WO2015147055A1 - 低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管 - Google Patents

低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管 Download PDF

Info

Publication number
WO2015147055A1
WO2015147055A1 PCT/JP2015/059122 JP2015059122W WO2015147055A1 WO 2015147055 A1 WO2015147055 A1 WO 2015147055A1 JP 2015059122 W JP2015059122 W JP 2015059122W WO 2015147055 A1 WO2015147055 A1 WO 2015147055A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
amount
steel
line pipe
strength line
Prior art date
Application number
PCT/JP2015/059122
Other languages
English (en)
French (fr)
Inventor
小林 義幸
晴弥 川野
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP15770365.3A priority Critical patent/EP3124639B1/en
Priority to KR1020167024857A priority patent/KR102041770B1/ko
Priority to CN201580014826.6A priority patent/CN106103778B/zh
Publication of WO2015147055A1 publication Critical patent/WO2015147055A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a steel plate for high-strength line pipe, and a steel pipe for high-strength line pipe manufactured from such a steel plate for high-strength line pipe. More specifically, the present invention relates to a steel plate for high-strength line pipes and a steel pipe for high-strength line pipes having excellent limit CTOD (Crack Tip Opening Displacement) values.
  • CTOD Cross Tip Opening Displacement
  • Line pipes used for transportation of natural gas and crude oil have a tendency to increase the operating pressure for the purpose of improving transportation efficiency, and steel materials for line pipes are required to have high strength.
  • an excellent CTOD characteristic by a CTOD test which is one of evaluation indices of fracture toughness, is required as a characteristic for preventing the occurrence of brittle fracture.
  • the dislocation strengthening which increases the strength of the material by increasing the dislocation density, is the cumulative rolling reduction in the so-called two-phase temperature range where ferrite has transformed and precipitated from the austenite single-phase structure in the rolling process during steel plate production. Since the effect can be obtained by increasing the strength, it is a strengthening mechanism that is easier to apply than other strengthening mechanisms.
  • the limit CTOD value cannot be improved only by improving the base material toughness evaluated by the fracture surface transition temperature vTrs.
  • steel sheets that need to secure a critical CTOD value are complex manufacturing that combines solid solution strengthening by addition of expensive elements, and online water cooling equipment and heating equipment. Using the process, the target strength is secured so that separation does not occur during rolling of the steel sheet.
  • Patent Document 2 also proposes to adopt a special rolling condition in which air-cooling waits for the steel sheet temperature to fall by 80 ° C. or more during rolling in order to avoid rolling in a temperature range where separation occurs. .
  • Patent Document 3 a technique for reducing the occurrence of separation by reducing the MnS that causes separation by setting the upper limit of S low has also been proposed.
  • Patent Documents 1 and 2 are effective from the viewpoint of suppressing the occurrence of separation and increasing the limit CTOD value.
  • solid solution strengthening by addition of expensive elements or online water cooling equipment It is necessary to adopt a complicated manufacturing process that combines heating and heating equipment, and it is necessary to adopt special rolling conditions, which inevitably increases costs and decreases productivity.
  • Patent Document 3 since the technique of Patent Document 3 cannot completely eliminate MnS, it is not sufficient as a technique for reducing the occurrence of separation.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to ensure a high limit CTOD value even when separation occurs, and to easily manufacture at a low cost. Another object of the present invention is to provide a steel plate for a high-strength line pipe excellent in low-temperature toughness and a steel pipe for a high-strength line pipe obtained from such a steel plate for a high-strength line pipe.
  • the steel sheet for a high-strength line pipe of the present invention that has solved the above problems is, in mass%, C: 0.02 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.6 To 2.0%, P: more than 0% to 0.02% or less, S: more than 0% to 0.01% or less, Al: 0.010 to 0.080%, Nb: 0.002 to 0.060%, Ti: 0.003-0.030%, Ca: 0.0003-0.0060%, N: 0.0010-0.010%, REM: 0.0001-0.0300%, and Zr: 0.0001 -0.0200% each, the balance being iron and inevitable impurities, and when the plate thickness is t, the average crystal grain size at the t / 4 position is 10 ⁇ m or less and the Charpy test at the specified temperature Separation index SI measured from one fracture surface is greater than 0 mm / mm 2 and 0.30 mm / m It is characterized by being m 2 or less.
  • the steel sheet for high-strength line pipes of the present invention may further include, by mass, Cu: more than 0% and less than 1.50%, Ni: more than 0% and less than 1.50%, Cr: more than 0%. It is also preferable to contain one or more selected from the group consisting of 50% or less, Mo: more than 0% and 1.50% or less, and V: more than 0% and 0.1% or less.
  • the present invention also includes a steel pipe for a high-strength line pipe excellent in low-temperature toughness manufactured using the steel sheet for a high-strength line pipe as described above.
  • the chemical composition is appropriately defined, and the separation index SI measured from the average crystal grain size at the position of t / 4 and the Charpy test piece fracture surface at the specified temperature when the plate thickness is t.
  • FIG. 1 is a schematic diagram of a fracture surface of a Charpy test piece for explaining a method of measuring the separation index SI.
  • the present inventors do not completely suppress the occurrence of separation, but allow for the occurrence of separation to some extent, aiming at a steel plate for a high-strength line pipe that can obtain an excellent limit CTOD value.
  • the relationship between the occurrence of separation and the microstructure was investigated.
  • the critical CTOD value obtained in the CTOD test correlates with the separation index SI in the Charpy test, and in order to ensure excellent low temperature toughness, the toughness of the steel sheet as the base material is achieved by refining crystal grains. It has been found that it is effective to ensure
  • the average crystal grain size at the position of t / 4 10 ⁇ m or less
  • the average crystal grain size is preferably 8.0 ⁇ m or less, more preferably 7.0 ⁇ m or less.
  • the average crystal grain size is preferably as small as possible, but the lower limit is approximately 4 ⁇ m or more.
  • the target limit CTOD value can be secured even if separation occurs in the CTOD test.
  • the target limit CTOD value is 0.15 mm or more when the test temperature is ⁇ 10 ° C.
  • the specified temperature can be obtained from the following equation (1). That is, the test temperature (designated temperature) at the time of performing the Charpy test varies depending on the plate thickness.
  • T 1 Charpy test temperature (° C.)
  • T 2 CTOD test temperature (° C.)
  • ⁇ 10 ° C. and t plate thickness (mm), respectively.
  • T 1 T 2 ⁇ 6 ⁇ (t) 1/2 +20 (1)
  • the separation index SI obtained as described above needs to be 0.30 mm / mm 2 or less.
  • the separation index SI is preferably 0.20 mm / mm 2 or less, and more preferably 0.15 mm / mm 2 or less.
  • this separation index SI does not necessarily have to be 0 mm / mm 2 from the viewpoint of showing a high limit CTOD value.
  • the separation index SI is preferably 0.05 mm / mm 2 or more, and more preferably 0.10 mm / mm 2 or more.
  • the chemical composition of the steel sheet for high-strength line pipes of the present invention needs to be adjusted appropriately.
  • the reason for setting the range of the chemical composition is as follows.
  • % means the mass%.
  • C is an element indispensable for securing the strength of the steel plate and the welded portion as the base material, and for that purpose, C needs to be contained by 0.02% or more.
  • the amount of C is preferably 0.03% or more, and more preferably 0.05% or more.
  • the C amount needs to be 0.20% or less.
  • the amount of C is preferably 0.15% or less, more preferably 0.12% or less.
  • Si 0.02-0.50%
  • Si is effective for improving the strength of a steel plate and a welded portion that are base materials.
  • the Si content is 0.02% or more.
  • the amount of Si is preferably 0.05% or more, and more preferably 0.15% or more.
  • the amount of Si needs to be suppressed to 0.50% or less.
  • the amount of Si is preferably 0.45% or less, more preferably 0.35% or less.
  • Mn is an element effective for improving the strength of the base steel plate and the weld. In order to exert such an effect, it is necessary to contain 0.6% or more of Mn.
  • the amount of Mn is preferably 1.0% or more, more preferably 1.2% or more. However, when the amount of Mn is excessive, not only MnS is generated and the generation of separation is promoted, but also HAZ toughness and weldability are deteriorated, so the upper limit of the amount of Mn is made 2.0% or less.
  • the amount of Mn is preferably 1.9% or less, more preferably 1.8% or less.
  • P more than 0% and 0.02% or less
  • P is an element inevitably contained in the steel material.
  • the amount of P is preferably 0.015% or less, more preferably 0.010% or less.
  • the amount of P is preferably as small as possible, but it is difficult to make it 0% industrially.
  • the amount of S is preferably 0.008% or less, more preferably 0.0060% or less, and still more preferably 0.0050% or less. In this way, from the viewpoint of suppressing the occurrence of separation, a smaller amount of S is desirable, but since it is difficult to make it less than 0.0001% industrially, the lower limit of the amount of S is approximately 0.0001. % Or more.
  • Al 0.010 to 0.080%
  • Al is a strong deoxidizing element, and it is necessary to contain 0.010% or more in order to obtain a deoxidizing effect.
  • the amount of Al is preferably 0.020% or more, more preferably 0.030% or more.
  • the Al amount needs to be 0.080% or less.
  • the amount of Al is preferably 0.060% or less, more preferably 0.050% or less.
  • Nb is an element effective for increasing strength and base metal toughness without degrading weldability.
  • the Nb amount needs to be 0.002% or more.
  • the Nb amount is preferably 0.005% or more, more preferably 0.010% or more.
  • the upper limit of the Nb amount is set to 0.060% or less.
  • the Nb amount is preferably 0.050% or less, more preferably 0.040% or less.
  • Ti (Ti: 0.003-0.030%) Ti precipitates in the steel as TiN, and is necessary for improving the base metal toughness by suppressing coarsening of austenite grains during slab heating and for improving HAZ toughness by coarsening of austenite grains in HAZ during welding Element.
  • the Ti amount needs to be 0.003% or more.
  • the amount of Ti is preferably 0.005% or more, more preferably 0.010% or more.
  • the amount of Ti is excessive, solute Ti or TiC is precipitated and the toughness of the base material and the HAZ deteriorates, so it is necessary to make it 0.030% or less.
  • the amount of Ti is preferably 0.025% or less, more preferably 0.020% or less.
  • Ca 0.0003 to 0.0060%
  • Ca has the effect
  • the Ca content needs to be 0.0003% or more.
  • the Ca content is preferably 0.0005% or more, and more preferably 0.0010% or more.
  • the upper limit of the Ca content is 0.0060% or less.
  • the Ca content is preferably 0.0050% or less, more preferably 0.0040% or less.
  • N (N: 0.0010 to 0.010%) N precipitates in the steel as TiN, and is necessary for improving the base metal toughness by suppressing coarsening of austenite grains during slab heating and for improving HAZ toughness by coarsening of austenite grains in HAZ during welding Element.
  • N needs to be contained by 0.0010% or more.
  • the N amount is preferably 0.0030% or more, more preferably 0.0040% or more.
  • the amount of N is preferably 0.0080% or less, and more preferably 0.0060% or less.
  • REM 0.0001-0.0300%
  • REM rare earth element
  • the amount of REM is preferably 0.0003% or more, more preferably 0.0005% or more.
  • the upper limit of the REM amount is 0.0300% or less.
  • REM means 15 elements from La to Lu, which are lanthanoid elements, scandium Sc, and yttrium Y.
  • Zr 0.0001 to 0.0200%
  • Zr contributes to the improvement of HAZ toughness by forming an oxide and finely dispersing it.
  • the Zr amount needs to be 0.0001% or more.
  • the amount of Zr is preferably 0.0003% or more, more preferably 0.0005% or more.
  • the amount of Zr is preferably 0.0100% or less, more preferably 0.0050% or less.
  • the chemical component composition in the steel sheet for high-strength line pipe of the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Examples of the inevitable impurities include As, Sb, Sn, O, and H.
  • the steel sheet for line pipes according to the present invention preferably further contains one or more elements selected from the group consisting of Cu, Ni, Cr, Mo and V in the following amounts as required.
  • the reason for setting the range when these are contained is as follows.
  • Cu is an element effective for increasing the strength. In order to exhibit such an effect, it is preferable to contain 0.01% or more of Cu.
  • the amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the amount of Cu becomes excessive, the toughness of the base material deteriorates, so it is preferable to set it to 1.50% or less.
  • the amount of Cu is more preferably 1.0% or less, still more preferably 0.50% or less.
  • Ni is an element effective for improving the strength and toughness of the base material and the welded portion.
  • the Ni content is preferably 0.01% or more.
  • the amount of Ni is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Ni content is preferably 1.50% or less from an economical viewpoint.
  • the amount of Ni is more preferably 1.0% or less, and still more preferably 0.50% or less.
  • Cr more than 0% and 1.50% or less
  • Cr is an element effective for improving the strength, and in order to obtain such an effect, it is preferable to contain 0.01% or more.
  • the amount of Cr is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Cr content is preferably 1.50% or less.
  • the amount of Cr is more preferably 1.0% or less, and still more preferably 0.50% or less.
  • Mo more than 0% and 1.50% or less
  • Mo is an element effective for improving the strength and toughness of the base material.
  • the Mo amount is preferably 0.01% or more.
  • the amount of Mo is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Mo amount is preferably 1.50% or less, more preferably 1.0% or less, and still more preferably 0.50% or less.
  • V is an element effective for improving the strength.
  • V is preferably contained in an amount of 0.003% or more.
  • the amount of V is more preferably 0.010% or more.
  • the V amount is preferably 0.1% or less, and more preferably 0.08% or less.
  • Cu, Ni, Cr, Mo, and V are elements that improve the strength and toughness of the base material and the HAZ, and may be contained alone or in combination of two or more if necessary.
  • REM and Ca are added after deoxidation with Al and Zr, that is, after Al 2 O 3 and ZrO are formed with Al and Zr.
  • Ca is an element that easily forms an oxide.
  • Ca is easier to form oxide (CaO) than sulfide (CaS), and in order to prevent double sulfur from CaS, it is necessary to limit the time until completion of casting.
  • the slab is reheated at a heating temperature of 1050 to 1250 ° C. in the normal temperature range, and after predetermined rough rolling, the Ar 3 transformation point In the temperature range of 950 ° C. (hereinafter referred to as “Ar 3 points to 950 ° C.”), hot rolling is performed so that the cumulative rolling reduction is 50% or more.
  • the cumulative rolling reduction ratio during this hot rolling is preferably 55% or more, more preferably 60% or more.
  • the upper limit of the cumulative rolling rate is approximately 80% or less in actual operation.
  • Ar 3 point ⁇ 60 ° C. to Ar 3 point 5% It is necessary to perform rolling while ensuring the above-mentioned cumulative rolling reduction. If the cumulative rolling reduction at this time cannot ensure 5% or more, the strength of the steel sheet cannot be ensured.
  • the cumulative rolling reduction is preferably 10% or more, more preferably 15% or more. However, when the cumulative rolling reduction exceeds 35%, the texture develops and the separation index SI increases, so it is necessary to set it to 35% or less.
  • the cumulative rolling reduction is preferably 30% or less, more preferably 25% or less.
  • the “cumulative rolling reduction” is a value calculated from the following equation (3).
  • the temperature is defined as an average temperature obtained by calculation from the surface temperature of the slab or steel plate in consideration of the plate thickness and the like.
  • t 0 is the rolling start thickness (mm) of the steel sheet when the average temperature is in the rolling temperature range
  • t 1 is the rolling finish thickness (mm) of the steel sheet when the average temperature is in the rolling temperature range
  • T 2 indicate the thickness of the slab (for example, slab) before rolling.
  • Cumulative rolling reduction (t 0 ⁇ t 1 ) / t 2 ⁇ 100 (3)
  • the Ar 3 point adopts the value determined by the following equation (4).
  • the values shown in Table 2 described later are also the same.
  • [C], [Mn], [Cu], [Cr], [Ni] and [Mo] are the contents (mass%) of C, Mn, Cu, Cr, Ni and Mo, respectively.
  • t indicates the plate thickness (mm) at the time of temperature measurement.
  • Ar 3 (° C.) 910 ⁇ 310 ⁇ [C] ⁇ 80 ⁇ [Mn] ⁇ 20 ⁇ [Cu] ⁇ 15 ⁇ [Cr] ⁇ 55 ⁇ [Ni] ⁇ 80 ⁇ [Mo] + 0.35 ⁇ (t ⁇ 8) ... (4)
  • the plate thickness of the steel sheet for high-strength line pipe according to the present invention is not particularly limited, but for application as a line pipe, the plate thickness is preferably at least 6 mm, more preferably 10 mm or more. Further, the upper limit of the plate thickness is preferably 30 mm or less, and more preferably 25 mm or less.
  • the steel sheet for high-strength line pipe of the present invention is then used as a steel pipe for line pipe, and the obtained steel pipe reflects the characteristics of the raw steel sheet and has excellent low temperature toughness.
  • the obtained slab was reheated at a heating temperature of 1080 to 1180 ° C. shown in Table 2 below, and then subjected to predetermined rough rolling, and further heated at an Ar 3 point to 950 ° C. at a cumulative reduction rate shown in Table 2 below.
  • Rolled for a while we obtain a steel sheet by air cooling after performing rolling at a cumulative reduction rate shown in Table 2 in addition (Ar 3 point -60 ° C.) so-called two-phase region temperature region ⁇ Ar 3 point.
  • the rolling conditions are shown in Table 2 below along with the thickness t, the steel type and the Ar 3 point after rolling (Test Nos. 1 to 18).
  • the average crystal grain size, tensile properties (yield strength, tensile strength), Charpy properties (separation index SI), CTOD properties (limit CTOD value) at the position of t / 4 Measured by the following method.
  • vertical to a steel plate surface and parallel to a rolling direction, and corroded with nital was used.
  • the average crystal grain size of the ferrite was determined by using a cutting method from a structure photograph taken at a magnification of 400 with the position of t / 4 as a measurement position with respect to the plate thickness t.
  • FIG. 1 is a diagram schematically showing a fracture surface of a Charpy specimen when measuring a separation index SI.
  • 1, 1 is a separation
  • 2 is a fractured surface
  • 3 is a 2 mmV notch
  • 4 is a thickness direction.
  • the separation index SI is measured by measuring the lengths L 1 to L 3 of the separation generated on the fracture surface of the Charpy test piece and dividing the total length by the cross-sectional area of the fracture surface of the test piece according to the above equation (2). It is a thing.
  • Test No. Nos. 1 to 12 satisfy the chemical component composition, the average crystal grain size, and the separation index SI specified in the present invention.
  • the critical CTOD It can be seen that the value satisfies the target value of 0.15 mm or more.
  • test no. Nos. 13 to 18 do not satisfy any of the requirements defined in the present invention, and the limit CTOD value does not reach the target value.
  • test No. In Nos. 13 and 14 the cumulative rolling reduction in the two-phase temperature range is high, the texture is developed, the separation index SI is large, and the critical CTOD value is small.
  • Test No. No. 15 has a low cumulative rolling reduction from the Ar 3 point to 950 ° C., the average crystal grain size becomes large, the base metal toughness deteriorates, and the critical CTOD value does not reach the target value.
  • Test No. No. 16 is an example of a steel plate using steel type I having an excessive amount of Mn. MnS is expected to be generated in the center segregation portion, the separation index SI becomes large, and the critical CTOD value does not reach the target value.
  • Test No. 17 is an example of a steel plate using steel type J with an excessive amount of P, and the base metal toughness deteriorates and the critical CTOD value does not reach the target value.
  • Test No. 18 is an example of a steel plate using steel type K with an excessive amount of S. Similarly to 16, MnS is expected to be generated in the center segregation part, the separation index SI is increased, and the critical CTOD value has not reached the target value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 セパレーションが発生した場合においても高い限界CTOD値が確保可能であり、且つ低コストで簡易に製造することのできるような低温靭性に優れた高強度ラインパイプ用鋼板を提供する。 上記高強度ラインパイプ用鋼板は、化学成分組成を適切に調整し、板厚をtとしたとき、t/4の位置における平均結晶粒径が10μm以下であると共に、指定温度のシャルピー試験片破面から測定したセパレーション指数SIが0mm/mm2超0.30mm/mm2以下である。

Description

低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管
 本発明は、高強度ラインパイプ用鋼板、およびこのような高強度ラインパイプ用鋼板から製造される高強度ラインパイプ用鋼管に関する。詳細には、優れた限界CTOD(Crack Tip Opening Displacement:亀裂開口変位)値を有する高強度ラインパイプ用鋼板、および高強度ラインパイプ用鋼管に関する。
 天然ガスや原油の輸送用に用いられるラインパイプは、輸送効率の改善を目的に操業圧力の高圧化を行なう傾向にあり、ラインパイプ用の鋼材では高強度化の要求がある。これに加えて、安全性の観点から、脆性破壊の発生防止特性として破壊靱性の評価指標のひとつであるCTOD試験による優れたCTOD特性が要求される。
 高強度化の観点では、鉄鋼材料の強化機構として固溶強化、析出強化、変態強化、転位強化による強化が考えられる。この中で、転位密度の増加により材料の強度を増加させる転位強化は、鋼板製造時の圧延工程において、オーステナイト単相組織からフェライトが変態析出した、いわゆる二相域温度域での累積圧下率を増加させることでその効果が得られるため、他の強化機構と比較して適用が容易な強化機構である。
 しかしながら、この二相域温度域での累積圧下率を増加させることにより、転位密度の増加と共に結晶方位の回転が起こり、集合組織が発達する。この集合組織の発達により、圧延面方向と板厚方向の靭性の差が大きくなることが原因して、圧延面方向から採取した試験片を用いた各種靭性試験の際、試験片破面にセパレーションと呼ばれる板厚方向への微小な開口が発生する。このセパレーションは、圧延面方向と板厚方向の靭性の差が大きくなることで発生するため、集合組織の影響以外に、鋼中に存在するSによって、主に板厚中央部の中心偏析部で圧延面方向に延伸したMnSが生成することでも発生する。
 CTOD試験を実施する際、脆性亀裂が発生する前に上記のセパレーションが発生すると、セパレーションが発生した位置までしか安定して開口しないと判断され、限界CTOD値が本来評価される値より低位になる。このためセパレーションが発生する材料では、例えば、破面遷移温度vTrsで評価される母材靭性を改善しただけでは限界CTOD値は改善できない。
 こうしたことから、限界CTOD値を確保する必要がある鋼板では、例えば特許文献1に示されるように、高価な元素の添加による固溶強化や、オンラインの水冷設備と加熱設備を組み合わせた複雑な製造工程を用いて、鋼板の圧延時にセパレーションが発生しないように目標の強度を確保している。
 また特許文献2には、セパレーションが発生する温度域での圧延を避けるために、圧延中に鋼板温度が80℃以上下がるのを空冷で待つという特殊な圧延条件を採用することも提案されている。
 一方、特許文献3のように、Sの上限を低く設定することでセパレーションの原因となるMnSを減少させ、セパレーションの発生を低減する技術も提案されている。
特開2013-47393号公報 特開2003-96517号公報 特開2013-173998号公報
 上記特許文献1、2に記載の技術では、セパレーションの発生を抑制でき、限界CTOD値を高くするという観点からすれば有効であるものの、高価な元素の添加による固溶強化や、オンラインの水冷設備と加熱設備を組み合わせた複雑な製造工程を採用する必要があることや、特殊な圧延条件を採用する必要があり、コストアップや生産性の低下は免れない。
 また、上記特許文献3の技術では、MnSを完全に無くすことは不可能であるため、セパレーションの発生を低減する技術としては充分でない。
 本発明は上記のような事情に鑑みてなされたものであり、その目的は、セパレーションが発生した場合においても高い限界CTOD値が確保可能であり、且つ低コストで簡易に製造することのできるような低温靭性に優れた高強度ラインパイプ用鋼板、およびこのような高強度ラインパイプ用鋼板から得られる高強度ラインパイプ用鋼管を提供することにある。
 上記課題を解決し得た本発明の高強度ラインパイプ用鋼板とは、質量%で、C:0.02~0.20%、Si:0.02~0.50%、Mn:0.6~2.0%、P:0%超0.02%以下、S:0%超0.01%以下、Al:0.010~0.080%、Nb:0.002~0.060%、Ti:0.003~0.030%、Ca:0.0003~0.0060%、N:0.0010~0.010%、REM:0.0001~0.0300%、およびZr:0.0001~0.0200%、を夫々含有し、残部が鉄および不可避不純物であり、板厚をtとしたとき、t/4の位置における平均結晶粒径が10μm以下であると共に、指定温度のシャルピー試験片破面から測定したセパレーション指数SIが0mm/mm2超0.30mm/mm2以下であることを特徴とする。
 本発明の高強度ラインパイプ用鋼板には、必要によって、更に、質量%で、Cu:0%超1.50%以下、Ni:0%超1.50%以下、Cr:0%超1.50%以下、Mo:0%超1.50%以下およびV:0%超0.1%以下よりなる群から選択される1種または2種以上を含有することも好ましい。
 本発明は、上記のような高強度ラインパイプ用鋼板を用いて製造される低温靭性に優れた高強度ラインパイプ用鋼管も包含する。
 本発明によれば、化学成分組成を適切に規定すると共に、板厚をtとしたとき、t/4の位置における平均結晶粒径、および指定温度のシャルピー試験片破面から測定したセパレーション指数SIを適切な範囲に設定することによって、CTOD試験においてセパレーションが発生した場合においても、優れた限界CTOD値が得られる引張強度が520MPa以上の低温靭性に優れた高強度ラインパイプ用鋼板が実現できる。
図1は、セパレーション指数SIの測定方法を説明するためのシャルピー試験片破面模式図である。
 本発明者らは、セパレーションの発生を完全に抑制するのではなく、セパレーションの発生をある程度許容した上で、優れた限界CTOD値が得られるような高強度ラインパイプ用鋼板を目指して、CTOD試験におけるセパレーションの発生とミクロ組織の関係について検討を行なった。その結果、CTOD試験で得られる限界CTOD値は、シャルピー試験におけるセパレーション指数SIと相関関係があること、および優れた低温靭性を確保するには、結晶粒の微細化によって母材である鋼板の靭性を確保することが有効であることを突き止めた。
 まず本発明のラインパイプ用鋼板において規定する要件について説明する。
 (板厚をtとしたとき、t/4の位置における平均結晶粒径:10μm以下)
 優れた低温靭性を確保するには、結晶粒の微細化による母材靭性の確保が必要となる。目的とする低温靭性を確保するには、鋼板特性を評価する上で代表的な位置であるt/4の位置で測定したときの平均結晶粒径を10μm以下とする必要がある。平均結晶粒径は、好ましくは8.0μm以下であり、より好ましくは7.0μm以下である。平均結晶粒径は小さいほど好ましいが、下限は、おおむね4μm以上である。
 (指定温度のシャルピー試験片破面から測定したセパレーション指数SI:0mm/mm2超0.30mm/mm2以下)
 指定温度でのシャルピー試験片破面のセパレーション指数SIを、0.30mm/mm2以下とすることで、CTOD試験においてセパレーションが発生しても目標とする限界CTOD値が確保できる。目標とする限界CTOD値は、試験温度を-10℃としたときに、0.15mm以上となる。尚、上記指定温度とは、下記(1)式から求めることができる。即ち、シャルピー試験を行なうときの試験温度(指定温度)は、板厚によって異なることになり、試験温度を-10℃としたときに目標とする限界CTOD値を評価するには、この指定温度(T1)も考慮する必要がある。但し、T1:シャルピー試験温度(℃)、T2:CTOD試験温度(℃)であり、本明細書では-10℃、t:板厚(mm)を夫々示す。
1=T2-6×(t)1/2+20 …(1)
 セパレーション指数SIは、下記(2)式に示す通り、シャルピー試験片破面の板厚方向に垂直に発生したセパレーションの総長さを、試験片破断面の面積(断面積)で割ることで求めることができる(後記図1参照)。但し、Lnはn番目のセパレーション長さ(mm)、SAは破面の断面積(mm2)を夫々示す。
SI=Σ(Ln)/SA …(2)
 本発明の高強度ラインパイプ用鋼板では、上記のようにして求められるセパレーション指数SIを0.30mm/mm2以下とする必要がある。このセパレーション指数SIは、好ましくは0.20mm/mm2以下であり、より好ましくは0.15mm/mm2以下である。但し、セパレーションが発生しても、高い限界CTOD値を示すとの観点からすれば、このセパレーション指数SIは、必ずしも0mm/mm2である必要はない。こうした観点からして、セパレーション指数SIは、0.05mm/mm2以上であることが好ましく、より好ましくは0.10mm/mm2以上である。
 本発明の高強度ラインパイプ用鋼板は、その化学成分組成も適切に調整する必要がある。化学成分組成の範囲設定理由は、以下の通りである。なお、化学成分組成について、%は質量%を意味する。
 (C:0.02~0.20%)
 Cは、母材である鋼板および溶接部の強度を確保するために必要不可欠な元素であり、そのためには、Cは0.02%以上含有させる必要がある。C量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。しかしながら、C量が過剰になると島状マルテンサイト(MA:Martensite-Austenite contituent)が生成しやすくなり、HAZ(熱影響部:Heat Affected zone)の靭性が低下すると共に、溶接性が低下する。こうした観点から、C量は0.20%以下とする必要がある。C量は、好ましくは0.15%以下、より好ましくは0.12%以下である。
 (Si:0.02~0.50%)
 Siは、脱酸作用を有する上に、母材である鋼板および溶接部の強度向上に有効である。これらの効果を発揮させるには、Si量は0.02%以上とする。Si量は、好ましくは0.05%以上であり、より好ましくは0.15%以上である。しかしながら、Si量が過剰になると溶接性や靭性が劣化する。よってSi量は、0.50%以下に抑える必要がある。Si量は、好ましくは0.45%以下、より好ましくは0.35%以下である。
 (Mn:0.6~2.0%)
 Mnは、母材である鋼板および溶接部の強度向上に有効な元素である。こうした効果を発揮させるには、Mnは0.6%以上含有させる必要がある。Mn量は、好ましくは1.0%以上であり、より好ましくは1.2%以上である。しかしながら、Mn量が過剰になると、MnSを生成してセパレーションの発生が促進されるだけでなく、HAZ靭性や溶接性も劣化するため、Mn量の上限を2.0%以下とする。Mn量は、好ましくは1.9%以下であり、より好ましくは1.8%以下である。
 (P:0%超0.02%以下)
 Pは、鋼材中に不可避的に含まれる元素であり、P量が0.02%を超えると母材靭性およびHAZ靭性の劣化が著しい。よって本発明では、P量を0.02%以下に抑える。P量は、好ましくは0.015%以下、より好ましくは0.010%以下である。P量はできるだけ少ない方が良いが、工業的に0%にすることは困難である。
 (S:0%超0.01%以下)
 S量が過剰になると、MnSを生成し、セパレーションの発生を促進させるため、その上限を0.01%以下とする。S量は、好ましくは0.008%以下であり、より好ましくは0.0060%以下、更に好ましくは0.0050%以下である。この様にセパレーションの発生を抑制するという観点からは、S量は少ない方が望ましいものの、工業的に0.0001%未満とすることは困難であることから、S量の下限は概ね0.0001%以上である。
 (Al:0.010~0.080%)
 Alは強脱酸元素であり、脱酸効果を得るには0.010%以上含有させる必要がある。Al量は、好ましくは0.020%以上、より好ましくは0.030%以上である。一方、Al量が過剰になると、AlNが多量に生成し、TiN析出量が減少することでHAZでの靭性が損なわれてしまう。よってAl量は0.080%以下とする必要がある。Al量は、好ましくは0.060%以下であり、より好ましくは0.050%以下である。
 (Nb:0.002~0.060%)
 Nbは、溶接性を劣化させることなく強度と母材靭性を高めるのに有効な元素である。このような効果を発揮させるには、Nb量は0.002%以上とする必要がある。Nb量は、好ましくは0.005%以上、より好ましくは0.010%以上である。しかしながら、Nb量が過剰になって0.060%を超えると、母材とHAZの靭性が劣化する。よってNb量の上限を0.060%以下とする。Nb量は、好ましくは0.050%以下、より好ましくは0.040%以下である。
 (Ti:0.003~0.030%)
 Tiは、鋼中にTiNとして析出することで、スラブ加熱時のオーステナイト粒の粗大化の抑制による母材靭性の向上や、溶接時のHAZでのオーステナイト粒の粗大化によるHAZ靭性の向上に必要な元素である。このような効果を発揮させるには、Ti量を0.003%以上とする必要がある。Ti量は、好ましくは0.005%以上、より好ましくは0.010%以上である。一方、Ti量が過剰になると、固溶TiやTiCが析出して母材とHAZの靭性が劣化するため、0.030%以下とする必要がある。Ti量は、好ましくは0.025%以下、より好ましくは0.020%以下である。
 (Ca:0.0003~0.0060%)
 Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制する効果がある。このような効果を発揮させるために、Ca量を0.0003%以上とする必要がある。Ca量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。一方、Ca量が0.0060%を超えて過剰になると、靭性が劣化するため、Ca量の上限を0.0060%以下とする。Ca量は、好ましくは0.0050%以下であり、より好ましくは0.0040%以下である。
 (N:0.0010~0.010%)
 Nは、鋼中にTiNとして析出することで、スラブ加熱時のオーステナイト粒の粗大化の抑制による母材靭性の向上や、溶接時のHAZでのオーステナイト粒の粗大化によるHAZ靭性の向上に必要な元素である。これらの効果を発揮させるには、Nは0.0010%以上含有させる必要がある。N量は、好ましくは0.0030%以上であり、より好ましくは0.0040%以上である。しかしながら、N量が過剰になると、固溶Nの存在によりHAZでの靭性が劣化するため、0.010%以下にする必要がある。N量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
 (REM:0.0001~0.0300%)
 REM(希土類元素)は、硫化物の形態制御に有効な元素であり、REMSを形成することによりMnSの形成を抑制する効果がある。このような効果を発揮させるには、REMを0.0001%以上含有させる必要がある。REM量は好ましくは0.0003%以上、より好ましくは0.0005%以上である。一方、REMを多量に含有させても効果が飽和するため、REM量の上限は0.0300%以下とする。尚、本発明において、REMとは、ランタノイド元素であるLaからLuまでの15元素とスカンジウムScおよびイットリウムYを意味する。
 (Zr:0.0001~0.0200%)
 Zrは、酸化物を形成して微細に分散することでHAZ靭性の向上に寄与する。このような効果を発揮させるには、Zr量を0.0001%以上とする必要がある。Zr量は、好ましくは0.0003%以上、より好ましくは0.0005%以上である。一方、Zr量が過剰になると、粗大な介在物を形成して母材靭性を劣化させるため、Zr量は0.0200%以下とする必要がある。Zr量は、好ましくは0.0100%以下、より好ましくは0.0050%以下である。
 本発明の高強度ラインパイプ用鋼板における化学成分組成は、上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。上記不可避不純物としては、例えば、As、Sb、Sn、O、H等が挙げられる。
 また本発明のラインパイプ用鋼板には、必要に応じて、更に下記量のCu、Ni、Cr、MoおよびVよりなる群から選択される1種類以上の元素を含有させることも好ましい。これらを含有させるときの範囲設定理由は下記の通りである。
 (Cu:0%超1.50%以下)
 Cuは、強度を高めるのに有効な元素である。このような効果を発揮させるには、Cuを0.01%以上含有させることが好ましい。Cu量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Cu量が過剰になると、母材の靭性が劣化するため、1.50%以下とすることが好ましい。Cu量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
 (Ni:0%超1.50%以下)
 Niは、母材および溶接部の強度と靭性の向上に有効な元素である。このような効果を得るには、Ni量を0.01%以上とすることが好ましい。Ni量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Niが多量に含まれると、構造用鋼材として極めて高価となるため、経済的な観点からNi量は1.50%以下とすることが好ましい。Ni量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
 (Cr:0%超1.50%以下)
 Crは、強度の向上に有効な元素であり、このような効果を得るには0.01%以上含有させることが好ましい。Cr量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cr量が1.50%を超えるとHAZ靭性が劣化する。よってCr量は1.50%以下とすることが好ましい。Cr量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
 (Mo:0%超1.50%以下)
 Moは、母材の強度と靭性の向上に有効な元素である。このような効果を得るには、Mo量を0.01%以上とすることが好ましい。Mo量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Mo量が1.50%を超えるとHAZ靭性および溶接性が劣化する。よってMo量は1.50%以下とすることが好ましく、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
 (V:0%超0.1%以下)
 Vは、強度の向上に有効な元素であり、このような効果を得るには0.003%以上含有させることが好ましい。V量は、より好ましくは0.010%以上である。一方、V量が0.1%を超えると溶接性と母材靭性が劣化する。よってV量は0.1%以下とすることが好ましく、より好ましくは0.08%以下である。
 尚、Cu、Ni、Cr、MoおよびVは、母材やHAZの強度や靭性を改善する元素であり、必要によって夫々単独で、または2種以上を併用して含有させてもよい。
 本発明の鋼板を製造するにあたっては、その製造工程も適切に制御する必要がある。まず、REMとCaで硫化物の形態を制御するために、AlおよびZrで脱酸を行なった後に、即ち、AlやZrでAl23やZrOを形成した後に、REMとCaを添加する必要がある。特にCaは、酸化物を形成しやすい元素である。またCaは硫化物(CaS)よりも酸化物(CaO)を形成しやすく、CaSからの複硫を防ぐために、鋳造完了までの時間を制限する必要がある。そのため、溶鋼処理工程においては、Al、Zr、REMおよびCaを、Al、Zr、REM、Caの順に添加するに際し、Ca添加から200分以内に凝固が完了するように鋳片を作製する必要がある。但し、REMの添加によって十分REMSを形成してから、REMよりも硫化物形成能の高いCaを添加させるまでは、その時間は4分以上確保する必要がある。こうした工程によって、CaやREMは、酸化物を形成することなく、硫化物として存在する。
 上記のようにして例えば、スラブなどの鋳片を作製した後、加熱温度を通常の温度範囲の1050~1250℃としてスラブを再加熱し、所定の粗圧延を実施した後、Ar3変態点~950℃の温度範囲(以下、「Ar3点~950℃」と表示する)で、累積圧下率が50%以上になるように熱間圧延する。この熱間圧延時の累積圧下率を50%以上とすることで、鋼板の板厚をtとしたとき、t/4の位置における平均結晶粒径を10μm以下とすることができる。このときの累積圧下率は、好ましくは55%以上であり、より好ましくは60%以上である。この累積圧延率の上限は、実操業上概ね80%以下である。
 その後、更に(Ar3変態点-60℃)~Ar3変態点の温度範囲(以下、「Ar3点-60℃~Ar3点」と表示する)のいわゆる二相域温度域において、5%以上の累積圧下率を確保して圧延を行なう必要がある。このときの累積圧下率が、5%以上を確保できないときには、鋼板の強度が確保できなくなる。上記累積圧下率は、好ましくは10%以上であり、より好ましくは15%以上である。但し、この累積圧下率が、35%超となると、集合組織が発達し、セパレーション指数SIが大きくなるので、35%以下とする必要がある。上記累積圧下率は、好ましくは30%以下であり、より好ましくは25%以下である。
 上記「累積圧下率」は、下記(3)式から計算される値である。上記温度は、スラブもしくは鋼板の表面温度から、板厚等を考慮して、計算により求めた平均温度で定義される。下記(3)式中、t0は平均温度が圧延温度範囲にあるときの鋼板の圧延開始厚み(mm)、t1は平均温度が圧延温度範囲にあるときの鋼板の圧延終了厚み(mm)、t2は圧延前の鋳片(例えばスラブ)の厚みを、夫々示す。
累積圧下率=(t0-t1)/t2×100 …(3)
 また、上記Ar3点は、下記(4)式によって求められる値を採用した。後述する表2に示した値も同じ。下記(4)式中、[C]、[Mn]、[Cu]、[Cr]、[Ni]および[Mo]は、夫々C、Mn、Cu、Cr、NiおよびMoの含有量(質量%)を示し、tは温度測定時の板厚(mm)を示す。
Ar3(℃)=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo]+0.35×(t-8) …(4)
 本発明に係る高強度ラインパイプ用鋼板の板厚は特に限定されないが、ラインパイプとして適用するには、板厚は少なくとも6mm以上が好ましく、より好ましくは10mm以上である。また、板厚の上限は30mm以下が好ましく、より好ましくは25mm以下である。
 本発明の高強度ラインパイプ用鋼板は、その後ラインパイプ用鋼管とされるが、得られる鋼管は、素材の鋼板の特性が反映されて、低温靭性が優れたものとなる。
 本願は、2014年3月28日に出願された日本国特許出願第2014-070279号に基づく優先権の利益を主張するものである。日本国特許出願第2014-070279号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 下記表1に化学成分組成を示す各種鋼材(鋼種A~K)を製造した(表1中、「-」は無添加を意味する。)。このとき、硫化物の形態を制御するために、溶鋼処理工程において、AlおよびZrで脱酸を行なった後にREMとCaを添加した。またREMおよびCaは、REM、Caの順に添加し、REM添加からCa添加までの時間を4分以上とした。Ca添加後に鋳造を開始し、Caを添加してから200分以内にスラブを作製した。尚、REMは、LaおよびCeを含むミッシュメタルの形態で添加した。
Figure JPOXMLDOC01-appb-T000001
 得られたスラブを下記表2に示す1080~1180℃の加熱温度で再加熱した後、所定の粗圧延を実施し、更にAr3点~950℃で、下記表2に示す累積圧下率で熱間圧延した。その後更に(Ar3点-60℃)~Ar3点のいわゆる二相域温度域において下記表2に示す累積圧下率で圧延を行なった後空冷して鋼板を得た。圧延条件を、圧延後の板厚t、鋼種およびAr3点と共に、下記表2に示す(試験No.1~18)。
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板の板厚をtとしたとき、t/4の位置における平均結晶粒径、引張特性(降伏強度、引張強度)、シャルピー特性(セパレーション指数SI)、CTOD特性(限界CTOD値)を、下記の方法で測定した。
 (t/4の位置における平均結晶粒径の測定)
 鋼板表面と垂直且つ圧延方向に平行な断面(L断面)を研磨し、ナイタールで腐食を行なった試験片を用いた。板厚tに対してt/4の位置を測定位置として、400倍で撮影した組織写真から切断法を用いてフェライトの平均結晶粒径を求めた。
 (引張特性(降伏強度、引張強度)の測定)
 引張特性は、API-5Lに準拠した全厚引張試験片を用いて、規格に準拠した試験方法で降伏強度および引張強度を測定し、引張特性を評価した。
 (シャルピー特性(セパレーション指数SI)の測定)
 ASTM-A370に準拠した2mmVノッチシャルピー試験片を用いて、規格に準拠した試験方法で評価した。その際、シャルピー試験片は、板厚をtとしたとき、t/4の位置からCTOD試験片と同じ方向となる様に採取し、下記表3に示す指定温度で3本試験を行ない、セパレーション指数を測定した上で、その値が最大となるものをセパレーション指数SIとして採用した。図1は、セパレーション指数SIを測定するときのシャルピー試験片破面を模式的に示した図である。図1において、1はセパレーション、2は破面、3は2mmVノッチ、4は板厚方向をそれぞれ示している。セパレーション指数SIは、シャルピー試験片の破面に発生したセパレーションの各長さL1~L3を測定し、その総長さを前記(2)式に従って試験片の破面の断面積で割って測定したものである。
 (CTOD特性(限界CTOD値)の測定)
 BS7448に準拠したB×2B形状の3点曲げCTOD試験片を用いて、規格に準拠した試験方法で評価した。CTOD試験は、-10℃において各鋼板で2本ずつ行ない、2本のうち値が低い方を限界CTOD値として採用した。
 以上の結果を、板厚t、および用いた鋼種と共に、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果から、次のように考察できる。試験No.1~12は、本発明で規定する化学成分組成、平均結晶粒径、セパレーション指数SIのいずれも満足しており、試験温度-10℃で行なったCTOD試験において、セパレーションが発生しても限界CTOD値が目標値である0.15mm以上を満足していることが分かる。
 これに対し、試験No.13~18は、本発明で規定する要件のいずれかを満足しておらず、限界CTOD値が目標値に達していない。このうち、試験No.13、14は、二相域温度域での累積圧下率が高くなっており、集合組織が発達し、セパレーション指数SIが大きくなり、限界CTOD値が小さくなっている。
 試験No.15はAr3点~950℃での累積圧下率が低くなっており、平均結晶粒径が大きくなって母材靭性が劣化し、限界CTOD値が目標値に達していない。試験No.16は、Mn量が過剰な鋼種Iを用いた鋼板の例であり、中心偏析部にMnSが生成することが予想され、セパレーション指数SIが大きくなり、限界CTOD値が目標値に達していない。
 試験No.17は、P量が過剰な鋼種Jを用いた鋼板の例であり、母材靭性が劣化し、限界CTOD値が目標値に達していない。試験No.18は、S量が過剰な鋼種Kを用いた鋼板の例であり、試験No.16と同様に、中心偏析部にMnSが生成することが予想され、セパレーション指数SIが大きくなり、限界CTOD値が目標値に達していない。

Claims (3)

  1.  質量%で、
     C :0.02~0.20%、
     Si:0.02~0.50%、
     Mn:0.6~2.0%、
     P :0%超0.02%以下、
     S :0%超0.01%以下、
     Al:0.010~0.080%、
     Nb:0.002~0.060%、
     Ti:0.003~0.030%、
     Ca:0.0003~0.0060%、
     N :0.0010~0.010%、
     REM:0.0001~0.0300%、および
     Zr:0.0001~0.0200%、
    を夫々含有し、残部が鉄および不可避不純物であり、
     板厚をtとしたとき、t/4の位置における平均結晶粒径が10μm以下であると共に、
     指定温度のシャルピー試験片破面から測定したセパレーション指数SIが0mm/mm2超0.30mm/mm2以下であることを特徴とする低温靭性に優れた高強度ラインパイプ用鋼板。
  2.  更に、質量%で、
     Cu:0%超1.50%以下、
     Ni:0%超1.50%以下、
     Cr:0%超1.50%以下、
     Mo:0%超1.50%以下および
     V :0%超0.1%以下よりなる群から選択される1種または2種以上を含有する請求項1に記載の高強度ラインパイプ用鋼板。
  3.  請求項1または2に記載の高強度ラインパイプ用鋼板を用いて製造される低温靭性に優れた高強度ラインパイプ用鋼管。
PCT/JP2015/059122 2014-03-28 2015-03-25 低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管 WO2015147055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15770365.3A EP3124639B1 (en) 2014-03-28 2015-03-25 Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe
KR1020167024857A KR102041770B1 (ko) 2014-03-28 2015-03-25 저온 인성이 우수한 고강도 라인 파이프용 강판 및 고강도 라인 파이프용 강관
CN201580014826.6A CN106103778B (zh) 2014-03-28 2015-03-25 低温韧性优异的高强度管线管用钢板及高强度管线管用钢管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070279A JP6343472B2 (ja) 2014-03-28 2014-03-28 低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管
JP2014-070279 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147055A1 true WO2015147055A1 (ja) 2015-10-01

Family

ID=54195566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059122 WO2015147055A1 (ja) 2014-03-28 2015-03-25 低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管

Country Status (5)

Country Link
EP (1) EP3124639B1 (ja)
JP (1) JP6343472B2 (ja)
KR (1) KR102041770B1 (ja)
CN (1) CN106103778B (ja)
WO (1) WO2015147055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163451A1 (ja) * 2015-04-10 2016-10-13 株式会社神戸製鋼所 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920921A (ja) * 1995-06-30 1997-01-21 Kobe Steel Ltd セパレーションを利用する高靱性鋼板の製造方法
JPH1171615A (ja) * 1997-08-29 1999-03-16 Nippon Steel Corp 低温靱性に優れた厚鋼板の製造方法
JP2003064418A (ja) * 2001-08-27 2003-03-05 Nippon Steel Corp 高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
JP2003096517A (ja) * 2001-09-20 2003-04-03 Nippon Steel Corp 高い吸収エネルギーを有する薄手高強度鋼板の非水冷型製造方法
JP2011106012A (ja) * 2009-11-20 2011-06-02 National Institute For Materials Science 高強度鋼と高強度圧延鋼板
JP2012072472A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高靱性かつ高変形性高強度鋼管用鋼板およびその製造方法
JP2012126925A (ja) * 2010-12-13 2012-07-05 Sumitomo Metal Ind Ltd ラインパイプ用鋼材
JP2013213242A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472423B2 (ja) 2005-03-29 2014-04-16 Jfeスチール株式会社 耐切断割れ性に優れた高強度・高靱性厚鋼板
CN102471843A (zh) * 2009-09-02 2012-05-23 新日本制铁株式会社 低温韧性优良的高强度管线管用钢板及高强度管线管用钢管
JP5741483B2 (ja) 2012-02-27 2015-07-01 新日鐵住金株式会社 現地溶接性に優れるラインパイプ用高強度熱延鋼板およびその製造方法
CN102851587B (zh) * 2012-09-06 2014-02-12 江苏沙钢集团有限公司 抗变形x80-x100管线钢板
JP6169025B2 (ja) * 2013-03-29 2017-07-26 株式会社神戸製鋼所 耐水素誘起割れ性と靭性に優れた鋼板およびラインパイプ用鋼管
JP6316548B2 (ja) * 2013-07-01 2018-04-25 株式会社神戸製鋼所 耐水素誘起割れ性と靭性に優れた鋼板およびラインパイプ用鋼管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920921A (ja) * 1995-06-30 1997-01-21 Kobe Steel Ltd セパレーションを利用する高靱性鋼板の製造方法
JPH1171615A (ja) * 1997-08-29 1999-03-16 Nippon Steel Corp 低温靱性に優れた厚鋼板の製造方法
JP2003064418A (ja) * 2001-08-27 2003-03-05 Nippon Steel Corp 高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
JP2003096517A (ja) * 2001-09-20 2003-04-03 Nippon Steel Corp 高い吸収エネルギーを有する薄手高強度鋼板の非水冷型製造方法
JP2011106012A (ja) * 2009-11-20 2011-06-02 National Institute For Materials Science 高強度鋼と高強度圧延鋼板
JP2012072472A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高靱性かつ高変形性高強度鋼管用鋼板およびその製造方法
JP2012126925A (ja) * 2010-12-13 2012-07-05 Sumitomo Metal Ind Ltd ラインパイプ用鋼材
JP2013213242A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124639A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163451A1 (ja) * 2015-04-10 2016-10-13 株式会社神戸製鋼所 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管

Also Published As

Publication number Publication date
EP3124639A1 (en) 2017-02-01
CN106103778A (zh) 2016-11-09
JP2015190042A (ja) 2015-11-02
EP3124639B1 (en) 2022-07-13
KR102041770B1 (ko) 2019-11-07
EP3124639A4 (en) 2017-11-15
CN106103778B (zh) 2019-03-22
JP6343472B2 (ja) 2018-06-13
KR20160118360A (ko) 2016-10-11

Similar Documents

Publication Publication Date Title
KR101730756B1 (ko) 내사워성, 내압궤 특성 및 저온 인성이 우수한 후육 고강도 라인 파이프용 강판과 라인 파이프
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP6211296B2 (ja) 耐サワー性とhaz靭性に優れた鋼板
JP5748032B1 (ja) ラインパイプ用鋼板及びラインパイプ
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP6193206B2 (ja) 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管
JP5765497B1 (ja) 溶接部品質の優れた電縫鋼管及びその製造方法
KR20180095917A (ko) 전봉 강관용 고강도 열연 강판 및 그 제조 방법
WO2012060405A1 (ja) 高強度鋼板及びその製造方法
WO2016163451A1 (ja) 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管
JP2017057449A (ja) 耐サワー性に優れた鋼板及びその製造方法
JP2019214752A (ja) 低降伏比厚鋼板
JP2016084524A (ja) 低温用h形鋼及びその製造方法
WO2014175122A1 (ja) H形鋼及びその製造方法
JP6288288B2 (ja) ラインパイプ用鋼板及びその製造方法とラインパイプ用鋼管
JP6008042B2 (ja) 厚肉鋼管用鋼板、その製造方法、および厚肉高強度鋼管
WO2017094593A1 (ja) 溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板
JP5874664B2 (ja) 落重特性に優れた高張力鋼板およびその製造方法
KR20170138505A (ko) 후강판 및 용접 이음
WO2015147055A1 (ja) 低温靭性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプ用鋼管
JP6226163B2 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP6597450B2 (ja) 耐摩耗鋼板及びその製造方法
WO2016190150A1 (ja) 厚鋼板及び溶接継手
JP6597449B2 (ja) 耐摩耗鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770365

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015770365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770365

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167024857

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE