WO2015146999A1 - 被覆はんだ材料およびその製造方法 - Google Patents

被覆はんだ材料およびその製造方法 Download PDF

Info

Publication number
WO2015146999A1
WO2015146999A1 PCT/JP2015/058958 JP2015058958W WO2015146999A1 WO 2015146999 A1 WO2015146999 A1 WO 2015146999A1 JP 2015058958 W JP2015058958 W JP 2015058958W WO 2015146999 A1 WO2015146999 A1 WO 2015146999A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder material
organic compound
coated
coating film
mass
Prior art date
Application number
PCT/JP2015/058958
Other languages
English (en)
French (fr)
Inventor
小林 宏
山辺 秀敏
恭子 宮内
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP15769736.8A priority Critical patent/EP3124166B1/en
Priority to US15/128,181 priority patent/US10512988B2/en
Priority to JP2016510391A priority patent/JP6455508B2/ja
Priority to CN201580015304.8A priority patent/CN106211763B/zh
Publication of WO2015146999A1 publication Critical patent/WO2015146999A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/404Coated rods; Coated electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • the present invention relates to a solder material used when manufacturing a semiconductor device, in particular, a coated solder material that has been surface-treated using a coating film, and a method for manufacturing the same.
  • soldering is generally employed when bonding metal materials together or bonding electronic components such as semiconductor elements to a printed circuit board.
  • Solder materials used for soldering are formed into various shapes such as wires, ribbons, sheets, preform materials (punching materials), balls, and fine powders.
  • Solder material is easily oxidized in the presence of oxygen, and an oxide film is formed on the surface during storage.
  • the oxidation proceeds and the oxide film becomes thick. This causes joint defects such as voids.
  • the oxide film becomes thicker. If the thick oxide film formed in this way is interposed between the objects to be bonded after bonding, problems such as poor conduction and a decrease in bonding property are caused.
  • a flux to the surface of the solder material in advance or use the flux at the time of joining.
  • an inorganic acid type, an organic acid type, or a resin type based on rosin is known.
  • the inorganic acid flux has a high activity as a flux, it causes a decrease in electrical properties and corrodes the object to be joined.
  • the organic acid flux has a drawback that the activity of reaction with the oxide film is weak.
  • a resin-based flux generates a flux residue, cleaning and removal with a solvent such as Freon is indispensable from the viewpoint of electrical reliability.
  • any of the fluxes has a problem in use for applications such as a semiconductor device, and hinders cost reduction.
  • a method of forming a coating film on the surface of the solder material has been proposed as means for preventing the oxidation of the solder material due to other than the flux.
  • Japanese Patent Laid-Open No. 10-166177 discloses that the surface of a solder material is made of a phosphorus-containing substance composed of a phosphorus compound and a surfactant, specifically, a fluoroalkyl group-containing phosphate ester compound and a nonionic surfactant.
  • a method of coating has been proposed.
  • Japanese Patent Laid-Open Nos. 2001-105172 and 2001-144111 propose a method of coating the surface of a solder material with a nonionic surfactant, specifically, a polyoxyethylene sorbitan fatty acid ester.
  • the coating film is formed by a wet method, and it is difficult to uniformly form a thin coating film of 200 nm or less. For this reason, in the coating film formed by these methods, the variation in film thickness is large, and the oxidation of the solder material cannot be sufficiently suppressed. Alternatively, the presence of the coating film may cause problems such as a decrease in wetness and spreadability of the solder material and the occurrence of voids.
  • Japanese Patent Application Laid-Open No. 2010-58111 relates to the formation of a reflecting surface of a reflector in a vehicular lamp.
  • An undercoat layer and a silver vapor deposition film are formed on a substrate by a low pressure plasma CVD method.
  • a dry surface treatment in which a reflective layer and a topcoat layer are laminated is described.
  • a silicon oxide film (SiO x film) formed by plasma polymerization of a silane compound is used for the undercoat layer and the topcoat layer. According to such dry surface treatment, it is considered that a relatively thin coating film can be uniformly formed on the entire object.
  • the film forming material does not diffuse into the factory, so it is considered that the working environment can be maintained well.
  • the surface treatment by the low pressure plasma CVD method generally requires an expensive and large vacuum device or a pressure reducing device, which leads to an increase in production cost and deterioration of productivity.
  • JP-T-2004-510571 and JP-A-2009-286041 disclose surface treatment using an atmospheric pressure plasma CVD method.
  • a spray liquid coating forming material composed of an organosilicon compound is introduced into an atmospheric pressure plasma discharge, and a substrate such as a metal is exposed to the spray coating forming material.
  • a method of forming a coating (coating film) made of polydimethylsiloxane or the like on the surface of a substrate is disclosed.
  • 2009-286041 discloses that the surface of a metal oxide film formed on the surface of a resin film is formed by an atmospheric pressure plasma CVD method using a specific hydrocarbon such as n-pentane or n-hexane. A technique for producing an uncolored gas barrier film by surface treatment is disclosed. Unlike the low pressure plasma CVD method, the atmospheric pressure plasma CVD method described in these documents does not require a vacuum device or a pressure reduction device, so that problems such as production cost and productivity deterioration do not occur.
  • the present invention provides a coated solder material that can prevent the progress of surface oxidation during long-term storage and melting, has excellent wettability and bonding properties, and does not generate voids in the bonding portion. Objective. Moreover, an object of this invention is to provide the method of manufacturing such a covering solder material efficiently in a short time.
  • the coated solder material of the present invention is a coated solder material in which a coating film is formed on the surface of the solder material, and the coating film has a carbon number of 8 in a reaction gas that is plasmatized at atmospheric pressure.
  • the difference between the maximum value and the minimum value of the thickness of the coating film is preferably within 10 nm.
  • the coated solder material is such that the outer diameter of the solder material processed into a wire shape is r, and the solder material is erected on a Cu substrate heated at a temperature 50 ° C. higher than the melting point of the solder material for 25 seconds, When heated to 25 seconds and then cooled to room temperature, the outer diameter of the solder material joined to the Cu substrate is defined as d, and the ratio of d to r is defined as the degree of wet spread X.
  • the relative spreading of X R of the solder material, the ratio of the spreading of X m of coating the solder material coated the solder material by the coating film is preferably in the range of 1.05 to 1.60.
  • the solder material is selected from the group of Bi solder material, Bi—Sn solder material, Pb solder material, Sn solder material, Au solder material, In solder material, or Zn—Sn solder material 1 Preferably it is a seed.
  • the method for producing the coated solder material according to the present invention includes: A radicalization step in which a radicalized organic compound is formed by introducing an organic compound having a carbon number of 8 or less together with a carrier gas into a reaction gas plasmified under atmospheric pressure and radicalizing the organic compound; A coating step of forming a coating film made of a carbon compound having a thickness of 4 nm to 200 nm on the surface of the solder material by reacting the radicalized organic compound with a metal on the surface of the solder material; It is characterized by providing.
  • hydrocarbon-based gas composed of an aliphatic compound having 4 or less carbon atoms and / or an alicyclic compound as the organic compound.
  • a hydrocarbon solvent composed of at least one selected from the group consisting of aliphatic compounds having 5 to 8 carbon atoms, alicyclic compounds, and aromatic compounds as the organic compound.
  • the reaction gas is preferably at least one selected from the group consisting of argon, helium, nitrogen, oxygen and air.
  • the carrier gas it is preferable to use at least one selected from the group consisting of argon, helium and nitrogen.
  • an atmospheric pressure plasma polymerization processing apparatus is used, the nozzle distance is 5 mm to 30 mm, and the nozzle speed or the substrate transport speed is 1 m / min to 40 m / min. It is preferable to form the coating film.
  • the present invention it is possible to provide a coated solder material that can prevent the progress of surface oxidation during long-term storage and melting, has excellent wettability and bonding properties, and does not generate voids in the bonding portion. be able to. Moreover, according to this invention, the method of manufacturing such a covering solder material efficiently in a short time can be provided. For this reason, the industrial significance of the present invention is extremely large.
  • the present inventors have been able to prevent the progress of oxidation of the surface of the solder material during long-term storage and melting, and are excellent in wet spreadability and bondability, and are free from voids in the joint.
  • the coating film is made of a carbon compound and has an appropriate thermal decomposability, so that wetting spreadability and bondability are suppressed while suppressing oxidation of the solder material during storage and melting. It has been found that the influence on the material can be greatly reduced and bonding without voids can be realized.
  • such a coating film can easily and over the entire surface of the solder material even in industrial scale production by subjecting an organic compound having 8 or less carbon atoms to atmospheric pressure plasma polymerization under a predetermined condition. The knowledge that it can form evenly was obtained. The present invention has been completed based on these findings.
  • the coated solder material of the present invention is a coated solder material in which a coating film is formed on the surface of the solder material.
  • This coating film formed a radicalized organic compound by introducing an organic compound having a carbon number of 8 or less together with a carrier gas into a reaction gas plasmatized at atmospheric pressure and radicalizing the organic compound. Thereafter, a carbon compound formed by reacting a radicalized organic compound with a metal on the surface of the solder material, having a thickness of 4 nm to 200 nm, heated at 150 ° C. to 300 ° C. and melted.
  • the mass reduction rate is 60% or more.
  • the solder material in the present invention includes not only solder but also brazing material.
  • Coating film The coating film in the present invention can be formed on a solder material only by an atmospheric pressure plasma polymerization treatment under a predetermined condition using an organic compound having 8 or less carbon atoms as a coating material. That is, it is necessary to form the coating film according to the present invention.
  • this coating film is a thin film, it is very strong and highly safe, and is uniformly formed over the entire surface of the solder material. For this reason, the progress of oxidation on the surface of the solder material is suppressed, the wet spread and solderability of the solder material is suppressed, and the generation of voids at the joint can be effectively prevented.
  • the coated solder material of the present invention it is necessary to control the thickness of the coated film in the range of 4 nm to 200 nm. If the thickness of the coating film is less than 4 nm, the progress of oxidation on the surface of the solder material cannot be sufficiently suppressed, so that wetting spreadability and bondability are lowered, and voids are generated. On the other hand, if the thickness of the coating film exceeds 200 nm, it is possible to suppress the progress of oxidation of the solder material surface, but due to the effect of this coating film, wetting spreadability and bondability are reduced. Incurs voids.
  • the lower limit value of the thickness of the coating film is preferably 6 nm or more, more preferably 8 nm or more, and 10 nm or more. Is more preferable.
  • the upper limit is preferably set to 100 nm or less, more preferably 50 nm or less, and further preferably 25 nm or less.
  • the coating film of the present invention is excellent in thickness uniformity. Specifically, when the thickness of the coating film is within the above range, the difference between the maximum value and the minimum value can be within 10 nm, preferably within 7 nm, and more preferably within 5 nm. For this reason, the coated solder material of the present invention can be evaluated as having very small variations in each characteristic described later.
  • the thickness of the coating film and its maximum and minimum values can be obtained by observing the coated solder material with a transmission electron microscope (TEM) or the like after making the cross-section observable. . Specifically, it can be obtained by measuring the thickness of the coating film at any three or more positions in the cross section of the coated solder material and calculating the average value, maximum value, and minimum value.
  • TEM transmission electron microscope
  • the coating film constituting the coated solder material of the present invention has a mass reduction rate ⁇ of 60% by mass or more, preferably 70% by mass or more when heated at 150 ° C. to 300 ° C. and melted. More preferably, it is 80 mass% or more.
  • the mass reduction rate ⁇ of the coating film is the following formula (A) when the mass of the coating film before heating is w 1 and the mass of the peritoneum after heating at the above temperature is w 2. Means the value obtained by.
  • the coating film constituting the coated solder material of the present invention has a high thermal decomposability, and more than half of the coated film is thermally decomposed during solder joining. For this reason, as long as the thickness of the coating film is within the above-described range, the remaining amount of the coating film after melting is negligible, and the wettability and bonding properties of the solder material are hardly affected. On the other hand, when the mass reduction rate ⁇ is less than 60% by mass, the wet spreading property and the bonding property of the solder material are deteriorated by the coating film remaining after melting.
  • the time for heating the coated solder material varies depending on the composition of the solder material and the like, but usually about 30 minutes is sufficient.
  • the coating film constituting the coated solder material of the present invention is very strong and highly safe, and has very little deterioration over time. Moreover, it is colorless and transparent, extremely thin, and uniformly formed over the entire surface of the solder material. For this reason, it is possible to significantly reduce the occurrence of appearance defects such as processing unevenness and spots when forming the coating film.
  • the coating film constituting the coated solder material of the present invention may be, for example, a wire, ribbon, sheet, preform material (punching material), ball, fine powder, etc., regardless of the shape of the solder material.
  • the present invention can be applied to solder materials having various shapes.
  • the composition of the solder material is not limited.
  • Bi (bismuth) solder material Bi—Sn (tin) solder material, Pb (lead) solder material, Sn solder material, Au
  • the present invention can be suitably applied to various solder materials such as (gold) solder material, In (indium) solder material, and Zn (zinc) -Sn solder material.
  • the composition of the solder material can be determined by ICP emission spectroscopic analysis.
  • the Bi-based solder material is a solder material containing Bi as a main component and containing one or more second elements selected from the group consisting of Zn and Ag (silver).
  • the Bi content is preferably 85% by mass or more, more preferably 85% by mass or more and 99% by mass or less.
  • the content becomes like this. Preferably it is 0.01 mass% or more and 13.5 mass% or less, More preferably, you may be 0.2 mass% or more and 5.0 mass% or less.
  • Ag when Ag is contained, the content is preferably 0.01% by mass or more and 12.0% by mass or less, more preferably 0.5% by mass or more and 5.0% by mass or less.
  • a third element other than Bi, Zn and Ag can be contained depending on the use and purpose of the solder material.
  • Examples of such third element include Sn, Cu (copper), Au, In, Ni (nickel), Sb (antimony), Ge (germanium), Si (silicon), Te (tellurium), and P (phosphorus).
  • One or more selected from can be used.
  • the total content of these third elements is preferably 5.0% by mass or less.
  • Bi-Sn solder material is a solder material containing Bi and Sn.
  • the Bi content is 40% by mass to 85% by mass, preferably 45% by mass to 60% by mass.
  • the Sn content is 15 mass% or more and 60 mass% or less, preferably 40 mass% or more and 60 mass% or less.
  • a Bi-Sn solder material can also contain a third element other than Bi and Sn, depending on the use and purpose of the solder material.
  • a third element one or more selected from Cu, Ag, In, Ni, Sb, Ge, Si, Te and P can be used.
  • the total content of these third elements is preferably 5.0% by mass or less, more preferably 4.5% by mass or less.
  • Pb-based solder material is a solder material containing Pb as a main component and one or more second elements selected from the group consisting of Sn, Ag, Cu, In, Te, and P. .
  • the total content of Pb and the second element is 95% by mass or more, and preferably 97% by mass or more in total.
  • the Pb content is preferably 80% by mass to 98% by mass, and more preferably 85% by mass to 98% by mass.
  • the content of the second element is preferably 2% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 12% by mass or less.
  • a third element other than Pb and the second element can be contained according to the use and purpose of the solder material.
  • the third element one or more selected from Ni, Ge, Co (cobalt), Sb, Bi, and the like can be used.
  • the total content of these third elements is preferably 5.0% by mass or less, more preferably 4.5% by mass or less.
  • Sn-based solder material is a solder material containing Sn as a main component and one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P. .
  • This solder material is used as so-called “lead-free solder”.
  • the total content of Sn and the second element is 95% by mass or more, preferably 97% by mass or more.
  • the content of Sn is preferably 80% by mass or more and 98% by mass or less, and more preferably 90% by mass or more and 98% by mass or less.
  • the content of the second element is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 7% by mass.
  • a third element other than Sn and the second element can be contained according to the use and purpose of the solder material.
  • a third element one or more selected from In, Co, Bi, or the like can be used.
  • the total content of these third elements is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the Au-based solder material is a solder material containing Au as a main component and one or more second elements selected from the group consisting of Ge, Sn, and Si. In this solder material, the total content of Au and the second element is 90% by mass or more, preferably 98% by mass or more.
  • the content of Au is preferably 75% by mass or more and 98% by mass or less, more preferably 79% by mass or more and 97.5% by mass or less.
  • the content of the second element is preferably 2% by mass to 25% by mass, more preferably 2.5% by mass to 21% by mass.
  • a third element other than Au and the second element can be contained according to the use and purpose of the solder material.
  • a third element one or more selected from Ag, Sb, In, Al (aluminum), Cu, Ni, P, and the like can be used.
  • the total content of these third elements is preferably 10% by mass or less, more preferably 8% by mass or less.
  • the In-based solder material is a solder material containing In as a main component and containing one or more second elements selected from the group consisting of Ag, Sn, Cu, Zn, and P.
  • the content of In is 40 mass% or more and 99.9 mass% or less, preferably 45 mass% or more and 60 mass% or less.
  • the content of the second element is 0.1 mass% or more and 60 mass% or less, preferably 0.5 mass% or more and 55 mass% or less.
  • the Zn—Sn solder material is a solder material containing Zn and Sn as main components and not containing Al.
  • not containing Al means that the content is 0.10% by mass or less even if Al is not contained at all or is contained.
  • the total content of Zn and Sn is 80% by mass or more, preferably 90% by mass or more.
  • the Zn content is preferably 70% by mass or more and 90% by mass or less, more preferably 75% by mass or more and 88% by mass or less.
  • the Sn content is preferably 5% by mass to 30% by mass, more preferably 7% by mass to 20% by mass.
  • a third element other than Zn and Sn can be contained according to the use and purpose of the solder material.
  • a third element one or more selected from Ag, Cu, Ge, Ni, Sb and P can be used.
  • the content of these third elements is preferably 20% by mass or less, more preferably 15% by mass or less.
  • the coated solder material of the present invention includes the above-described coated film, it is possible to prevent the progress of surface oxidation during long-term storage and melting. Moreover, it is excellent in wet spreading property and bondability, and it is possible to prevent the generation of voids in the bonded portion. Furthermore, since it is excellent also in durability (heat resistance), it can be evaluated that it has high reliability.
  • the coated solder material of the present invention has excellent oxidation resistance, and its surface state hardly changes during long-term storage or melting. For example, even when a neutral salt spray test (based on JIS 2371) is performed on the coated solder material of the present invention, the surface is discolored or smoothness is deteriorated in comparison with the initial state. There is nothing to do. The surface state of the coated solder material can be confirmed by observation using an optical microscope or the like.
  • the wetting spread degree of the uncoated solder material is X R
  • the wetting spread degree of the coated solder material in which a coating film is formed on this solder material is X m
  • the ratio of X m for X R a (X m / X R) preferably 1.05 to 1.60 and more preferably, to 1.20 to 1.45. That is, according to the present invention, it can be said that the wet spreadability can be improved by forming the above-described coating film on the solder material.
  • wetting of X of the solder material can be obtained as follows. First, after measuring the outer diameter r of the solder material processed into a wire shape, a test piece having a total length of about 3 cm to 5 cm is cut out from the solder material. Next, the test piece was placed upright on a Cu substrate heated in a nitrogen atmosphere at a temperature 50 ° C. higher than the melting point of the solder material for 25 seconds, further heated for 25 seconds, and then cooled to room temperature. The outer diameter d of the test piece bonded to the substrate is measured. Finally, the degree of wetting spread X can be calculated by calculating the ratio of d to r (d / r).
  • the measurement of r and d mentioned above is not specifically limited, It can measure using a well-known means. For example, using a microscope, after measuring the outer diameter at an arbitrary position of the solder material processed into a wire shape, by measuring the outer diameter in the direction orthogonal to this, by calculating the average value of these, The outer diameter r can be obtained. Similarly, the outer diameter d of the solder material (test piece) bonded to the Cu substrate can be obtained.
  • the coated solder material of the present invention is excellent in durability (heat resistance) and can be evaluated as having high reliability. For example, in the same manner as the evaluation of wet spreadability, when a heat cycle test with a cycle of ⁇ 55 ° C. cooling and + 155 ° C. heating is performed for 500 cycles on a Cu substrate to which solder is bonded, the bonding is performed. Defects such as peeling do not occur on the surface. The state of the bonding surface can be confirmed by embedding a Cu substrate in a resin, etc., cutting and polishing the cross section at an arbitrary position, and then observing the cross section using a scanning electron microscope (SEM). .
  • SEM scanning electron microscope
  • the method for producing the coated solder material of the present invention comprises: (1) Radicalization, in which an organic compound having a carbon number of 8 or less is introduced together with a carrier gas into a reaction gas that has been plasmatized at atmospheric pressure, and the organic compound is radicalized to form a radicalized organic compound.
  • radicalization process an organic compound having a carbon number of 8 or less is introduced together with a carrier gas into a reaction gas that has been plasmatized at atmospheric pressure, and radicalization is performed by radicalizing the organic compound. This is a step of forming an organic compound.
  • the radicalized organic compound is not limited as long as it can react with the metal on the surface of the solder material in the coating step described below, and any of a monomer, a semipolymer, or a polymer can be used. It may be in the state.
  • Atmospheric pressure plasma polymerization treatment it is necessary to form a coating film made of a carbon compound on the surface of the solder material by the atmospheric pressure plasma polymerization treatment described below.
  • the plasma polymerization process is a technique that has been widely known in the past, but the atmospheric pressure plasma polymerization process used in the present invention is a process in which a chemical reaction that does not proceed under normal conditions is advanced by activation of reactive particles by atmospheric pressure plasma. .
  • Such an atmospheric pressure plasma polymerization process is characterized by high productivity because it is suitable for continuous processing, and low processing cost because a vacuum apparatus is unnecessary, and a simple apparatus configuration is sufficient.
  • atmospheric pressure plasma examples include corona discharge, dielectric barrier discharge, RF discharge, microwave discharge, arc discharge, and the like, but any of them can be applied in the present invention without any particular limitation. For this reason, a known plasma generator can be used without any particular limitation as long as it can plasmify the reaction gas under atmospheric pressure. .
  • atmospheric pressure includes atmospheric pressure (1013.25 hPa) and atmospheric pressure in the vicinity thereof, and also includes atmospheric pressure within the range of changes in normal atmospheric pressure.
  • the organic compound having 8 or less carbon atoms into the reaction gas that has been plasmatized in advance through a carrier gas.
  • the organic compound can be radicalized instantly, so that the dense coating film can be applied evenly over the entire surface of the solder material while maintaining the basic skeleton (carbon skeleton) of the organic compound. It becomes possible to form.
  • a reactive gas, a carrier gas, and a coating material are supplied into the apparatus, and then the reaction gas is turned into plasma and the coating material is activated. (Radicalization) is performed simultaneously, and the activation of the coating material cannot be made uniform. For this reason, in the conventional manufacturing method of the coated solder material, the coated film cannot be made dense, or it is difficult to form the coated film uniformly over the entire surface of the solder material.
  • the generator output voltage is preferably 150 V to 350 V, more preferably 200 V to 330 V.
  • the generator output voltage is less than 150 V, the reaction gas cannot be sufficiently converted to plasma, and the organic compound cannot be converted to radicals in some cases.
  • the generator output voltage exceeds 350 V, there may be a problem such as damage to the apparatus.
  • Reactive gas is not particularly limited as long as it can be easily converted to plasma.
  • Ar argon
  • He helium
  • Ne neon
  • Kr krypton
  • Xe Xenon
  • N 2 nitrogen
  • O 2 oxygen
  • air and the like
  • These reaction gases may be used alone or in combination of two or more at a predetermined ratio.
  • Carrier gas is not particularly limited as long as it can smoothly transport an organic compound.
  • Ar, He, Ne, Kr, Xe and N 2 are used. Can do. These gases may be used alone or in combination of two or more at a predetermined ratio. Among these, similarly, at least one selected from the group of Ar, He and N 2 is preferably used, and N 2 is more preferably used from the viewpoint of cost and availability.
  • Organic compound is required to have a mass reduction ratio of 60% by mass or more when heated and melted at 150 ° C. to 300 ° C. when the coating film is formed.
  • an organic compound for forming such a coating film it is necessary to use an organic compound having 8 or less carbon atoms. This is because organic compounds having 9 or more carbon atoms are normally liquid and relatively low in volatility, so that uniform mixing with a carrier gas is difficult, and a thickness of 4 nm to 200 nm is formed on the surface of the solder material. This is because it becomes difficult to uniformly form a dense coating film.
  • a hydrocarbon gas having 4 or less carbon atoms or a hydrocarbon solvent having 5 to 8 carbon atoms can be suitably used.
  • the hydrocarbon-based gas includes a hydrocarbon compound that is normally a gas and has 4 or less carbon atoms, and a compound in which a part of hydrogen atoms of the hydrocarbon compound is substituted with another atom or a functional group. It is.
  • the hydrocarbon solvent is normally a liquid, a hydrocarbon compound having 5 to 8 carbon atoms, and a compound obtained by substituting some of the hydrogen atoms of this hydrocarbon compound with other atoms or functional groups Is included. Since these organic compounds are normally gases or liquids having moderate volatility, they can be easily mixed with a carrier gas, and a dense coating film is formed on the surface of the solder material even in industrial scale production. Can be formed easily and evenly.
  • hydrocarbon-based gas any one of the above-described hydrocarbon-based gas or hydrocarbon-based solvent is used as the organic compound.
  • hydrocarbon-based gas and It is also possible to use a mixture of hydrocarbon solvents.
  • an organic compound hydrocarbon gas, hydrocarbon solvent
  • the organic compound is a main component, it is mixed with a stabilizer or an antioxidant. It may be introduced in such a state.
  • the amount of the organic compound introduced should be such that the thickness of the coating film is within the above-mentioned range in consideration of the type of organic compound to be used, the shape and size of the solder material to be coated, the plasma forming conditions, etc. It is necessary to adjust appropriately.
  • the hydrocarbon-based gas is a gas in a normal state, can be easily mixed uniformly with a carrier gas and a reaction gas, and can maintain the mixed state for a relatively long time. For this reason, uniform radicalization (activation) in the radicalization step is easy, and an extremely dense coating film can be uniformly formed over the entire surface of the solder material.
  • hydrocarbon gas it is preferable to use an aliphatic compound and / or an alicyclic compound having 4 or less carbon atoms.
  • alkane alkene, alkyne and the like
  • alicyclic compound having 4 or less carbon atoms at least one selected from cyclopropane, cyclobutane, cyclobutene and the like can be used.
  • the hydrocarbon solvent is liquid in a normal state and has an appropriate volatility, so that it is not only excellent in safety but also can be uniformly mixed with a carrier gas and a reaction gas. For this reason, similar to the hydrocarbon-based gas described above, uniform radicalization (activation) in the radicalization process can be performed relatively easily, and a dense coating film is uniformly formed over the entire surface of the solder material. Is possible.
  • hydrocarbon compound an aliphatic compound, alicyclic compound or aromatic compound having 5 to 8 carbon atoms can be used.
  • alkane as an aliphatic compound having 5 to 8 carbon atoms, in addition to alkane, alkene and alkyne, alcohol, carboxylic acid and the like can be used. Among these, alkane is preferable in consideration of the ease of thermal decomposability of the coating film.
  • linear compounds such as n-pentane, n-hexane, n-heptane and n-octane, 2-methylbutane, 2,2-dimethylpropane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylhexane, 3-methylhexane, 2-ethylpentane, 3-ethylpentane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2, Those having a branch such as 4-dimethylpentane, 3,3-dimethylpentane, 2-methylheptane, 2,3-dimethylhexane, and 3-ethylhexane can be preferably used.
  • Examples of the alicyclic compound having 5 to 8 carbon atoms include cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclopentane, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentane, and ethylcyclohexane.
  • Pentane, cis-1,3-dimethylcyclopentane, methylcyclohexane, norbornane, cyclohexene and the like can be used.
  • Benzene, toluene, xylene, ethylbenzene, etc. can be used as the aromatic compound having 5 to 8 carbon atoms.
  • n-pentane linear n-pentane, n-hexane and n-heptane are preferable, and n-hexane is particularly preferable in consideration of ease of handling and thermal decomposability of the coating film.
  • the hydrocarbon solvent may not be able to maintain the volatile state for a long time depending on the conditions when mixing with the carrier gas or radicalizing. In this case, the hydrocarbon solvent becomes liquid, and the distribution is uneven, which may cause variations in the composition and thickness of the coating film. For this reason, it is necessary to control appropriately the conditions at the time of mixing with carrier gas or radicalization.
  • the coating step is a step of forming a coating film made of a carbon compound having a thickness of 4 nm to 200 nm on the surface of the solder material by reacting the radicalized organic compound with the metal on the surface of the solder material. .
  • solder material to be coated is not particularly limited, and can be applied to various shapes of solder materials such as wires, ribbons, sheets, preform materials, balls, and fine powders. can do.
  • the conditions such as temperature and atmosphere can be controlled during molding, and the oxide film formed on the surface can be adjusted thinly or the surface roughness can be reduced. The effect of the invention can be obtained more reliably.
  • a-1) Melting of raw materials
  • known means such as a resistance heating method, a reduction diffusion method, and a high-frequency melting method can be used.
  • high-frequency melting that can be efficiently melted in a short time The method is preferred.
  • a raw material melted by these methods is cast into a mold prepared in advance to form a solder mother alloy ingot having a desired shape.
  • the atmosphere at the time of melting the raw material is an inert gas atmosphere and the inert gas is circulated to the molten metal inlet of the mold at the time of casting.
  • solder material When forming a sheet-like solder material, it is necessary to roll a solder mother alloy ingot.
  • the rolling method is not particularly limited, and an appropriate method may be selected from cold rolling, warm rolling, hot rolling, press rolling, and the like according to the properties of the solder material. Two or more of these rolling methods may be combined. Thereby, it is possible not only to suppress the occurrence of cracks and burrs during rolling, but also to increase the rolling speed and improve productivity.
  • an Au-based solder material is harder than a Pb-based or Sn-based solder material, it is preferable to perform cold rolling after thinly rolling to a certain thickness by warm rolling or hot rolling.
  • warm rolling and hot rolling are not suitable methods from the viewpoint of facilitating the oxidation of the solder material surface and making the oxide film thinner. Therefore, when rolling by these methods, it is necessary to strictly manage the rolling conditions in consideration of productivity and the desired thickness of the oxide film.
  • the surface roughness (arithmetic average roughness Ra) of the roll used for rolling is preferably 0.30 ⁇ m or less, more preferably 0.20 ⁇ m or less. However, when two or more types of rolling methods are combined, at least the surface roughness (Ra) of the rolling roll used for the final rolling may be 0.30 ⁇ m or less. When the surface roughness (Ra) of the rolling roll exceeds 0.30 ⁇ m, it is difficult to reduce the surface roughness (Ra) of the obtained solder material. For this reason, even when the thickness of the oxide film is very thin, for example, controlled to be 120 ⁇ m or less, the wettability and bonding properties of the solder material may be deteriorated.
  • surface roughness (Ra) means the arithmetic mean roughness of a roughness curve, and can be obtained, for example, by measurement with an atomic force microscope.
  • solder mother alloy ingot is formed by an extrusion method, a wire drawing method, or the like.
  • the extrusion is preferably performed in an inert gas, and more preferably performed while circulating the inert gas in a sealed state. This is because if oxygen is present during extrusion, the wire heated to the extrusion temperature will immediately oxidize.
  • the timing for performing the acid cleaning and polishing may be any timing after casting the solder mother alloy and before performing the predetermined processing, during processing, or after processing.
  • the type of acid used in the acid cleaning is not particularly limited as long as it is appropriately selected according to the composition of the solder material, and any of inorganic acid and organic acid can be used.
  • an inorganic acid that is inexpensive and has a large oxide film removing effect.
  • hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and the like can be used as the inorganic acid.
  • citric acid, oxalic acid, etc. can be used as the organic acid.
  • a strong acid due to the high dissolution rate of the solder material in the acidic solution, partial dissolution proceeds and the surface roughness (Ra) increases or compositional deviation occurs. There is. For this reason, it is preferable to use a weak acid that has a slow dissolution rate and is easy to handle. In acid cleaning, it is necessary to sufficiently consider the acid concentration, the cleaning time, the cleaning temperature, and the like.
  • the cleaning temperature is preferably 20 ° C. and the cleaning time is 15 minutes.
  • the amount of dissolution of the oxide film on the surface of the solder material immediately after contacting the acetic acid aqueous solution is the largest, and then gradually decreases and becomes saturated at a certain stage.
  • the thickness of the oxide film is reduced from 20 ⁇ m to 30 ⁇ m in about 5 minutes and is reduced to about 10 ⁇ m in about 15 minutes.
  • the polishing method is not particularly limited.
  • the solder material may be sandwiched between abrasive papers, pressed with an appropriate force, and polished while being pulled while being wound.
  • the polishing may be performed by reciprocating the polishing paper in a direction perpendicular to the polishing direction (winding direction) of the solder material.
  • the radicalized organic compound exists in various forms such as a monomer, a semipolymer and a polymer. Therefore, as a reaction between the radicalized organic compound and the metal on the solder material surface, (I) an embodiment in which the radicalized organic compound is polymerized after reacting with the metal on the surface of the solder material; (Ii) a mode in which the radicalized organic compound reacts with the metal on the surface of the solder material while polymerizing, or (Iii) an aspect in which after the radicalized organic compound is polymerized, it reacts with the metal on the surface of the solder material; Can be considered. In the manufacturing method of the covering solder material of this invention, as long as the covering solder material mentioned above can be obtained, it will not be restrict
  • the thickness of the coating film needs to be in the range of 4 nm to 200 nm. This thickness can be appropriately adjusted by setting conditions of the plasma polymerization processing apparatus to be used.
  • the nozzle distance is preferably 5 mm to 30 mm, more preferably 7 mm to
  • the nozzle moving speed is preferably 1 m / min to 40 m / min, more preferably 7 m / min to 35 m / min.
  • the thickness of the coating film may not be in the range of 4 nm to 200 nm even if the nozzle distance and the nozzle moving speed are set in the above ranges. For this reason, it is particularly preferable that the nozzle distance and the nozzle speed are appropriately selected after performing a preliminary test.
  • the nozzle distance refers to the distance from the tip of the nozzle that ejects the organic compound that is the material of the coating film to the surface of the solder material on which the coating film is formed.
  • the nozzle moving speed refers to the speed at which the nozzle moves with respect to the solder material, and the transport speed of the substrate refers to the speed at which the solder material moves with respect to the nozzle.
  • the atmospheric pressure plasma polymerization treatment was performed only once on the solder material by appropriately controlling conditions such as nozzle distance and nozzle moving speed.
  • a denser coating film can be surely formed by performing a plurality of atmospheric pressure plasma polymerization processes on the surface of the solder material.
  • the coated solder material of the present invention can be used for joining various semiconductor elements and substrates. Specifically, it can be used for bonding a wide variety of semiconductor elements such as discrete, IC (integrated circuit) chips, modules, and the substrate.
  • IC integrated circuit
  • a die bonding method using the coated solder material of the present invention will be described by taking as an example a case where an IC chip is bonded to a die portion of a lead frame.
  • high melting point particles When die bonding is performed using the coated solder material of the present invention, it is preferable to add high melting point particles to the solder material in order to keep the IC chip horizontal. It is preferable to use particles having a melting point of 50 ° C. or higher than the melting point of the solder material, specifically, metal particles such as Cu and Ni, oxide particles such as SiO 2, and carbide particles such as SiC. Can be used. These high melting point particles preferably have an average particle size of 1 ⁇ m to 70 ⁇ m. The content of the high melting point particles is preferably about 1% by mass to 40% by mass with respect to the solder material.
  • a heater part is provided in a semi-sealed chamber having an opening for supplying a solder material and a semiconductor element. After the substrate is transferred to the heater part, heating is performed. Is done. At this time, an inert gas or a forming gas (a gas obtained by mixing inert gas with hydrogen as a reducing gas) is circulated in the chamber. In this state, the solder material is supplied onto the substrate heated to a predetermined temperature and melted, and the semiconductor element is placed thereon and pressurized to join the substrate and the semiconductor element.
  • an inert gas or a forming gas a gas obtained by mixing inert gas with hydrogen as a reducing gas
  • the solder material waits in a state in which a mixed gas of heated inert gas and air is sprayed at the heater portion, so that the oxidation proceeds on the surface.
  • the inert gas is circulating, the chamber is not completely sealed, so that oxidation also proceeds due to oxygen flowing into the chamber when the solder material is supplied.
  • the temperature of the heater section in order to achieve good bonding, it is necessary to set the temperature of the heater section to a temperature that is 30 ° C. to 70 ° C. higher than the melting point of the solder material.
  • the temperature of the heater when using a high melting point solder such as a Pb-based solder material containing 5% by mass of Sn, the temperature of the heater must be set to about 340 ° C. to 380 ° C., so that the solder material is further oxidized. Will be.
  • the coated solder material of the present invention is used instead of the conventional solder material, it is possible to prevent oxidation of the solder material during standby and during melting by the action of the coating film. Become. Moreover, since the coating film which comprises the coated solder material of this invention is excellent in thermal decomposability, a coating film remains at the time of a fusion
  • solder material and coated solder material a solder material to be coated was produced. Bi, Zn, Ag, Sn, Pb, Cu, Au, In, Al, Ni, Sb, Ge, Te, and P having a purity of 99.9% or more were prepared as raw materials. In the obtained solder material, in order to prevent variation in composition depending on the sampling location, large flakes and bulk materials were cut or crushed and adjusted to a size of 3 mm or less.
  • a predetermined amount is weighed from the raw material adjusted in this way, filled into a graphite crucible, and this crucible is placed in a high-frequency melting furnace, and in order to suppress oxidation, 0.7 L / min per kg of the raw material.
  • the above nitrogen was circulated in the furnace.
  • the melting furnace was turned on, and the raw materials were melted while being sufficiently stirred with a mixing rod so as not to cause local compositional variations.
  • the melting furnace was turned off, the crucible was quickly taken out, the obtained molten metal was cast into a solder mother alloy mold, and a solder mother alloy ingot having a different composition (thickness 5 mm) Plate-like).
  • the mold used was the same as a general mold used in the production of a solder mother alloy.
  • each solder mother alloy ingot was roughly rolled (warm rolling, rolling temperature: 90 ° C.) to a thickness of 400 ⁇ m using a rolling mill. Subsequently, each ingot was subjected to finish rolling with a rolling roller having a surface roughness (Ra) of 0.20 ⁇ m while adjusting the feed rate. Finally, by cutting with slitter processing, sheet-like, 25 mm wide solder materials 1 to 35 were obtained. The composition of these solder materials was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation, ICPS-8100). The results are shown in Table 1.
  • Examples 1-110, Comparative Examples 1-13 As Examples 1 to 110 and Comparative Examples 1 to 13, Table 2 was used by using an atmospheric pressure plasma polymerization treatment apparatus (Plasma Polymer Lab System PAD-1 type, manufactured by Plasma Treat Co., Ltd.) on the surface of the solder materials 1 to 35. Samples each having a coating film formed under the conditions shown in FIG. In these Examples and Comparative Examples, N 2 was used as a carrier gas, the amount of coating material introduced was adjusted to 20 g / hour, and the plasma conditions were set as follows. Plasma generator frequency: 21 kHz Generator output voltage: 280V Pressure: Atmospheric pressure (1013.25 hPa)
  • the thickness of the coating film of the obtained coated solder material and the maximum and minimum values of the coated solder material were measured so that the cross-section of the coated solder material could be observed, and TEM (manufactured by Hitachi High-Technologies Corp. Using HF-2000), the thickness of the coating film was measured at any three locations.
  • Comparative Examples 11 and 12 had a thin coating film, and could not obtain sufficient oxidation resistance.
  • evaluations b) to d) were not performed among the evaluation items described later.
  • Examples 1 to 21, 43 to 45, 49 to 57, 67 to 75, 85 to 89, 95 to 101 and 109, and Comparative Examples 1 to 6 using a hydrocarbon gas as a coating material When the hydrogen gas and the carrier gas were mixed, the local exhaust device prevented the hydrocarbon gas from being scattered.
  • Examples 22 to 42, 46 to 48, 58 to 66, 76 to 84, 90 to 94, 102 to 108 and 110 and Comparative Examples 7 to 12 using a hydrocarbon solvent as a coating material carbonization was performed. Conditions such as pressure and temperature were appropriately adjusted so that the hydrogen-based solvent could maintain a volatile state.
  • Comparative Example 14 As Comparative Example 14, a sample in which a coating film was formed by immersing the solder material 1 in a silicone-based coating agent (APZ6601 manufactured by Toray Dow Corning Co., Ltd.) for 10 minutes and then drying at 120 ° C. for 10 minutes. Prepared.
  • a silicone-based coating agent APZ6601 manufactured by Toray Dow Corning Co., Ltd.
  • Comparative Example 15 As Comparative Example 15, a sample in which a coating layer was formed was prepared by immersing the solder material 1 in a fluorine-based coating agent (FG-3020C30, manufactured by Fluoro Technology Co., Ltd.) for 10 minutes and then drying with cold air for 10 minutes. .
  • FG-3020C30 fluorine-based coating agent
  • Comparative Examples 16 to 51 samples in which no coating film was formed on the surfaces of the solder materials 1 to 35 were prepared.
  • the neutral salt spray test (conforming to JISZ2371) was performed on all the samples for 7 days, and then the surface state was observed.
  • the surface state after the test was the same as the initial surface state, “good ( ⁇ )”, compared with the initial surface state, the discoloration and deterioration of smoothness was confirmed as “bad” ( ⁇ ) ”.
  • thermal decomposability of the coating films formed on the samples of Examples 1-110 and Comparative Examples 1-10 and 13-15 was measured before coating, after coating and before heating. Evaluation was made by measuring the mass. Specifically, the samples of Examples 1 to 110 and Comparative Examples 1 to 10 and 13 to 15 were heated at 200 ° C. and mass W 0 before coating, mass W 1 before heating after coating, and melted. The mass W 2 after cooling to room temperature was measured.
  • a double cover is applied to the heater part of the atmosphere control type wettability tester, and the heater temperature is set to 50 ° C. higher than the melting point while flowing nitrogen at a flow rate of 12 L / min from four locations around the heater part. Then, after confirming that the heater temperature was stable, a Cu substrate (plate thickness: about 0.70 mm) was placed on the heater and heated for 25 seconds.
  • a test piece having an axial length of about 3 cm to 5 cm was cut out from each sample processed into a wire shape having an outer diameter of 0.5 mm, and the sample was erected on a Cu substrate and then heated for another 25 seconds. After the heating, the Cu substrate was taken up from the heater part and cooled to room temperature in a nitrogen atmosphere. After confirming that the Cu substrate was sufficiently cooled, the interface (joint surface) between the test piece and the Cu substrate was visually observed. Further, the Cu substrate was embedded in a resin and the cross-section was polished, and then the joint surface was visually observed.
  • the effect on the wettability of the coating film was evaluated. Specifically, for the test pieces cut out from these samples, the wet spread degree X R in an uncoated state and the wet spread degree X m in a state where a coating film is formed are measured, and the ratio of X m to X R is measured. Evaluation was performed by calculating (X m / X R ). In this evaluation, the outer diameter r of the sample before heating and the outer diameter d of the test piece after bonding to the Cu substrate are based on the measured values with a microscope (manufactured by Nikon Corporation, MESURING MICROSCOPE NM-40). Calculated.
  • the solder material was embedded in the resin together with the Cu substrate, and the cross-section was polished, and then the joint surface was observed with an SEM (manufactured by Hitachi High-Technologies Corporation, scanning electron microscope S-4800).
  • SEM manufactured by Hitachi High-Technologies Corporation, scanning electron microscope S-4800.
  • the coated solder materials of Examples 1-110 have a coating film thickness in an appropriate range, and the thickness uniformity is high, and the thermal decomposability is good. It is understood. In addition, it is understood that these coated solder materials have not only improved oxidation resistance and wettability but also good durability in comparison with uncoated solder materials (Comparative Examples 16 to 51). Is done.
  • the coated solder materials of Comparative Examples 1 to 15 are inferior in any one or more of oxidation resistance, wettability, and durability in comparison with the coated solder materials of Examples 1-110. Is understood.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 本発明は、長期保管時および溶融時に、表面の酸化の進行を防止することができ、濡れ広がり性や接合性に優れ、接合部に空隙が発生することのない被覆はんだ材料及びその製造方法を提供するものである。 本発明の被覆はんだ材料は、はんだ材料の表面に被覆膜が形成されたものであり、前記被覆膜は、大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、該有機化合物をラジカル化することでラジカル化有機化合物を形成した後、該ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより形成された炭素化合物からなり、厚さが4nm~200nmであり、かつ、150℃~300℃で加熱し、溶融させた場合の質量減少率が60%以上であることを特徴とする。

Description

被覆はんだ材料およびその製造方法
 本発明は、半導体装置を製造する際に用いるはんだ材料、特に、被覆膜を用いた表面処理がなされている被覆はんだ材料と、その製造方法に関する。
 半導体素子接合基板や半導体装置などの製造において、金属材料同士を接合する場合、あるいは、半導体素子などの電子部品をプリント基板に接合する場合には、はんだ付けが一般的に採用される。はんだ付けに使用されるはんだ材料は、ワイヤ、リボン、シート、プリフォーム材(打抜き材)、ボール、微粉末などの種々の形状に成形されている。
 はんだ材料は、酸素の存在下で酸化しやすく、保管中に、その表面に酸化膜が形成される。特に、はんだ材料を製造してから長期間経過後に使用する場合には、酸化が進行し、この酸化膜が厚いものとなるため、はんだ材料の濡れ広がり性や接合性の低下、あるいは、空隙(ボイド)の発生などの接合欠陥を招く。加えて、はんだ材料は、使用時に高温で溶融されるため、酸化膜はさらに厚いものとなる。このようにして形成された分厚い酸化膜が、接合後に被接合物同士の間に介在すると、導通不良や接合性の低下といった問題を引き起こす。
 このような問題に対して、従来、はんだ材料の表面に、予めフラックスを塗布したり、接合時にフラックスを用いたりすることが一般的に行われている。このようなフラックスとしては、無機酸系、有機酸系、ロジンを基とした樹脂系のものが知られている。しかしながら、無機酸系フラックスは、フラックスとしての活性度が強いため、電気的性質を低下させたり、被接合物を腐食させたりする原因となる。また、有機酸系のフラックスには、酸化膜との反応の活性力が弱いという欠点がある。さらに、樹脂系フラックスは、フラックス残渣が生成するため、電気信頼性の観点から、フロンなどの溶媒による洗浄除去が不可欠となる。このように、いずれのフラックスも半導体装置などの用途に用いるには問題があり、低コスト化の妨げとなっている。
 フラックス以外によるはんだ材料の酸化を防止する手段として、はんだ材料の表面に被覆膜を形成する方法が提案されている。たとえば、特開平10-166177号公報には、はんだ材料の表面を、リン化合物と界面活性剤からなるリン含有物質、具体的には、フルオロアルキル基含有リン酸エステル化合物およびノニオン系界面活性剤により被覆する方法が提案されている。また、特開2001-105172号公報および特開2001-144111号公報には、はんだ材料の表面を、非イオン界面活性剤、具体的には、ポリオキシエチレンソルビタン脂肪酸エステルにより被覆する方法が提案されている。しかしながら、これらの方法は、いずれも被覆膜を湿式法により形成しており、200nm以下の薄い被覆膜を満遍なく形成することは困難である。このため、これらの方法により形成される被覆膜では、膜厚のばらつきが大きく、はんだ材料の酸化を十分に抑制することができない。あるいは、この被覆膜の存在によって、はんだ材料の濡れ広がり性や接合性の低下、空隙(ボイド)の発生などの問題が生じたりする場合がある。
 これに対して、特開2010-58111号公報には、車両用灯具におけるリフレクタの反射面の形成に関するものであるが、基材の上に、減圧プラズマCVD法により、アンダーコート層、銀蒸着膜などによる反射層、トップコート層を積層する、乾式の表面処理が記載されている。この方法では、アンダーコート層とトップコート層に、シラン化合物をプラズマ重合させることにより形成された酸化珪素膜(SiOx膜)が用いられている。このような乾式の表面処理によれば、比較的薄い被覆膜を、対象物の全体に満遍なく形成することが可能であると考えられる。また、湿式法と異なり、成膜材料が工場内に拡散することがないため、作業環境を良好に維持することができると考えられる。しかしながら、減圧プラズマCVD法による表面処理は、一般的に、高価で大型の真空装置や減圧装置が必要となるため、生産コストの上昇や生産性の悪化を招いてしまう。
 一方、特表2004-510571号公報や特開2009-286041号公報には、大気圧プラズマCVD法を用いた表面処理が開示されている。具体的には、特表2004-510571号公報には、有機ケイ素化合物からなる噴霧液体コーティング形成材料を大気圧プラズマ放電中に導入し、金属などの基板をこの噴霧コーティング形成材料に晒すことにより、基板の表面に、ポリジメチルシロキサンなどからなるコーティング(被覆膜)を形成する方法が開示されている。また、特開2009-286041号公報には、樹脂フィルムの表面に形成された金属酸化物膜の表面を、n-ペンタンやn-ヘキサンなどの特定の炭化水素を用いた大気圧プラズマCVD法により表面処理することで、無着色のガスバリア性フィルムを製造する技術が開示されている。これらの文献に記載の大気圧プラズマCVD法は、減圧プラズマCVD法と異なり、真空装置や減圧装置を必要としないため、生産コストや生産性の悪化といった問題が生じることはない。
 しかしながら、これらの文献に記載の技術では、反応ガスのプラズマ化と微粒化される噴霧コーティング形成材料の活性化が同時に行われるため、噴霧コーティング形成材料の活性化が不均一なものとなり、基板表面の全面にわたって、緻密な被覆膜を満遍なく形成することは困難である。また、これらの文献に記載の技術は、いずれも、はんだ材料表面の酸化を防止することを意図したものではなく、はんだ材料の溶融時における被覆膜の挙動、被覆膜の存在による濡れ広がり性や接合性への影響および空隙の発生などの問題については何ら考慮されていない。
特開平10-166177号公報 特開2001-105172号公報 特開2001-144111号公報 特開2010-58111号公報 特表2004-510571号公報 特開2009-286041号公報
 本発明は、長期保管時および溶融時に、表面の酸化の進行を防止することができ、濡れ広がり性や接合性に優れ、接合部に空隙が発生することのない被覆はんだ材料を提供することを目的とする。また、本発明は、このような被覆はんだ材料を、短時間で、効率よく製造する方法を提供することを目的とする。
[規則91に基づく訂正 06.04.2015] 
 本発明の被覆はんだ材料は、はんだ材料の表面に被覆膜が形成された被覆はんだ材料であって、前記被覆膜は、大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、該有機化合物をラジカル化することでラジカル化有機化合物を形成した後、該ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより形成された炭素化合物からなり、厚さが4nm~200nmであり、かつ、150℃~300℃で加熱し、溶融させた場合の質量減少率が60%以上であることを特徴とする。
 前記被覆膜の厚さの最大値と最小値の差は、10nm以内であることが好ましい。
[規則91に基づく訂正 06.04.2015] 
 前記被覆はんだ材料は、ワイヤ状に加工されたはんだ材料の外径をrとし、該はんだ材料を、該はんだ材料の融点よりも50℃高い温度で25秒間加熱したCu基板上に直立させ、さらに25秒間加熱した後、室温まで冷却したときに、該Cu基板と接合したはんだ材料の外径をdとし、該rに対する該dの比を、濡れ広がり度Xと定義した場合において、未被覆状態のはんだ材料の濡れ広がり度XRに対する、該はんだ材料を前記被覆膜によって被覆した被覆はんだ材料の濡れ広がり度Xmの比が1.05~1.60の範囲にあることが好ましい。
 前記はんだ材料は、Bi系はんだ材料、Bi-Sn系はんだ材料、Pb系はんだ材料、Sn系はんだ材料、Au系はんだ材料、In系はんだ材料またはZn-Sn系はんだ材料の群から選択される1種であることが好ましい。
 本発明の被覆はんだ材料の製造方法は、
 大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、該有機化合物をラジカル化することでラジカル化有機化合物を形成する、ラジカル化工程と、
 前記ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより、該はんだ材料の表面に厚さが4nm~200nmの炭素化合物からなる被覆膜を形成する、被覆工程と、
を備えることを特徴とする。
 前記有機化合物として、炭素数が4以下の脂肪族化合物および/または脂環式化合物からなる炭化水素系ガスを用いることが好ましい。または、前記有機化合物として、炭素数が5以上8以下の脂肪族化合物、脂環式化合物および芳香族化合物の群から選択される少なくとも1種からなる炭化水素系溶剤を用いることが好ましい。
 前記反応ガスとしては、アルゴン、ヘリウム、窒素、酸素および空気の群から選択される少なくとも1種を用いることが好ましい。
 前記キャリアガスとしては、アルゴン、ヘリウムおよび窒素の群から選択される少なくとも1種を用いることが好ましい。
 また、本発明の被覆はんだ材料の製造方法においては、大気圧プラズマ重合処理装置を用い、ノズル距離を5mm~30mm、および、ノズル速度または基材の搬送速度を1m/分~40m/分として、前記被覆膜を形成することが好ましい。
 本発明によれば、長期保管時および溶融時に、表面の酸化の進行を防止することができ、濡れ広がり性や接合性に優れ、接合部に空隙が発生することのない被覆はんだ材料を提供することができる。また、本発明によれば、このような被覆はんだ材料を、短時間で、効率よく製造する方法を提供することができる。このため、本発明の工業的意義はきわめて大きい。
 本発明者らは、長期保管時および溶融時に、はんだ材料表面の酸化の進行を防止することができ、かつ、濡れ広がり性や接合性に優れ、接合部に空隙が発生することのない被覆はんだ材料について鋭意研究を重ねた。この結果、被覆膜として、炭素化合物から構成され、適度な熱分解性を有するものを使用することで、保管時および溶融時におけるはんだ材料の酸化を抑制しつつ、その濡れ広がり性や接合性に対する影響を大幅に低減し、空隙のない接合を実現できるとの知見を得た。また、このような被覆膜は、炭素数が8以下の有機化合物を所定条件下で大気圧プラズマ重合処理することにより、工業規模の生産においても、容易に、かつ、はんだ材料表面の全体にわたって満遍なく形成することができるとの知見を得た。本発明は、これらの知見に基づき完成されたものである。
[規則91に基づく訂正 06.04.2015] 
 1.被覆はんだ材料
 本発明の被覆はんだ材料は、はんだ材料表面に被覆膜が形成された被覆はんだ材料である。この被覆膜は、大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、この有機化合物をラジカル化することでラジカル化有機化合物を形成した後、ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより形成された炭素化合物からなり、厚さが4nm~200nmであり、かつ、150℃~300℃で加熱し、溶融させた場合の質量減少率が60%以上であることを特徴とする。なお、本発明におけるはんだ材料には、はんだのみならず、ろう材も含まれるものと解釈される。
 (1)被覆膜
 本発明における被覆膜は、炭素数が8以下の有機化合物を被覆材料として、所定条件の大気圧プラズマ重合処理によってのみ、はんだ材料上に形成することができる。すなわち、本発明の被覆膜の形成方法によって形成することが必要となる。
 この被覆膜は、薄膜であるにもかかわらず、非常に強固で安全性も高く、はんだ材料の表面全体にわたって満遍なく形成される。このため、はんだ材料表面の酸化の進行が抑制され、はんだ材料の濡れ広がり性や接合性の低下を抑制し、接合部における空隙(ボイド)の発生を効果的に防止することができる。
 a)厚さ
 本発明の被覆はんだ材料では、被覆膜の厚さを4nm~200nmの範囲に制御することが必要となる。被覆膜の厚さが4nm未満では、はんだ材料表面の酸化の進行を十分に抑制することができず、濡れ広がり性や接合性が低下し、空隙(ボイド)の発生を招く。一方、被覆膜の厚さが200nmを超えると、はんだ材料表面の酸化の進行を抑制することはできるが、この被覆膜の影響により、濡れ広がり性や接合性が低下し、同様に、空隙の発生を招く。なお、より優れた濡れ広がり性や接合性を実現するためには、被覆膜の厚さの下限値を6nm以上とすることが好ましく、8nm以上とすることがより好ましく、10nm以上とすることがさらに好ましい。また、その上限値を100nm以下とすることが好ましく、50nm以下とすることがより好ましく、25nm以下とすることがさらに好ましい。
[規則91に基づく訂正 06.04.2015] 
 本発明の被覆膜は、厚さの均一性に優れる。具体的には、被覆膜の厚さが上記範囲内にある場合において、その最大値と最小値の差を10nm以内、好ましくは7nm以内、より好ましくは5nm以内とすることができる。このため、本発明の被覆はんだ材料は、後述する各特性のばらつきがきわめて小さいと評価することができる。
 なお、被覆膜の厚さならびにその最大値および最小値は、被覆はんだ材料を断面観察可能な状態とした上で、透過型電子顕微鏡(TEM)などを用いて観察することにより求めることができる。具体的には、被覆はんだ材料の断面の任意の3箇所以上の位置で、被覆膜の厚さを測定し、その平均値、最大値および最小値を算出することにより求めることができる。
 b)熱分解性
 本発明の被覆はんだ材料を構成する被覆膜は、150℃~300℃で加熱し、溶融させた場合の質量減少率αが60質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上であることを特徴とする。ここで、被覆膜の質量減少率αとは、加熱前の被覆膜の質量をw1、上記温度で加熱後の被腹膜の質量をw2とした場合に、下記の式(A)によって求められる値を意味する。
  α=(w1-w2)/w1×100 ・・・(A)
 すなわち、本発明の被覆はんだ材料を構成する被覆膜は、高い熱分解性を有し、はんだ接合時に、その半分以上が熱分解することを特徴とする。このため、被覆膜の厚さが上述した範囲にある限り、溶融後における被覆膜の残存量はごく僅かとなり、はんだ材料の濡れ広がり性や接合性に影響が及ぶことはほとんどない。これに対して、質量減少率αが60質量%未満では、溶融後に残存する被覆膜によって、はんだ材料の濡れ広がり性や接合性が低下してしまう。
 なお、上述の熱分解性の評価において、被覆はんだ材料を加熱する時間は、はんだ材料の組成などに応じて異なるが、通常は、30分程度で十分である。
 c)外観
 本発明の被覆はんだ材料を構成する被覆膜は、非常に強固で安全性が高く、かつ、経時的な劣化がきわめて少ない。しかも、無色透明で、きわめて薄く、かつ、はんだ材料表面の全体にわたって満遍なく形成される。このため、被覆膜を形成するに際における処理ムラやシミなどの外観不良の発生を大幅に低減することができる。
 (2)はんだ材料
 本発明の被覆はんだ材料を構成する被覆膜は、はんだ材料の形状に関わらず、たとえば、ワイヤ、リボン、シート、プリフォーム材(打抜き材)、ボール、微粉末状などの種々の形状のはんだ材料に対して適用することが可能である。
 また、はんだ材料の組成によっても制限されることはなく、たとえば、Bi(ビスマス)系はんだ材料、Bi-Sn(スズ)系はんだ材料、Pb(鉛)系はんだ材料、Sn系はんだ材料、Au(金)系はんだ材料、In(インジウム)系はんだ材料、Zn(亜鉛)-Sn系はんだ材料などの各種はんだ材料に対して、好適に適用することができる。なお、はんだ材料の組成は、ICP発光分光分析法により求めることができる。
 a)Bi系はんだ材料
 Bi系はんだ材料は、Biを主成分として、ZnおよびAg(銀)の群から選択される1種以上の第2元素を含有するはんだ材料である。このはんだ材料において、Biの含有量は、好ましくは85質量%以上、より好ましくは85質量%以上99質量%以下とする。また、Znを含有する場合、その含有量は、好ましくは0.01質量%以上13.5質量%以下、より好ましくは0.2質量%以上5.0質量%以下とする。一方、Agを含有する場合、その含有量は、好ましくは0.01質量%以上12.0質量%以下、より好ましくは0.5質量%以上5.0質量%以下とする。
 なお、Bi系はんだ材料においては、はんだ材料の用途や目的に応じて、Bi、ZnおよびAg以外の第3元素を含有させることができる。このような第3元素としては、Sn、Cu(銅)、Au、In、Ni(ニッケル)、Sb(アンチモン)、Ge(ゲルマニウム)、Si(ケイ素)、Te(テルル)およびP(リン)などから選択される1種以上を用いることができる。これらの第3元素の含有量は、合計で、好ましくは5.0質量%以下とする。
 b)Bi-Sn系はんだ材料
 Bi-Sn系はんだ材料は、BiとSnとを含有するはんだ材料である。このはんだ材料において、Biの含有量は、40質量%以上85質量%以下、好ましくは45質量%以上60質量%以下とする。一方、Snの含有量は、15質量%以上60質量%以下、好ましくは40質量%以上60質量%以下とする。
 なお、Bi-Sn系はんだ材料においても、はんだ材料の用途や目的に応じて、BiおよびSn以外の第3元素を含有させることができる。このような第3元素としては、Cu、Ag、In、Ni、Sb、Ge、Si、TeおよびPなどから選択される1種以上を用いることができる。これらの第3元素の含有量は、合計で、好ましくは5.0質量%以下、より好ましくは4.5質量%以下とする。
 c)Pb系はんだ材料
 Pb系はんだ材料は、Pbを主成分として、Sn、Ag、Cu、In、TeおよびPからなる群から選択される1種以上の第2元素を含有するはんだ材料である。このはんだ材料において、Pbと第2元素の含有量は、合計で95質量%以上、好ましくは合計で97質量%以上とする。
 なお、Pbの含有量は、好ましくは80質量%以上98質量%以下、より好ましくは85質量%以上98質量%以下とする。また、第2元素の含有量は、好ましくは2質量%以上15質量%以下、より好ましくは2質量%以上12質量%以下とする。
 また、Pb系はんだ材料においても、はんだ材料の用途や目的に応じて、Pbおよび第2元素以外の第3元素を含有させることができる。このような第3元素としては、Ni、Ge、Co(コバルト)、SbおよびBiなどから選択される1種以上を用いることができる。これらの第3元素の含有量は、合計で、好ましくは5.0質量%以下、より好ましくは4.5質量%以下とする。
 d)Sn系はんだ材料
 Sn系はんだ材料は、Snを主成分とし、Ag、Sb、Cu、Ni、GeおよびPからなる群から選択される1種以上の第2元素を含有するはんだ材料である。このはんだ材料は、いわゆる「鉛フリーはんだ」として用いられる。このはんだ材料において、Snと第2元素の含有量は、合計で、95質量%以上、好ましくは97質量%以上とする。
 なお、Snの含有量は、好ましくは80質量%以上98質量%以下、より好ましくは90質量%以上98質量%以下とする。また、第2元素の含有量は、好ましくは1質量%以上10質量%以下、より好ましくは2質量%以上7質量%以下とする。
 また、Sn系はんだ材料においても、はんだ材料の用途や目的に応じて、Snおよび第2元素以外の第3元素を含有させることができる。このような第3元素としては、In、CoまたはBiなどから選択される1種以上を用いることができる。これらの第3元素の含有量は、合計で、好ましくは5質量%以下、より好ましくは3質量%以下とする。
 e)Au系はんだ材料
 Au系はんだ材料は、Auを主成分とし、Ge、SnおよびSiからなる群から選択される1種以上の第2元素を含有するはんだ材料である。このはんだ材料において、Auと第2元素の含有量は、合計で、90質量%以上、好ましくは98質量%以上とする。
 なお、Auの含有量は、好ましくは75質量%以上98質量%以下、より好ましくは79質量%以上97.5質量%以下とする。第2元素の含有量は、好ましくは2質量%以上25質量%以下、より好ましくは2.5質量%以上21質量%以下とする。
 また、Au系はんだ材料においても、はんだ材料の用途や目的に応じて、Auおよび第2元素以外の第3元素を含有させることができる。このような第3元素としては、Ag、Sb、In、Al(アルミニウム)、Cu、NiおよびPなどから選択される1種以上を用いることができる。これらの第3元素の含有量は、合計で、好ましくは10質量%以下、より好ましくは8質量%以下とする。
 f)In系はんだ材料
 In系はんだ材料は、Inを主成分として、Ag、Sn、Cu、ZnおよびPからなる群から選択される1種以上の第2元素を含有するはんだ材料である。このはんだ材料において、Inの含有量は40質量%以上99.9質量%以下、好ましくは45質量%以上60質量%以下とする。また、第2元素の含有量は0.1質量%以上60質量%以下、好ましくは0.5質量%以上55質量%以下とする。
 g)Zn-Sn系はんだ材料
 Zn-Sn系はんだ材料は、ZnとSnを主成分とし、かつ、Alを含有しないはんだ材料である。ここで、Alを含有しないとは、Alを全く含有しないか、含有する場合であっても、その含有量が0.10質量%以下であることを意味する。このはんだ材料において、ZnとSnの含有量は、合計で、80質量%以上、好ましくは90質量%以上とする。
 なお、Znの含有量は、好ましくは70質量%以上90質量%以下、より好ましくは75質量%以上88質量%以下とする。Snの含有量は、好ましくは5質量%以上30質量%以下、より好ましくは7質量%以上20質量%以下とする。
 また、Zn-Sn系はんだ材料においても、はんだ材料の用途や目的に応じて、ZnおよびSn以外の第3元素を含有させることができる。このような第3元素としては、Ag、Cu、Ge、Ni、SbおよびPなどから選択される1種以上を用いることができる。これらの第3元素の含有量は、好ましくは20質量%以下、より好ましくは15質量%以下とする。
 (3)被覆はんだ材料の特性
 本発明の被覆はんだ材料は、上述した被覆膜を備えるため、長期保管時および溶融時における表面の酸化の進行を防止することができる。また、濡れ広がり性や接合性に優れ、接合部における空隙の発生を防止することができる。さらに、耐久性(耐熱性)にも優れているため、高い信頼性を備えていると評価することができる。
 a)耐酸化性
 本発明の被覆はんだ材料は耐酸化性に優れ、長期保管時や溶融時において、その表面状態がほとんど変化することがない。たとえば、本発明の被覆はんだ材料に対して、中性塩水噴霧試験(JIS2371準拠)を実施した場合であっても、初期状態との比較において、その表面が変色したり、平滑性が悪化したりすることがない。なお、被覆はんだ材料の表面状態は、光学顕微鏡などを用いた観察により確認することができる。
 b)濡れ広がり性
 本発明によれば、未被覆状態のはんだ材料の濡れ広がり度をXR、このはんだ材料に被覆膜を形成した被覆はんだ材料の濡れ広がり度をXmとした場合において、XRに対するXmの比(Xm/XR)を、好ましくは1.05~1.60、より好ましくは1.20~1.45とすることができる。すなわち、本発明によれば、はんだ材料に上述した被覆膜を形成することにより、その濡れ広がり性を向上させることができるといえる。この理由としては、被覆はんだ材料の溶融時に被覆膜の半分以上が熱分解するため、接合したはんだ材料の表面に被覆膜の残渣がほとんど残らないことに加えて、被覆膜の分解生成物がはんだ材料表面の酸化物を還元するためと考えられる。
 これに対して、Xm/XRが1.05未満では、濡れ広がり性が低く、接合部に空隙が発生するおそれがある。一方、Xm/XRが1.60を超えると、この被覆はんだ材料を用いて半導体素子などを基板に接合した場合に、接合部の熱応力緩和性が低下するため、この接合部にクラックなどが発生しやすくなる。
 ここで、はんだ材料の濡れ広がり度X(XmおよびXR)は、次のようにして求めることができる。はじめに、ワイヤ状に加工されたはんだ材料の外径rを測定した後、このはんだ材料から、全長3cm~5cm程度の試験片を切り出す。次に、この試験片を、窒素雰囲気中、はんだ材料の融点よりも50℃高い温度で25秒間加熱したCu基板上に直立させ、さらに25秒間加熱した後、室温まで冷却し、この時点でCu基板と接合した試験片の外径dを測定する。最後に、rに対するdの比(d/r)を算出することにより、濡れ広がり度Xを算出することができる。
 なお、上述したrおよびdの測定は、特に制限されることなく、公知の手段を用いて測定することができる。たとえば、マイクロスコープを用いて、ワイヤ状に加工されたはんだ材料の任意の位置における外径を測定した後、これと直交する方向の外径を測定し、これらの平均値を算出することにより、外径r求めることができる。また、同様にして、Cu基板と接合したはんだ材料(試験片)の外径dを求めることができる。
 c)耐久性
 本発明の被覆はんだ材料は、耐久性(耐熱性)にも優れており、高い信頼性を備えていると評価できる。たとえば、濡れ広がり性の評価と同様にして、はんだを接合したCu基板に対して、-55℃の冷却と+155℃の加熱を1サイクルとするヒートサイクル試験を500サイクル実施した場合において、その接合面に、はがれなどの欠陥が生じることはない。なお、接合面の状態は、Cu基板を樹脂などに埋め込み、任意の位置で切断および断面研磨を行った後、走査型電子顕微鏡(SEM)を用いて断面を観察することにより確認することができる。
 2.被覆はんだ材料の製造方法
 本発明の被覆はんだ材料の製造方法は、
 (1)大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、この有機化合物をラジカル化することでラジカル化有機化合物を形成する、ラジカル化工程と、
 (2)ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより、はんだ材料の表面に厚さが4nm~200nmの炭素化合物からなる被覆膜を形成する、被覆工程と、
を備えることを特徴とする。
 (1)ラジカル化工程
 ラジカル化工程は、大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、この有機化合物をラジカル化することでラジカル化有機化合物を形成する工程である。なお、ラジカル化有機化合物は、次述する被覆工程において、はんだ材料表面の金属と反応することができる限り、その状態が制限されることはなく、単量体、半重合体または重合体のいずれの状態であってもよい。
 a)大気圧プラズマ重合処理
 本発明では、以下で説明する大気圧プラズマ重合処理によって、はんだ材料表面に、炭素化合物からなる被覆膜を形成することが必要となる。プラズマ重合処理は従来から広く知られた技術であるが、本発明で利用する大気圧プラズマ重合処理は、常態では進行しない化学反応を、大気圧プラズマによる反応粒子の活性化により進行させるものである。このような大気圧プラズマ重合処理は、連続処理に向いているため生産性が高く、また、真空装置が不要であるため処理コストが低く、簡単な装置構成で済むといった特徴を有する。
 大気圧プラズマとしては、コロナ放電、誘電体バリア放電、RF放電、マイクロ波放電、アーク放電などを挙げることができるが、本発明では、特に制限されることなく、いずれも適用可能である。このため、プラズマ化するために使用する装置としては、大気圧下で反応ガスをプラズマ化することができるものであれば、特に制限されることなく、公知のプラズマ発生装置を使用することができる。なお、本発明において、大気圧とは、大気圧(1013.25hPa)およびその近傍の気圧を含み、通常の大気圧の変化の範囲内の気圧も含まれる。
 ただし、本発明では、予めプラズマ化された反応ガス中に、炭素数が8以下の有機化合物を、キャリアガスを介して導入することが必要となる。このような構成を採ることにより、有機化合物を瞬時にラジカル化させることができるため、有機化合物の基本骨格(炭素骨格)を維持したまま、緻密な被覆膜をはんだ材料表面の全体にわたって、満遍なく形成することが可能となる。
 これに対して、従来の大気圧プラズマCVD法を利用した被覆膜の形成方法では、装置内に、反応ガス、キャリガスおよび被覆材料を供給した後に、反応ガスのプラズマ化と被覆材料の活性化(ラジカル化)を同時に行っており、被覆材料の活性化を均一なものとすることができない。このため、従来の被覆はんだ材料の製造方法では、被覆膜を緻密なものにできなかったり、あるいは、被覆膜をはんだ材料の表面全体にわたって満遍なく形成することが困難となったりする。
 b)プラズマ化条件
 反応ガスをプラズマ化するための条件は、使用するプラズマ装置や目的とする被覆膜の厚さなどに応じて適宜選択されるべきものであるが、炭素数が8以下の有機化合物を効率よくラジカル化し、緻密な被覆膜を形成する観点から、ジュネレータ出力電圧を、150V~350Vとすることが好ましく、200V~330Vとすることがより好ましい。ジュネレータ出力電圧が150V未満では、反応ガスを十分にプラズマ化できず、有機化合物を十分にラジカル化できない場合がある。一方、ジュネレータ出力電圧が350Vを超えると、装置の破損といった問題が生じる場合がある。
 c)反応ガス
 反応ガスとしては、プラズマ化が容易なものであれば特に制限されることはなく、たとえば、Ar(アルゴン)、He(ヘリウム)、Ne(ネオン)、Kr(クリプトン)、Xe(キセノン)、N2(窒素)、O2(酸素)および空気などを使用することができる。これらの反応ガスは、単独で使用してもよく、2種類以上を所定の割合で混合して使用してもよい。なお、これらの中でも、コストや入手のしやすさから、Ar、He、N2、O2および空気の群から選択される少なくとも1種を用いることが好ましい。特に、安価なN2、O2または空気を用いることがより好ましく、空気を用いることがさらに好ましい。
 d)キャリアガス
 キャリアガスとしては、有機化合物を円滑に搬送することができるものであれば特に制限されることはなく、たとえば、Ar、He、Ne、Kr、XeおよびN2などを使用することができる。これらのガスは、単独で使用してもよく、2種類以上を所定の割合で混合して使用してもよい。なお、これらの中でも、同様に、コストや入手のしやすさから、Ar、HeおよびN2の群から選択される少なくとも1種を用いることが好ましく、N2を使用することがより好ましい。
[規則91に基づく訂正 06.04.2015] 
 e)有機化合物
 有機化合物としては、被覆膜を形成した際に、150℃~300℃で加熱し、溶融させた場合の質量減少率が60質量%以上となることが必要とされる。このような被覆膜を形成するための有機化合物としては、炭素数が8以下のものを用いることが必要となる。これは、炭素数が9以上の有機化合物は、常態で液体であり、かつ、比較的揮発性が低いため、キャリアガスとの均一な混合が難しく、はんだ材料表面に、厚さが4nm~200nmで緻密な被覆膜を満遍なく形成することが困難となるからである。
 炭素数が8以下の有機化合物としては、炭素数が4以下の炭化水素系ガスや炭素数が5以上8以下の炭化水素系溶剤を好適に用いることができる。なお、炭化水素系ガスには、常態で気体であり、炭素数が4以下の炭化水素化合物、および、この炭化水素化合物の水素原子の一部を他の原子や官能基で置換した化合物が含まれる。また、炭化水素系溶剤には、常態で液体であり、炭素数が5以上8以下の炭化水素化合物、および、この炭化水素化合物の水素原子の一部を他の原子や官能基で置換した化合物が含まれる。これらの有機化合物は、常態で気体または適度な揮発性を有する液体であるため、キャリアガスとの均一な混合が容易であり、工業規模の生産においても、はんだ材料表面に緻密な被覆膜を、容易かつ満遍なく形成することができる。
 本発明では、有機化合物として、上述の炭化水素系ガスまたは炭化水素系溶剤のいずれか一方を用いることを前提としているが、取扱性や安全性を確保することができる限り、炭化水素系ガスと炭化水素系溶剤を混合して用いることも可能である。また、有機化合物(炭化水素系ガス、炭化水素系溶剤)を導入する際、必ずしも有機化合物のみで導入する必要はなく、有機化合物を主成分とする限り、安定化剤や酸化防止剤などと混合した状態で導入してもよい。
 なお、有機化合物の導入量は、使用する有機化合物の種類、被覆対象となるはんだ材料の形状や大きさ、プラズマ化条件などを考慮の上、被覆膜の厚さが上述した範囲になるように適宜調整することが必要となる。
 [炭化水素系ガス]
 炭化水素系ガスは、常態で気体であり、キャリアガスや反応ガスとの均一な混合を容易に行うことができ、かつ、その混合状態を比較的長時間にわたって維持することができる。このため、ラジカル化工程での均一なラジカル化(活性化)が容易であり、きわめて緻密な被覆膜をはんだ材料表面の全体にわたって満遍なく形成することができる。
 このような炭化水素系ガスとしては、炭素数が4以下の脂肪族化合物および/または脂環式化合物を用いることが好ましい。
 たとえば、炭素数が4以下の脂肪族化合物としては、アルカン、アルケンおよびアルキンなどを使用することができる。具体的には、メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、メチルアセチレン、エチルアセチレン、1-ブテン、シス-2-ブテン、トランス-2-ブテン、イソブテンおよび1,3-ブタジエンなどから選択される少なくとも1種を用いることができる。
 また、炭素数が4以下の脂環式化合物としては、シクロプロパン、シクロブタン、シクロブテンなどから選択される少なくとも1種を用いることができる。
 ただし、これらの炭化水素系ガスは人体に有害であるため、取扱時(特に、キャリアガスとの混合時)には、局所排気装置などを設置することにより飛散を防止し、安全性を確保することが必要となる。
 [炭化水素系溶剤]
 炭化水素系溶剤は、常態で液体であり、かつ、適度な揮発性を有するため、安全性に優れるばかりでなく、キャリアガスや反応ガスとの均一な混合が可能である。このため、上述した炭化水素系ガスと同様に、ラジカル化工程での均一なラジカル化(活性化)を比較的容易に行うことができ、緻密な被覆膜をはんだ材料表面の全体にわたって満遍なく形成することが可能である。
 このような炭化水素化合物としては、炭素数が5以上8以下の脂肪族化合物、脂環式化合物または芳香族化合物を用いることができる。
 たとえば、炭素数が5以上8以下の脂肪族化合物としては、アルカン、アルケンおよびアルキンのほか、アルコールやカルボン酸なども用いることができる。これらの中でも、被覆膜の熱分解性のしやすさを考慮すると、アルカンが好ましい。具体的には、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタンなどの直鎖状のもののほか、2-メチルブタン、2,2-ジメチルプロパン、2-メチルペンタン、3-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、2-メチルヘキサン、3-メチルヘキサン、2-エチルペンタン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2-メチルヘプタン、2,3-ジメチルヘキサン、3-エチルヘキサンなどの分岐を有するものを好適に用いることができる。
 炭素数が5以上8以下の脂環式化合物としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロペンタン、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロオクタノール、メチルシクロペンタン、エチルシクロペンタン、シス-1,3-ジメチルシクロペンタン、メチルシクロヘキサン、ノルボルナン、シクロヘキセンなどを用いることができる。
 炭素数が5以上8以下の芳香族化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼンなどを用いることができる。
 これらの中でも、取扱いの容易性や被覆膜の熱分解性を考慮すると、直鎖状のn-ペンタン、n-ヘキサン、n-ヘプタンが好ましく、n-ヘキサンが特に好ましい。
 ただし、炭化水素系溶剤は、キャリアガスとの混合時またはラジカル化する際の条件によっては、揮発状態を長時間にわたって維持することができない場合がある。この場合、炭化水素系溶剤が液体状となり、その分布に偏りが生じ、被覆膜の組成や厚さにばらつきが生じるおそれがある。このため、キャリアガスとの混合時やラジカル化する際の条件を適切に制御することが必要なる。
 (2)被覆工程
 被覆工程は、ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより、はんだ材料の表面に厚さが4nm~200nmの炭素化合物からなる被覆膜を形成する工程である。
 a)はんだ材料
 本発明において、被覆対象となるはんだ材料は特に制限されることなく、たとえば、ワイヤ、リボン、シート、プリフォーム材、ボール、微粉末などの種々の形状のはんだ材料に対して適用することができる。ただし、いずれのはんだ材料であっても、成形時に、温度や雰囲気などの条件を制御し、その表面に形成される酸化膜を薄く調整したり、表面粗さを小さくしたりすることにより、本発明の効果をより確実に得ることができる。
 以下、シート状のはんだ材料およびワイヤ状のはんだ材料を成形する場合を例に挙げて、本発明におけるはんだ材料の成形方法について詳細に説明する。ただし、従来の成形方法と同様である部分については、説明を省略ないしは簡略化する。
 a―1)原料の融解
 原料の融解方法としては、抵抗加熱法、還元拡散法、高周波溶解法など公知の手段を用いることができ、特に、短時間で、効率よく融解することができる高周波溶解法が好ましい。これらの方法により融解した原料を、予め用意した鋳型に鋳込むことにより、所望の形状のはんだ母合金インゴットを形成する。
 融解や鋳込み時に酸素が存在すると、原料の酸化が進行するばかりでなく、鋳込み時に酸化膜を巻き込み、得られるはんだ材料表面の酸化膜が厚くなったり、表面粗さが粗くなったりする。このため、原料の融解時の雰囲気を不活性ガス雰囲気とするとともに、鋳込み時に、鋳型の溶湯入口に不活性ガスを流通させることが好ましい。
 a―2)はんだ材料の成形
 [シート状はんだ材料]
 シート状のはんだ材料を成形する場合、はんだ母合金インゴットを圧延する必要がある。圧延方法としては、特に制限されることなく、はんだ材料の性状に応じて、冷間圧延、温間圧延、熱間圧延およびプレス圧延などの中から適当なものを選択すればよい。また、これらの圧延方法を2種類以上組み合わせてもよい。これにより、圧延中におけるクラックやバリの発生を抑制することができるばかりでなく、圧延速度を上げて、生産性の向上を図ることも可能となる。たとえば、Au系はんだ材料は、Pb系またはSn系はんだ材料と比べて硬質であるため、温間圧延または熱間圧延により、ある程度の厚さまで薄く圧延した後、冷間圧延を行うことが好ましい。
 なお、温間圧延や熱間圧延は、はんだ材料表面の酸化が進行しやすく、酸化膜を薄くする観点から、好適な方法とはいえない。したがって、これらの方法で圧延を行う場合には、生産性や目的とする酸化膜の厚さを考慮して、圧延時の条件を厳密に管理することが必要となる。
 圧延に使用するロールの表面粗さ(算術平均粗さRa)は、好ましくは0.30μm以下、より好ましくは0.20μm以下とする。ただし、2種類以上の圧延方法を組み合わせて行う場合には、少なくとも最後の圧延に使用する圧延ロールの表面粗さ(Ra)を0.30μm以下とすればよい。圧延ロールの表面粗さ(Ra)が0.30μmを超えると、得られるはんだ材料の表面粗さ(Ra)を小さくすることが困難となる。このため、酸化膜の厚さをごく薄く、たとえば、120μm以下に制御した場合であっても、はんだ材料の濡れ広がり性や接合性が悪化してしまう場合がある。なお、表面粗さ(Ra)とは、粗さ曲線の算術平均粗さを意味し、たとえば、原子間力顕微鏡による測定により求めることができる。
 [ワイヤ状はんだ材料]
 ワイヤ状のはんだを成形する場合、はんだ母合金インゴットを押出法や伸線法などにより成形する。
 たとえば、押出法により成形する場合、はんだ材料の組成に応じた適切な押出温度を選択する必要がある。これは、押出温度が高すぎると、表面の酸化が進行しやすくなり、逆に、押出温度が低すぎると、はんだ材料が硬い状態で押し出されることとなるため、成形に長時間を要するためである。
 また、押出は、不活性ガス中で行うことが好ましく、密閉状態で、不活性ガスを流通させながら行うことがより好ましい。これは、押出時に酸素が存在すると、押出温度まで加熱されたワイヤがすぐに酸化してしまうからである。
 a―3)研磨・洗浄
 はんだ材料表面の酸化膜を薄くしたり、表面粗さ(Ra)を小さくしたりするためには、はんだ材料表面を酸洗浄や研磨することが好ましい。酸洗浄や研磨を行うタイミングとしては、はんだ母合金を鋳造した後、所定の加工を行う前、加工中または加工後のいずれのタイミングでもよい。
 酸洗浄を行う場合に使用する酸の種類は、はんだ材料の組成に応じて適宜選択する限り、特に制限されることはなく、無機酸と有機酸のいずれも用いることができる。しかしながら、コスト面を考慮すると、安価で、酸化膜除去効果の大きい無機酸を用いることが好ましい。具体的には、無機酸としては、塩酸、硫酸、硝酸、リン酸、酢酸などを用いることができる。また、有機酸としては、クエン酸やシュウ酸などを用いることができる。ただし、強酸を用いる場合、はんだ材料の酸性溶液への溶解速度が速いことに起因して、部分的な溶解が進行し、表面粗さ(Ra)が大きくなったり、組成ずれが生じたりする場合がある。このため、溶解速度が遅く、取扱いの容易な弱酸を用いることが好ましい。なお、酸洗浄では、酸濃度、洗浄時間および洗浄温度などについても十分に配慮する必要がある。
 たとえば、5%の酢酸水溶液を用いて、Pb系はんだ材料を洗浄する場合、洗浄温度を20℃、洗浄時間を15分とすることが好ましい。この場合、はんだ材料表面の酸化膜が、酢酸水溶液に接触した直後の溶解量が最も多く、その後次第に減少し、ある段階で飽和する。具体的には、厚さ100μmの酸化膜を洗浄する場合、酸化膜の厚さは5分程度で20μm~30μmまで薄くなり、15分程度で10μm程度まで薄くなる。
 一方、はんだ材料表面を研磨する場合、研磨方法は特に制限されない。たとえば、はんだ材料を研磨紙で挟み込み、適度な力で押圧しつつ、引っ張りながら巻き取っていくことで研磨してもよい。または、はんだ材料の研磨方向(巻取方向)と垂直方向に研磨紙を往復移動させることにより、研磨してもよい。
 b)ラジカル化有機化合物とはんだ材料表面の金属との反応
 上述したように、ラジカル化有機化合物は、単量体、半重合体および重合体といった種々の形態で存在している。したがって、ラジカル化有機化合物とはんだ材料表面の金属との反応としては、
 (i)ラジカル化有機化合物が、はんだ材料表面の金属と反応した後に重合する態様、
 (ii)ラジカル化有機化合物が重合しながら、はんだ材料表面の金属と反応する態様、または、
 (iii)ラジカル化有機化合物が重合した後に、はんだ材料表面の金属と反応する態様、
が考えられる。本発明の被覆はんだ材料の製造方法では、上述した被覆はんだ材料を得ることができる限り、いずれかの態様に制限されることはない。
 c)ノズル距離およびノズル移動速度
 本発明では、上述のように、被覆膜の厚さを4nm~200nmの範囲とする必要がある。この厚さは、使用するプラズマ重合処理装置の条件設定により適宜調整することができる。
 たとえば、プラズマ重合処理装置として、プラズマトリート株式会社製の大気圧プラズマ重合処理装置(プラズマポリマーラボシステム PAD-1型)を使用する場合、ノズル距離を、好ましくは5mm~30mm、より好ましくは7mm~25mmとし、ノズル移動速度を、好ましくは1m/分~40m/分、より好ましくは7m/分~35m/分とする。ノズル距離およびノズル速度をこのような範囲に調整することにより、はんだ材料表面の酸化を抑制しつつ、適度な厚さで、かつ、厚さのばらつきが小さい被覆膜を、効率よく形成することが可能となる。
 ただし、有機化合物とはんだ材料の組み合わせによっては、ノズル距離およびノズル移動速度を上記範囲に設定したとしても、被覆膜の厚さが4nm~200nmの範囲とならない場合がある。このため、ノズル距離およびノズル速度は、予備試験を実施した上で適宜選択することが特に好ましい。
 なお、本発明において、ノズル距離とは、被覆膜の材料である有機化合物を噴出するノズルの先端から、被覆膜が形成されるはんだ材料表面までの距離をいう。また、ノズル移動速度とは、ノズルがはんだ材料に対して移動する速度をいい、基材の搬送速度とは、はんだ材料がノズルに対して移動する速度をいう。
 d)大気圧プラズマ重合処理の回数
 被覆工程では、ノズル距離やノズル移動速度などの条件を適切に制御することにより、はんだ材料に対して、大気圧プラズマ重合処理を1回のみ行った場合であっても、適切な厚さの被覆膜を形成することが可能である。しかしながら、はんだ材料表面に対して、複数回の大気圧プラズマ重合処理を行うことで、より緻密な被覆膜を確実に形成することができる。ただし、この場合には、被覆はんだ材料の生産性が低下するばかりか、薄い被覆膜を形成することが困難となるおそれがある。このため、大気圧プラズマ重合処理の回数は、被覆はんだ材料に求められる特性などを考慮の上で適宜設定することが必要となる。
 3.被覆はんだ材料によるダイボンディング方法
 本発明の被覆はんだ材料は、各種半導体素子と基板との接合に用いることができる。具体的には、ディスクリート、IC(集積回路)チップ、モジュールなど、多種多様の半導体素子と基板との接合に用いることができる。以下、本発明の被覆はんだ材料を用いたダイボンディング方法について、ICチップをリードフレームのダイ部に接合する場合を例に挙げて説明する。
 なお、本発明の被覆はんだ材料を用いてダイボンディングをする場合、ICチップの水平を保つため、はんだ材料に、高融点粒子を添加することが好ましい。高融点粒子としては、はんだ材料の融点よりも50℃以上高いものを使用することが好ましく、具体的には、CuやNiなどの金属粒子、SiO2などの酸化物粒子、SiCなどの炭化物粒子を用いることができる。これらの高融点粒子は、その平均粒径が1μm~70μmであることが好ましい。また、高融点粒子の含有量は、はんだ材料に対して1質量%~40質量%程度とすることが好ましい。
 一般的なダイボンディング装置では、はんだ材料や半導体素子を供給するための開口部を有する半密閉状態のチャンバ内に、ヒータ部が設けられており、このヒータ部に基板が搬送された後、加熱される。この際、チャンバ内に、不活性ガスまたはフォーミングガス(不活性ガスに、還元性ガスとして水素を混合したガス)を流通させておく。この状態で、所定の温度まで加熱された基板上にはんだ材料を供給するとともに、溶融させ、その上に半導体素子を載せ、加圧することにより、基板と半導体素子を接合する。
 このとき、はんだ材料は、ヒータ部で、加熱された不活性ガスと空気の混合ガスを吹き付けられた状態で待機するため、その表面で酸化が進行することとなる。また、不活性ガスが流通しているとはいえ、チャンバ内は完全な密閉状態とはなっていないため、はんだ材料の供給時にチャンバ内に流入した酸素によっても、酸化が進行することとなる。
 加えて、良好な接合を行うため、ヒータ部の温度を、はんだ材料の融点より30℃~70℃程度高い温度に設定する必要がある。特に、Snを5質量%含むPb系はんだ材料などの高融点はんだを使用する場合には、ヒータ部の温度を340℃~380℃程度に設定しなければならないため、はんだ材料の酸化が一層進行することとなる。
 このようなダイボンディングにおいて、従来のはんだ材料に変えて、本発明の被覆はんだ材料を使用すれば、被覆膜の作用により、待機時および溶融時におけるはんだ材料の酸化を防止することが可能となる。また、本発明の被覆はんだ材料を構成する被覆膜は熱分解性に優れるため、溶融時に被覆膜が残存して、被覆はんだ材料の濡れ広がり性や接合性を阻害することがない。すなわち、本発明の被覆はんだ材料は、濡れ広がり性や接合性(接合強度)に優れ、空隙がきわめて少ない接合を、工業規模の製造においても容易に実現できるといえる。このため、本発明の被覆はんだ材料は、高信頼性が要求される半導体素子接合基板、および、この基板を用いた各種装置に対して好適に用いることができる。
 以下、本発明について実施例を参照しながら、さらに詳細に説明する。
 1.はんだ材料および被覆はんだ材料の作製
 はじめに、被覆対象となるはんだ材料を作製した。原料として、純度が99.9%以上のBi、Zn、Ag、Sn、Pb、Cu、Au、In、Al、Ni、Sb、Ge、TeおよびPを準備した。なお、得られるはんだ材料において、サンプリング場所による組成のばらつきを防止するため、大きな薄片やバルク状の原料については、切断または粉砕し、3mm以下の大きさに調整した。
 このように調整された原料から所定量を秤量して、グラファイト製の坩堝に充填し、この坩堝を高周波溶解炉内に設置するとともに、酸化を抑制するために、原料1kg当たり0.7L/分以上の窒素を炉内に流通させた。この状態で、溶解炉の電源を入れ、局所的な組成のばらつきが生じないように混合棒で十分に撹拌しながら、原料を融解させた。原料が十分に融解したことを確認した後、溶解炉の電源を切り、速やかに坩堝を取り出し、得られた溶湯をはんだ母合金の鋳型に鋳込み、組成の異なるはんだ母合金インゴット(厚さ5mmの板状)を作製した。なお、鋳型は、はんだ母合金の製造の際に用いられる一般的な鋳型と同様のものを使用した。
 各はんだ母合金インゴットを、圧延機を用いて、厚さ400μmまで粗圧延(温間圧延、圧延温度:90℃)した。続いて、各インゴットについて、送り速度を調整しながら、表面粗さ(Ra)が0.20μmの圧延ローラにより仕上げ圧延を行った。最後に、スリッタ加工により裁断することで、シート状、25mm幅のはんだ材料1~35を得た。これらのはんだ材料の組成について、ICP発光分光分析器(株式会社島津製作所製、ICPS-8100)を用いて測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例1~110、比較例1~13)
 実施例1~110および比較例1~13として、はんだ材料1~35の表面に、大気圧プラズマ重合処理装置(プラズマトリート株式会社製、プラズマポリマーラボシステム PAD-1型)を用いて、表2に示す条件で被覆膜を形成したサンプルをそれぞれ用意した。なお、これらの実施例および比較例では、キャリアガスとしてN2を使用し、被覆材料の導入量を20g/時間に調整するとともに、プラズマ化条件を下記のように設定した。   
  プラズマ発生装置の発信周波数  :21kHz
  ジェネレータの出力電圧     :280V
  圧力              :大気圧(1013.25hPa)
 得られた被覆はんだ材料の被覆膜の厚さならびにその最大値および最小値は、被覆はんだ材料を断面観察可能な状態とした上で、TEM(株式会社日立ハイテクノロジース製、透過型電子顕微鏡HF-2000)を用いて、任意の3箇所において、被覆膜の厚さを測定することにより算出した。
 なお、比較例11および12のサンプルは、被覆膜の厚さが薄く、十分な耐酸化性を得ることができなかった。このため、これらの比較例については、後述する評価項目のうち、b)~d)の評価は行わなかった。
 また、被覆材料として炭化水素系ガスを使用した実施例1~21、43~45、49~57、67~75、85~89、95~101および109、ならびに、比較例1~6では、炭化水素系ガスとキャリアガスとの混合時に、局所排気装置により、炭化水素系ガスの飛散を防止した。一方、被覆材料として炭化水素系溶剤を使用した実施例22~42、46~48、58~66、76~84、90~94、102~108および110、ならびに、比較例7~12では、炭化水素系溶剤が揮発状態を維持できるように、圧力や温度などの条件を適宜調整した。
 (比較例14)
 比較例14として、はんだ材料1を、シリコーン系コーティング剤(東レ・ダウコーニング株式会社製、APZ6601)に10分間浸漬した後、120℃で10分間乾燥することにより、被覆膜を形成したサンプルを用意した。
 (比較例15)
 比較例15として、はんだ材料1を、フッ素系コーティング剤(株式会社フロロテクノロジー製、FG-3020C30)に10分間浸漬した後、冷風で10分間乾燥することにより、被覆層を形成したサンプルを用意した。
 (比較例16~51)
 比較例16~51として、はんだ材料1~35の表面に、被覆膜を形成していないサンプルをそれぞれ用意した。
 2.評価
 各サンプルに対して、下記a)~d)の評価を行った。これらの結果を表2に示す。
 a)耐酸化性の評価
 各サンプルの耐酸化性を、光学顕微鏡(株式会社ニコン成、ECLPE M6600)を用いて、その表面状態を観察することにより評価した。
 はじめに、実施例1~110および比較例1~15のサンプルに対して、初期(被覆前)と被覆後のサンプルの表面状態を観察した。この結果、被複後の表面状態が、初期の表面状態と同様である場合を「良(○)」、初期の表面状態と比較して、変色や平滑性の悪化が確認されたものを「不良(×)」と評価した。
 また、すべてのサンプルに対して、中性塩水噴霧試験(JISZ2371準拠)を7日間行った後に、その表面状態を観察した。この結果、試験後の表面状態が、初期の表面状態と同様であるものを「良(○)」、初期の表面状態と比較して、変色や平滑性の悪化が確認されたものを「不良(×)」と評価した。
 b)熱分解性の評価
 実施例1~110、比較例1~10および13~15のサンプルに形成した被覆膜の熱分解性を、各サンプルの被覆前、被覆後加熱前および加熱後の質量を測定することにより評価した。具体的には、実施例1~110、比較例1~10および13~15のサンプルに対して、被覆前の質量W0、被覆後加熱前の質量W1、200℃で加熱し、溶融させ、室温まで冷却した後の質量W2をそれぞれ測定した。これらの測定値より、加熱前の被覆膜の質量w1(=W1-W0)および加熱後の被腹膜の質量w2(=W2-W0)を求め、加熱前後における質量減少率α(=(w1-w2)/w1×100)を算出した。この結果、質量減少率αが、80質量%以上であったものを「良(◎)」、60質量%以上80質量%未満であったものを「可(○)」60質量%未満であったものを「不良(×)」と評価した。なお、被覆膜を形成しなかったサンプル(比較例16~51)に対しては、本評価を行わなかった。
 c)濡れ性の評価
 実施例1~110、比較例1~10および13~51のサンプルの濡れ性(濡れ広がり性、接合性および空隙の有無)を、雰囲気制御式濡れ性試験機(自社製)により評価した。
 はじめに、雰囲気制御式濡れ性試験機のヒータ部に2重のカバーをして、ヒータ部の周囲4箇所から窒素を12L/分の流量で流しながら、ヒータ温度を融点より50℃高い温度に設定して加熱し、ヒータ温度が安定したことを確認した後、Cu基板(板厚:約0.70mm)をヒータ部に設置し、25秒間加熱した。
 同時に、外径0.5mmのワイヤ状に加工した各サンプルから、軸方向の長さが3cm~5cm程度の試験片を切り出し、Cu基板上に直立させた後、さらに25秒間加熱した。加熱終了後、Cu基板をヒータ部から取り上げ、窒素雰囲気中で室温まで冷却した。Cu基板が十分に冷却したことを確認した後、試験片とCu基板との界面(接合面)を目視で観察した。また、このCu基板を樹脂に埋め込み、断面研磨した後、接合面を目視で観察した。
 この結果、Cu基板と試験片が接合しており、かつ、試験片の濡れ広がり性がよく(試験片が薄く濡れ広がっており)、空隙が存在しない場合を「良(○)」と、接合することはできたが、試験片の濡れ広がり性が不十分である場合(試験片が盛り上がっている場合)、または、空隙が発生している場合を「不良(△)」と、接合することができなかった場合を「不可(×)」と評価した。
 また、実施例1~110、比較例1~10および13~15のサンプルに対しては、被覆膜の濡れ広がり性に対する影響を評価した。具体的には、これらのサンプルから切り出した試験片について、未被覆状態の濡れ広がり度XRと、被覆膜を形成した状態の濡れ広がり度Xmを測定し、XRに対するXmの比(Xm/XR)を算出することにより評価した。なお、本評価において、加熱前のサンプルの外径rおよびCu基板に接合した後の試験片の外径dは、マイクロスコープ(株式会社ニコン製、MESURING MICROSCOPE NM-40)による測定値に基づいて算出した。この結果、Xm/XR比が、1.20以上1.45以下の範囲にあったものを「優(◎)」と、1.05以上1.60以下の範囲にあったもの(ただし、1.20以上1.45以下の範囲にあったものを除く)を「良(○)」と、0.90を超えて1.05未満の範囲にあったものを「不良(△)」と、1.60を超えたものを「不可(×)」と評価した。
 d)耐久性の評価
 実施例1~110、比較例1~10および13~51のサンプルの耐久性(耐熱性)を、ヒートサイクル試験を行うことにより評価した。具体的には、濡れ性の評価において、試験片がCu基板に接合できたもの(濡れ性の評価が○および△のもの)を各1個ずつ別途用意し、このCu基板に対して、-55℃の冷却と、+150℃の加熱を1サイクルとするヒートサイクル試験を500サイクル実施した。
 試験後、はんだ材料をCu基板ごと樹脂に埋め込み、断面研磨した後、SEM(株式会社日立ハイテクノロジース製、走査電子顕微鏡S-4800)により接合面を観察した。この結果、試験前と同様の接合面を保っていた場合を「良(○)」、接合面が剥離していたり、クラックが発生していたりした場合を「不良(×)」と評価した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 3.評価結果
 以上より、実施例1~110の被覆はんだ材料は、被覆膜の厚さが適切な範囲にあり、かつ、厚さの均一性が高いばかりでなく、その熱分解性が良好であることが理解される。また、これらの被覆はんだ材料は、未被覆のはんだ材料(比較例16~51)との比較において、耐酸化性や濡れ性が改善されているばかりでなく、耐久性も良好であることが理解される。
 これに対して、比較例1~15の被覆はんだ材料は、実施例1~110の被覆はんだ材料との比較において、耐酸化性、濡れ性および耐久性のいずれか1つ以上が劣っていることが理解される。

Claims (10)

  1. [規則91に基づく訂正 06.04.2015] 
     はんだ材料の表面に被覆膜が形成された被覆はんだ材料であって、
     前記被覆膜は、大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、該有機化合物をラジカル化することでラジカル化有機化合物を形成した後、該ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより形成された炭素化合物からなり、厚さが4nm~200nmであり、かつ、150℃~300℃で加熱し、溶融させた場合の質量減少率が60%以上である、
    被覆はんだ材料。
  2.  前記被覆膜の厚さの最大値と最小値の差が10nm以内である、請求項1に記載の被覆はんだ材料。
  3. [規則91に基づく訂正 06.04.2015] 
     ワイヤ状に加工されたはんだ材料の外径をrとし、該はんだ材料を、該はんだ材料の融点よりも50℃高い温度で25秒間加熱したCu基板上に直立させ、さらに25秒間加熱した後、室温まで冷却したときに、該Cu基板と接合したはんだ材料の外径をdとし、該rに対する該dの比を、濡れ広がり度Xと定義した場合において、
     未被覆状態のはんだ材料の濡れ広がり度XRに対する、該はんだ材料を前記被覆膜によって被覆した被覆はんだ材料の濡れ広がり度Xmの比が1.05~1.60の範囲にある、請求項1または2に記載の被覆はんだ材料。
  4.  前記はんだ材料は、Bi系はんだ材料、Bi-Sn系はんだ材料、Pb系はんだ材料、Sn系はんだ材料、Au系はんだ材料、In系はんだ材料またはZn-Sn系はんだ材料の群から選択される1種である、請求項1~3のいずれかに記載の被覆はんだ材料。
  5.  大気圧下でプラズマ化された反応ガス中に、炭素数が8以下の有機化合物をキャリアガスとともに導入し、該有機化合物をラジカル化することでラジカル化有機化合物を形成する、ラジカル化工程と、
     前記ラジカル化有機化合物をはんだ材料表面の金属と反応させることにより、該はんだ材料の表面に厚さが4nm~200nmの炭素化合物からなる被覆膜を形成する、被覆工程と、
    を備える、被覆はんだ材料の製造方法。
  6.  前記有機化合物として、炭素数が4以下の脂肪族化合物および/または脂環式化合物からなる炭化水素系ガスを用いる、請求項5に記載の被覆はんだ材料の製造方法。
  7.  前記有機化合物として、炭素数が5以上8以下の脂肪族化合物、脂環式化合物および芳香族化合物の群から選択される少なくとも1種からなる炭化水素系溶剤を用いる、請求項5に記載の被覆はんだ材料の製造方法。
  8.  前記反応ガスとして、アルゴン、ヘリウム、窒素、酸素および空気の群から選択される少なくとも1種を用いる、請求項5~7のいずれかに記載の被覆はんだ材料の製造方法。
  9.  前記キャリアガスとして、アルゴン、ヘリウムおよび窒素の群から選択される少なくとも1種を用いる、請求項5~8のいずれかに記載の被覆はんだ材料の製造方法。
  10.  大気圧プラズマ重合処理装置を用い、ノズル距離を5mm~30mm、および、ノズル速度または基材の搬送速度を1m/分~40m/分として、前記被覆膜を形成する、請求項5~9のいずれかに記載の被覆はんだ材料の製造方法。
     
     
PCT/JP2015/058958 2014-03-25 2015-03-24 被覆はんだ材料およびその製造方法 WO2015146999A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15769736.8A EP3124166B1 (en) 2014-03-25 2015-03-24 Coated solder material and method for producing same
US15/128,181 US10512988B2 (en) 2014-03-25 2015-03-24 Coated solder material and method for producing same
JP2016510391A JP6455508B2 (ja) 2014-03-25 2015-03-24 被覆はんだ材料およびその製造方法
CN201580015304.8A CN106211763B (zh) 2014-03-25 2015-03-24 包覆焊料材料及其制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014062774 2014-03-25
JP2014-062774 2014-03-25
JP2014-111493 2014-05-29
JP2014111493 2014-05-29
JP2014-175080 2014-08-29
JP2014175080 2014-08-29

Publications (1)

Publication Number Publication Date
WO2015146999A1 true WO2015146999A1 (ja) 2015-10-01

Family

ID=54195511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058958 WO2015146999A1 (ja) 2014-03-25 2015-03-24 被覆はんだ材料およびその製造方法

Country Status (6)

Country Link
US (1) US10512988B2 (ja)
EP (1) EP3124166B1 (ja)
JP (1) JP6455508B2 (ja)
CN (1) CN106211763B (ja)
TW (1) TWI638699B (ja)
WO (1) WO2015146999A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140864A (ja) * 2015-01-29 2016-08-08 住友金属鉱山株式会社 被覆はんだワイヤおよびその製造方法
JP2017100145A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 はんだ粉末の製造方法
WO2018096917A1 (ja) * 2016-11-22 2018-05-31 千住金属工業株式会社 はんだ付け方法
EP3330039A4 (en) * 2015-07-27 2019-01-02 Sumitomo Metal Mining Co., Ltd. Coated solder wire and method for manufacturing same
EP3848149A1 (en) 2020-01-09 2021-07-14 3S Silicon Tech, Inc. Solder paste composition and soldering method using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612112B2 (en) * 2015-04-09 2020-04-07 Electronics And Telecommunications Research Institute Noble metal material for 3-dimensional printing, method for manufacturing the same, and method for 3-dimensional printing using the same
CN109894769B (zh) * 2019-03-28 2021-09-24 福建工程学院 一种高抗蠕变性的锌锡基无铅钎料及其制备方法
EP3718678A1 (de) * 2019-04-03 2020-10-07 Felder GmbH Löttechnik Verfahren zur herstellung eines snbi-lötdrahtes, lötdraht und vorrichtung
CN110238557B (zh) * 2019-06-04 2020-08-07 清华大学 一种ZnSn基高温无铅焊料及其制备方法
CN112296550B (zh) * 2020-10-13 2022-07-26 好利来(厦门)电路保护科技有限公司 一种锌系高温无铅焊锡及其生产方法
CN112338389B (zh) * 2020-10-27 2022-02-22 国网河南省电力公司电力科学研究院 一种铝铜钎焊用层叠带状自钎钎料及其制备方法
CN113042932A (zh) * 2021-03-23 2021-06-29 无锡日联科技股份有限公司 一种tu1无氧铜真空钎焊钎料及其应用
CN113088748B (zh) * 2021-04-02 2022-03-04 深圳市荟艺珠宝实业有限公司 一种黄金焊料制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105172A (ja) * 1999-10-07 2001-04-17 Tanaka Electronics Ind Co Ltd 半田材料及びダイボンディング方法
JP2004339583A (ja) * 2003-05-16 2004-12-02 Sony Corp 錫又は錫合金材の表面処理剤、錫又は錫合金材及びその表面処理方法、錫合金系はんだ材料及びこれを用いたはんだペースト、錫合金系はんだ材料の製造方法、電子部品、プリント配線板、並びに電子部品の実装構造
JP2005254246A (ja) * 2004-03-09 2005-09-22 Hitachi Metals Ltd はんだボール及びその製造方法
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法
JP2010120030A (ja) * 2008-11-18 2010-06-03 Hitachi Ltd はんだボール
JP2012509991A (ja) * 2008-11-21 2012-04-26 ヘンケル コーポレイション 熱分解性ポリマー被覆金属粉末
JP2014195831A (ja) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 被覆はんだ材料およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102768D0 (en) 1991-02-09 1991-03-27 Tioxide Group Services Ltd Coating process
US5272007A (en) 1992-02-21 1993-12-21 Union Carbide Chemicals & Plastics Technology Corporation Solder powder coated with parylene
JPH10166177A (ja) 1996-12-10 1998-06-23 Tanaka Denshi Kogyo Kk 被覆半田材料及びその製造方法
DE19826756C2 (de) * 1998-06-15 2002-04-18 Juergen Schulze Verfahren zum Verkapseln von feinen Lotmetallpulvern und danach hergestellte Lotmetallpulver
JP2001144111A (ja) 1999-11-12 2001-05-25 Tanaka Electronics Ind Co Ltd 半導体装置の製造方法
KR100823858B1 (ko) 2000-10-04 2008-04-21 다우 코닝 아일랜드 리미티드 피복물 형성 방법 및 피복물 형성 장치
CN1112463C (zh) * 2000-12-15 2003-06-25 北京航空航天大学 一种等离子化学气相沉积镀膜方法和设备
WO2006043432A1 (ja) * 2004-10-19 2006-04-27 Mitsubishi Denki Kabushiki Kaisha 膜の製造方法および当該方法で製造された膜を用いた半導体装置
JP2006222232A (ja) * 2005-02-09 2006-08-24 Fujitsu Ltd 半導体装置およびその製造方法
US7858144B2 (en) * 2007-09-26 2010-12-28 Eastman Kodak Company Process for depositing organic materials
JP5223466B2 (ja) 2008-05-30 2013-06-26 大日本印刷株式会社 ガスバリア性フィルム及びその製造方法
JP5529459B2 (ja) 2008-08-06 2014-06-25 憲一 ▲高▼木 コーティング方法
EP2578726B1 (en) * 2010-05-31 2018-10-17 JTEKT Corporation Method for manufacturing a coated member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105172A (ja) * 1999-10-07 2001-04-17 Tanaka Electronics Ind Co Ltd 半田材料及びダイボンディング方法
JP2004339583A (ja) * 2003-05-16 2004-12-02 Sony Corp 錫又は錫合金材の表面処理剤、錫又は錫合金材及びその表面処理方法、錫合金系はんだ材料及びこれを用いたはんだペースト、錫合金系はんだ材料の製造方法、電子部品、プリント配線板、並びに電子部品の実装構造
JP2005254246A (ja) * 2004-03-09 2005-09-22 Hitachi Metals Ltd はんだボール及びその製造方法
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法
JP2010120030A (ja) * 2008-11-18 2010-06-03 Hitachi Ltd はんだボール
JP2012509991A (ja) * 2008-11-21 2012-04-26 ヘンケル コーポレイション 熱分解性ポリマー被覆金属粉末
JP2014195831A (ja) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 被覆はんだ材料およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140864A (ja) * 2015-01-29 2016-08-08 住友金属鉱山株式会社 被覆はんだワイヤおよびその製造方法
EP3330039A4 (en) * 2015-07-27 2019-01-02 Sumitomo Metal Mining Co., Ltd. Coated solder wire and method for manufacturing same
JP2017100145A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 はんだ粉末の製造方法
WO2018096917A1 (ja) * 2016-11-22 2018-05-31 千住金属工業株式会社 はんだ付け方法
TWI663011B (zh) * 2016-11-22 2019-06-21 日商千住金屬工業股份有限公司 Welding method
US10645818B2 (en) 2016-11-22 2020-05-05 Senju Metal Industry Co., Ltd. Soldering method
EP3848149A1 (en) 2020-01-09 2021-07-14 3S Silicon Tech, Inc. Solder paste composition and soldering method using the same

Also Published As

Publication number Publication date
JPWO2015146999A1 (ja) 2017-04-13
EP3124166A1 (en) 2017-02-01
CN106211763A (zh) 2016-12-07
US10512988B2 (en) 2019-12-24
TW201600215A (zh) 2016-01-01
EP3124166B1 (en) 2019-10-23
US20170100802A1 (en) 2017-04-13
TWI638699B (zh) 2018-10-21
JP6455508B2 (ja) 2019-01-23
CN106211763B (zh) 2019-08-27
EP3124166A4 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6455508B2 (ja) 被覆はんだ材料およびその製造方法
JP6160498B2 (ja) 被覆はんだ材料およびその製造方法
JP5571152B2 (ja) スパッタリングターゲットの製造方法
Price et al. A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings
JP2010047825A (ja) 金属皮膜の形成方法及び航空宇宙構造部材
Yuan et al. Enhancing the oxidation resistance of copper by using sandblasted copper surfaces
JP6471676B2 (ja) 被覆はんだワイヤおよびその製造方法
JP6455187B2 (ja) 被覆はんだワイヤおよびその製造方法
JP5828618B2 (ja) コーティング膜付きPbフリーZn系はんだ合金及びその製造方法
WO2017018155A1 (ja) 被覆はんだワイヤおよびその製造方法
JP6455303B2 (ja) 被覆はんだワイヤおよびその製造方法
WO2016098836A1 (ja) 被覆はんだワイヤおよびその製造方法
Kim et al. Sn whisker growth on Sn plating with or without surface treatment during the room temperature exposure
Wang et al. Effect of gas velocity and particle velocity on coating adhesion in wire arc spraying
Zhang et al. Atmospheric plasma sprayed Cu coating on Cu–B/diamond composite for electronic packaging application
KR102083075B1 (ko) 합금 박막 및 그 제조 방법
Zhao et al. Spreading kinetics of liquid solders over an intermetallic solid surface. Part 2: Lead-free solders
Wang et al. Growth kinetics and mechanism of Pd2Zn9 at the interface of Pd substrate with molten Sn–9wt.% Zn solder
JP2023175214A (ja) 接合体の製造方法、接合体、半導体装置の製造方法及び半導体装置
JP2017190508A (ja) スパッタリングターゲット及びその製造方法
TW583322B (en) Coating with low sticking and low friction coefficient on a surface of workpiece
LIASHENKO et al. Thermodynamic and kinetic factors governing wetting of oxidized and deoxidized Cu surfaces by liquid Sn
JPH05202455A (ja) Ti・Ni積層板又はTiNiの融着防止方法
JP5536533B2 (ja) 炭素薄膜付銅材の製造方法
JPS61146422A (ja) ワイヤ−放電加工用電極線の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769736

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016510391

Country of ref document: JP

Kind code of ref document: A