WO2015146973A1 - ニトリル共重合体ゴム組成物 - Google Patents

ニトリル共重合体ゴム組成物 Download PDF

Info

Publication number
WO2015146973A1
WO2015146973A1 PCT/JP2015/058899 JP2015058899W WO2015146973A1 WO 2015146973 A1 WO2015146973 A1 WO 2015146973A1 JP 2015058899 W JP2015058899 W JP 2015058899W WO 2015146973 A1 WO2015146973 A1 WO 2015146973A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer rubber
nitrile copolymer
weight
parts
rubber
Prior art date
Application number
PCT/JP2015/058899
Other languages
English (en)
French (fr)
Inventor
亮 塚田
匡 中村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/127,955 priority Critical patent/US10266628B2/en
Priority to KR1020167026756A priority patent/KR102269046B1/ko
Priority to CN201580014918.4A priority patent/CN106103569B/zh
Priority to JP2016510380A priority patent/JP6465104B2/ja
Priority to EP15768962.1A priority patent/EP3124532A4/en
Publication of WO2015146973A1 publication Critical patent/WO2015146973A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/48Acrylonitrile with nitrogen-containing monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a nitrile copolymer rubber composition that provides a rubber cross-linked product having good normal properties and excellent gasoline permeation resistance and cold resistance.
  • a rubber (nitrile copolymer rubber) containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit or an olefin monomer unit is a rubber having excellent oil resistance.
  • the crosslinked product is mainly used as a material for rubber products around various oils for automobile applications such as fuel hoses, gaskets, packings, and oil seals.
  • Patent Document 1 as a nitrile copolymer rubber composition that gives a crosslinked product with improved gasoline permeability resistance, 10 to 65% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, A nitrile copolymer rubber having 15 to 89.9% by weight of conjugated diene units and 0.1 to 20% by weight of cationic monomer units and / or monomer units capable of forming cations has an aspect ratio of A nitrile copolymer rubber composition containing 30 to 2,000 flat inorganic fillers is disclosed.
  • the present invention has been made in view of such a situation, and provides a nitrile copolymer rubber composition that provides a rubber cross-linked product having good normal properties and excellent gasoline permeation resistance and cold resistance. With the goal.
  • an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a conjugated diene monomer unit, and an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid The above object can be achieved by a nitrile copolymer rubber composition containing a nitrile copolymer rubber having an acid monomer unit in a predetermined ratio and an inorganic filler having an aspect ratio of 30 to 2,000.
  • the headline and the present invention have been completed.
  • a nitrile copolymer rubber composition containing 1 to 200 parts by weight of the inorganic filler (B) with respect to 100 parts by weight of the nitrile copolymer rubber (A). Is done.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3) is an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomer unit having 3 to 8 carbon atoms and / or 5 carbon atoms. 15 to 15 butenedionic acid mono-chain alkyl ester monomer units.
  • the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber in which at least a part of the carbon-carbon unsaturated bond portion is hydrogenated.
  • the nitrile copolymer rubber composition of the present invention further contains 10 to 150 parts by weight of a vinyl chloride resin and / or an acrylic resin with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • a crosslinkable nitrile copolymer rubber composition containing the above nitrile copolymer rubber composition and a crosslinking agent.
  • crosslinking the said crosslinkable nitrile copolymer rubber composition is provided.
  • the rubber cross-linked product of the present invention is preferably a hose, seal, packing or gasket.
  • the laminated body which consists of two or more layers and at least 1 layer is comprised from the said rubber crosslinked material is provided.
  • a nitrile copolymer rubber composition that provides a rubber cross-linked product having good normal state physical properties (mechanical properties) and excellent gasoline permeation resistance and cold resistance, and obtained by cross-linking the composition.
  • a rubber cross-linked product having the above characteristics is provided.
  • the nitrile copolymer rubber composition of the present invention comprises an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1) 35 to 80% by weight, a conjugated diene monomer unit (a2).
  • an inorganic filler (B) having a ratio of 30 to 2,000, and the content of the inorganic filler (B) is 1 to 200 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • the nitrile copolymer rubber (A) used in the present invention comprises an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1) of 35 to 80% by weight and a conjugated diene monomer unit (a2) of 19.5 to 64. And 0.5% by weight and 0.5 to 20% by weight of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3).
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1) may be any ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1) is 35 to 80% by weight, preferably 40 to 70% by weight, more preferably 40%, based on the total monomer units. ⁇ 60% by weight.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1) is too low, the oil resistance and gasoline permeability resistance of the resulting rubber cross-linked product are deteriorated.
  • the content is too high, the resulting rubber cross-linked product is inferior in cold resistance, and the embrittlement temperature is increased.
  • the conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene monomer having 4 to 6 carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3. -Butadiene, 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
  • the content ratio of the conjugated diene monomer unit (a2) is 19.5 to 64.5% by weight, preferably 29.5 to 59.5% by weight, more preferably based on the total monomer units. 39 to 59% by weight.
  • the content rate of a conjugated diene monomer unit (a2) is too low, the rubber elasticity of the rubber crosslinked material obtained will fall.
  • the content ratio is too high, the chemical stability of the resulting rubber cross-linked product may be impaired.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer forming the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3) includes an unsubstituted (free) carboxyl group that is not esterified Is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having at least one of, for example, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms, ⁇ having 4 to 12 carbon atoms , ⁇ -ethylenically unsaturated dicarboxylic acid, and ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester having 5 to 20 carbon atoms.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, and cinnamic acid.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms include butenedionic acid such as fumaric acid and maleic acid; itaconic acid; citraconic acid; chloromaleic acid;
  • Specific examples of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester having 5 to 20 carbon atoms include monomethyl fumarate, monoethyl fumarate, mono n-butyl fumarate, monomethyl maleate, monoethyl maleate, monobutyl maleate
  • Butenedionic acid monochain alkyl esters such as monocyclopentyl fumarate, monocyclohexyl fumarate, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate, monocyclohexenyl maleate, etc.
  • ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms
  • ⁇ -ethylenically unsaturated dicarboxylic acid having 5 to 20 carbon atoms are used.
  • Acid monoesters are preferred, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids having 3 to 8 carbon atoms and butenedionic acid monochain alkyl esters having 5 to 15 carbon atoms are more preferred, and acrylic acid, methacrylic acid, monobutyl fumarate And monobutyl maleate are more preferred, and methacrylic acid and monobutyl maleate are particularly preferred.
  • These ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers can be used singly or in combination.
  • dicarboxylic acids include those that exist as anhydrides.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3) is 0.5 to 20% by weight, preferably 0.5 to 10% by weight, based on the total monomer units. More preferably, it is 1 to 5% by weight. If the content ratio of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3) is too low, the resulting rubber cross-linked product is inferior in cold resistance, and the embrittlement temperature is increased. On the other hand, if the content is too high, the fatigue resistance of the resulting rubber cross-linked product may be reduced.
  • the nitrile copolymer rubber (A) used in the present invention comprises the above ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (a1), conjugated diene monomer unit (a2), and ⁇ , ⁇ -
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit (a3) In addition to the ethylenically unsaturated carboxylic acid monomer unit (a3), other monomer units copolymerizable with the monomers forming these monomer units may be contained.
  • the content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.
  • Examples of such other copolymerizable monomers include cationic monomers and monomers capable of forming cations.
  • the cationic monomer and the monomer capable of forming a cation are monomers that form monomer units that are positively charged when the resulting polymer contacts water or an aqueous acid solution,
  • the cationic monomer includes a monomer containing a quaternary ammonium base.
  • an ammonium salt for example, amine hydrochloride or amine sulfate
  • an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group.
  • a monomer having a precursor part (substituent) to be prepared are examples of such other copolymerizable monomers.
  • cationic monomer examples include (meth) acryloyloxytrimethylammonium chloride [acryloyloxytrimethylammonium chloride and / or methacryloyloxytrimethylammonium chloride. The same applies hereinafter.
  • Quaternary ammonium bases such as (meth) acryloyloxyhydroxypropyltrimethylammonium chloride, (meth) acryloyloxytriethylammonium chloride, (meth) acryloyloxydimethylbenzylammonium chloride, (meth) acryloyloxytrimethylammonium methyl sulfate (Meth) acrylic acid ester monomers; (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidepropyldimethylbenzylammonium chloride and other (meth) acrylamide monomers containing quaternary ammonium bases; It is done. These can be used individually by 1 type or in combination of multiple types.
  • the monomer capable of forming a cation include vinyl group-containing cyclic amine monomers such as 2-vinylpyridine and 4-vinylpyridine; tertiary amino groups such as dimethylaminoethyl (meth) acrylate.
  • (Meth) acrylic acid ester monomer (meth) acrylamide-containing (meth) acrylamide monomer such as (meth) acrylamide dimethylaminoethyl and N, N-dimethylaminopropylacrylamide; N- (4-anilinophenyl) ) Acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) ) Aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like. These can be used individually by 1 type or in combination of multiple types.
  • other copolymerizable monomers include, for example, fluoroethyl vinyl ether, fluoropropyl vinyl ether, o- (trifluoro) Fluorine-containing vinyl compounds such as methylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene; non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene; ethylene; propylene ⁇ -olefin compounds such as 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth ) ⁇ , ⁇ - such as 2-ethylhe
  • the Mooney viscosity of the nitrile copolymer rubber (A) used in the present invention (hereinafter sometimes referred to as “polymer Mooney viscosity”) (ML 1 + 4 , 100 ° C.) is preferably 3 to 250, more preferably 15 To 180, more preferably 20 to 170. If the polymer Mooney viscosity of the nitrile copolymer rubber is too low, the strength properties of the resulting rubber cross-linked product may be reduced. On the other hand, if it is too high, the workability may be deteriorated.
  • the nitrile copolymer rubber (A) used in the present invention can be produced by copolymerizing each monomer constituting the nitrile copolymer rubber described above.
  • the method for copolymerizing each monomer is not particularly limited.
  • an emulsion polymerization method for obtaining a latex of a copolymer having an average particle diameter of about 50 to 1000 nm using an emulsifier such as sodium dodecylbenzenesulfonate is not particularly limited.
  • a suspension polymerization method (including a fine suspension polymerization method) for obtaining an aqueous dispersion of a copolymer having an average particle size of about 0.2 to 200 ⁇ m using a dispersant such as polyvinyl alcohol is preferably used.
  • a dispersant such as polyvinyl alcohol
  • the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled.
  • the emulsion polymerization method is preferably performed according to the following procedure.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is referred to as “monomer (m1)”
  • the conjugated diene monomer is referred to as “monomer (m2)”
  • ⁇ , ⁇ - The ethylenically unsaturated carboxylic acid monomer is referred to as “monomer (m3)”.
  • monomer (m1) 35 to 80% by weight, preferably 40 to 70% by weight, more preferably 40 to 60% by weight, monomer (m2) 19.5 to 64.5% by weight, preferably 29 0.5 to 59.5 wt%, more preferably 39 to 59 wt%, and monomer (m3) 0.5 to 20 wt%, preferably 0.5 to 10 wt%, more preferably 1 to 5 wt% %, Where the total amount of the monomer (m1), the monomer (m2) and the monomer (m3) is 100% by weight. However, it is preferable to remove the unreacted monomer as desired after stopping the polymerization reaction at a point of 50 to 95% by weight.
  • the amount of the monomer (m1) used in the emulsion polymerization method is too small, the oil resistance of the resulting rubber cross-linked product deteriorates and the gasoline permeation resistance deteriorates.
  • the amount of the monomer (m1) used is too small, the cold resistance of the resulting rubber cross-linked product will deteriorate.
  • the amount of the monomer (m2) used is too large, the resulting rubber cross-linked product will be gasoline resistant. There is a tendency for permeability to deteriorate.
  • the polymerization reaction may be started using the whole amount of the monomers (m1) to (m3) used in the emulsion polymerization, but the composition distribution of each monomer unit of the copolymer to be produced is controlled, and From the viewpoint of obtaining a rubber cross-linked product rich in rubber elasticity, a polymerization reaction is started using a part of the total amount of the monomers (m1) to (m3) used for the emulsion polymerization, and then emulsified in the middle of the reaction. It is preferable to continue the polymerization reaction by adding the remainder of the monomers (m1) to (m3) used for the polymerization to the reactor. This is because if the total amount of the monomers (m1) to (m3) used in the emulsion polymerization is reacted from the start of the polymerization reaction, the composition distribution of the copolymer may spread.
  • the monomer (m1) used for the polymerization is preferably 10 to 100% by weight, more preferably 20 to 100% by weight, particularly preferably 30 to 100% by weight, and the monomer (m2) used for the polymerization.
  • the method for adding the remaining monomer is not particularly limited, but it may be added all at once, dividedly, or continuously.
  • the remaining monomer is preferably added in portions, particularly preferably added in portions 1 to 6 times. preferable.
  • the amount of the monomer to be added in divided portions and the timing of the divided addition should be adjusted so that the desired nitrile copolymer rubber is obtained in accordance with the progress of the polymerization reaction. Good.
  • a latex of the nitrile copolymer rubber (A) can be obtained by removing unreacted monomers using a known method such as heating distillation, vacuum distillation, steam distillation or the like.
  • the latex of the obtained nitrile copolymer rubber (A) is coagulated, and if necessary, washed with water and dried to obtain the nitrile copolymer rubber (A).
  • the coagulation of the latex of the nitrile copolymer rubber (A) is not particularly limited, but known methods such as freeze coagulation, dry coagulation, coagulation with a water-soluble organic liquid, and salting out coagulation can be used.
  • the coagulant include calcium chloride, sodium chloride, calcium hydroxide, aluminum sulfate, and aluminum hydroxide.
  • the amount of the coagulant used is preferably 0.5 to 30% by weight, particularly preferably 0.5 to 20% by weight, based on the nitrile copolymer rubber (A).
  • the nitrile copolymer rubber (A) used in the present invention is at least one of the carbon-carbon unsaturated bonds in the conjugated diene monomer unit of the copolymer obtained by copolymerization as described above. Hydrogenated nitrile copolymer rubber obtained by hydrogenating a part (hydrogenation reaction) may be used.
  • the method for hydrogenation is not particularly limited, and a known method may be employed.
  • the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber, the iodine value is preferably in the range of 0 to 70, more preferably in the range of 4 to 60.
  • the inorganic filler (B) used in the present invention has an aspect ratio of 30 to 2,000, preferably 35 to 1,800, more preferably 40 to 1,600, particularly preferably 50 to 1,000. It is an inorganic filler.
  • the obtained rubber cross-linked product can have a gasoline permeation blocking effect.
  • an inorganic filler having an aspect ratio in the above range is used, and by combining this with the nitrile copolymer rubber (A), the resulting rubber cross-linked product is converted into a normal physical property. Can be made excellent in gasoline permeation resistance and cold resistance.
  • the aspect ratio of the inorganic filler (B) can be calculated by determining the ratio of the average surface diameter and the average thickness of the primary particles of the inorganic filler (B).
  • 100 inorganic fillers (B) were selected at random, and then the surface diameter and thickness of the selected 100 inorganic fillers (B) were changed between atoms. It is a number average value calculated as an arithmetic average value of the measurement results obtained by measurement with a force microscope.
  • the inorganic filler having an aspect ratio of 30 to 2,000 is not particularly limited, and it may be a synthetic product, whether it is derived from a natural product or a natural product that has been subjected to a purification process. There may be. Specific examples include kaolinites such as kaolinite and halosite; smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica; and vermiculites; chlorite; talc; E Examples thereof include flat inorganic fillers such as glass flakes which are amorphous plate-like particles such as glass or C glass, among which smectites are preferred, and montmorillonite, mica and saponite are particularly preferred.
  • kaolinites such as kaolinite and halosite
  • smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica
  • montmorillonite as the inorganic filler (B) is contained as a main component in bentonite. Therefore, as montmorillonite, one obtained by purifying bentonite or the like may be used. it can.
  • the average particle size (average primary particle size) of the inorganic filler (B) is preferably 0.05 to 100 ⁇ m, more preferably 0.1 to 80 ⁇ m, and particularly preferably 0.1 to 50 ⁇ m.
  • the average particle diameter of the inorganic filler (B) is defined as a 50% volume cumulative diameter obtained by measuring the particle size distribution by the X-ray transmission method. If the particle size of the inorganic filler (B) is too small, the elongation of the resulting rubber cross-linked product may be reduced. Conversely, if it is too large, a stable rubber composition may not be prepared.
  • the content of the inorganic filler (B) is 1 to 200 parts by weight, preferably 2 to 150 parts by weight, more preferably 3 to 120 parts by weight, based on 100 parts by weight of the nitrile copolymer rubber (A). Particularly preferred is 3 to 60 parts by weight. If the amount of the inorganic filler (B) used is too small, the resulting rubber cross-linked product may be deteriorated in the gasoline permeation resistance or the sour gasoline resistance may be insufficient. On the other hand, when there is too much usage-amount, there exists a possibility that elongation may fall.
  • the nitrile copolymer rubber composition of the present invention includes a vinyl chloride resin and / or an acrylic resin. It may further contain a resin.
  • the nitrile copolymer rubber composition of the present invention contain a vinyl chloride resin and / or an acrylic resin, preferably a vinyl chloride resin, the ozone resistance of the resulting rubber cross-linked product can be improved. .
  • the main constituent monomer is vinyl chloride
  • the content of units of the main constituent monomer is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, and still more preferably 70 to 100%. % By weight.
  • the vinyl chloride resin has an average polymerization degree according to the solution viscosity method specified in JIS K6721 of preferably 400 to 3,000, more preferably 600 to 2,000, and a glass transition temperature (Tg) of preferably 50 to 180 ° C.
  • the vinyl chloride resin can be produced by conventionally known emulsion polymerization or suspension polymerization.
  • a pressure resistant reaction vessel is charged with water, an emulsifier such as sodium lauryl sulfate, and a polymerization initiator such as potassium persulfate, and after repeated degassing under reduced pressure, the vinyl chloride monomer (Other monomers that can be copolymerized may be added if necessary), and the emulsion polymerization is performed by heating while stirring, and a polymerization terminator is added when the polymerization conversion rate reaches a predetermined value.
  • an emulsifier such as sodium lauryl sulfate
  • a polymerization initiator such as potassium persulfate
  • the obtained vinyl chloride resin latex is coagulated in the same manner as in the case of the latex of the nitrile copolymer rubber (A), and a vinyl chloride resin can be obtained by washing and drying as necessary. it can.
  • the acrylic resin is a resin in which the main constituent monomer is a (meth) acrylic acid alkyl ester, and the content of units of the main constituent monomer is preferably 50 to 100% by weight, more preferably 60 to 100% by weight. More preferably, it is 70 to 100% by weight.
  • the acrylic resin has a number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography (GPC), preferably 10,000 to 7,000,000, more preferably 100,000 to 2,000,000.
  • the glass transition temperature (Tg) is preferably 60 to 150 ° C.
  • the acrylic resin can be produced by conventionally known emulsion polymerization or suspension polymerization.
  • emulsion polymerization water, an emulsifier such as sodium octyl sulfate, a polymerization initiator such as ammonium persulfate, a monomer such as methyl methacrylate (others that can be copolymerized if necessary)
  • the monomer may be added) and heated while stirring to carry out emulsion polymerization.
  • a polymerization terminator is added, and the mixture is cooled to room temperature and latex of acrylic resin Can be obtained.
  • the obtained acrylic resin latex is coagulated in the same manner as in the case of the latex of the nitrile copolymer rubber (A), and an acrylic resin can be obtained by washing and drying as necessary. .
  • the content of the vinyl chloride resin and / or acrylic resin in the nitrile copolymer rubber composition of the present invention is preferably 10 to 150 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). More preferred is 15 to 130 parts by weight, still more preferred is 20 to 100 parts by weight. If the content of the vinyl chloride resin and / or acrylic resin is too small, the gasoline permeation resistance and ozone resistance may be inferior. On the other hand, if the content is too large, the cold resistance may be deteriorated.
  • the nitrile copolymer rubber composition of the present invention may contain a plasticizer.
  • the plasticizer is not particularly limited, but the obtained rubber cross-linked product has excellent gasoline permeation resistance and cold resistance, and the embrittlement temperature is lowered (cold resistance is improved).
  • a plasticizer having an SP value (solubility parameter) of from 8.0 to 10.2 (cal / cm 3 ) 1/2 is preferred.
  • plasticizers include, for example, dibutoxyethyl adipate (SP value: 8.8), di (butoxy adipate) Ethoxyethyl) (SP value: 9.2), adipic acid di (methoxytetraethylene glycol), adipic acid di (methoxypentaethylene glycol), adipic acid (methoxytetraethylene glycol) (methoxypentaethylene glycol), adipic acid di (Methoxytriethoxyethyl), adipic acid (methoxytriethoxyethyl) (methoxytetraethoxyethyl), adipic acid di (methoxytetraethoxyethyl), adipic acid (butoxytriethoxyethyl) (pentoxytetraethoxyethyl), adipic acid (Pentoxytriethoxyethyl) Este
  • dibasic acids such as adipic acid, azelaic acid, sebacic acid and phthalic acid and ether linkages can be obtained because the rubber-crosslinked product obtained can have better gasoline permeation resistance and cold resistance.
  • An ester compound with a contained alcohol is preferred, an ester compound with adipic acid and an ether bond-containing alcohol is more preferred, and di (butoxyethoxyethyl) adipate is particularly preferred.
  • the content of the plasticizer in the nitrile copolymer rubber composition of the present invention is preferably 0.1 to 200 parts by weight, more preferably 100 parts by weight of the nitrile copolymer rubber (A). 5 to 150 parts by weight, more preferably 5 to 70 parts by weight.
  • the amount of the plasticizer used is in the above range, in addition to preventing bleeding, the effect of the present invention becomes even more remarkable.
  • the method for preparing the nitrile copolymer rubber composition of the present invention is not particularly limited, and can be prepared by the following method. That is, first, a latex of the nitrile copolymer rubber (A) is prepared by the method described above, and then an aqueous dispersion of the inorganic filler (B) is added to the latex of the nitrile copolymer rubber (A).
  • a latex composition is obtained by adding a latex of an acrylic resin and / or a vinyl chloride resin, which is added as required, and an aqueous dispersion of a plasticizer, which is added as necessary, with stirring.
  • the nitrile copolymer rubber composition of this invention can be prepared by coagulating the obtained latex composition, and washing and drying as needed.
  • the plasticizer may be mixed using a kneader such as a Banbury mixer after coagulation (washing and drying if necessary) of the latex composition without adding it as an aqueous dispersion.
  • the method for preparing the aqueous dispersion of the inorganic filler (B) is not particularly limited, but may be prepared by adding the inorganic filler (B) while strongly stirring the aqueous medium.
  • an aqueous medium containing a dispersant such as Na salt of a sulfonic acid / formalin condensate or a surfactant. These can be used individually by 1 type or in combination of multiple types.
  • the solid concentration of the aqueous dispersion of the inorganic filler (B) is preferably 1 to 50% by weight, more preferably 2 to 40% by weight.
  • the inorganic filler (B) when preparing the aqueous dispersion of the inorganic filler (B), the inorganic filler (B) may be dispersed in water using a wet pulverizer.
  • the inorganic filler (B) is secondary agglomerated by dispersing using a wet pulverizer, the secondary agglomeration of the inorganic filler (B) can be eliminated, and the resulting rubber cross-linked product Excellent gasoline permeation resistance can be achieved.
  • Nasmizer manufactured by Yoshida Kikai Kogyo Co., Ltd.
  • Super Wing Mill DM-200 manufactured by STEC Co., Ltd.
  • Starburst manufactured by Sugino Machine Co., Ltd.
  • Star Mill Alignawa Fine
  • the method for preparing the aqueous plasticizer dispersion is not particularly limited, but it contains a surfactant in an amount of 0.5 to 10% by weight of the plasticizer. It is preferable to prepare by adding a plasticizer while stirring the aqueous medium vigorously.
  • surfactants examples include anionic surfactants such as potassium rosinate, sodium lauryl sulfate, potassium oleate, and sodium dodecylbenzenesulfonate; polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan Nonionic surfactants such as alkyl esters; Cationic surfactants such as didecyldimethylammonium chloride and stearyltrimethylammonium chloride; and the like.
  • concentration of the plasticizer in the aqueous dispersion is preferably 5 to 70% by weight.
  • the coagulation of the latex composition is not particularly limited, and known methods such as freeze coagulation, dry coagulation, coagulation with a water-soluble organic liquid, and salting out coagulation are applied. Among these, it is preferable to perform by salting out the latex composition by adding it to an aqueous solution containing a coagulant.
  • the coagulant include calcium chloride, sodium chloride, calcium hydroxide, aluminum sulfate, and aluminum hydroxide.
  • the amount of the coagulant used is preferably 0.5 to 150 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • the crumb particle size has a great influence on the degree of dehydration in the vibrating screen or squeezer following the coagulation and washing process, the crumb recovery rate, and the degree of drying in the drying process. For example, if the crumb particle size is too small, the crumb particle size will be too small to flow out of the screen, or the polymer will be insufficiently squeezed by the squeezer and the degree of dehydration will decrease. , Productivity deteriorates. Therefore, the average particle diameter of crumb is preferably 0.5 to 40 mm.
  • the crumb washing, dehydration and drying methods can be the same as the washing / dehydration method and drying method in general rubber production.
  • a washing / dehydrating method a crumb obtained by coagulation and water may be separated using a mesh filter, a centrifugal separator, etc., then washed, and the crumb may be dehydrated with a squeezer or the like.
  • the nitrile copolymer rubber of the present invention is dried by a band dryer, a ventilated vertical dryer, a single screw extruder, a twin screw extruder or the like generally used for rubber production until a desired water content is obtained.
  • a composition can be obtained.
  • the latex of the nitrile copolymer rubber (A) may be added to the inorganic filler (B), if necessary.
  • the acrylic resin and / or vinyl chloride resin to be added, and the plasticizer added as necessary, or the total amount of one or more components or a part thereof are coagulated and dried, and the remainder It can also be obtained by kneading the ingredients with a kneading machine such as a roll or a Banbury mixer.
  • Crosslinkable nitrile copolymer rubber composition comprises the above-described nitrile copolymer rubber composition of the present invention and a crosslinking agent.
  • the crosslinking agent is not particularly limited as long as it is usually used as a crosslinking agent for nitrile copolymer rubber.
  • Typical crosslinking agents include sulfur-based crosslinking agents or organic peroxide crosslinking agents that bridge between unsaturated bonds of the nitrile copolymer rubber (A), and carboxyl groups of the nitrile copolymer rubber (A).
  • a polyamine cross-linking agent for cross-linking can be used individually by 1 type or in combination of multiple types. Among these, a sulfur type crosslinking agent is preferable.
  • Sulfur-based crosslinking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azenopine-2), phosphorus-containing polysulfides, polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur donating compounds such as benzothiazole; These can be used individually by 1 type or in combination of multiple types.
  • organic peroxide crosslinking agents include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvale 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butyl Peroxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butyl
  • the polyamine crosslinking agent is not particularly limited as long as it is in the form of a compound having two or more amino groups or a compound having two or more amino groups at the time of crosslinking.
  • a compound in which a plurality of hydrogen atoms of hydrogen are substituted with an amino group or a hydrazide structure (a structure represented by —CONHNH 2 , CO represents a carbonyl group) is preferable.
  • polyamine crosslinking agent examples include aliphatic polyamines such as hexamethylene diamine, hexamethylene diamine carbamate, N, N-dicinnamylidene-1,6-hexane diamine, tetramethylene pentamine, and hexamethylene diamine cinnamaldehyde adduct.
  • Aromatic polyamines such as 1,3,5-benzenetriamine; isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, naphthalene acid dihydrazide,
  • polyamine crosslinking agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the crosslinking agent in the crosslinkable nitrile copolymer rubber composition of the present invention is not particularly limited, but is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). More preferably, it is 0.2 to 5 parts by weight.
  • a multifunctional monomer such as trimethylolpropane trimethacrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate can be used in combination as a crosslinking aid.
  • the amount of these crosslinking aids is not particularly limited, but is preferably in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • a crosslinking assistant such as zinc white (zinc oxide), zinc peroxide, stearic acid; guanidine-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based,
  • a crosslinking accelerator such as thiourea can be used in combination.
  • the amounts of these crosslinking aids and crosslinking accelerators are not particularly limited, and are preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • a basic crosslinking accelerator can be used in combination.
  • Specific examples of the basic crosslinking accelerator include 1,8-diazabicyclo [5,4,0] undecene-7 (hereinafter sometimes abbreviated as “DBU”) and 1,5-diazabicyclo [4,3,0].
  • Nonene-5 (hereinafter sometimes abbreviated as “DBN”), 1-methylimidazole, 1-ethylimidazole, 1-phenylimidazole, 1-benzylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole 1-methoxyethylimidazole, 1-phenyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-methyl-2-phenylimidazole, 1-methyl-2-benzylimidazole, 1,4-dimethylimidazole, 1,5-dimethylimidazole, 1,2,4-trimethylimidazole, 1,4-dimethyl-2-ethylimida 1-methyl-2-methoxyimidazole, 1-methyl-2-ethoxyimidazole, 1-methyl-4-methoxyimidazole, 1-methyl-2-methoxyimidazole, 1-ethoxymethylimidazole, -Methyl-4-nitroimi
  • the basic crosslinking accelerator having a cyclic amidine structure may form a salt with an organic carboxylic acid or an alkyl phosphoric acid.
  • the amount of these basic crosslinking accelerators is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 0.2 parts by weight based on 100 parts by weight of the nitrile copolymer rubber (A). 15 parts by weight, more preferably 0.5 to 10 parts by weight.
  • the nitrile copolymer rubber composition or the crosslinkable nitrile copolymer rubber composition of the present invention includes other compounding agents used for general rubber as necessary, for example, a crosslinking retarder, an antiaging agent.
  • a crosslinking retarder used for general rubber as necessary
  • additives such as fillers, lubricants, adhesives, lubricants, processing aids, flame retardants, antifungal agents, antistatic agents, colorants, coupling agents, etc. Good.
  • an anti-aging agent such as phenol, amine, benzimidazole or phosphoric acid
  • an anti-aging agent such as phenol, amine, benzimidazole or phosphoric acid
  • 2,2'-methylenebis (4-methyl-6-t-butylphenol) and the like are used for phenols, and 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine and N-isopropyl-N 'for amines.
  • -Phenyl-p-phenylenediamine and the like, and benzimidazole type include 2-mercaptobenzimidazole and the like. These may be used alone or in combination of two or more.
  • fillers other than the inorganic filler (B) include carbon black, silica, calcium carbonate, aluminum silicate, magnesium silicate, calcium silicate, magnesium oxide, short fibers, zinc (meth) acrylate, and (meth) acrylic. And ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salts such as magnesium acid. These fillers may be subjected to a coupling treatment with a silane coupling agent, a titanium coupling agent or the like, or a surface modification treatment with a higher fatty acid or a higher fatty acid derivative such as a metal salt, ester or amide, or a surfactant. it can.
  • the nitrile copolymer rubber composition and the crosslinkable nitrile copolymer rubber composition of the present invention contain a polymer other than the nitrile copolymer rubber (A) as long as the effects of the present invention are not impaired. It may be.
  • the polymer other than the nitrile copolymer rubber (A) is not particularly limited, but fluorine rubber, styrene-butadiene copolymer rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene terpolymer rubber.
  • the blending amount in the case of blending a polymer other than the nitrile copolymer rubber (A) is preferably 100 parts by weight or less, more preferably 50 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). Part or less, particularly preferably 30 parts by weight or less.
  • the method for preparing the crosslinkable nitrile copolymer rubber composition of the present invention is not particularly limited, but a crosslinking agent, a crosslinking aid and other compounding agents are added to the nitrile copolymer rubber composition described above, and a roll Or kneading with a kneading machine such as a Banbury mixer.
  • the blending order is not particularly limited. However, after sufficiently mixing components that are not easily reacted or decomposed by heat, components that are easily reacted by heat or components that are easily decomposed, such as a crosslinking agent, a crosslinking accelerator, etc. Mixing in a short time at a temperature at which no reaction or decomposition occurs.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the crosslinkable nitrile copolymer rubber composition of the present invention is preferably 5 to 300, more preferably 10 to 250.
  • Cross-linked rubber The cross-linked rubber of the present invention is formed by cross-linking the cross-linkable nitrile copolymer rubber composition.
  • a molding machine corresponding to the shape of the molded product (rubber crosslinked product) to be produced, such as an extruder, an injection molding machine, a compressor, a roll, etc.
  • the shape of the cross-linked product is fixed by carrying out a cross-linking reaction.
  • the cross-linking may be performed after molding or may be performed simultaneously with the molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 2 hours.
  • the rubber cross-linked product even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside, so it may be further heated to perform secondary cross-linking.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the above-described nitrile copolymer rubber composition of the present invention, so that normal properties are good, gasoline permeation resistance and cold resistance. It is excellent. Therefore, the rubber cross-linked product of the present invention includes seal members such as packings, gaskets, O-rings, and oil seals; hoses such as oil hoses, fuel hoses, inlet hoses, gas hoses, brake hoses, and refrigerant hoses; diaphragms; It is suitable for boots; however, it is particularly suitably used as a hose, seal, packing or gasket.
  • seal members such as packings, gaskets, O-rings, and oil seals
  • hoses such as oil hoses, fuel hoses, inlet hoses, gas hoses, brake hoses, and refrigerant hoses
  • diaphragms It is suitable for boots; however, it is particularly suitably used as a hose
  • the rubber cross-linked product of the present invention is suitably used as a fuel hose or the like by forming a layered body composed of one layer or two or more layers including at least one layer formed of the rubber cross-linked product of the present invention.
  • the layer made of the rubber cross-linked product of the present invention may be used for any of the inner layer, the intermediate layer, and the outer layer.
  • tetrabutyl is added to either or both of the layer made of the rubber cross-linked product of the present invention and the other layer.
  • Phosphonium salts such as phosphonium benzotriazolate, tetraoctylphosphonium benzotriazolate, methyltrioctylphosphonium benzotriazolate, tetrabutylphosphonium tolyltriazolate, tetraoctylphosphonium tolyltriazolate, 1,8-diazabicyclo (5 4.0) Undecene-7 salt (DBU salt), 1,5-diazabicyclo (4.3.0) -nonene-5 salt (DBN salt) and the like may be contained.
  • DBU salt Undecene-7 salt
  • DBN salt 1,5-diazabicyclo
  • the production method in the case where the rubber cross-linked product of the present invention is used as a hose having such a configuration is not particularly limited, and examples thereof include a method of forming into a cylindrical shape using an extruder and cross-linking it. .
  • Mooney viscosity The Mooney viscosity (polymer Mooney viscosity) (ML 1 + 4 , 100 ° C.) of the nitrile copolymer rubber was measured according to JIS K6300.
  • the crosslinkable nitrile rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm.
  • the obtained sheet-like rubber cross-linked product was punched out with a JIS No. 3 dumbbell to prepare a test piece, and the tensile strength, elongation, and 100% tensile stress of the rubber cross-linked product were measured according to JIS K6251.
  • the hardness of the rubber crosslinked material was measured using the durometer hardness tester type A.
  • Gasoline permeability coefficient Prepare the same sheet-like rubber cross-linked product used for evaluation of the above-mentioned normal physical properties, and use "mixture of isooctane, toluene and ethanol in a weight ratio of 2: 2: 1" as fuel oil.
  • the gasoline permeability coefficient was measured by the aluminum cup method. Specifically, 50 ml of the above fuel oil is put into a 100 ml capacity aluminum cup, and a sheet-like rubber cross-linked product is placed on the cup, which is then covered with a fastener and a sheet-like rubber cross-linked product.
  • the Brittle temperature was measured in accordance with JIS K6261 using the same sheet-like rubber cross-linked product used for the evaluation of the normal state physical properties.
  • Production Example 1 (Production of latex of nitrile copolymer rubber (A1)) A reaction vessel was charged with 240 parts of water, 75.7 parts of acrylonitrile, 2.1 parts of methacrylic acid, and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C.
  • nitrile copolymer rubber (A1) a part of the latex of the nitrile copolymer rubber (A1) obtained above is sampled, coagulated with a large amount of methanol, filtered and dried to obtain a nitrile copolymer rubber (A1). It was. Then, the proportion of each monomer units constituting the obtained nitrile copolymer rubber (A1), FT-NMR apparatus (trade name "AVANCEIII500", manufactured by Bruker BioSpin Co., Ltd.) 1 H using As a result of -NMR measurement, it was found that the acrylonitrile unit was 50% by weight, the 1,3-butadiene unit was 48% by weight, and the methacrylic acid unit was 2% by weight. The Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A1) was 75.
  • Production Example 2 (Production of latex of nitrile copolymer rubber (A2)) Production Example 1 except that the preparation monomer for the first stage of emulsion polymerization was changed to 75.7 parts of acrylonitrile, 4.2 parts of methacrylic acid, and 20.1 parts of 1,3-butadiene in Production Example 1.
  • a latex of nitrile copolymer rubber (A2) solid content: 24% by weight
  • the content ratio of each monomer unit constituting the nitrile copolymer rubber (A2) in the obtained latex was measured in the same manner as in Production Example 1.
  • 50% by weight of acrylonitrile units and 46 parts of 1,3-butadiene units were measured.
  • the Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A2) was 73.
  • Production Example 3 (Production of latex of nitrile copolymer rubber (A3)) Production Example 1 except that the preparation monomer for the first stage of the emulsion polymerization in Production Example 1 was changed to 75.7 parts of acrylonitrile, 4.2 parts of monobutyl maleate and 20.1 parts of 1,3-butadiene.
  • a latex of nitrile copolymer rubber (A3) solid content: 24% by weight
  • the content ratio of each monomer unit constituting the nitrile copolymer rubber (A3) in the obtained latex was measured in the same manner as in Production Example 1.
  • 50% by weight of acrylonitrile units and 46 parts of 1,3-butadiene units were measured.
  • the Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A2) was 73.
  • Production Example 4 (Production of latex of nitrile copolymer rubber (A4)) A reaction vessel was charged with 240 parts of water, 75.7 parts of acrylonitrile and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C.
  • First and third stage polymerization reactions were carried out. Thereafter, when the polymerization conversion ratio with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of nitrile copolymer rubber (A4) (solid content: 24% by weight) Got. The content ratio of each monomer unit constituting the nitrile copolymer rubber (A4) of the obtained latex was measured in the same manner as in Production Example 1.
  • the Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A4) was 75.
  • Production Example 5 (Production of latex of nitrile copolymer rubber (A5)) Production Example 1 except that the preparation monomer for the first stage of the emulsion polymerization was changed to 75.7 parts of acrylonitrile, 2.2 parts of 2-vinylpyridine, and 22 parts of 1,3-butadiene in Production Example 1.
  • a latex of nitrile copolymer rubber (A5) solid content: 24% by weight
  • the content ratio of each monomer unit constituting the nitrile copolymer rubber (A5) of the obtained latex was measured in the same manner as in Production Example 1.
  • 50% by weight of acrylonitrile units and 48% of 1,3-butadiene units were obtained.
  • % By weight and 2% by weight of 2-vinylpyridine unit The Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A5) was 73.
  • Production Example 6 (Production of latex of nitrile copolymer rubber (A6)) Production Example 1 except that the preparation monomer for the first stage of the emulsion polymerization was changed to 75.7 parts of acrylonitrile, 0.2 part of methacrylic acid, and 24.1 parts of 1,3-butadiene in Production Example 1.
  • a latex of nitrile copolymer rubber (A6) solid content: 24% by weight
  • the content ratio of each monomer unit constituting the nitrile copolymer rubber (A6) in the obtained latex was measured in the same manner as in Production Example 1.
  • 50% by weight of acrylonitrile units, 49 parts of 1,3-butadiene units were obtained.
  • the Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A6) was 73.
  • Production Example 7 (Production of latex of nitrile copolymer rubber (A7))
  • the monomer charged in the first stage of the emulsion polymerization was changed to 23.2 parts of acrylonitrile, 4.4 parts of methacrylic acid, and 72.4 parts of 1,3-butadiene, and the polymerization conversion rate was changed.
  • 4 parts and 2.8 parts of acrylonitrile were added to the reaction vessel, respectively, and the second and third stage polymerization reactions were carried out.
  • a latex of nitrile copolymer rubber (A7) solid content: 24% by weight) was obtained in the same manner as in Production Example 1 except that the polymerization reaction was stopped when it reached 75% by weight.
  • the content ratio of each monomer unit constituting the nitrile copolymer rubber (A7) in the obtained latex was measured in the same manner as in Production Example 1. As a result, 30% by weight of acrylonitrile units, 1,3-butadiene units 66 % By weight and methacrylic acid unit 4% by weight.
  • the Mooney viscosity (polymer Mooney viscosity) of the nitrile copolymer rubber (A7) was 73.
  • Production Example 8 (Production of latex of hydrogenated nitrile copolymer rubber (A8)) About the latex of the nitrile copolymer rubber (A1) obtained in Production Example 1, a palladium catalyst (1 wt% acetic acid was added to the reactor so that the palladium content was 1000 ppm with respect to the dry rubber weight contained in the latex. A solution obtained by mixing an equal weight of ion-exchanged water with a palladium acetone solution), and performing a hydrogenation reaction at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to obtain a latex of hydrogenated nitrile copolymer rubber (A8). It was.
  • the content ratio of each monomer unit constituting the obtained hydrogenated nitrile copolymer rubber (A8) was measured in the same manner as in Production Example 1. As a result, 50% by weight of acrylonitrile monomer unit, 1,3- The total was 48% by weight of butadiene units and saturated butadiene units, and 2% by weight of methacrylic acid units.
  • the hydrogenated nitrile copolymer rubber (A8) had a Mooney viscosity (polymer Mooney viscosity) of 167 and an iodine value of 28.
  • Production Example 9 (Production of latex of hydrogenated nitrile copolymer rubber (A9)) About the latex of the nitrile copolymer rubber (A4) obtained in Production Example 4, a palladium catalyst (1 wt% acetic acid was added to the reactor so that the palladium content was 1000 ppm with respect to the weight of the dry rubber contained in the latex. A solution obtained by mixing a palladium acetone solution and an equal weight of ion exchange water) is added, and hydrogenation reaction is performed at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to obtain a latex of hydrogenated nitrile copolymer rubber (A9). It was.
  • the content ratio of each monomer unit constituting the obtained hydrogenated nitrile copolymer rubber (A9) was measured in the same manner as in Production Example 1. As a result, 50% by weight of acrylonitrile monomer unit, 1,3- The total amount of butadiene units and saturated butadiene units was 50% by weight.
  • the hydrogenated nitrile copolymer rubber (A9) had a Mooney viscosity (polymer Mooney viscosity) of 155 and an iodine value of 20.
  • Production Example 10 (Production of vinyl chloride resin latex) Charge a pressure-resistant reaction vessel with 120 parts of water, 0.8 part of sodium lauryl sulfate, and 0.06 part of potassium persulfate, and after repeating vacuum degassing twice, add 100 parts of vinyl chloride and add with stirring. The emulsion polymerization was carried out at 47 ° C. After the polymerization conversion reached 90%, it was cooled to room temperature to remove unreacted monomers. The concentration of the obtained vinyl chloride resin latex was 41% by weight. The average particle size of the vinyl chloride resin was 0.3 ⁇ m, the average degree of polymerization according to JIS K6721 was 1,300, and the glass transition temperature was 80 ° C.
  • Example 1 Preparation of latex composition of nitrile copolymer rubber 100 parts of purified bentonite (trade name “Bengel HV”, manufactured by Hojun Co., Ltd., aspect ratio: 295, flat purified bentonite) as an inorganic filler (B) are distilled. It was added to 1995 parts of water in the presence of 5 parts of sodium polyacrylate and stirred vigorously to obtain an aqueous dispersion of an inorganic filler (B) having a solid content concentration of 5%.
  • purified bentonite trade name “Bengel HV”, manufactured by Hojun Co., Ltd., aspect ratio: 295, flat purified bentonite
  • the aqueous dispersion of the inorganic filler (B) prepared above was added and dispersed. .
  • the aqueous dispersion of the inorganic filler (B) is composed of 20 parts of the inorganic filler (B) with respect to 100 parts of the latex solid content (nitrile copolymer rubber amount) of the nitrile copolymer rubber (A1).
  • a latex composition of a nitrile copolymer was obtained.
  • the obtained nitrile copolymer latex composition contains 130% by weight of sodium chloride (coagulant) with respect to the amount of nitrile copolymer rubber (A1) in the latex composition.
  • 10% dilute sulfuric acid is added to the aqueous solution to be coagulated in a timely manner so that the pH of the aqueous solution during coagulation is 2, and the mixture is poured and coagulated with stirring while adjusting the pH, and the nitrile copolymer rubber (A1), and A crumb consisting of a mixture of inorganic fillers (B) was produced.
  • this mixture was transferred to a roll and 0.5 parts of 325 mesh sulfur as a crosslinking agent, 2.5 parts of tetramethylthiuram disulfide (trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and N-cyclohexyl -2-benzothiazolylsulfenamide (trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 1.5 parts, zinc peroxide (Hakusitek Co., Ltd., crosslinking aid) 5 parts.
  • a cross-linkable nitrile rubber composition was prepared by kneading at 50 ° C.
  • Examples 2 and 3 Instead of the latex of the nitrile copolymer rubber (A1), the latex of the nitrile copolymer rubber (A2) obtained in Production Example 2 (Example 2) and the nitrile copolymer obtained in Production Example 3, respectively.
  • a crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that the rubber (A3) latex (Example 3) was used. The results are shown in Table 1.
  • Example 4 When preparing the latex composition of the nitrile copolymer rubber, the amount of the vinyl chloride resin latex obtained in Production Example 10 is 65 parts with respect to 100 parts of the nitrile copolymer rubber (A1). A latex composition of nitrile copolymer rubber was obtained in the same manner as in Example 1 except that it was further added. Next, the latex composition of the nitrile copolymer rubber thus obtained is subjected to a coagulation operation in the same manner as in Example 1 to thereby obtain the nitrile copolymer rubber (A1) and the inorganic filler (B). And a crumb consisting of a mixture of vinyl chloride resin.
  • the obtained crumb was filtered off, washed with water, dried under reduced pressure at 60 ° C., and then a stabilizer (trade name “Alkamizer 1”, manufactured by Kyowa Chemical Co., Ltd.) was added to the dried crumb using a Banbury mixer. Two parts were added and mixed until the temperature of the mixture was 180 ° C.
  • a stabilizer trade name “Alkamizer 1”, manufactured by Kyowa Chemical Co., Ltd.
  • this mixture was transferred to a roll and 0.8 parts of 325 mesh sulfur as a crosslinking agent, 2.5 parts of tetramethylthiuram disulfide (trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and N-cyclohexyl -2-Benzothiazolylsulfenamide (trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 2.5 parts, zinc peroxide (Hakusui Tech Co., Ltd., crosslinking aid) 7 parts added And kneaded at 50 ° C. to prepare a crosslinkable nitrile rubber composition.
  • tetramethylthiuram disulfide trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • N-cyclohexyl -2-Benzothiazolylsulfenamide trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co.,
  • Example 5 A crosslinkable nitrile rubber composition as in Example 4 except that the nitrile copolymer rubber (A2) obtained in Production Example 2 was used instead of the nitrile copolymer rubber (A1) latex. Were prepared and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Examples 1 to 4 Instead of the latex of the nitrile copolymer rubber (A1), the latex of the nitrile copolymer rubber (A4) obtained in Production Example 4 (Comparative Example 1) and the nitrile copolymer obtained in Production Example 5, respectively.
  • a crosslinkable nitrile rubber composition was prepared in the same manner as in Example 1 except that zinc oxide was used in place of zinc peroxide instead of zinc peroxide and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 5 A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that the purified bentonite as the inorganic filler (B) was not blended. The results are shown in Table 1.
  • Example 6 A crosslinkable nitrile was prepared in the same manner as in Example 1 except that the latex of the hydrogenated nitrile copolymer rubber (A8) obtained in Production Example 8 was used instead of the latex of the nitrile copolymer rubber (A1). A rubber composition was prepared and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Example 6 Instead of the latex of the nitrile copolymer rubber (A1), the latex of the hydrogenated nitrile copolymer rubber (A9) obtained in Production Example 9 was used, and zinc oxide was used instead of zinc peroxide. In the same manner as in Example 1, a crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 2.
  • the rubber cross-linked product obtained by cross-linking the nitrile copolymer rubber composition (including the “hydrogenated nitrile copolymer rubber composition”) contained in a proportion has good normal properties (mechanical properties), The results were excellent in gasoline permeation resistance and cold resistance (Examples 1 to 6).
  • the nitrile copolymer rubber does not contain an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit In the case of using a rubber whose content is less than 0.5% by weight, the obtained rubber cross-linked product was inferior in cold resistance (Comparative Examples 1 to 3).
  • the nitrile copolymer rubber when the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and the content ratio of the conjugated diene monomer unit are out of the predetermined range of the present invention, The resulting rubber cross-linked product was inferior in gasoline permeation resistance (Comparative Example 4). When the inorganic filler (B) was not blended, the resulting rubber cross-linked product was inferior in gasoline permeability resistance (Comparative Example 5). Further, when hydrogenated nitrile copolymer rubber containing no ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit was used, the result was inferior in gasoline resistance (Comparative Example 6). ).

Abstract

 α,β-エチレン性不飽和ニトリル単量体単位(a1)35~80重量%、共役ジエン単量体単位(a2)19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)0.5~20重量%を含有するニトリル共重合体ゴム(A)と、アスペクト比が30~2,000である無機充填剤(B)とを含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記無機充填剤(B)の含有量が1~200重量部であるニトリル共重合体ゴム組成物を提供する。

Description

ニトリル共重合体ゴム組成物
 本発明は、常態物性が良好であり、耐ガソリン透過性および耐寒性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物に関する。
 従来から、α,β-エチレン性不飽和ニトリル単量体単位と、共役ジエン単量体単位またはオレフィン単量体単位と、を含有するゴム(ニトリル共重合体ゴム)は、耐油性に優れるゴムとして知られており、その架橋物は主に燃料用ホース、ガスケット、パッキンおよびオイルシールなどの自動車用途の各種油類周りのゴム製品の材料として用いられている。
 一方、近年、世界的な環境保護活動の高まりにより、ガソリンなどの燃料の大気中への蒸散量を低減させる取り組みが進み、日本でも燃料ホース、シールおよびパッキンなどの用途において引張強度などの機械的特性に加えて、耐ガソリン透過性に一層優れていることが求められている。
 これに対して、特許文献1では、耐ガソリン透過性の改善された架橋物を与えるニトリル共重合体ゴム組成物として、α,β-エチレン性不飽和ニトリル単量体単位10~65重量%、共役ジエン単位15~89.9重量%、ならびに、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位0.1~20重量%を有するニトリル共重合体ゴムに、アスペクト比が30~2,000である扁平状の無機充填剤とを含有するニトリル共重合体ゴム組成物が開示されている。
 しかしながら、この特許文献1の技術においては、耐ガソリン透過性と耐寒性がある程度は向上するものの、近年の要求特性の高度化により、耐ガソリン透過性と耐寒性のさらなる改善が求められていた。
特開2009-235304号公報
 本発明は、このような実状に鑑みてなされたものであり、常態物性が良好であり、耐ガソリン透過性および耐寒性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、α,β-エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、および、α,β-エチレン性不飽和カルボン酸単量体単位を所定の比率で有するニトリル共重合体ゴムと、アスペクト比が30~2,000である無機充填剤とを含有するニトリル共重合体ゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、α,β-エチレン性不飽和ニトリル単量体単位(a1)35~80重量%、共役ジエン単量体単位(a2)19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)0.5~20重量%を含有するニトリル共重合体ゴム(A)と、アスペクト比が30~2,000である無機充填剤(B)とを含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記無機充填剤(B)の含有量が1~200重量部であるニトリル共重合体ゴム組成物が提供される。
 好ましくは、前記α,β-エチレン性不飽和カルボン酸単量体単位(a3)が、炭素数3~8のα,β-エチレン性不飽和モノカルボン酸単量体単位および/または炭素数5~15のブテンジオン酸モノ鎖状アルキルエステル単量体単位である。
 好ましくは、前記ニトリル共重合体ゴム(A)が、炭素-炭素不飽和結合部分のうち少なくとも一部が水素化された水素化ニトリル共重合体ゴムである。
 好ましくは、本発明のニトリル共重合体ゴム組成物は、前記ニトリル共重合体ゴム(A)100重量部に対して、10~150重量部の塩化ビニル樹脂および/またはアクリル樹脂をさらに含有する。
 本発明によれば、上記ニトリル共重合体ゴム組成物および架橋剤を含有する架橋性ニトリル共重合体ゴム組成物が提供される。
 また、本発明によれば、上記架橋性ニトリル共重合体ゴム組成物を架橋してなるゴム架橋物が提供される。本発明のゴム架橋物は、好ましくは、ホース、シール、パッキンまたはガスケットである。
 さらに、本発明によれば、2以上の層からなり、少なくとも1層が上記ゴム架橋物から構成される積層体が提供される。
 本発明によれば、常態物性(機械的特性)が良好であり、耐ガソリン透過性および耐寒性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物、および該組成物を架橋して得られ、上記特性を備えたゴム架橋物が提供される。
 ニトリル共重合体ゴム組成物
 本発明のニトリル共重合体ゴム組成物は、α,β-エチレン性不飽和ニトリル単量体単位(a1)35~80重量%、共役ジエン単量体単位(a2)19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)0.5~20重量%を含有するニトリル共重合体ゴム(A)と、アスペクト比が30~2,000である無機充填剤(B)とを含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記無機充填剤(B)の含有量が1~200重量部であるニトリル共重合体ゴムの組成物である。
 ニトリル共重合体ゴム(A)
 まず、本発明で用いるニトリル共重合体ゴム(A)について説明する。
 本発明で用いるニトリル共重合体ゴム(A)は、α,β-エチレン性不飽和ニトリル単量体単位(a1)35~80重量%、共役ジエン単量体単位(a2)19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)0.5~20重量%を含有するゴムである。
 α,β-エチレン性不飽和ニトリル単量体単位(a1)を形成するα,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば、特に限定されないが、たとえば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 α,β-エチレン性不飽和ニトリル単量体単位(a1)の含有割合は、全単量体単位に対して、35~80重量%であり、好ましくは40~70重量%、より好ましくは40~60重量%である。α,β-エチレン性不飽和ニトリル単量体単位(a1)の含有割合が低すぎると、得られるゴム架橋物の耐油性および耐ガソリン透過性が悪化する。一方、含有割合が高すぎると、得られるゴム架橋物が耐寒性に劣るものとなり、脆化温度が高くなる。
 共役ジエン単量体単位を形成する共役ジエン単量体としては、炭素数4~6の共役ジエン単量体が好ましく、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 共役ジエン単量体単位(a2)の含有割合は、全単量体単位に対して、19.5~64.5重量%であり、好ましくは29.5~59.5重量%、より好ましくは39~59重量%である。共役ジエン単量体単位(a2)の含有割合が低すぎると、得られるゴム架橋物のゴム弾性が低下してしまう。一方、含有割合が高すぎると、得られるゴム架橋物の耐化学的安定性が損なわれる可能性がある。
 α,β-エチレン性不飽和カルボン酸単量体単位(a3)を形成するα,β-エチレン性不飽和カルボン酸単量体としては、エステル化されていない無置換の(フリーの)カルボキシル基を少なくとも1つ有するα,β-エチレン性不飽和化合物であれば、特に限定されないが、たとえば、炭素数3~12のα,β-エチレン性不飽和モノカルボン酸、炭素数4~12のα,β-エチレン性不飽和ジカルボン酸、および炭素数5~20のα,β-エチレン性不飽和ジカルボン酸モノエステルなどが挙げられる。
 炭素数3~12のα,β-エチレン性不飽和モノカルボン酸の具体例としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、およびケイ皮酸などが挙げられる。
 炭素数4~12のα,β-エチレン性不飽和ジカルボン酸の具体例としては、フマル酸、マレイン酸などのブテンジオン酸;イタコン酸;シトラコン酸;クロロマレイン酸;などが挙げられる。
 炭素数5~20のα,β-エチレン性不飽和ジカルボン酸モノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチルなどのブテンジオン酸モノ鎖状アルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘキセニルなどの脂環構造を有するブテンジオン酸モノエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn-ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノエステル;などが挙げられる。
 これらの中でも、本発明の効果がより一層顕著になることから、炭素数3~12のα,β-エチレン性不飽和モノカルボン酸および炭素数5~20のα,β-エチレン性不飽和ジカルボン酸モノエステルが好ましく、炭素数3~8のα,β-エチレン性不飽和モノカルボン酸および炭素数5~15のブテンジオン酸モノ鎖状アルキルエステルがより好ましく、アクリル酸、メタクリル酸、フマル酸モノブチルおよびマレイン酸モノブチルがさらに好ましく、メタクリル酸およびマレイン酸モノブチルが特に好ましい。これらのα,β-エチレン性不飽和カルボン酸単量体は、一種単独でまたは複数種併せて用いることができる。なお、上記単量体のうち、ジカルボン酸には、無水物として存在しているものも含まれる。
 α,β-エチレン性不飽和カルボン酸単量体単位(a3)の含有割合は、全単量体単位に対して、0.5~20重量%であり、好ましくは0.5~10重量%、より好ましくは1~5重量%である。α,β-エチレン性不飽和カルボン酸単量体単位(a3)の含有割合が低すぎると得られるゴム架橋物が耐寒性に劣るものとなり、脆化温度が高くなる。一方、含有割合が高すぎると、得られるゴム架橋物の耐疲労性が低下する可能性がある。
 さらに、本発明で用いるニトリル共重合体ゴム(A)は、上記α,β-エチレン性不飽和ニトリル単量体単位(a1)、共役ジエン単量体単位(a2)、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。
 このような共重合可能な他の単量体としては、たとえば、カチオン性単量体や、カチオンを形成可能な単量体などが挙げられる。カチオン性単量体、およびカチオンを形成可能な単量体は、得られる重合体が水または酸水溶液に接した際にプラスに帯電するような単量体単位を形成する単量体であり、たとえば、カチオン性単量体としては、第四級アンモニウム塩基を含有する単量体が挙げられる。また、カチオンを形成可能な単量体としては、第三級アミノ基のように塩酸および硫酸等の酸水溶液と接触した際にアンモニウム塩(たとえば、アミン塩酸塩やアミン硫酸塩)などにカチオン化される前駆体部(置換基)を有する単量体が挙げられる。
 カチオン性単量体の具体例としては、(メタ)アクリロイルオキシトリメチルアンモニウムクロライド〔アクリロイルオキシトリメチルアンモニウムクロライドおよび/またはメタクリロイルオキシトリメチルアンモニウムクロライドを意味する。以下、同様。〕、(メタ)アクリロイルオキシヒドロキシプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシトリメチルアンモニウムメチルサルフェート等の第四級アンモニウム塩基を含有する(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルベンジルアンモニウムクロライド等の第四級アンモニウム塩基を含有する(メタ)アクリルアミド単量体;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 カチオンを形成可能な単量体の具体例としては、2-ビニルピリジン、4-ビニルピリジン等のビニル基含有環状アミン単量体;(メタ)アクリル酸ジメチルアミノエチル等の第三級アミノ基含有(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドジメチルアミノエチル、N,N-ジメチルアミノプロピルアクリルアミド等の第三級アミノ基含有(メタ)アクリルアミド単量体;N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリン等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 また、共重合可能な他の単量体としては、上述したカチオン性単量体、およびカチオンを形成可能な単量体以外に、たとえば、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-(トリフルオロ)メチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン;プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸ジエチル、マレイン酸ジブチル、フマル酸ジエチル、フマル酸ジブチル、フマル酸ジシクロヘキシル、イタコン酸ジエチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和ジカルボン酸のジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和モノカルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどのα,β-エチレン性不飽和モノカルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリ(メタ)アクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などを用いることができる。
 本発明で用いるニトリル共重合体ゴム(A)のムーニー粘度(以下、「ポリマー・ムーニー粘度」と記すことがある。)(ML1+4、100℃)は、好ましくは3~250、より好ましくは15~180、さらに好ましくは20~170である。ニトリル共重合体ゴムのポリマー・ムーニー粘度が低すぎると、得られるゴム架橋物の強度特性が低下するおそれがある。一方、高すぎると、加工性が悪化する可能性がある。
 本発明で用いるニトリル共重合体ゴム(A)は、上記したニトリル共重合体ゴムを構成する各単量体を共重合することにより製造することができる。各単量体を共重合する方法としては、特に限定されないが、たとえば、ドデシルベンゼンスルホン酸ナトリウムなどの乳化剤を用いて約50~1000nmの平均粒径を有する共重合体のラテックスを得る乳化重合法や、ポリビニルアルコールなどの分散剤を用いて約0.2~200μmの平均粒径を有する共重合体の水分散液を得る懸濁重合法(微細懸濁重合法も含む)などを好適に用いることができる。これらのなかでも、重合反応制御が容易なことから乳化重合法がより好ましい。
 乳化重合法は、下記の手順で行うことが好ましい。
 なお、以下において、適宜、α,β-エチレン性不飽和ニトリル単量体を「単量体(m1)」とし、共役ジエン単量体を「単量体(m2)」とし、α,β-エチレン性不飽和カルボン酸単量体を「単量体(m3)」とする。
 すなわち、単量体(m1)35~80重量%、好ましくは40~70重量%、より好ましくは40~60重量%、単量体(m2)19.5~64.5重量%、好ましくは29.5~59.5重量%、より好ましくは39~59重量%、および単量体(m3)0.5~20重量%、好ましくは0.5~10重量%、より好ましくは1~5重量%、からなる単量体混合物(ただし、単量体(m1)、単量体(m2)および単量体(m3)の合計量が100重量%である。)を乳化重合し、重合転化率が好ましくは50~95重量%の時点で、重合反応を停止した後、所望により未反応の単量体を除去する方法が好ましい。
 乳化重合法に用いる、単量体(m1)の使用量が少なすぎると、得られるゴム架橋物の耐油性が悪化し、耐ガソリン透過性が悪化する。一方、単量体(m1)の使用量が多すぎると、耐寒性が悪化する傾向がある。単量体(m2)の使用量が少なすぎると、得られるゴム架橋物の耐寒性が悪化し、一方、単量体(m2)の使用量が多すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化する傾向がある。また、単量体(m3)の使用量が少なすぎると、得られるゴム架橋物の耐寒性が悪化し、一方、単量体(m3)の使用量が多すぎると、得られるゴム架橋物の耐疲労性が低下する可能性がある。
 なお、重合反応を停止する重合転化率が低すぎると、未反応の単量体の回収が非常に困難になる。一方、高すぎると、得られるゴム架橋物の常態物性が悪化する。
 乳化重合を行うに際し、乳化重合の分野で従来公知の乳化剤、重合開始剤、重合副資材などを適宜用いることができ、重合温度や重合時間も適宜調節すればよい。
 また、乳化重合に用いる単量体(m1)~(m3)の全量を用い、重合反応を開始してもよいが、生成する共重合体の各単量体単位の組成分布を制御し、よりゴム弾性に富むゴム架橋物を得るという観点から、乳化重合に用いる単量体(m1)~(m3)の全量のうち一部を用いて重合反応を開始し、その後、反応途中の段階で乳化重合に用いる単量体(m1)~(m3)の残余を反応器に添加して重合反応を継続することが好ましい。重合反応開始時から、乳化重合に用いる単量体(m1)~(m3)の全量を反応させてしまうと、共重合体の組成分布が広がってしまう場合があるからである。
 この場合、重合に用いる単量体(m1)の好ましくは10~100重量%、より好ましくは20~100重量%、特に好ましくは30~100重量%と、重合に用いる単量体(m2)の好ましくは5~90重量%、より好ましくは10~80重量%、特に好ましくは15~70重量%と、重合に用いる単量体(m3)の好ましくは10~100重量%、より好ましくは30~100重量%、特に好ましくは70~100重量%とからなる単量体混合物を反応器に仕込み、重合反応を開始した後、反応器に仕込んだ単量体混合物に対する重合転化率が好ましくは5~80重量%の範囲で、残余の単量体を反応器に添加して重合反応を継続することが好ましい。
 残余の単量体を添加する方法は、特に制限されないが、一括で添加しても、分割して添加しても、また、連続的に添加してもよい。本発明では、得られる共重合体の組成分布をより簡便に制御できる点から、残余の単量体を、分割して添加することが好ましく、1~6回に分割して添加することが特に好ましい。残余の単量体を、分割して添加する場合、分割添加する単量体の量や分割添加する時期は、重合反応の進行に合わせ、所望のニトリル共重合体ゴムが得られるよう調整すればよい。
 そして、その後、所望により、加熱蒸留、減圧蒸留、水蒸気蒸留などの公知の方法を用いて未反応の単量体を除去することにより、ニトリル共重合体ゴム(A)のラテックスが得られる。
 次いで、得られたニトリル共重合体ゴム(A)のラテックスを、凝固し、必要に応じて水洗・乾燥することにより、ニトリル共重合体ゴム(A)を得ることができる。ニトリル共重合体ゴム(A)のラテックスの凝固は、特に限定されないが、凍結凝固、乾燥凝固、水溶性有機液体による凝固、塩析凝固等の公知の方法を用いることができる。凝固剤としては、塩化カルシウム、塩化ナトリウム、水酸化カルシウム、硫酸アルミニウムおよび水酸化アルミニウムなどが挙げられる。また、凝固剤の使用量は、ニトリル共重合体ゴム(A)に対して、好ましくは0.5~30重量%、特に好ましくは0.5~20重量%である。
 なお、本発明で用いるニトリル共重合体ゴム(A)は、上記のように共重合して得られた共重合体の共役ジエン単量体単位部分における炭素-炭素不飽和結合部分のうち少なくとも一部を水素化(水素添加反応)した水素化ニトリル共重合体ゴムであってもよい。水素化の方法は特に限定されず、公知の方法を採用すればよい。ニトリル共重合体ゴム(A)を、水素化ニトリル共重合体ゴムとする場合には、そのヨウ素価は、好ましくは0~70の範囲、より好ましくは4~60の範囲である。ニトリル共重合体ゴム(A)を水素化し、水素化ニトリル共重合体ゴムとすることにより、耐熱性、耐候性、耐オゾン性などを向上させることができる。
 無機充填剤(B)
 本発明で用いる無機充填剤(B)は、アスペクト比が30~2,000であり、好ましくは35~1,800、より好ましくは40~1,600、特に好ましくは50~1,000の扁平状の無機充填剤である。このような扁平状の無機充填剤を用いることにより、得られるゴム架橋物にガソリンの浸透遮断効果をもたらすことができる。しかも、扁平状の無機充填剤のうちでも、アスペクト比が上記範囲にある無機充填剤を用い、これを上記ニトリル共重合体ゴム(A)と組み合わせることにより、得られるゴム架橋物を、常態物性を良好なものとしながら、耐ガソリン透過性および耐寒性に優れたものとすることができる。アスペクト比が小さすぎると、得られるゴム架橋物の耐ガソリン透過性が悪化してしまう。一方、大きすぎると、ニトリル共重合体ゴム(A)中への分散が困難となり、機械的強度が低下してしまう。
 なお、本発明において無機充填剤(B)のアスペクト比は、無機充填剤(B)の一次粒子の面平均径と平均厚みの比を求めることにより算出することができる。ここで、面平均径および平均厚みは、無作為に100個の無機充填剤(B)を選び、次いで、選んだ100個の無機充填剤(B)の面方向の径と厚みとを原子間力顕微鏡で測定し、得られた測定結果の算術平均値として算出される個数平均の値である。
 アスペクト比が30~2,000である無機充填剤としては、特に限定されないが、天然物由来のものであっても、天然物に精製などの処理を加えたものであっても、合成品であってもよい。具体例としては、カオリナイトやハロサイトなどのカオリナイト類;モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティブンサイト、マイカなどのスメクタイト類;およびバーミキュライト類;緑泥石類;タルク;EガラスまたはCガラスなどの無定形板状粒子であるガラスフレーク;などの扁平状の無機充填剤が挙げられ、中でもスメクタイト類が好ましく、モンモリロナイト、マイカおよびサポナイトが特に好ましい。これらは一種単独でまたは複数種併せて用いることができる。特に、本発明では、モンモリロナイト、マイカ、サポナイトを水分散処理することにより、多層構造を有する化合物であるモンモリロナイト、マイカ、サポナイトを構成する各層を分離して得られるものを用いることが好ましい。このような水分散処理を行うことにより、分散性が良好な組成物を得ることができる。ここで、上記のうち、無機充填剤(B)としてのモンモリロナイトは、ベントナイトに主成分として含有されるものであり、そのため、モンモリロナイトとしては、ベントナイトを精製することにより得られるものなどを用いることができる。
 また、無機充填剤(B)の平均粒径(平均一次粒子径)は、好ましくは0.05~100μm、より好ましくは0.1~80μm、特に好ましくは0.1~50μmである。本発明においては、無機充填剤(B)の平均粒径は、X線透過法で粒度分布を測定することにより求められる50%体積累積径で定義される。無機充填剤(B)の粒径が小さすぎると、得られるゴム架橋物の伸びが低下するおそれがあり、逆に、大きすぎると安定なゴム組成物が調製できない可能性がある。
 無機充填剤(B)の含有量は、ニトリル共重合体ゴム(A)100重量部に対し、1~200重量部であり、好ましくは2~150重量部、さらに好ましくは3~120重量部、特に好ましくは3~60重量部である。無機充填剤(B)の使用量が少なすぎると、得られるゴム架橋物の耐ガソリン透過性が悪化したり、耐サワーガソリン性が不十分になったりするおそれがある。一方、使用量が多すぎると、伸びが低下するおそれがある。
 塩化ビニル樹脂および/またはアクリル樹脂
 また、本発明のニトリル共重合体ゴム組成物は、上述したニトリル共重合体ゴム(A)および無機充填剤(B)に加えて、塩化ビニル樹脂および/またはアクリル樹脂をさらに含有していてもよい。本発明のニトリル共重合体ゴム組成物を、塩化ビニル樹脂および/またはアクリル樹脂、好ましくは塩化ビニル樹脂を含有するものとすることにより、得られるゴム架橋物の耐オゾン性を向上させることができる。
 塩化ビニル樹脂は、主構成単量体が塩化ビニルであり、主構成単量体の単位の含有量が好ましくは50~100重量%、より好ましくは60~100重量%、さらに好ましくは70~100重量%である。塩化ビニル樹脂は、JIS K6721に規定の溶液粘度法による平均重合度が、好ましくは400~3,000、より好ましくは600~2,000であり、ガラス転移温度(Tg)が、好ましくは50~180℃である。
 塩化ビニル樹脂は、従来公知の乳化重合や懸濁重合により製造することができる。
 たとえば、乳化重合によって製造する場合には、耐圧反応容器に、水、ラウリル硫酸ナトリウム等の乳化剤および過硫酸カリウム等の重合開始剤を仕込んで、減圧脱気をくり返した後、塩化ビニル単量体(必要に応じて共重合可能なその他の単量体を加えても良い)を仕込み、攪拌しつつ加温して乳化重合を行い、重合転化率が所定の値に達したら重合停止剤を加え、室温に冷却して未反応単量体を除去して塩化ビニル樹脂ラテックスを得ることができる。次いで、得られた塩化ビニル樹脂ラテックスを、上記ニトリル共重合体ゴム(A)のラテックスの場合と同様にして、凝固し、必要に応じて水洗・乾燥することにより、塩化ビニル樹脂を得ることができる。
 アクリル樹脂は、主構成単量体が(メタ)アクリル酸アルキルエステルである樹脂であり、主構成単量体の単位の含有量が好ましくは50~100重量%、より好ましくは60~100重量%、さらに好ましくは70~100重量%である。また、アクリル樹脂は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算の数平均分子量(Mn)が、好ましくは10,000~7,000,000、より好ましくは100,000~2,000,000であり、ガラス転移温度(Tg)が、好ましくは60~150℃である。
 アクリル樹脂は、従来公知の乳化重合や懸濁重合により製造することができる。
 たとえば、乳化重合によって製造する場合には、反応器に、水、オクチル硫酸ナトリウム等の乳化剤、過硫酸アンモニウム等の重合開始剤、メタクリル酸メチル等の単量体(必要に応じて共重合可能なその他の単量体を加えても良い)を仕込み、攪拌しつつ加温して乳化重合を行い、重合転化率が所定の値に達したら重合停止剤を加え、室温に冷却してアクリル樹脂のラテックスを得ることができる。次いで、得られたアクリル樹脂のラテックスを、上記ニトリル共重合体ゴム(A)のラテックスの場合と同様にして、凝固し、必要に応じて水洗・乾燥することにより、アクリル樹脂を得ることができる。
 本発明のニトリル共重合体ゴム組成物中における、塩化ビニル樹脂および/またはアクリル樹脂の含有量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは10~150重量部であり、より好ましくは15~130重量部、さらに好ましくは20~100重量部である。塩化ビニル樹脂および/またはアクリル樹脂の含有量が少なすぎると、耐ガソリン透過性および耐オゾン性に劣るおそれがあり、一方、含有量が多すぎると、耐寒性が悪化するおそれがある。
 その他の成分
 また、本発明のニトリル共重合体ゴム組成物は、上記各成分に加えて、可塑剤を含有してもよい。
 可塑剤としては、特に限定されないが、得られるゴム架橋物の耐ガソリン透過性および耐寒性が優れたものとなるとともに、脆化温度が低下する(耐寒性が向上する。)ことから、HOY法によるSP値(溶解度パラメータ)が8.0~10.2(cal/cm1/2である可塑剤が好ましい。
 このような可塑剤の具体例(SP値の単位は「(cal/cm1/2」)としては、たとえば、アジピン酸ジブトキシエチル(SP値:8.8)、アジピン酸ジ(ブトキシエトキシエチル)(SP値:9.2)、アジピン酸ジ(メトキシテトラエチレングリコール)、アジピン酸ジ(メトキシペンタエチレングリコール)、アジピン酸(メトキシテトラエチレングリコール)(メトキシペンタエチレングリコール)、アジピン酸ジ(メトキシトリエトキシエチル)、アジピン酸(メトキシトリエトキシエチル)(メトキシテトラエトキシエチル)、アジピン酸ジ(メトキシテトラエトキシエチル)、アジピン酸(ブトキシトリエトキシエチル)(ペントキシテトラエトキシエチル)、アジピン酸(ペントキシトリエトキシエチル)(ペントキシテトラエトキシエチル)などのアジピン酸とエーテル結合含有アルコールとのエステル化合物;アゼライン酸ジブトキシエチル、アゼライン酸ジ(ブトキシエトキシエチル)などのアゼライン酸とエーテル結合含有アルコールとのエステル化合物;セバシン酸ジブトキシエチル、セバシン酸ジ(ブトキシエトキシエチル)などのセバシン酸とエーテル結合含有アルコールとのエステル化合物;フタル酸ジブトキシエチル、フタル酸ジ(ブトキシエトキシエチル)などのフタル酸とエーテル結合含有アルコールとのエステル化合物;イソフタル酸ジブトキシエチル、イソフタル酸ジ(ブトキシエトキシエチル)などのイソフタル酸とエーテル結合含有アルコールとのエステル化合物;アジピン酸ジ-(2-エチルヘキシル)(SP値:8.5)、アジピン酸ジイソデシル(SP値:8.3)、アジピン酸ジイソノニル、アジピン酸ジブチル(SP値:8.9)などのアジピン酸ジアルキルエステル類;アゼライン酸ジ-(2-エチルヘキシル)(SP値:8.5)、アゼライン酸ジイソオクチル、アゼライン酸ジ-n-ヘキシルなどのアゼライン酸ジアルキルエステル類;セバシン酸ジ-n-ブチル(SP値:8.7)、セバシン酸ジ-(2-エチルヘキシル)(SP値:8.4)などのセバシン酸ジアルキルエステル類;フタル酸ジブチル(SP値:9.4)、フタル酸ジ-(2-エチルヘキシル)(SP値:9.0)、フタル酸ジ-n-オクチル、フタル酸ジイソブチル、フタル酸ジヘプチル(SP値:9.0)、フタル酸ジイソデシル(SP値:8.5)、フタル酸ジウンデシル(SP値:8.5)、フタル酸ジイソノニル(SP値:8.9)などのフタル酸ジアルキルエステル類;フタル酸ジシクロヘキシルなどのフタル酸ジシクロアルキルエステル類;フタル酸ジフェニル、フタル酸ブチルベンジル(SP値:10.2)などのフタル酸アリールエステル類;イソフタル酸ジ-(2-エチルヘキシル)、イソフタル酸ジイソオクチルなどのイソフタル酸ジアルキルエステル類;テトラヒドロフタル酸ジ-(2-エチルヘキシル)、テトラヒドロフタル酸ジ-n-オクチル、テトラヒドロフタル酸ジイソデシルなどのテトラヒドロフタル酸ジアルキルエステル類;トリメリット酸トリ-(2-エチルヘキシル)(SP値:8.9)、トリメリット酸トリ-n-オクチル(SP値:8.9)、トリメリット酸トリイソデシル(SP値:8.4)、トリメリット酸トリイソオクチル、トリメリット酸トリ-n-ヘキシル、トリメリット酸トリイソノニル(SP値:8.8)、トリメリット酸トリイソデシル(SP値:8.8)などのトリメリット酸誘導体;エポキシ化大豆油(SP値:9.0)、エポキシ化アマニ油(SP値:9.3)などのエポキシ系可塑剤;トリクレジルホスフェート(SP値:9.7)などのリン酸エステル系可塑剤;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 これらのなかでも、得られるゴム架橋物の耐ガソリン透過性と耐寒性とをより良好なものとすることができることから、アジピン酸、アゼライン酸、セバシン酸およびフタル酸などの二塩基酸とエーテル結合含有アルコールとのエステル化合物が好ましく、アジピン酸とエーテル結合含有アルコールとのエステル化合物がより好ましく、アジピン酸ジ(ブトキシエトキシエチル)が特に好ましい。
 本発明のニトリル共重合体ゴム組成物中における、可塑剤の含有量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1~200重量部であり、より好ましくは5~150重量部、さらに好ましくは5~70重量部である。可塑剤の使用量が上記範囲にある場合に、ブリードが防止できることに加えて、本発明の効果がより一層顕著なものとなる。
 ニトリル共重合体ゴム組成物の調製方法
 本発明のニトリル共重合体ゴム組成物の調製方法は、特に限定されないが、次の方法により調製することができる。すなわち、まず、上記した方法により、ニトリル共重合体ゴム(A)のラテックスを調製し、次いで、ニトリル共重合体ゴム(A)のラテックスに、無機充填剤(B)の水性分散液、必要に応じて添加されるアクリル樹脂および/または塩化ビニル樹脂のラテックス、ならびに、必要に応じて添加される可塑剤の水性分散液を攪拌下で添加することによりラテックス組成物を得る。そして、得られたラテックス組成物を凝固し、必要に応じて水洗・乾燥することにより、本発明のニトリル共重合体ゴム組成物を調製することができる。
 なお、可塑剤は、水性分散液として添加せずに、上記ラテックス組成物を凝固(必要に応じて水洗・乾燥)した後に、バンバリーミキサー等の混練機を用いて混合しても良い。
 無機充填剤(B)の水性分散液の調製方法は特に限定はないが、水媒体を、強く撹拌しながら、無機充填剤(B)を添加して調製すればよい。この場合においては、無機充填剤(B)に対して、0.1~10重量%となる量のポリアクリル酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、ポリマレイン酸ナトリウム、β-ナフタレンスルホン酸・ホルマリン縮合物のNa塩などの分散剤や界面活性剤等を含有する水媒体を使用することが好ましい。これらは一種単独でまたは複数種併せて用いることができる。無機充填剤(B)の水性分散液の固形分濃度は、好ましくは1~50重量%、より好ましくは2~40重量%である。
 また、本発明においては、無機充填剤(B)の水性分散液を調製する際には、湿式粉砕機を用いて、無機充填剤(B)を水中に分散させてもよい。湿式粉砕機を用いて分散させることにより、無機充填剤(B)が二次凝集している場合に、無機充填剤(B)の二次凝集を解消することができ、得られるゴム架橋物を耐ガソリン透過性により優れたものとすることができる。この場合に用いる湿式粉砕機としては、ナスマイザー(吉田機械興業(株)製)、スーパーウイングミルDM-200((株)エステック製)、スターバースト((株)スギノマシン製)、スターミル(アシザワファインテック(株)製)などが挙げられるが、同様の効果が得られるものであれば、もちろん他の湿式粉砕機を用いることも可能である。
 また、可塑剤を水性分散液として添加する場合における、可塑剤の水性分散液の調製方法は特に限定はないが、可塑剤の0.5~10重量%となる量の界面活性剤を含有する水媒体を強く撹拌しながら、可塑剤を添加して調製することが好ましい。このような界面活性剤としては、ロジン酸カリウム、ラウリル硫酸ナトリウム、オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステルなどのノニオン性界面活性剤;ジデシルジメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤;等が挙げられる。なお、水性分散液中の可塑剤の濃度は、5~70重量%とすることが好ましい。
 ラテックス組成物の凝固は、特に限定されないが、凍結凝固、乾燥凝固、水溶性有機液体による凝固、塩析凝固等の公知の方法が適用される。これらの中でも、凝固剤を含む水溶液に、ラテックス組成物を添加して塩析させることにより行うことが好ましい。凝固剤としては、塩化カルシウム、塩化ナトリウム、水酸化カルシウム、硫酸アルミニウムおよび水酸化アルミニウムなどが挙げられる。また、凝固剤の使用量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.5~150重量部である。
 一般に、クラム粒径は、凝固、洗浄工程に続く振動スクリーンやスクイーザーでの脱水度、クラム回収率、さらには乾燥工程での乾燥度に大きな影響を及ぼすものである。たとえば、クラム粒径が小さすぎると、振動スクリーンなどでは、クラム粒径が小さくてスクリーンの目から流出したり、スクイーザーでのポリマーの噛みこみが不充分になって脱水度が低下したりして、生産性が悪化する。そのため、クラムの平均粒径は、0.5~40mmであることが好ましい。
 クラムの洗浄、脱水および乾燥方法については、一般的なゴムの製造における洗浄・脱水方法および乾燥方法と同様とすることができる。洗浄・脱水方法としては網目状のフィルター、遠心分離機等を用いて、凝固によって得られたクラムと水とを分離させた後、洗浄し、スクイーザー等でクラムを脱水すればよい。次に一般にゴムの製造に用いられるバンドドライヤー、通気竪型乾燥機、単軸押出機、二軸押出機等により、所望の含水率になるまで乾燥させることにより、本発明のニトリル共重合体ゴム組成物を得ることができる。また、二軸押出機内で、凝固、乾燥を同時に行ってもよい。
 なお、本発明のニトリル共重合体ゴム組成物の調製方法としては、上述した方法以外にも、たとえば、ニトリル共重合体ゴム(A)のラテックスに、無機充填剤(B)、必要に応じて添加されるアクリル樹脂および/または塩化ビニル樹脂、ならびに、必要に応じて添加される可塑剤の全成分もしくは1つ以上の成分の全量もしくはその一部を含有させた後に凝固・乾燥し、残余の成分とをロールやバンバリーミキサー等の混錬機で混錬して得ることもできる。
 架橋性ニトリル共重合体ゴム組成物
 本発明の架橋性ニトリル共重合体ゴム組成物は、上記した本発明のニトリル共重合体ゴム組成物および架橋剤を含有するものである。
 架橋剤は、ニトリル共重合体ゴムの架橋剤として通常使用されるものであればよく、特に限定されない。代表的な架橋剤としては、ニトリル共重合体ゴム(A)の不飽和結合間を架橋する硫黄系架橋剤または有機過酸化物架橋剤、および、ニトリル共重合体ゴム(A)のカルボキシル基同士を架橋するポリアミン架橋剤が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。これらのなかでも、硫黄系架橋剤が好ましい。
 硫黄系架橋剤としては、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼノピン-2)、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 有機過酸化物架橋剤としては、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 ポリアミン架橋剤は、2つ以上のアミノ基を有する化合物、または、架橋時に2つ以上のアミノ基を有する化合物の形態になるもの、であれば特に限定されないが、脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNHで表される構造、COはカルボニル基を表す。)で置換された化合物が好ましい。
 ポリアミン架橋剤の具体例としては、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、N,N-ジシンナミリデン-1,6-ヘキサンジアミン、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物などの脂肪族多価アミン類;4,4-メチレンジアニリン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4-(m-フェニレンジイソプロピリデン)ジアニリン、4,4-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4-ジアミノベンズアニリド、4,4-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン類;イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド、ナフタレン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタミン酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ブラッシル酸ジヒドラジド、ドデカン二酸ジヒドラジド、アセトンジカルボン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、イタコン酸ジヒドラジド、トリメリット酸ジヒドラジド、1,3,5-ベンゼントリカルボン酸ジヒドラジド、アコニット酸ジヒドラジド、ピロメリット酸ジヒドラジドなどの多価ヒドラジド類;が挙げられる。これらの中でも、脂肪族多価アミン類および芳香族多価アミン類が好ましく、ヘキサメチレンジアミンカルバメートおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンがより好ましい。なお、上記ポリアミン架橋剤は、1種単独で用いても、2種以上を併用して用いてもよい。
 本発明の架橋性ニトリル共重合体ゴム組成物中における、架橋剤の含有量は特に限定されないが、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部である。
 有機過酸化物架橋剤を用いる場合には、架橋助剤として、トリメタクリル酸トリメチロールプロパン、ジビニルベンゼン、ジメタクリル酸エチレン、イソシアヌル酸トリアリルなどの多官能性単量体などを併用することができる。これらの架橋助剤の使用量は特に限定されないが、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.5~20重量部の範囲である。
 硫黄系架橋剤を用いる場合には、亜鉛華(酸化亜鉛)、過酸化亜鉛、ステアリン酸などの架橋助剤;グアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系などの架橋促進剤;を併用することができる。これらの架橋助剤および架橋促進剤の使用量も特に限定されず、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1~10重量部の範囲である。
 なお、架橋助剤として過酸化亜鉛を用いた場合、亜鉛華(酸化亜鉛)を用いた場合に比べて、得られるゴム架橋物の常態物性、耐ガソリン透過性および耐寒性がほぼ同等となるだけでなく、架橋性ニトリルゴム組成物のスコーチ安定性が向上するため、好ましい。
 ポリアミン架橋剤を使用する場合は、塩基性架橋促進剤を併用することができる。塩基性架橋促進剤の具体例としては、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(以下「DBU」と略す場合がある)、1,5-ジアザビシクロ[4,3,0]ノネン-5(以下「DBN」と略す場合がある)、1-メチルイミダゾール、1-エチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メトキシエチルイミダゾール、1-フェニル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-メチル-2-フェニルイミダゾール、1-メチル-2-ベンジルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,4-トリメチルイミダゾール、1,4-ジメチル-2-エチルイミダゾール、1-メチル-2-メトキシイミダゾール、1-メチル-2-エトキシイミダゾール、1-メチル-4-メトキシイミダゾール、1-メチル-2-メトキシイミダゾール、1-エトキシメチル-2-メチルイミダゾール、1-メチル-4-ニトロイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチル-5-アミノイミダゾール、1-メチル-4-(2-アミノエチル)イミダゾール、1-メチルベンゾイミダゾール、1-メチル-2-ベンジルベンゾイミダゾール、1-メチル-5-ニトロベンゾイミダゾール、1-メチルイミダゾリン、1,2-ジメチルイミダゾリン、1,2,4-トリメチルイミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-フェニルイミダゾリン、1-メチル-2-ベンジルイミダゾリン、1-メチル-2-エトキシイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-ウンデシルイミダゾリン、1-メチル-2-ヘプタデシルイミダゾリン、1-メチル-2-エトキシメチルイミダゾリン、1-エトキシメチル-2-メチルイミダゾリンなどの環状アミジン構造を有する塩基性架橋促進剤;テトラメチルグアニジン、テトラエチルグアニジン、ジフェニルグアニジン、1,3-ジ-オルト-トリルグアニジン、オルトトリルビグアニドなどのグアニジン系塩基性架橋促進剤;n-ブチルアルデヒドアニリン、アセトアルデヒドアンモニアなどのアルデヒドアミン系塩基性架橋促進剤;などが挙げられる。これらのなかでも、グアニジン系塩基性架橋促進剤および環状アミジン構造を有する塩基性架橋促進剤が好ましく、環状アミジン構造を有する塩基性架橋促進剤がより好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7および1,5-ジアザビシクロ[4,3,0]ノネン-5がさらに好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7が特に好ましい。なお、上記環状アミジン構造を有する塩基性架橋促進剤は、有機カルボン酸やアルキルリン酸などと塩を形成していてもよい。これらの塩基性架橋促進剤の使用量は特に限定されないが、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.2~15重量部、さらに好ましくは0.5~10重量部である。
 また、本発明のニトリル共重合体ゴム組成物または架橋性ニトリル共重合体ゴム組成物には、その他必要に応じて一般的なゴムに使用される配合剤、例えば、架橋遅延剤、老化防止剤、無機充填剤(B)以外の充填剤、滑剤、粘着剤、潤滑剤、加工助剤、難燃剤、防黴剤、帯電防止剤、着色剤、カップリング剤などの添加剤を配合してもよい。
 老化防止剤としては、フェノール系、アミン系、ベンズイミダゾール系、リン酸系などの老化防止剤を使用することができる。フェノール系では、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等が、アミン系では、4,4’-ビス(α、α-ジメチルベンジル)ジフェニルアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン等が、ベンズイミダゾール系では2-メルカプトベンズイミダゾール等が挙げられる。これらは1種単独でまたは2種以上併せて使用される。
 無機充填剤(B)以外の充填剤としては、たとえば、カーボンブラックや、シリカ、炭酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、酸化マグネシウム、短繊維、(メタ)アクリル酸亜鉛や(メタ)アクリル酸マグネシウムなどのα,β-エチレン系不飽和カルボン酸金属塩などが挙げられる。これらの充填剤はシランカップリング剤、チタンカップリング剤等によるカップリング処理や、高級脂肪酸またはその金属塩、エステル若しくはアミド等の高級脂肪酸誘導体や界面活性剤等による表面改質処理を施すことができる。
 また、本発明のニトリル共重合体ゴム組成物および架橋性ニトリル共重合体ゴム組成物には、本発明の効果を損なわない範囲で、ニトリル共重合体ゴム(A)以外の重合体を含有していてもよい。ニトリル共重合体ゴム(A)以外の重合体としては、特に限定されないが、フッ素ゴム、スチレン-ブタジエン共重合体ゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、天然ゴムおよびポリイソプレンゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、クロロスルホン化ポリエチレンなどを挙げることができる。なお、ニトリル共重合体ゴム(A)以外の重合体を配合する場合における配合量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは100重量部以下、より好ましくは50重量部以下、特に好ましくは30重量部以下である。
 本発明の架橋性ニトリル共重合体ゴム組成物の調製方法としては、特に限定されないが、上記したニトリル共重合体ゴム組成物に、架橋剤、架橋助剤およびその他の配合剤を添加し、ロールやバンバリーミキサー等の混錬機で混錬する方法などが挙げられる。なお、この場合における、配合順序は特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で反応しやすい成分あるいは分解しやすい成分、たとえば架橋剤、架橋促進剤などを、反応や分解が起こらない温度で短時間で混合すればよい。
 本発明の架橋性ニトリル共重合体ゴム組成物のムーニー粘度(ML1+4、100℃)は、好ましくは5~300、より好ましくは10~250である。
 ゴム架橋物
 本発明のゴム架橋物は、上記架橋性ニトリル共重合体ゴム組成物を架橋してなる。
 本発明の架橋性ニトリル共重合体ゴム組成物を架橋する際には、製造する成形品(ゴム架橋物)の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、次いで架橋反応させることにより架橋物の形状を固定化する。架橋を行う際には、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~2時間である。
 また、ゴム架橋物は、その形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
 このようにして得られる本発明のゴム架橋物は、上述した本発明のニトリル共重合体ゴム組成物を用いて得られるものであるため、常態物性が良好であり、耐ガソリン透過性および耐寒性に優れるものである。そのため、本発明のゴム架橋物は、パッキン、ガスケット、O-リング、オイルシール等のシール部材;オイルホース、燃料ホース、インレットホース、ガスホース、ブレーキホース、冷媒ホース等のホース;ダイアフラム;アキュムレータプラダ;ブーツ;などに好適であるが、ホース、シール、パッキンまたはガスケットとして特に好適に用いられる。
 なかでも、本発明のゴム架橋物は、本発明のゴム架橋物からなる層を少なくとも1つの層とする一層または二層以上からなる積層体とすることにより燃料用ホースなどとして好適に用いられる。この際においては、二層以上の積層体においては、本発明のゴム架橋物からなる層を内層、中間層、外層のいずれに用いてもよい。積層体の他の層としては、α,β-エチレン性不飽和ニトリル単量体単位含有量が好ましくは5~60重量%、より好ましくは18~50重量%であるニトリルゴムのほか、該ニトリルゴムと塩化ビニル樹脂またはアクリル樹脂とを含有するものや、フッ素ゴム、クロロプレンゴム、ヒドリンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、エチレン-アクリル酸共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン3元共重合体、ブチルゴム、イソプレンゴム、天然ゴム、スチレン-ブタジエン共重合体、フッ素樹脂、ポリアミド樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合樹脂、エチレン-ビニルアルコール共重合体樹脂、ポリブチレンナフタレート、ポリフェニレンスルフィド、ポリオレフィン樹脂、ポリエステル樹脂などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 また、必要に応じて、本発明のゴム架橋物からなる層と、他の層を接着させるために、本発明のゴム架橋物からなる層と、他の層のいずれか/または両方にテトラブチルホスホニウム ベンゾトリアゾレート、テトラオクチルホスホニウム ベンゾトリアゾレート、メチルトリオクチルホスホニウム ベンゾトリアゾレート、テトラブチルホスホニウム トリルトリアゾレート、テトラオクチルホスホニウム トリルトリアゾレートなどのホスホニウム塩、1,8-ジアザビシクロ(5.4.0)ウンデセン-7塩(DBU塩)、1,5-ジアザビシクロ(4.3.0)-ノネン-5塩(DBN塩)などを含有させてもよい。
 本発明のゴム架橋物を、このような構成を有するホースとする場合における製造方法としては、特に限定されないが、押出機などを用いて筒状に成形し、それを架橋する方法などが挙げられる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。
 ムーニー粘度
 ニトリル共重合体ゴムのムーニー粘度(ポリマー・ムーニー粘度)(ML1+4、100℃)は、JIS K6300に従って測定した。
 常態物性(引張強さ、伸び、100%引張応力、硬さ)
 架橋性ニトリルゴム組成物を縦15cm、横15cm、深さ0.2cmの金型に入れ、10MPaに加圧しながら160℃で20分間プレス成形してシート状のゴム架橋物を得た。得られたシート状のゴム架橋物をJIS3号形ダンベルで打ち抜いて試験片を作製し、ゴム架橋物の引張強さ、伸び、および100%引張応力を、JIS K6251に従って測定した。また、JIS K6253に従い、デュロメータ硬さ試験機タイプAを用いてゴム架橋物の硬さを測定した。
 ガソリン透過係数
 上記常態物性の評価に用いたシート状のゴム架橋物と同様のものを準備し、燃料油として「イソオクタンとトルエンとエタノールを重量比2:2:1で混合したもの」を使用して、アルミカップ法によりガソリン透過係数を測定した。具体的には、100ml容量のアルミニウム製のカップに、上記燃料油を50ml入れ、その上にシート状のゴム架橋物をのせ、これで蓋をして、締め具で、シート状のゴム架橋物によりアルミカップ内外を隔てる面積が25.50cmになるように調整し、該アルミカップを23℃の恒温槽内にて、放置し、336時間まで、24時間毎に重量測定することにより24時間毎の油の透過量を測定し、その最大量を透過量とするものである(単位:g・mm/m・day)。
 なお、ガソリン透過係数は値が低い程、耐ガソリン透過性に優れると評価でき、好ましい。
 脆化温度
 上記常態物性の評価に用いたシート状のゴム架橋物と同様のものを用い、JIS  K6261に従い、脆化温度を測定した。
 製造例1(ニトリル共重合体ゴム(A1)のラテックスの製造)
 反応容器に、水240部、アクリロニトリル75.7部、メタクリル酸2.1部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン22.2部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部、ホルムアルデヒドスルホキシル酸ナトリウム0.06部、および、連鎖移動剤であるt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が、それぞれ38重量%、57重量%、および、71重量%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ11部、10部、および、9部追加して2段目、3段目、および、4段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が80重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル共重合体ゴム(A1)のラテックス(固形分24重量%)を得た。
 次いで、上記にて得られたニトリル共重合体ゴム(A1)のラテックスの一部をサンプリングし、多量のメタノールで凝固させた後、ろ過、乾燥することによりニトリル共重合体ゴム(A1)を得た。そして、得られたニトリル共重合体ゴム(A1)を構成する各単量体単位の含有割合を、FT-NMR装置(商品名「AVANCEIII500」、ブルカー・バイオスピン株式会社製)を用いてH-NMR測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位48重量%、メタクリル酸単位2重量%であった。また、ニトリル共重合体ゴム(A1)のムーニー粘度(ポリマー・ムーニー粘度)は75であった。
 製造例2(ニトリル共重合体ゴム(A2)のラテックスの製造)
 製造例1において、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部、メタクリル酸4.2部、および1,3-ブタジエン20.1部に変更した以外は、製造例1と同様にして、ニトリル共重合体ゴム(A2)のラテックス(固形分:24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A2)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位46重量%、メタクリル酸単位4重量%であった。また、ニトリル共重合体ゴム(A2)のムーニー粘度(ポリマー・ムーニー粘度)は73であった。
 製造例3(ニトリル共重合体ゴム(A3)のラテックスの製造)
 製造例1において、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部、マレイン酸モノブチル4.2部および1,3-ブタジエン20.1部に変更した以外は、製造例1と同様にして、ニトリル共重合体ゴム(A3)のラテックス(固形分:24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A3)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位46重量%、マレイン酸モノブチル単位4重量%であった。また、ニトリル共重合体ゴム(A2)のムーニー粘度(ポリマー・ムーニー粘度)は73であった。
 製造例4(ニトリル共重合体ゴム(A4)のラテックスの製造)
 反応容器に、水240部、アクリロニトリル75.7部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン22部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部、ホルムアルデヒドスルホキシル酸ナトリウム0.06部、および連鎖移動剤であるt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が、それぞれ42重量%、および60重量%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ12部、および12部追加して2段目、および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部、および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル共重合体ゴム(A4)のラテックス(固形分24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A4)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位50重量%であった。また、ニトリル共重合体ゴム(A4)のムーニー粘度(ポリマー・ムーニー粘度)は75であった。
 製造例5(ニトリル共重合体ゴム(A5)のラテックスの製造)
 製造例1において、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部、2-ビニルピリジン2.2部、および1,3-ブタジエン22部に変更した以外は、製造例1と同様にして、ニトリル共重合体ゴム(A5)のラテックス(固形分:24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A5)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位48重量%、2-ビニルピリジン単位2重量%であった。また、ニトリル共重合体ゴム(A5)のムーニー粘度(ポリマー・ムーニー粘度)は73であった。
 製造例6(ニトリル共重合体ゴム(A6)のラテックスの製造)
 製造例1において、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部、メタクリル酸0.2部、および1,3-ブタジエン24.1部に変更した以外は、製造例1と同様にして、ニトリル共重合体ゴム(A6)のラテックス(固形分:24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A6)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3-ブタジエン単位49.9重量%、メタクリル酸単位0.1重量%であった。また、ニトリル共重合体ゴム(A6)のムーニー粘度(ポリマー・ムーニー粘度)は73であった。
 製造例7(ニトリル共重合体ゴム(A7)のラテックスの製造)
 製造例1において、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル23.2部、メタクリル酸4.4部、および1,3-ブタジエン72.4部に変更し、重合転化率がそれぞれ38重量%、および60重量%に達した時点で、反応容器にアクリロニトリルをそれぞれ4部、および2.8部追加して2段目、および3段目の重合反応を行い、重合転化率が75重量%に達した時点で重合反応を停止させた以外は製造例1と同様にして、ニトリル共重合体ゴム(A7)のラテックス(固形分24重量%)を得た。
 得られたラテックスのニトリル共重合体ゴム(A7)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単位30重量%、1,3-ブタジエン単位66重量%、メタクリル酸単位4重量%であった。また、ニトリル共重合体ゴム(A7)のムーニー粘度(ポリマー・ムーニー粘度)は73であった。
 製造例8(水素化ニトリル共重合体ゴム(A8)のラテックスの製造)
 製造例1で得られたニトリル共重合体ゴム(A1)のラテックスについて、該ラテックスに含有される乾燥ゴム重量に対してパラジウム含有量が1000ppmになるように反応器にパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化ニトリル共重合体ゴム(A8)のラテックスを得た。
 得られた水素化ニトリル共重合体ゴム(A8)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、1,3-ブタジエン単位と飽和化ブタジエン単位との合計48重量%、メタクリル酸単位2重量%であった。また、水素化ニトリル共重合体ゴム(A8)のムーニー粘度(ポリマー・ムーニー粘度)は167であり、ヨウ素価は28であった。
 製造例9(水素化ニトリル共重合体ゴム(A9)のラテックスの製造)
 製造例4で得られたニトリル共重合体ゴム(A4)のラテックスについて、該ラテックスに含有される乾燥ゴム重量に対してパラジウム含有量が1000ppmになるように反応器にパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化ニトリル共重合体ゴム(A9)のラテックスを得た。
 得られた水素化ニトリル共重合体ゴム(A9)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、1,3-ブタジエン単位と飽和化ブタジエン単位との合計50重量%であった。また、水素化ニトリル共重合体ゴム(A9)のムーニー粘度(ポリマー・ムーニー粘度)は155であり、ヨウ素価は20であった。
 製造例10(塩化ビニル樹脂のラテックスの製造)
 耐圧反応容器に、水120部、ラウリル硫酸ナトリウム0.8部、および過硫酸カリウム0.06部を仕込んで、減圧脱気を2回くり返した後、塩化ビニルを100部仕込み、攪拌しつつ加温して47℃にて乳化重合を行った。重合転化率が90%に達した後、室温に冷却して未反応単量体を除去した。得られた塩化ビニル樹脂ラテックスの濃度は41重量%であった。塩化ビニル樹脂の平均粒径は0.3μmであり、JIS K6721による平均重合度は1,300、ガラス転移温度は80℃であった。
 実施例1
 ニトリル共重合体ゴムのラテックス組成物の調製
 無機充填剤(B)としての精製ベントナイト(商品名「ベンゲル HV」、株式会社ホージュン製、アスペクト比:295、扁平状の精製ベントナイト)100部を、蒸留水1995部に、ポリアクリル酸ナトリウム5部の存在下に添加して強攪拌し、固形分濃度5%の無機充填剤(B)の水性分散液を得た。
 そして、製造例1にて得られたニトリル共重合体ゴム(A1)のラテックスを容器内で撹拌しつつ、上記にて調製した無機充填剤(B)の水性分散液を添加して分散させた。なお、無機充填剤(B)の水性分散液は、ニトリル共重合体ゴム(A1)のラテックスの固形分(ニトリル共重合体ゴム量)100部に対して、無機充填剤(B)20部となるように添加し、ニトリル共重合体のラテックス組成物を得た。次いで、得られたニトリル共重合体のラテックス組成物を、そのラテックス組成物中のニトリル共重合体ゴム(A1)の量に対して、130重量%となる量の塩化ナトリウム(凝固剤)を含有する水溶液中に、凝固中の水溶液のpHが2となるよう10%希硫酸を適時添加してpHを調整しながら、撹拌下で注ぎ入れて凝固させ、ニトリル共重合体ゴム(A1)、および無機充填剤(B)の混合物からなるクラムを生成させた。
 架橋性ニトリル共重合体ゴム組成物の調製
 そして、得られたクラムを濾別、水洗した後、60℃で減圧乾燥し、次いで、バンバリーミキサーを用いて、上記乾燥クラムに、該クラム中のニトリル共重合体ゴム(A1)100部に対して、MTカーボンブラック(商品名「Thermax medium thermal carbon black N990」、CANCARB社製)10部、架橋助剤としてステアリン酸1部を添加して50℃にて混合した。次いで、この混合物をロールに移して架橋剤である325メッシュ硫黄0.5部、テトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製)2.5部、およびN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)1.5部、過酸化亜鉛(ハクスイテック社製、架橋助剤)5部を添加して50℃で混練することで、架橋性ニトリルゴム組成物を調製した。
 得られた架橋性ニトリル共重合体ゴム組成物を架橋して得られたゴム架橋物について、上記方法にしたがって、常態物性(引張強さ、伸び、100%引張応力、硬さ)、ガソリン透過係数、および脆化温度の各評価を行った。結果を表1に示す。
 実施例2,3
 ニトリル共重合体ゴム(A1)のラテックスの代わりに、それぞれ、製造例2で得られたニトリル共重合体ゴム(A2)のラテックス(実施例2)、製造例3で得られたニトリル共重合体ゴム(A3)のラテックス(実施例3)を用いた以外は、実施例1と同様にして架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例4
 ニトリル共重合体ゴムのラテックス組成物を調製する際に、製造例10にて得られた塩化ビニル樹脂のラテックスを、ニトリル共重合体ゴム(A1)100部に対して塩化ビニル樹脂量が65部となる量で、さらに添加した以外は、実施例1と同様にして、ニトリル共重合体ゴムのラテックス組成物を得た。次いで、このようにして得られたニトリル共重合体ゴムのラテックス組成物について、実施例1と同様にして、凝固操作を行うことにより、ニトリル共重合体ゴム(A1)、無機充填剤(B)、および塩化ビニル樹脂の混合物からなるクラムを生成させた。
 そして、得られたクラムを濾別、水洗した後、60℃で減圧乾燥し、次いで、バンバリーミキサーを用いて、上記乾燥クラムに、安定剤(商品名「アルカマイザー1」、協和化学社製)2部を添加して、混合物の温度が180℃になるまで混合した。次いで、この混合物をロールに移して冷却した後、再び、バンバリーミキサーを用いて、ニトリル共重合体ゴム(A1)100部に対して、可塑剤としてのアジピン酸ジ(ブトキシエトキシエチル)45部、MTカーボンブラック(商品名「Thermax medium thermal carbon black N990」、CANCARB社製)35部、架橋助剤としてステアリン酸1.5部を添加して50℃にて混合した。次いで、この混合物をロールに移して架橋剤である325メッシュ硫黄0.8部、テトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製)2.5部、およびN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)2.5部、過酸化亜鉛(ハクスイテック社製、架橋助剤)7部を添加して50℃で混練し、架橋性ニトリルゴム組成物を調製した。
 そして、得られた架橋性ニトリルゴム組成物について、実施例1と同様に評価を行った。結果を表1に示す。
 実施例5
 ニトリル共重合体ゴム(A1)のラテックスの代わりに、製造例2で得られたニトリル共重合体ゴム(A2)のラテックスを用いた以外は、実施例4と同様にして架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 比較例1~4
 ニトリル共重合体ゴム(A1)のラテックスの代わりに、それぞれ、製造例4で得られたニトリル共重合体ゴム(A4)のラテックス(比較例1)、製造例5で得られたニトリル共重合体ゴム(A5)のラテックス(比較例2)、製造例6で得られたニトリル共重合体ゴム(A6)のラテックス(比較例3)、製造例7で得られたニトリル共重合体ゴム(A7)のラテックス(比較例4)を用い、過酸化亜鉛の代わりに、酸化亜鉛を用いた以外は、実施例1と同様にして架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 比較例5
 無機充填剤(B)としての精製ベントナイトを配合しなかった以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例6
 ニトリル共重合体ゴム(A1)のラテックスの代わりに、製造例8で得られた水素化ニトリル共重合体ゴム(A8)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。
 比較例6
 ニトリル共重合体ゴム(A1)のラテックスの代わりに、製造例9で得られた水素化ニトリル共重合体ゴム(A9)のラテックスを用い、過酸化亜鉛の代わりに、酸化亜鉛を用いた以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2より、α,β-エチレン性不飽和ニトリル単量体単位35~80重量%、共役ジエン単量体単位19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位0.5~20重量%を含有する(水素化)ニトリル共重合体ゴム(A)に、アスペクト比が30~2,000である無機充填剤(B)を所定の割合で含有させたニトリル共重合体ゴム組成物(「水素化ニトリル共重合体ゴム組成物」を含む)を架橋することにより得られるゴム架橋物は、常態物性(機械的特性)が良好で、耐ガソリン透過性および耐寒性に優れる結果となった(実施例1~6)。
 一方、ニトリル共重合体ゴムとして、α,β-エチレン性不飽和カルボン酸単量体単位を含有しないものを用いた場合や、α,β-エチレン性不飽和カルボン酸単量体単位の含有割合が0.5重量%未満であるものを用いた場合には、得られるゴム架橋物は、耐寒性に劣る結果となった(比較例1~3)。
 ニトリル共重合体ゴムとして、α,β-エチレン性不飽和ニトリル単量体単位の含有割合および共役ジエン単量体単位の含有割合が本発明所定の範囲から外れたものを用いた場合には、得られるゴム架橋物は、耐ガソリン透過性に劣る結果となった(比較例4)。
 また、無機充填剤(B)を配合しなかった場合には、得られるゴム架橋物は、耐ガソリン透過性に劣る結果となった(比較例5)。
 さらに、水素化ニトリル共重合体ゴムとして、α,β-エチレン性不飽和カルボン酸単量体単位を含有しないものを用いた場合には、耐ガソリン透過性に劣る結果となった(比較例6)。

Claims (8)

  1.  α,β-エチレン性不飽和ニトリル単量体単位(a1)35~80重量%、共役ジエン単量体単位(a2)19.5~64.5重量%、および、α,β-エチレン性不飽和カルボン酸単量体単位(a3)0.5~20重量%を含有するニトリル共重合体ゴム(A)と、アスペクト比が30~2,000である無機充填剤(B)とを含有し、
     前記ニトリル共重合体ゴム(A)100重量部に対する、前記無機充填剤(B)の含有量が1~200重量部であるニトリル共重合体ゴム組成物。
  2.  前記α,β-エチレン性不飽和カルボン酸単量体単位(a3)が、炭素数3~8のα,β-エチレン性不飽和モノカルボン酸単量体単位および/または炭素数5~15のブテンジオン酸モノ鎖状アルキルエステル単量体単位である請求項1に記載のニトリル共重合体ゴム組成物。
  3.  前記ニトリル共重合体ゴム(A)が、炭素-炭素不飽和結合部分のうち少なくとも一部が水素化された水素化ニトリル共重合体ゴムである請求項1または2に記載のニトリル共重合体ゴム組成物。
  4.  前記ニトリル共重合体ゴム(A)100重量部に対して、10~150重量部の塩化ビニル樹脂および/またはアクリル樹脂をさらに含有する請求項1~3のいずれかに記載のニトリル共重合体ゴム組成物。
  5.  請求項1~4のいずれか1項に記載のニトリル共重合体ゴム組成物および架橋剤を含有する架橋性ニトリル共重合体ゴム組成物。
  6.  請求項5に記載の架橋性ニトリル共重合体ゴム組成物を架橋してなるゴム架橋物。
  7.  ホース、シール、パッキンまたはガスケットである請求項6に記載のゴム架橋物。
  8.  2以上の層からなり、少なくとも1層が請求項6に記載のゴム架橋物から構成される積層体。
PCT/JP2015/058899 2014-03-26 2015-03-24 ニトリル共重合体ゴム組成物 WO2015146973A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/127,955 US10266628B2 (en) 2014-03-26 2015-03-24 Nitrile copolymer rubber composition
KR1020167026756A KR102269046B1 (ko) 2014-03-26 2015-03-24 니트릴 공중합체 고무 조성물
CN201580014918.4A CN106103569B (zh) 2014-03-26 2015-03-24 腈共聚物橡胶组合物
JP2016510380A JP6465104B2 (ja) 2014-03-26 2015-03-24 ニトリル共重合体ゴム組成物
EP15768962.1A EP3124532A4 (en) 2014-03-26 2015-03-24 Nitrile copolymer rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063654 2014-03-26
JP2014063654 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146973A1 true WO2015146973A1 (ja) 2015-10-01

Family

ID=54195485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058899 WO2015146973A1 (ja) 2014-03-26 2015-03-24 ニトリル共重合体ゴム組成物

Country Status (6)

Country Link
US (1) US10266628B2 (ja)
EP (1) EP3124532A4 (ja)
JP (1) JP6465104B2 (ja)
KR (1) KR102269046B1 (ja)
CN (1) CN106103569B (ja)
WO (1) WO2015146973A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186558A (ja) * 2016-03-31 2017-10-12 日本エイアンドエル株式会社 層状ケイ酸塩と熱可塑性樹脂を含有する複合体およびその製造方法
WO2018061864A1 (ja) * 2016-09-28 2018-04-05 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3350255B1 (en) 2015-09-14 2021-05-05 MCPP Innovation LLC Flexible molded skin
JP6904360B2 (ja) * 2016-09-06 2021-07-14 日本ゼオン株式会社 全固体電池用バインダ組成物、全固体電池用スラリー組成物、全固体電池用電極、および全固体電池
JP7131540B2 (ja) * 2017-03-08 2022-09-06 日本ゼオン株式会社 ラテックス組成物
US11967719B2 (en) 2018-08-31 2024-04-23 Zeon Corporation Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixed material layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, and all-solid-state secondary battery
WO2020111097A1 (ja) * 2018-11-30 2020-06-04 日本ゼオン株式会社 ディップ成形用ラテックス組成物およびディップ成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269863A (ja) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd ウェットマスターバッチ用ラテックス組成物
JP2008222891A (ja) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物及びゴム架橋物
JP2009221371A (ja) * 2008-03-17 2009-10-01 Nippon Zeon Co Ltd ニトリル共重合体ゴム組成物の製造方法
JP2009235304A (ja) * 2008-03-28 2009-10-15 Nippon Zeon Co Ltd ニトリル共重合体ラテックス組成物およびニトリル共重合体ゴム組成物
WO2010038720A1 (ja) * 2008-09-30 2010-04-08 日本ゼオン株式会社 ニトリル基含有高飽和共重合ゴム、これを含有する架橋性ゴム組成物および架橋物
WO2013073660A1 (ja) * 2011-11-18 2013-05-23 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049218B2 (ja) 1980-10-20 1985-10-31 日本ゼオン株式会社 耐油性ゴム組成物
WO2000026292A1 (fr) 1998-11-04 2000-05-11 Nippon Zeon Co., Ltd. Composition polyblend, article reticule, et tuyau d'amenee de carburant
US20020117815A1 (en) * 2000-12-22 2002-08-29 Suddaby Kevin Grant Gaskets utilizing polymers having a novel cure system
JP4645025B2 (ja) 2003-11-28 2011-03-09 Jsr株式会社 耐油耐候性ゴム組成物及びそれを用いた成形体
US8044147B2 (en) * 2005-02-23 2011-10-25 Zeon Corporation Nitrile group-containing copolymer rubber and a vulcanizable nitrile group-containing copolymer rubber composition
WO2007119848A1 (ja) * 2006-04-17 2007-10-25 Zeon Corporation 架橋性ニトリルゴム組成物およびゴム架橋物
CN101932649B (zh) * 2008-01-30 2013-04-24 日本瑞翁株式会社 腈共聚物胶乳组合物及腈共聚物橡胶组合物
WO2010050552A1 (ja) 2008-10-29 2010-05-06 日本ゼオン株式会社 ニトリル共重合体ラテックス組成物およびニトリル共重合体ゴム組成物
JP5381088B2 (ja) 2008-12-25 2014-01-08 日本ゼオン株式会社 ニトリル共重合体ゴム組成物
WO2011016479A1 (ja) * 2009-08-05 2011-02-10 日本ゼオン株式会社 ニトリルゴム組成物、架橋性ニトリルゴム組成物、ゴム架橋物、及びニトリルゴム組成物の製造方法
JP5742836B2 (ja) 2010-03-17 2015-07-01 日本ゼオン株式会社 ホース用ニトリル共重合体ゴム組成物および架橋物
WO2012090941A1 (ja) 2010-12-27 2012-07-05 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
ES2654665T3 (es) * 2012-12-21 2018-02-14 Zeon Corporation Composición de caucho de copolímero de nitrilo

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269863A (ja) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd ウェットマスターバッチ用ラテックス組成物
JP2008222891A (ja) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物及びゴム架橋物
JP2009221371A (ja) * 2008-03-17 2009-10-01 Nippon Zeon Co Ltd ニトリル共重合体ゴム組成物の製造方法
JP2009235304A (ja) * 2008-03-28 2009-10-15 Nippon Zeon Co Ltd ニトリル共重合体ラテックス組成物およびニトリル共重合体ゴム組成物
WO2010038720A1 (ja) * 2008-09-30 2010-04-08 日本ゼオン株式会社 ニトリル基含有高飽和共重合ゴム、これを含有する架橋性ゴム組成物および架橋物
WO2013073660A1 (ja) * 2011-11-18 2013-05-23 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124532A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186558A (ja) * 2016-03-31 2017-10-12 日本エイアンドエル株式会社 層状ケイ酸塩と熱可塑性樹脂を含有する複合体およびその製造方法
WO2018061864A1 (ja) * 2016-09-28 2018-04-05 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材
CN109642074A (zh) * 2016-09-28 2019-04-16 日本瑞翁株式会社 交联性橡胶组合物、橡胶交联物及导电性构件

Also Published As

Publication number Publication date
CN106103569A (zh) 2016-11-09
US20170101498A1 (en) 2017-04-13
EP3124532A1 (en) 2017-02-01
KR102269046B1 (ko) 2021-06-23
CN106103569B (zh) 2017-12-05
KR20160140655A (ko) 2016-12-07
JPWO2015146973A1 (ja) 2017-04-13
JP6465104B2 (ja) 2019-02-06
US10266628B2 (en) 2019-04-23
EP3124532A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6465104B2 (ja) ニトリル共重合体ゴム組成物
JP5338658B2 (ja) ニトリル共重合体ゴム組成物
JP5617638B2 (ja) 燃料ホース用の架橋性ニトリル共重合体ゴム組成物の製造方法および燃料ホース用のゴム架橋物
JP5742836B2 (ja) ホース用ニトリル共重合体ゴム組成物および架橋物
JP5347770B2 (ja) ニトリルゴム組成物および架橋性ゴム組成物、並びにゴム架橋物
WO2011016479A1 (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物、ゴム架橋物、及びニトリルゴム組成物の製造方法
JP6225919B2 (ja) ニトリル共重合体ゴム組成物
JP5892171B2 (ja) ニトリル共重合体ゴム組成物及びゴム架橋物
JP5482385B2 (ja) ニトリル共重合体ゴム組成物
JP5381088B2 (ja) ニトリル共重合体ゴム組成物
JPWO2013133358A1 (ja) ニトリル共重合体ゴム組成物の製造方法
JP6750606B2 (ja) ゴム架橋物の製造方法
JP2010155883A (ja) ニトリル共重合体ゴム組成物
JP5803914B2 (ja) ニトリル共重合体ゴム組成物
JP2009221371A (ja) ニトリル共重合体ゴム組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510380

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127955

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015768962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768962

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026756

Country of ref document: KR

Kind code of ref document: A