실시예에서, 제1 바인더(210)인 폴리말릭산(PMA)과 합성되는 제2 바인더(220)는 폴리아크릴산(PAA) 이외에 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.
이와 같이 제1 바인더(210) 및 제2 바인더(220)를 합성하여 형성된 제1 합성 바인더(200)에 실리콘 및 흑연을 포함하는 활물질, 활물질의 도전성을 향상시키는 도전제 및 용제를 혼합한 음극 합제는 용제 내에서 활물질, 도전제 및 제1 합성 바인더를 포함하는 고형분이 용제에 대하여 분리(침강)되는 것을 방지하여 음극 합제가 리튬이온 이차전지의 음극 전극에 형성될 때 음극 합제 내에 매우 균일한 전극 밀도를 구현할 수 있을 뿐만 아니라 제1 합성 바인더(200)에 포함된 제2 바인더(220)인 폴리아크릴산(PAA)에 의하여 음극 합제의 소결 온도를 크게 감소시켜 공정 특성을 개선할 수 있다.
도 3은 도 2의 바인더를 이용한 제2 합성 바인더의 화학식이다.
도 3을 참조하면, 리튬이온 이차전지의 음극 합제를 형성하는 제2 합성 바인더(300)는 제1 합성 바인더(325) 및 제3 바인더(230)를 합성하여 형성된다.
제2 합성 바인더(200)는 도 2에 도시된 바와 같이 제1 바인더(310) 및 제2 바인더(320)를 합성하여 형성된다.
본 발명의 일실시예에서, 제1 바인더(310)는 적어도 2개의 카로복실기를 포함하는 디카르복실산(dicarboxylic acid)을 포함하며, 디카르복실산을 포함하는 화학 물질로서는 폴리말릭산(Poly(maleic acid), PMA)을 포함할 수 있다.
제2 바인더(320)는, 예를 들어, 카르복실기를 포함하는 폴리아크릴산(Poly acrylic acid, PAA)을 포함할 수 있다.
폴리말릭산(PMA)을 포함하는 제1 바인더(310) 및 제1 바인더(310)와 합성되는 제2 바인더(320)인 폴리아크릴산(PAA)을 합성한 제1 합성 바인더(325)를 포함하는 제1 합성 바인더(325)에는 제3 바인더(330)가 합성되어 제2 합성 바인더(300)가 형성된다.
본 발명의 일실시예에서, 제1 합성 바인더(325)와 합성되는 제3 바인더(330)는 폴리아크릴산(PAA)일 수 있다. 이외에 제3 바인더(330)로서 사용될 수 있는 제3 바인더(330)로서는 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.
이와 같이 제1 합성 바인더(325) 및 제3 바인더(330)를 합성하여 형성된 제2 합성 바인더(300)에 실리콘 및 흑연을 포함하는 활물질, 활물질의 도전성을 향상시키는 도전제 및 용제를 혼합한 음극 합제는 용제 내에서 활물질, 도전제 및 제2 합성 바인더를 포함하는 고형분이 용제에 대하여 분리(침강)되는 것을 방지하여 음극 합제가 리튬이온 이차전지의 음극 전극에 형성될 때 음극 합제 내에 매우 균일한 전극 밀도를 구현할 수 있을 뿐만 아니라 제2 합성 바인더(300)에 포함된 제3 바인더(330)인 폴리아크릴산(PAA)에 의하여 음극 합제의 소결 온도를 크게 감소시켜 공정 특성을 개선할 수 있다.
이하, [표 1]을 참조하여, 폴리아크릴산(PAA), 제1 합성 바인더 및 제2 합성 바인더를 포함하는 음극 합제에서의 침강 고형분을 비교하여 폴리아크릴산(PAA)을 포함하는 바인더, 제1 합성 바인더 및 제2 합성 바인더의 성능을 설명하기로 한다.
표 1
폴리아크릴산(PAA) 제1합성 바인더 제2 합성바인더
침강 고형분(%) 20% 2.3% 3.8%
[표 1]을 참조하면, 폴리아크릴산(PAA)을 단독으로 사용한 바인더를 음극 합제에 적용할 경우 음극 합제에 포함된 고형분인 활물질, 도전제 및 바인더가 용제 내에서 분리(침강)되는 침강률은 약 20% 정도였다.
반면, 제1 합성 바인더(325)를 사용한 음극 합제의 경우 음극 합제에 포함된 고형분인 활물질, 도전제 및 바인더가 용제 내에서 분리(침강)되는 침강률은 약 2.3% 였다.
또한, 제2 합성 바인더(300)를 사용한 음극 합제의 경우 음극 합제에 포함된 고형분인 활물질, 도전제 및 바인더가 용제 내에서 분리(침강)되는 침강률은 약 3.8% 였다.
결론적으로, 제1 합성 바인더(325) 또는 제2 합성 바인더(3.8)의 경우는 폴리아크릴산(PAA)을 단독으로 사용한 바인더 대비 침강률이 매우 낮았으며, 이로 인해 음극 합제에 포함된 고형분이 음극 전극에 매우 균일한 밀도로 형성되어 매우 균일한 전극 밀도를 구현할 수 있다.
도 4는 본 발명의 일실시예에 따른 음극 합제에 포함되는 합성 바인더를 제조하는 과정을 도시한 순서도이다. 본 발명의 일실시예에서 도 4에 도시된 합성 바인더의 제조 과정은 도 3에 도시된 합성 바인더를 형성하는 과정을 하나의 예로서 설명하기로 한다.
도 4를 참조하면, 제2 합성 바인더(300)를 제조하기 위해서 먼저 A[g]의 제3 바인더(330)가 물인 용매에 제공되고, 제3 바인더(330)는 물에 용해된다.(단계 S10)
본 발명의 일실시예에서, 제3 바인더(330)는 폴리아크릴산(PAA)을 포함할 수 있다. 이와 다르게, 제3 바인더(330)는 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.
제3 바인더(330)가 용매에 용해된 후, 제3 바인더(330)가 용해된 용매에는 도 3에 도시된 제1 합성 바인더(325)가 B[g] 제공된다.
제1 합성 바인더(325)는 제1 바인더(310) 및 제2 바인더(320)를 합성하여 형성되며, 제1 합성 바인더(325)에 포함된 제1 바인더(310)는 침강 특성을 개선하는 폴리말릭산(PMA)를 포함하며, 제2 바인더(320)는 공정 특성을 개선하는 폴리아크릴산(PAA)을 포함한다.
본 발명의 일실시예에서, 제2 바인더(320)는 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.
이어서, 제3 바인더(300) 및 제1 합성 바인더(325)의 작용기간 반응 유도를 위해 반응 유도제를 C[g] 첨가한다.(단계 S30)
본 발명의 일실시예에서, 반응 유도제는, 예를 들어 황산일 수 있고, 제3 바인더(330), 제1 합성 바인더(325) 및 반응 유도제의 비율은 1:1:0.02일 수 있다. 예를 들어, 제3 바인더(330)가 약 10[g]일 경우, 제1 합성 바인더(325)는 약 10[g]이고, 반응 유도제는 약 0.2[g]일 수 있다.
용매에 제3 바인더(300), 제1 합성 바인더(325) 및 반응 유도제인 황산이 첨가된 후, 혼합 용액은 환류(reflux) 조건 하에서 24시간 동안 교반된다.(단계 S40)
제3 바인더(330), 제1 합성 바인더(325) 및 반응 유도제를 물에 용해시킨 후 교반하여 제2 합성 바인더(300)를 생성한 후, 제2 합성 바인더(300)를 생성하는데 참여하지 못한 미반응 제3 바인더(330) 및 제1 합성 바인더(325)를 여과 방식(filtration)으로 여과하여 제2 합성 바인더(300)로부터 제거하고, 잔류되어 있는 물 역시 가압증류장치를 이용하여 제거한다.
이어서, 제2 합성 바인더(300)를 합성하는 도중 형성 가능한 미량의 불순물은 에틸 아세테이트(ethyl acetate) 및 디에틸 에테르(diethyl ether)로 복수번 디캔테이션(decantation)을 수행하여 제거한다.
이후, 미반응 물질 및 제3 바인더(330), 제1 합성 바인더(325), 용매인 물 및 불순물이 제거된 후 남은 제2 합성 바인더(300)를 진공하에서 24시간 건조(단계 S50)시켜 제2 합성 바인더(300)를 제조한다.
도 5는 도 3에 도시된 합성 바인더를 포함하는 음극 합제가 도포된 음극을 포함하는 리튬 이온 이차전지를 개념적으로 도시한 단면도이다.
리튬 이온 이차전지(500)는 양극(510), 음극(520), 분리막(530) 및 전해액(540)을 포함한다.
양극(510)은 양극 전극(511) 및 양극 합제(515)를 포함한다.
양극 합제(515)는 리튬 산화물을 포함하는 양극 활물질, 양극 활물질의 도전성을 향상시키는 도전제 및 도 3에 도시된 제2 합성 바인더(300)를 포함하며, 양극 합제(515)는 양극 전극(511)의 표면에 도포 또는 형성된다.
음극(520)는 음극 전극(521) 및 음극 합제(525)를 포함한다.
음극 전극(521)은 양극 전극(511)과 이격되어 배치되며, 음극 합제(525)는 실리콘 및 흑연이 3:7의 비율로 혼합된 음극 활물질, 음극 활물질의 도전성을 향상시키는 도전제 및 예를 들어, 도 3에 도시된 제2 합성 바인더(300)를 포함한다.
본 발명의 일실시예에서, 음극 합제(525)에 포함되는 활물질, 제2 합성 바인더(300) 및 도전제는 8:1:1의 비율로 제조된다. 음극 합제(525)는 음극 전극(511)의 표면에 도포 및 형성된다.
분리막(530)은 전해액이 통과하는 다공을 갖는 구조를 가지며, 분리막은, 예를 들어, PE(poly(ethylene)이 사용된다.
전해액(540)은 EC:EMC가 1:2의 비율로 포함되며, 전해액(540)은 1M의 LiPF6 및 10%의 F-EC를 포함한다.
본 발명의 일실시예에서, 음극 합제(525)에 포함된 제2 합성 바인더(300)는 도 3에 도시된 바와 같이 폴리아크릴산(PAA)을 포함하는 제3 바인더(330) 및 제1 합성 바인더(325)를 합성하여 형성되며, 제1 합성 바인더(325)는 폴리아믹산(PMA)d을 포함하는 제1 바인더(310) 및 폴리아크릴산(PAA)을 포함하는 제2 바인더(320)를 합성하여 형성된다.
도 6은 비교예에 따른 폴리아크릴산을 포함하는 바인더를 포함하는 리튬이온 이차전지의 충방전 후 발생된 크랙을 촬영한 SEM 사진이다.
도 6을 참조하면, 리튬이온 이차전지의 음극에 도포되는 음극 합제에 포함된 바인더에 폴리아크릴산(PAA)을 포함시킨 상태에서 리튬이온 이차전지를 충전 또는 방전할 경우 음극 합제의 부피 팽창 또는 수축에 의하여 매우 큰 사이즈의 크랙이 발생된 것이 관찰되었다. 이와 같이 음극 합제의 부피 팽창 또는 수축이 제어되지 않을 경우 리튬이온 이차전지의 충전 또는 방전이 반복됨에 따라 음극합제는 음극으로부터 찢어지거나 탈리된다.
도 7은 도 3에 도시된 제2 합성 바인더를 포함하는 음극 합제를 포함하는 리튬이온 이차전지의 충방전 후 크랙을 촬영한 SEM 사진이다.
도 7을 참조하면, 리튬이온 이차전지의 음극에 도포되는 음극 합제에 포함된 바인더에 제2 합성 바인더(PAA-PAA/PMA)을 포함시킨 상태에서 리튬이온 이차전지를 충전 또는 방전할 경우, 음극 합제의 부피 팽창 또는 수축을 제2 합성 바인더가 제어함으로써 도 6에 도시된 크랙 대비 매우 작은 사이즈의 크랙이 발생된 것이 관찰되었다. 이와 같이 음극 합제의 부피 팽창 또는 수축을 제2 합성 바인더가 제어함으로써 리튬이온 이차전지의 충전 또는 방전이 반복되더라도 음극합제가 찢어지거나 음극으로부터 탈리되는 것을 방지할 수 있다.
[표 2]에는 폴리아크릴산(PAA)을 포함하는 비교예에 따른 바인더를 포함하는 리튬이온 이차전지 및 도 3의 제2 합성 바인더를 포함하는 리튬 이온 이차 전지의 전기화학 평가 결과가 개시되어 있다.
표 2
비교예(PAA) 1st 10th 20th 30th 40th 50th 60th 70th 80th 90th
용량(mAh/g) 1122.5 1000.3 935.4 894.2 868.5 850.1 834.3 820.6 808.9 798.4
유지율(%) 100 88.6 83.3 79.7 77.4 75.7 74.3 73.1 72.1 71.7
실시예(PAA-PAA/PMA) 1st 10th 20th 30th 40th 50th 60th 70th 80th 90th
용량(mAh/g) 1291.3 1207.9 1125.5 1069.0 1036.2 1012.2 991.7 974.5 960.8 948.2
유지율(%) 100 92.5 87.2 82.8 80.2 78.4 76.8 75.5 74.4 73.4
도 8은 표 2의 전기화학적 평가 결과를 도시한 그래프이고, 도 9는 충방전에 따른 비교예 및 실시예에서의 유지용량을 도시한 그래프이다.
[표 2], 도 8 및 도 9를 참조하면, 평가 결과 실시예로서 합성된 제2 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 유지 용량 측면에서 첫 번째 충전시 1291.3[mAh/g]의 높은 용량을 나타냈으며, 폴리아크릴산(PAA)를 이용한 바인더를 포함하는 리튬 이온 이차 전지의 경우 첫 번째 충전시 1122.5[mAh/g]의 용량을 나타내었으며, 90번 충방전을 수행한 결과 본 발명에 따른 제2 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우, 948.5[mAh/g)의 용량을 나타내었고, 비교예에 따른 폴리아크릴산(PAA)을 이용한 바인더를 포함하는 리튬이온 이차전지의 경우 798.4[mAh/g]으로 제2 합성 바인더를 포함하는 리튬 이온 이차 전지의 용량이 비교예에 따른 리튬 이온 이차 전지 대비 우수한 성능을 갖는 것으로 실험되었다.
유지율 측면에서도 제2 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 비교예인 폴리아크릴산을 포함하는 바인더를 포함하는 리튬 이온 이차 전지 대비 90번 충방전 후 우수한 유지율을 갖는 것으로 실험되었다.
이상에서 상세하게 설명한 바에 의하면, 용량을 증가시키기 위해 실리콘을 포함하는 음극 합제를 사용함에 따라 발생되는 충방전에 따른 부피 팽창 및 수축을 억제하여 전지 수명 감소를 방지하고, 음극 합제에 포함되는 고형분의 침강 현상을 방지하여 음극 합제를 전극에 균일하게 분포시켜 전극 밀도를 균일하게 형성하며 음극 합제의 소결 온도를 감소시켜 제조 공정 특성을 향상시킴으로써 리튬 이온 이차 전지의 성능을 크게 향상시킨다.
한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.
본 발명은 리튬이온 이차전지의 음극 합제 기술 분야에 이용 가능하다.

Claims (10)

  1. 디카르복실산(dicarboxylic acid)을 포함하는 바인더, 실리콘을 포함하는 활물질, 상기 활물질의 도전성을 증가시키는 도전제 및 용제를 포함하는 리튬이온 이차전지용 음극 합제.
  2. 제1항에 있어서,
    상기 바인더는 폴리말릭산(poly(maleic)acid, PMA)를 포함하는 리튬이온 이차전지용 음극 합제.
  3. 제1항에 있어서,
    상기 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함하는 제1 바인더 및 제2 바인더를 합성한 제1 합성 바인더를 포함하는 리튬이온 이차전지용 음극 합제.
  4. 제3항에 있어서,
    상기 제2 바인더는 폴리아크릴산(PAA), 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상인 리튬이온 이차전지용 음극 합제.
  5. 제3항에 있어서,
    상기 바인더는 상기 제1 합성 바인더를 제3 바인더로 화학적으로 합성한 제2 합성 바인더를 포함하는 리튬이온 이차전지용 음극 합제.
  6. 제5항에 있어서,
    상기 제3 바인더는 폴리아크릴산(PAA), 폴리(아릴에테르 케톤)계, 폴리(아릴 아미드)계, 방향족 폴리이미드계, 방향족 폴리(아미드-이미드)계, 방향족 폴리우레탄계, 방향족 폴리에스터(폴리아릴레이트)계, 폴리벤즈이미다졸계, 폴리벤조옥사졸계, 방향족 폴리술폰계, 방향족 폴리(에테르 술폰)계, 방향족 폴리(페닐렌 설파이드)계, 방향족 폴리포스파젠 및 이들 고분자의 개질(modified)물로 이루어진 군으로부터 선택된 하나 이상인 리튬이온 이차전지용 음극 합제.
  7. 카르복실산(-COOH)을 포함하는 제1 바인더를 용매에 용해시키는 단계;
    상기 제1 바인더가 용해된 상기 용매에 디카르복실산을 포함하는 제2 바인더를 제공하는 단계; 및
    상기 제1 및 제2 바인더들의 반응을 유도하기 위한 반응유도제를 상기 용매에 제공하여 합성 바인더를 합성하는 단계를 포함하는 리튬이온 이차전지용 바인더의 제조 방법.
  8. 제7항에 있어서,
    상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함하는 리튬이온 이차전지용 바인더의 제조 방법.
  9. 양극 전극에 양극 활물질과 도전제 및 바인더를 포함하는 양극 합제가 도포된 양극;
    상기 양극과 이격되며 음극 전극에 음극 활물질, 도전제 및 바인더가 혼합된 음극 합제가 도포된 음극;
    상기 양극 및 음극을 분리하는 분리막; 및
    상기 양극 및 음극 사이에서 이온 이동을 위한 전해액을 포함하며,
    상기 음극 합체에 포함된 상기 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 디카르복실산을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함하는 리튬이온 이차전지.
  10. 제9항에 있어서,
    상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리말릭산(poly(maleic)acid, PMA)을 포함하는 리튬이온 이차전지.
PCT/KR2014/012800 2014-03-26 2014-12-24 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 WO2015147419A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0035371 2014-03-26
KR1020140035371A KR101664811B1 (ko) 2014-03-26 2014-03-26 리튬이온 이차전지용 음극 합제 및 이를 갖는 리튬이온 이차 전지

Publications (1)

Publication Number Publication Date
WO2015147419A1 true WO2015147419A1 (ko) 2015-10-01

Family

ID=54195891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012800 WO2015147419A1 (ko) 2014-03-26 2014-12-24 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지

Country Status (2)

Country Link
KR (1) KR101664811B1 (ko)
WO (1) WO2015147419A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082601A1 (en) * 2016-11-07 2018-05-11 Grst International Limited Method of preparing battery anode slurries
CN110364734A (zh) * 2019-06-06 2019-10-22 华南理工大学 高性能水性复配锂离子电池负极粘结剂及制备方法与应用
CN115141598A (zh) * 2021-03-29 2022-10-04 天目湖先进储能技术研究院有限公司 锂离子电池电极粘接剂及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095023A (ko) * 2016-02-12 2017-08-22 주식회사 이엠따블유에너지 이차전지
KR20220061562A (ko) 2020-11-06 2022-05-13 현대자동차주식회사 리튬이차전지용 전극 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196339A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006196338A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
CN103427083A (zh) * 2013-08-20 2013-12-04 宁波奈克斯特新材料科技有限公司 锂电池用粘结剂及其制备方法
KR20140018255A (ko) * 2011-01-27 2014-02-12 넥세온 엘티디 2차 배터리 전지용 바인더

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863733B1 (ko) 2006-05-15 2008-10-16 주식회사 엘지화학 바인더로서 폴리우레탄을 물리적으로 혼합한폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로하는 리튬 이차전지
KR20140012464A (ko) 2012-07-20 2014-02-03 삼성에스디아이 주식회사 실리콘 합금계 음극활물질, 이를 포함하는 음극 활물질 조성물 및 그 제조 방법과 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196339A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006196338A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR20140018255A (ko) * 2011-01-27 2014-02-12 넥세온 엘티디 2차 배터리 전지용 바인더
CN103427083A (zh) * 2013-08-20 2013-12-04 宁波奈克斯特新材料科技有限公司 锂电池用粘结剂及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082601A1 (en) * 2016-11-07 2018-05-11 Grst International Limited Method of preparing battery anode slurries
CN109923705A (zh) * 2016-11-07 2019-06-21 皓智环球有限公司 制备电池阳极浆料的方法
AU2017352947B2 (en) * 2016-11-07 2021-11-04 Grst International Limited Method of preparing battery anode slurries
CN109923705B (zh) * 2016-11-07 2022-04-05 皓智环球有限公司 制备电池阳极浆料的方法
CN110364734A (zh) * 2019-06-06 2019-10-22 华南理工大学 高性能水性复配锂离子电池负极粘结剂及制备方法与应用
CN115141598A (zh) * 2021-03-29 2022-10-04 天目湖先进储能技术研究院有限公司 锂离子电池电极粘接剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20150112110A (ko) 2015-10-07
KR101664811B1 (ko) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2015147419A1 (ko) 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지
WO2018070847A1 (ko) 리튬이온 이차 전지용 음극 및 이를 제조하는 방법
WO2019103465A1 (ko) 리튬 이차전지용 음극 및 이의 제조 방법
WO2021091323A1 (ko) 2차원 Ni-유기구조체/rGO 복합체 및 이를 포함하는 이차전지 또는 슈퍼 커패시터용 전극
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2017003083A1 (ko) 고출력 에너지 저장 장치용 첨가제 및 이를 포함하는 고출력 에너지 저장 장치
WO2016148408A1 (ko) 일체형 전극조립체 및 이를 포함하는 전기화학소자
WO2016129745A1 (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
WO2017171274A2 (ko) 리튬 이차전지용 전극 슬러리 제조방법
WO2021010629A1 (ko) 전극 바인더의 제조방법 및 상기 전극 바인더를 포함하는 전극 복합체
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2017052086A1 (ko) 카본블랙 분산액 및 이의 제조방법
WO2014129720A1 (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
WO2019009560A1 (ko) 전극 및 이를 포함하는 리튬 이차전지
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2020122549A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2021033795A1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
US11804596B2 (en) Silicon composites using zintl salts for silicon anode batteries
WO2020226329A1 (ko) 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2023096206A1 (ko) 우레탄계 프리폴리머의 제조 방법
WO2021172809A1 (ko) 리튬 이차전지용 전극의 제조 방법
WO2018124754A1 (ko) 리튬금속전지용 음극, 이의 제조방법 및 이를 포함하는 리튬금속전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886956

Country of ref document: EP

Kind code of ref document: A1