WO2015146105A1 - 光通信装置、光通信システム及び光送信方法 - Google Patents

光通信装置、光通信システム及び光送信方法 Download PDF

Info

Publication number
WO2015146105A1
WO2015146105A1 PCT/JP2015/001578 JP2015001578W WO2015146105A1 WO 2015146105 A1 WO2015146105 A1 WO 2015146105A1 JP 2015001578 W JP2015001578 W JP 2015001578W WO 2015146105 A1 WO2015146105 A1 WO 2015146105A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
output
unit
light
Prior art date
Application number
PCT/JP2015/001578
Other languages
English (en)
French (fr)
Inventor
喜久 稲田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/127,586 priority Critical patent/US10038515B2/en
Priority to EP15769740.0A priority patent/EP3125447A4/en
Priority to JP2016510009A priority patent/JP6260689B2/ja
Priority to CN201580016853.7A priority patent/CN106134106B/zh
Publication of WO2015146105A1 publication Critical patent/WO2015146105A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present invention relates to an optical communication device, an optical communication system, and an optical transmission method.
  • Patent Document 1 discloses a technique for matching the wavelength of an optical signal output from each of a plurality of optical transmitters with the wavelength of a reference wavelength optical signal using a transmission wavelength variable filter. ing.
  • the reference wavelength optical signal is one of a plurality of optical signals having a constant wavelength interval obtained by frequency-modulating a predetermined light source with the output of the microwave oscillator.
  • the technique described in Patent Literature 1 makes the wavelength intervals of a plurality of optical signals output from a plurality of optical transmitters coincide with the wavelength interval at which the microwave oscillator oscillates.
  • each of the plurality of optical transmitters includes the transmission wavelength variable filter, and the transmission wavelength variable filter is configured so that the intensity of the reference wavelength optical signal is maximized in the optical transmitter.
  • the optical transmitter controls the wavelength of the optical signal to be output so that the wavelength of the optical signal to be output becomes maximum in the transmission wavelength variable filter.
  • the wavelength of the optical signal output from each of the plurality of optical transmitters is indirectly matched with the reference wavelength optical signal using the transmission wavelength variable filter.
  • Patent Document 2 describes a frequency control method for an optical transmitter or optical receiver used in a wavelength division multiplexing optical communication network.
  • JP 2001-203643 A Japanese Patent Laid-Open No. 08-181660
  • Patent Document 1 indirectly matches the wavelength included in the reference wavelength optical signal with the wavelength of the optical signal output from the plurality of optical transmitters using the transmission wavelength variable filter.
  • the wavelength of the optical signal to be adjusted depends on the accuracy of the transmission wavelength variable filter.
  • the characteristics of the transmission wavelength tunable filter change with temperature changes and changes with time.
  • the wavelength of the optical signal to be adjusted is shifted, and there arises a problem that the transmission quality of the wavelength multiplexed optical signal is deteriorated due to the overlap of the optical spectrum between adjacent channels.
  • patent document 2 is not disclosing the technique for solving such a problem.
  • An object of the present invention is to solve the above-described problems and provide an optical communication apparatus and the like that can output a wavelength-multiplexed optical signal with a more accurate wavelength interval.
  • An optical communication apparatus includes a plurality of optical output units that output optical signals having different wavelengths, and a multiplexing unit that outputs a wavelength multiplexed signal obtained by combining the plurality of optical signals output from the plurality of optical output units.
  • a reference light output unit that outputs reference light serving as a reference
  • a wavelength generation unit that outputs a plurality of lights having wavelength intervals according to a predetermined frequency based on the reference light
  • the wavelength multiplexed signal A wavelength control unit that controls a wavelength of an optical signal output from the light output unit in accordance with an interference component with light of at least one wavelength among the plurality of lights.
  • a communication system includes a plurality of optical output units that output optical signals having different wavelengths, and a multiplexing unit that outputs a wavelength multiplexed signal obtained by combining the plurality of optical signals output from the plurality of optical output units.
  • a reference light output unit that outputs reference light serving as a reference, a wavelength generation unit that outputs a plurality of lights having wavelength intervals according to a predetermined frequency based on the reference light, and the wavelength multiplexed signal
  • An optical communication device comprising: a wavelength control unit that controls a wavelength of an optical signal output from the optical output unit in accordance with an interference component with light of at least one wavelength among the plurality of lights; and the optical communication device And a control device for instructing control of the wavelength of the optical signal output by at least one of the plurality of optical output units at a predetermined timing.
  • the optical communication method of the present invention outputs optical signals with different wavelengths, outputs a wavelength multiplexed signal obtained by combining the plurality of optical signals, outputs a reference light as a reference, and based on the reference light, A plurality of lights having wavelength intervals according to a predetermined frequency are output, and the light output unit outputs the light according to an interference component between the wavelength multiplexed signal and light having at least one wavelength among the plurality of lights.
  • the wavelength of the optical signal is controlled.
  • the recording medium of the program of the present invention includes a process for outputting optical signals having different wavelengths, a process for outputting a wavelength multiplexed signal obtained by combining the plurality of optical signals, and a process for outputting reference light serving as a reference. Based on the reference light, processing for outputting a plurality of lights having wavelength intervals according to a predetermined frequency, and depending on an interference component between the wavelength multiplexed signal and light of at least one wavelength of the plurality of lights Then, a program for causing the computer to execute processing for controlling the wavelength of the optical signal output from the optical output unit is recorded.
  • the optical communication apparatus and the like according to the present invention has an effect of being able to output a wavelength-multiplexed optical signal with a more accurate wavelength interval.
  • FIG. 5 is a flowchart illustrating an operation example of the optical communication apparatus in the first embodiment of the present invention. It is a figure which shows the structural example of the optical communication apparatus 1 in the 2nd Embodiment of this invention.
  • the state of the frequency of the optical signal output from the plurality of optical output units 10 and the state of the frequency of the plurality of optical signals included in the wavelength multiplexed signal output from the multiplexing unit 13 It is a figure which shows an example.
  • produces. It is.
  • the state of the frequency of the optical signal selected by the wavelength selector 18 among the plurality of optical signals generated by the optical comb generator 11, and before and after the wavelength controller 16 adjusts the frequency
  • FIG. 1 is a diagram illustrating a configuration example of an optical communication device 1 according to the first embodiment of the present invention.
  • the optical communication device 1 includes a plurality of optical output units 10-1 to 10-N (referred to as “optical output unit 10” if there is no particular need to distinguish), and a multiplexing unit 13 A reference light output unit 14, a wavelength generation unit 15, and a wavelength control unit 16.
  • Each of the plurality of optical output units 10 outputs optical signals having different wavelengths.
  • the multiplexing unit 13 outputs a wavelength multiplexed signal obtained by multiplexing the plurality of optical signals output from the plurality of optical output units 10 to the outside of the optical communication apparatus 1. Further, the multiplexing unit 13 can branch a part of the wavelength multiplexed signal by an optical coupler, for example, and output a part of the wavelength multiplexed signal to the wavelength control unit 16.
  • the reference light output unit 14 outputs reference light serving as a reference for the wavelength of the optical signal output by each light output unit 10.
  • the light output unit 10 and the reference light output unit 14 are, for example, lasers that can output coherent light.
  • the laser may be of any type, such as a variable wavelength laser, which can change the output wavelength.
  • the wavelength generation unit 15 for example, based on an electrical signal having a frequency corresponding to the wavelength interval of each optical signal of the wavelength multiplexed optical signal transmitted through the optical transmission line, outputs a plurality of lights with wavelength intervals corresponding to the frequency Output.
  • the wavelength generation unit 15 may output a plurality of lights by, for example, an optical comb generator that combines a phase modulator and a resonator.
  • the wavelength controller 16 compares the wavelength of the light from the wavelength generator 15 and the wavelength of the wavelength multiplexed optical signal from the multiplexer 13.
  • the wavelength control unit 16 compares the light from the wavelength generation unit 15 and the wavelength multiplexed optical signal from the multiplexing unit 13 by causing the two input lights to directly interfere with each other like an optical interferometer, for example.
  • the interference light may be, for example, a part of the wavelength multiplexed optical signal or a part of the plurality of lights from the wavelength generation unit 15. Note that extraction of part of light from a plurality of wavelengths can be realized by an optical filter or the like.
  • the wavelength control unit 16 controls the wavelength of the optical signal output from the optical output unit 10 corresponding to the compared wavelength based on the comparison result. For example, the wavelength controller 16 controls the wavelength of the optical signal output from the optical output unit 10 so that there is no wavelength shift between the light from the wavelength generator 15 and the wavelength multiplexed optical signal from the multiplexer 13. . For example, when an optical interferometer is used, the wavelength control unit 16 controls the wavelength of the optical signal output from the optical output unit 10 so that the interference between the two lights is strongest.
  • the wavelength of the optical signal output from the optical output unit 10 may be changed depending on, for example, the temperature of the laser or the drive current, and in the case of a variable wavelength laser, the oscillation wavelength may be controlled.
  • FIG. 2 is a flowchart showing an operation example of the optical communication apparatus 1 in the first embodiment of the present invention.
  • Each of the plurality of optical output units 10 outputs optical signals having different wavelengths (S101).
  • the multiplexing unit 13 outputs a wavelength multiplexed signal obtained by multiplexing the plurality of optical signals output from the plurality of optical output units 10 to the outside of the optical communication device 1, and branches a part of the wavelength multiplexed signal. A part of the wavelength multiplexed signal is output to the wavelength controller 16 (S102).
  • the reference light output unit 14 outputs reference light that serves as a reference for the wavelength of the optical signal output by each light output unit 10 (S103).
  • the wavelength generation unit 15 outputs a plurality of lights having a wavelength interval corresponding to the frequency based on an electrical signal having a frequency corresponding to the wavelength interval of each optical signal of the wavelength multiplexed optical signal transmitted through the optical transmission line. (S104).
  • the wavelength control unit 16 compares the wavelength of the light from the wavelength generation unit 15 with the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13, and based on the comparison result, the optical signal output by the optical output unit 10 Is controlled (S105).
  • the wavelength control unit 16 of the optical communication device 1 directly sets the wavelength of the light from the wavelength generation unit 15 and the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13.
  • the wavelength of the optical signal output from the optical output unit 10 corresponding to the compared wavelength is controlled. Therefore, the optical communication apparatus 1 according to the first embodiment of the present invention can output a wavelength-multiplexed optical signal with a more accurate wavelength interval.
  • FIG. 3 is a diagram illustrating a configuration example of the optical communication device 1 according to the second embodiment of the present invention.
  • the optical communication device 1 according to the second embodiment of the present invention includes optical output units 10-1 to 10-5, a multiplexing unit 13, a reference light output unit 14, and a wavelength generation unit. 15, a wavelength control unit 16, a wavelength selection unit 18, and a wavelength switching unit 19. Note that the number of the light output units 10 is not limited to five and may be any number.
  • the wavelength generator 15 includes an optical comb generator 11 and a microwave oscillator 12.
  • the wavelength control unit 16 includes a comparison unit 17.
  • Each of the plurality of optical output units 10 outputs optical signals having different wavelengths.
  • the wavelength of the optical signal output from each of the plurality of optical output units 10 is set to be a predetermined interval. However, the wavelength of the optical signal output from each of the plurality of optical output units 10 may deviate from the set wavelength due to the optical frequency setting accuracy unique to the device.
  • FIG. 4 illustrates an example of the state of the frequency corresponding to the wavelength of the optical signal output from the plurality of optical output units 10 and the state of the optical spectrum of the plurality of optical signals included in the wavelength multiplexed signal output from the multiplexing unit 13.
  • FIG. 4 is an example when the frequency of the optical signal output from the optical output unit 10-2 is shifted by “+ ⁇ f”. Note that the optical output unit 10 shifts the frequency of the optical signal to be output by “+ ⁇ f” compared to a desired frequency due to, for example, a change with time.
  • f 0 is the frequency of the reference light output from the reference light output unit 14.
  • f m is a frequency interval between adjacent optical signals output from the optical output unit 10 (that is, between adjacent channels).
  • the wavelength multiplexed signal is connected between adjacent channels (the optical signal output from the optical output unit 10-2 and the optical signal).
  • the optical spectrum of the optical signal output from the output unit 10-3 overlaps.
  • the wavelength of the optical signal output from the plurality of optical output units 10 is set to the wavelength of at least one of the lights generated by the optical comb generator 11.
  • the wavelength of the optical signal output by at least one of the plurality of optical output units 10 is controlled so as to match the above.
  • the plurality of light output units 10 are controlled so as not to deviate beyond the extent that the optical spectra overlap between adjacent channels.
  • the plurality of light output units 10 are temperature-controlled, for example. For this reason, it is sufficient to consider the shift of the wavelength (frequency corresponding to the wavelength) to the extent that the optical spectra overlap between the adjacent channels.
  • the multiplexing unit 13 outputs a wavelength multiplexed signal obtained by multiplexing the optical signals output from each of the plurality of optical output units 10 to the outside of the optical communication device 1. Further, the multiplexing unit 13 can branch a part of the wavelength multiplexed signal by an optical coupler, for example, and output a part of the wavelength multiplexed signal to the comparison unit 17.
  • the reference light output unit 14 outputs reference light having a wavelength corresponding to the frequency f 0 that serves as a reference for the wavelength of the optical signal output from each light output unit 10.
  • the reference light output from the reference light output unit 14 is input to the optical comb generator 11.
  • Microwave oscillator in wavelength generator 15 12 outputs a clock signal (electric signal) of frequency F m.
  • Frequency F m is, for example, a 50GHz and 40 GHz.
  • the frequency F m of the clock signal corresponds to the wavelength interval of the plurality of optical signals output from the plurality of optical output units 10.
  • the clock signal output from the microwave oscillator 12 is input to the optical comb generator 11.
  • the optical comb generator 11 is driven by a clock signal input from the microwave oscillator 12 and, when a reference light having a wavelength corresponding to the frequency f 0 is input, corresponds to the frequency F m interval centering on the frequency f 0. A plurality of sideband lights (optical combs) having wavelengths are generated.
  • an optical comb generator described in Japanese Patent No. 3444958 can be used for the optical comb generator 11.
  • the optical comb generator described in Japanese Patent No. 3444958 outputs an optical comb composed of several hundred optical spectral lines arranged at an optical frequency interval of fm around the optical frequency of laser light emitted from a wavelength-stabilized light source. To do.
  • FIG. 5 is a diagram illustrating the state of the frequency of the reference light output from the reference light output unit 14 and the state of the frequency of the optical comb generated by the optical comb generator 11.
  • the frequency interval of the optical comb generated by the optical comb generator 11 is managed with high accuracy and coincides with the frequency F m of the clock signal input from the microwave oscillator 12 with high accuracy.
  • the wavelength selection unit 18 inputs light having a wavelength specified by the wavelength switching unit 19 among the plurality of lights included in the optical comb generated by the optical comb generator 11 to the comparison unit 17.
  • a wavelength selection switch described in Japanese Patent No. 4748514 can be used for the wavelength selection unit 18.
  • the wavelength selective switch can output light having a desired wavelength among a plurality of inputted lights.
  • the wavelength selective switch includes an optical waveguide circuit formed on a substrate and a control unit that controls switching of an optical signal path by applying thermal fluctuation to the optical waveguide circuit, and accurately controls the wavelength of light to be output. be able to.
  • ⁇ f the frequency difference
  • the wavelength control unit 16 controls the wavelength of the optical signal output from the optical output unit 10 so as to compensate for the wavelength difference (deviation) detected by the comparison unit 17.
  • a wavelength tunable laser device described in Japanese Patent No. 31978869 can be used for the light output unit 10.
  • the wavelength tunable laser described in Japanese Patent No. 3197869 uses a diffraction grating as a wavelength selection element, and the wavelength to be output (selected) can be changed by adjusting the angle of the diffraction grating.
  • the wavelength switching unit 19 designates the wavelength selected by the wavelength selection unit 18 and requests the wavelength selection unit 18 to output light of the designated wavelength. In addition, the wavelength switching unit 19 identifies the light output unit 10 that outputs an optical signal having the designated wavelength, and notifies the wavelength control unit 16 of the identified light output unit 10 (for example, the light output unit 10-2).
  • FIG. 6 is a diagram illustrating a state of a frequency corresponding to the wavelength of light selected by the wavelength selection unit 18 (specified by the wavelength switching unit 19) among the plurality of lights generated by the optical comb generator 11.
  • FIG. 6 is a diagram illustrating a state of the frequency corresponding to the wavelength of the optical signal output from the optical output unit 10-2 before and after the wavelength control unit 16 controls the wavelength shift.
  • FIG. 6 shows an example in which the optical signal output from the optical output unit 10-2 is shifted by the wavelength corresponding to the frequency ⁇ f, and the wavelength control unit 16 compensates the wavelength component corresponding to the frequency ⁇ f. is there.
  • the wavelength control unit 16 compensates for the frequency shift “ ⁇ f” (corresponding wavelength shift) of the optical signal output from the optical output unit 10-2.
  • the wavelength control unit 16 controls the frequency of the optical signal output by the optical output unit 10-2 so as to match the frequency “f 0 -F m ” of the light selected by the wavelength selection unit 18, so that both Compensates for wavelength shifts.
  • the wavelength switching unit 19 optical signals to be output to all the optical output units 10 while sequentially switching the optical output units 10-1 to 10-5 to be controlled and the light selected by the wavelength selection unit 18.
  • the wavelength may be controlled.
  • the optical communication device 1 sets the wavelength interval of the optical signal output from each of the optical output units 10-1 to 10-5 to the frequency of the plurality of sideband light (optical comb) generated by the optical comb generator 11.
  • a wavelength interval corresponding to the interval “F m ” can be set.
  • FIG. 7 is a flowchart showing an operation example of the optical communication apparatus 1 in the second embodiment of the present invention.
  • the wavelength of the optical signal output from the optical output unit 10-2 is shifted by the wavelength corresponding to the frequency “+ ⁇ f”, and the optical signal output from the optical output unit 10-2 It is an example in the case of compensating the wavelength.
  • Each of the plurality of optical output units 10 outputs optical signals having different wavelengths (S201).
  • a wavelength multiplexed signal obtained by combining a plurality of optical signals output from the plurality of optical output units 10 is output to the outside of the optical communication device 1 and a part of the wavelength multiplexed signal is branched, and the comparison unit 17 receives the wavelength.
  • a part of the multiplexed signal is output (S202).
  • the reference light output unit 14 outputs reference light having a frequency f 0 that serves as a reference for the wavelength of the optical signal output from each light output unit 10 (S203).
  • the wavelength generation unit 15 Based on the reference light having the wavelength corresponding to the frequency f 0 output from the reference light output unit 14, the wavelength generation unit 15 generates a plurality of lights having wavelengths corresponding to the frequency F m intervals centered on the frequency f 0. (S204).
  • the wavelength selection unit 18 inputs light having a wavelength designated by the wavelength switching unit 19 among the generated optical signals to the comparison unit 17 in the wavelength control unit 16 (S205).
  • the comparison unit 17 compares the wavelength of the light from the wavelength generation unit 15 with the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13, and as a result of the comparison, corresponds to the difference between the frequencies (“ ⁇ f”). A difference in wavelength is detected (S206).
  • the wavelength control unit 16 controls the wavelength of the optical signal output from the optical output unit 10-2 so as to compensate for the wavelength difference (deviation) detected by the comparison unit 17 (S207).
  • the wavelength control unit 16 of the optical communication device 1 directly calculates the wavelength of the light from the wavelength generation unit 15 and the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13.
  • the wavelength of the optical signal output from the optical output unit 10 corresponding to the compared wavelength is controlled. Therefore, the optical communication apparatus 1 according to the first embodiment of the present invention can output a wavelength-multiplexed optical signal with a more accurate wavelength interval.
  • the optical communication device 1 includes a coherent detection unit.
  • the frequency of the optical signal output from the LD 101 in the optical output unit 10 is controlled using the interference characteristics between the wavelength multiplexed signal and the reference light.
  • FIG. 8 is a diagram illustrating a configuration example of the optical communication device 1 in the third embodiment of the present invention.
  • the optical communication device 1 according to the third embodiment of the present invention includes a coherent detection unit 20 and a wavelength shift detection unit 21 instead of the comparison unit 17.
  • the optical communication device 1 also includes a branching device 22.
  • the optical communication apparatus 1 includes LDs (Laser Diodes) 101-1 to 101-5 (indicated as “LD101” if there is no need to distinguish between them) and optical modulators 102-1 to 102-5 (particularly, If it is not necessary to distinguish, it is described as “optical modulator 102”).
  • LDs Laser Diodes
  • the LD 101 outputs an optical signal having a predetermined frequency.
  • the wavelength of the optical signal output from each of the plurality of LDs 101 is set to be a predetermined interval.
  • the wavelength of the optical signal output from the LD 101 may have a predetermined deviation from the set wavelength due to the optical frequency setting accuracy specific to the device of the LD 101.
  • the optical modulator 102 performs data modulation on the optical signal output from the LD 101 and outputs it to the multiplexing unit 13.
  • the multiplexing unit 13 outputs a wavelength multiplexed signal obtained by multiplexing the plurality of optical signals output from the plurality of optical output units 10 to the branching unit 22.
  • the branching device 22 branches the wavelength multiplexed signal output from the multiplexing unit 13, outputs one to the transmission line, and outputs the other to the coherent detection unit 20.
  • the wavelength selection unit 18 inputs light having a wavelength specified by the wavelength switching unit 19 among the plurality of lights (sideband light) included in the optical comb generated by the optical comb generator 11 to the coherent detection unit 20. .
  • the coherent detection unit 20 coherently detects the wavelength multiplexed signal input from the branching unit 22 and the light having a predetermined wavelength input from the wavelength selection unit 18.
  • the coherent detection unit 20 outputs an interference signal between the wavelength multiplexed signal input from the branching unit 22 and the light input from the wavelength selection unit 18 to the wavelength shift detection unit 21.
  • the coherent detection unit 20 includes a 90-degree hybrid mixer (not shown) called a coherent mixer that causes the wavelength multiplexed signal input from the branching device 22 and the light input from the wavelength selection unit 18 to interfere with each other.
  • the coherent mixer outputs a signal (interference signal) in which the wavelength multiplexed signal input from the branching device 22 interferes with the light input from the wavelength selection unit 18.
  • the wavelength shift detector 21 receives at least one of the optical signals included in the wavelength multiplexed signal input from the wavelength selector 18 among the wavelength multiplexed signals and the wavelength selector 18 based on the input interference signal. A difference (shift) in wavelength with light is detected.
  • a frequency offset estimator in the frequency offset compensator described in Japanese Patent No. 5146285 can be used for the wavelength shift detector 21.
  • the frequency offset is a difference in frequency between the input light and the local light.
  • the frequency offset estimator receives a baseband electrical signal from the front end circuit, estimates a frequency offset included in the baseband electrical signal, and outputs the estimated frequency offset as an electrical signal to a subsequent apparatus.
  • the wavelength shift detector 21 outputs a wavelength difference (shift) corresponding to the estimated frequency offset as an electrical signal.
  • the wavelength control unit 16 outputs light output from the light output unit 10 designated by the wavelength switching unit 19 among the plurality of light output units 10 so as to compensate for the wavelength difference (shift) detected by the wavelength shift detection unit 21. Adjust the wavelength of the signal.
  • a tunable laser device described in Japanese Patent No. 31978869 can be used for the plurality of light output units 10.
  • FIG. 9 is a flowchart showing an operation example of the optical communication apparatus 1 in the third embodiment of the present invention.
  • the wavelength of the optical signal output from the optical output unit 10-2 is shifted by the wavelength corresponding to the frequency “+ ⁇ f”, and the optical signal output from the optical output unit 10-2 It is an example in the case of compensating the wavelength.
  • Each of the LDs 101 in the plurality of optical output units 10 outputs optical signals having different wavelengths (S301).
  • Each of the optical modulators 102 performs data modulation on the optical signal output from the LD 101 and outputs the data to the multiplexing unit 13 (S302).
  • the multiplexing unit 13 multiplexes the optical signals output from each of the plurality of optical output units 10 and outputs a wavelength multiplexed signal (S303).
  • the branching device 22 branches the wavelength multiplexed signal output from the multiplexing unit 13, outputs one to the transmission path, and outputs the other to the coherent detection unit 20 (S304).
  • the reference light output unit 14 outputs reference light having a frequency f 0 that serves as a reference for the wavelength of the optical signal output from each light output unit 10 (S305).
  • the wavelength generation unit 15 Based on the reference light having the wavelength corresponding to the frequency f 0 output from the reference light output unit 14, the wavelength generation unit 15 generates a plurality of lights having wavelengths corresponding to the frequency F m intervals centered on the frequency f 0. (S306).
  • the wavelength selection unit 18 inputs light having a wavelength designated by the wavelength switching unit 19 among the generated optical signals to the coherent detection unit 20 (S307).
  • the coherent detection unit 20 outputs a signal (interference signal) in which the wavelength of the light from the wavelength selection unit 18 interferes with the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13 to the wavelength shift detection unit 21 (S308). .
  • the wavelength shift detector 21 detects a wavelength difference (shift) between at least one of the optical signals included in the wavelength multiplexed signal and the light input from the wavelength selector 18 based on the interference signal (S309).
  • the wavelength control unit 16 controls the wavelength of the optical signal output by the LD 101-2 in the optical output unit 10-2 so as to compensate for the wavelength difference (deviation) detected by the wavelength deviation detection unit 21 (S310). .
  • the optical communication device 1 according to the third embodiment of the present invention includes the coherent detection unit 20, which directly interferes the wavelength multiplexed signal and the reference light, and uses the interference characteristics to cause the LD 102 in the light output unit 10 to be interfered. Control. Therefore, the optical communication device 1 according to the third embodiment of the present invention can output a wavelength-multiplexed optical signal with a more accurate wavelength interval.
  • the fourth embodiment of the present invention includes a control device for instructing the optical communication device 1 when to perform wavelength control.
  • FIG. 10 is a diagram illustrating a configuration example of a communication system according to the fourth embodiment of the present invention.
  • the communication system according to the fourth embodiment of the present invention includes optical communication apparatuses 1-1 to 1-4 (referred to as “optical communication apparatus 1” unless otherwise distinguished).
  • the transmission line 2 and the control device 3 are provided.
  • the number of the optical communication devices 1 is four, but the number of the optical communication devices 1 is not limited to four and may be any number.
  • the transmission path 2 is configured by an optical fiber, and may be configured by bundling a plurality of optical fibers, for example.
  • the control device 3 instructs the optical communication device 1 to execute control of the wavelength of the optical signal output by at least one of the plurality of optical output units 10 at a predetermined timing.
  • the timing for controlling the wavelength is, for example, a predetermined cycle based on the change over time of the LD 101.
  • control device 3 may designate the light output unit 10 that controls the wavelength.
  • control device 3 designates the light output unit 10 that performs wavelength control to the wavelength switching unit 19.
  • the optical communication device 1 controls the wavelength of the optical signal output from the optical output unit 10 specified by the control device 3.
  • the timing for controlling the wavelength may be when the wavelength allocation to the optical output unit 10 is changed in the optical communication apparatus 1 (when the channel allocation is changed).
  • Each of the plurality of optical output units 10 is assigned a different wavelength, performs data modulation on the optical signal of the assigned wavelength, and outputs an optical signal of the wavelength.
  • the optical communication device 1 changes the allocation of wavelengths to the optical output unit 10 in accordance with the change of the channel interval (for example, when the channel interval of 50 GHz is changed to 40 GHz).
  • the wavelength of the optical signal output by the LD 101 after the change is changed in order to change the wavelength of the optical signal oscillated by the LD 101 (for example, the wavelength tunable laser) in the optical output unit 10.
  • the control device 3 causes the optical communication device 1 to perform wavelength control in order to eliminate the wavelength shift.
  • the timing for controlling the wavelength is not limited to the above example, and may be executed when, for example, a new optical output unit 10 is added to the optical communication apparatus 1.
  • FIG. 11 is a diagram illustrating a configuration example of the optical communication device 1 according to the fourth embodiment of the present invention. Note that the example of FIG. 11 is an example in which the wavelength output by the light output unit 10 is controlled when changing the channel interval (for example, changing from 50 GHz to 40 GHz).
  • each of the optical output units 10 of the optical communication apparatus 1 is notified of the newly assigned wavelength from the control apparatus 3.
  • Each of the optical output units 10 changes the wavelength of the optical signal to be output based on the notification from the control device 3.
  • the microwave oscillator 12 of the optical communication device 1 is requested by the control device 3 to change the frequency F m of the clock signal to be output.
  • Microwave oscillator 12 in response to a request from the control device 3, changes the frequency F m of the clock signal (e.g., changing from 50GHz to 40 GHz).
  • Optical comb generator 11 to be driven by a clock signal inputted from the microwave oscillator 12, the frequency interval F m of the optical comb which the optical comb generator 11 is output changes (e.g., 40 GHz frequency spacing from 50GHz To change).
  • the wavelength switching unit 19 of the optical communication device 1 notifies the control device 3 of the wavelength set to each of the plurality of light output units 10 (the wavelength of the optical signal output from each of the plurality of light output units 10). Receive.
  • the wavelength switching unit 19 specifies the wavelength of light selected by the wavelength selection unit 18 based on the wavelength notified from the control device 3.
  • the wavelength selection unit 18 selects light having the wavelength specified by the wavelength switching unit 19 from the plurality of lights generated by the wavelength generation unit 15 and inputs the light to the coherent detection unit 20.
  • the wavelength switching unit 19 identifies the light output unit 10 that outputs an optical signal corresponding to the designated wavelength based on the notification from the control device 3, and the identified light output unit 10 is used as the wavelength control unit 16. Notice.
  • the wavelength control unit 16 controls the wavelength of the optical signal output from the identified optical output unit 10 based on the notification from the wavelength switching unit 19.
  • FIG. 12 is a flowchart showing an operation example of the optical communication apparatus 1 in the fourth embodiment of the present invention.
  • the example of FIG. 12 is an example in the case of controlling the wavelength output by the light output unit 10 when changing the channel interval (for example, changing from 50 GHz to 40 GHz).
  • Each of the LDs 101 in the plurality of optical output units 10 changes the wavelength of the optical signal to be output based on the change of the wavelength assignment notified from the control device 3 (S401).
  • Each of the optical modulators 102 performs data modulation on the optical signal output from the LD 101 and outputs the data to the multiplexing unit 13 (S402).
  • the multiplexing unit 13 multiplexes the optical signals output from each of the plurality of optical output units 10 and outputs a wavelength multiplexed signal (S403).
  • the branching device 22 branches the wavelength multiplexed signal output from the multiplexing unit 13, outputs one to the transmission path, and outputs the other to the coherent detection unit 20 (S404).
  • the reference light output unit 14 outputs reference light having a frequency f 0 that serves as a reference for the wavelength of the optical signal output by each light output unit 10 (S405).
  • the microwave oscillator 12 changes the frequency F m of the clock signal output to the optical comb generator 11 based on the request from the control device 3 (S406).
  • the optical comb generator 11 Based on the reference light having the wavelength corresponding to the frequency f 0 output from the reference light output unit 14, the optical comb generator 11 outputs a plurality of lights having wavelengths corresponding to the frequency F m intervals centered on the frequency f 0. It occurs (S407).
  • the wavelength selection unit 18 inputs light having a wavelength designated by the wavelength switching unit 19 among the plurality of optical signals generated by the optical comb generator 11 to the coherent detection unit 20 (S408).
  • the coherent detection unit 20 outputs a signal (interference signal) in which the wavelength of the light from the wavelength selection unit 18 interferes with the wavelength of the wavelength multiplexed optical signal from the multiplexing unit 13 to the wavelength shift detection unit 21 (S409). .
  • the wavelength shift detector 21 detects a wavelength difference (shift) between at least one of the optical signals included in the wavelength multiplexed signal and the light input from the wavelength selector 18 based on the interference signal (S410).
  • the wavelength control unit 16 controls the wavelength of the optical signal output by the LD 101-2 in the optical output unit 10-2 so as to compensate for the wavelength difference (deviation) detected by the wavelength deviation detection unit 21 (S411). .
  • the fourth embodiment of the present invention includes the control device 3 that instructs the optical communication device 1 to perform the wavelength control, and the optical communication device 1 responds to the instruction from the control device 3. Based on this, the wavelength of the optical signal output from the optical output unit 10 is controlled. Therefore, the optical communication device 1 can control the wavelength at the timing instructed by the control device 3, and can flexibly control the timing at which the wavelength is controlled.
  • the optical communication apparatus 1 is configured in accordance with each of the embodiments described above via various storage media or networks that are not temporary, such as CD-R (Compact Disc Recordable).
  • Acquire software program that implements the function.
  • a program acquired by the optical communication apparatus 1 or a storage medium storing the program constitutes the present invention.
  • the software may be stored in advance in, for example, a predetermined non-temporary storage unit included in the optical communication apparatus 1.
  • the computer, CPU, MPU, or the like of the optical communication apparatus 1 reads out and executes the program code of the acquired software (program). Therefore, the optical communication device 1 executes the same process as the process of the optical communication device 1 in each of the above-described embodiments.
  • the present invention can be applied to an application such as a program to be realized in a computer, a CPU, an MPU, or the like of the optical communication apparatus 1.
  • a plurality of optical output units for outputting optical signals of different wavelengths A multiplexing unit that outputs a wavelength multiplexed signal obtained by multiplexing a plurality of optical signals output from the plurality of optical output units; A reference light output unit that outputs reference light serving as a reference; Based on the reference light, a wavelength generation unit that outputs a plurality of lights having wavelength intervals according to a predetermined frequency; A wavelength control unit that controls a wavelength of an optical signal output by the optical output unit according to an interference component between the wavelength multiplexed signal and light of at least one wavelength among the plurality of lights;
  • An optical communication device comprising:
  • Appendix 2 The optical communication apparatus according to appendix 1, wherein the wavelength control unit includes a comparison unit that compares the wavelength multiplexed signal with light of at least one wavelength among the plurality of lights.
  • the wavelength controller is A coherent detector that coherently detects the wavelength multiplexed signal and light of at least one of the plurality of lights; A wavelength for detecting a difference between a wavelength of at least one optical signal included in the wavelength multiplexed signal and a wavelength of at least one of the plurality of lights based on an interference signal input from a coherent detection unit
  • the optical communication device according to appendix 1 or 2, further comprising a deviation detection unit.
  • Appendix 4 The optical communication device according to any one of appendices 1 to 3, further comprising a wavelength selection unit that selects light of at least one wavelength from the plurality of lights generated by the wavelength generation unit.
  • Appendix 5 The optical communication device according to appendix 4, further comprising: a wavelength switching unit that instructs the wavelength selection unit to select the at least one wavelength to be selected.
  • the wavelength generator is A microwave oscillator that outputs a clock signal of a predetermined frequency;
  • the optical communication device according to any one of appendices 1 to 5, further comprising: an optical comb generator that outputs a plurality of lights having wavelength intervals corresponding to the predetermined frequency based on the reference light.
  • the wavelength switching unit notifies the wavelength control unit of an optical output unit that controls the wavelength of an optical signal to be output among the plurality of optical output units, based on at least one wavelength instructed to the wavelength selection unit,
  • the optical communication apparatus according to appendix 6, wherein the wavelength control unit controls the wavelength of an optical signal output from the optical output unit notified from the wavelength switching unit.
  • the wavelength switching unit sequentially changes at least one wavelength instructed to the wavelength selection unit and a light output unit to notify the wavelength control unit, 8.
  • the optical communication apparatus according to appendix 6 or 7, wherein the wavelength control unit sequentially controls wavelengths of optical signals output from the optical output unit notified from the wavelength switching unit.
  • a plurality of optical output units for outputting optical signals of different wavelengths;
  • a multiplexing unit that outputs a wavelength multiplexed signal obtained by multiplexing a plurality of optical signals output from the plurality of optical output units;
  • a reference light output unit that outputs reference light serving as a reference; Based on the reference light, a wavelength generation unit that outputs a plurality of lights having wavelength intervals according to a predetermined frequency;
  • a wavelength control unit that controls a wavelength of an optical signal output by the optical output unit according to an interference component between the wavelength multiplexed signal and light of at least one wavelength among the plurality of lights;
  • An optical communication device comprising:
  • An optical communication system comprising: a control device that instructs the optical communication device to execute control of a wavelength of an optical signal output from at least one of the plurality of optical output units at a predetermined timing.
  • Appendix 10 The optical communication system according to appendix 9, wherein the control device designates an optical output unit that controls the wavelength of the optical signal, and notifies the designated optical output unit to the optical communication device.
  • Appendix 11 11. The optical communication system according to appendix 9 or 10, wherein the predetermined timing is a timing at which the control device changes allocation of wavelengths of optical signals output from the plurality of optical output units.
  • Appendix 12 The optical communication system according to any one of appendices 9 to 11, wherein the predetermined timing is a timing at which the control device changes a wavelength interval of an optical signal output from the plurality of optical output units.
  • the control device instructs the optical communication device to change the wavelength intervals of the plurality of lights generated by the wavelength generation unit in response to the change of the wavelength interval.
  • Optical communication system
  • [Appendix 14] Output optical signals with different wavelengths, Output a wavelength multiplexed signal obtained by combining the plurality of optical signals, Output standard reference light, Based on the reference light, output a plurality of light having a wavelength interval according to a predetermined frequency, An optical communication method, wherein a wavelength of the output optical signal is controlled according to an interference component between the wavelength multiplexed signal and light of at least one wavelength among the plurality of lights.
  • Appendix 15 15. The optical communication method according to appendix 14, wherein the wavelength multiplexed signal is compared with light having at least one wavelength among the plurality of lights.
  • Appendix 16 Coherent detection of the wavelength-multiplexed signal and light of at least one of the plurality of lights, Based on the interference signal obtained by the coherent detection, a difference between the wavelength of at least one optical signal included in the wavelength multiplexed signal and the wavelength of at least one of the plurality of lights is detected.
  • Appendix 17 17. The optical communication method according to any one of appendices 14 to 16, wherein light having at least one wavelength is selected from the plurality of light generated.
  • Appendix 18 The optical communication method according to appendix 17, wherein the at least one wavelength to be selected is instructed.
  • Appendix 19 Output a clock signal of a predetermined frequency, The optical communication method according to any one of appendices 14 to 18, wherein a plurality of lights having wavelength intervals corresponding to the predetermined frequency are output based on the reference light.
  • Appendix 20 Processing to output optical signals of different wavelengths; A process of outputting a wavelength multiplexed signal obtained by combining the plurality of optical signals; A process of outputting a reference light as a reference; A process of outputting a plurality of lights having wavelength intervals according to a predetermined frequency based on the reference light; A program for causing a computer to execute processing for controlling the wavelength of an optical signal to be output in accordance with an interference component between the wavelength multiplexed signal and light having at least one wavelength among the plurality of lights.
  • Appendix 21 The program according to appendix 20, wherein the program includes a process of comparing the wavelength multiplexed signal with light of at least one wavelength among the plurality of lights.
  • Appendix 22 Processing for coherent detection of the wavelength-multiplexed signal and light of at least one wavelength of the plurality of lights; Based on the interference signal obtained by the coherent detection, a difference between the wavelength of at least one optical signal included in the wavelength multiplexed signal and the wavelength of at least one of the plurality of lights is detected.
  • Appendix 23 The program according to any one of appendices 20 to 22, further comprising a process of selecting light of at least one wavelength from the plurality of generated lights.
  • Appendix 24 24.
  • Appendix 25 Processing to output a clock signal of a predetermined frequency; 25.
  • Optical communication device 1, 1-1, 1-2, 1-3, 1-4 Optical communication device 2 Transmission path 3 Control device 10, 10-1, 10-2, 10-3, 10-4, 10-5 Optical output unit DESCRIPTION OF SYMBOLS 11 Optical comb generator 12 Microwave oscillator 13 Multiplexing part 14 Reference

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[課題] 複数の光出力部が出力する光信号を正確な波長間隔に設定できる光通信装置等を提供する。 [解決手段] 本発明の光通信装置は、互いに異なる波長の光信号を出力する複数の光出力部と、前記複数の光出力部から出力される複数の光信号を合波した波長多重信号を出力する合波部と、基準となる基準光を出力する基準光出力部と、前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成部と、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する波長制御部と、を備える。

Description

光通信装置、光通信システム及び光送信方法
 本発明は、光通信装置、光通信システム及び光送信方法に関する。
 光ファイバ伝送システムの伝送容量を増大させるために、波長多重光信号の波長(周波数)間隔を狭くし、周波数利用効率を上げる方法がある。しかしながら、波長多重光信号の波長が高密度になることにより、隣接チャネル間の光スペクトルの重なり(クロストーク)の影響が大きくなり、当該波長多重光信号の伝送品質が劣化するという問題がある。
 上記問題に対して、特許文献1には、透過波長可変型フィルタを用いて、複数の光送信器の各々が出力する光信号の波長を、基準波長光信号の波長に一致させる技術が開示されている。当該基準波長光信号は、所定の光源をマイクロ波発振器の出力で周波数変調することで得られる、波長間隔が一定の複数の光信号の1つである。特許文献1に記載の技術は、複数の光送信器から出力される複数の光信号の波長間隔を、当該マイクロ波発振器が発振する波長間隔に一致させる。
 特許文献1に記載の技術では、複数の光送信器の各々が当該透過波長可変型フィルタを備え、当該光送信器において、基準波長光信号の強度が最大となるように当該透過波長可変型フィルタを制御する。その後、光送信器は、出力する光信号の波長が当該透過波長可変型フィルタにおいて最大となるように、当該出力する光信号の波長を制御する。このように、特許文献1に記載の技術では、透過波長可変型フィルタを用いて、間接的に、複数の光送信器の各々が出力する光信号の波長を基準波長光信号に一致させる。また、特許文献2には、波長多重光通信ネットワークで用いられる光送信器あるいは光受信器の周波数制御方法が記載されている。
特開2001-203643号公報 特開平08-181660号公報
 上記のとおり、特許文献1に記載の技術は、透過波長可変型フィルタを用いて、間接的に、基準波長光信号に含まれる波長と複数の光送信器が出力する光信号の波長とを一致させる。
 しかしながら、特許文献1に記載の技術において、調整される光信号の波長は透過波長可変型フィルタの精度に依存する。また、透過波長可変型フィルタの特性は温度変化や経時変化によって変化する。これに伴い調整される光信号の波長もずれ、隣接チャネル間の光スペクトルの重なりにより波長多重光信号の伝送品質が劣化するという問題が生じる。そして、特許文献2は、このような問題を解決するための技術を開示していない。
 本発明の目的は、上記の課題を解決し、波長間隔がより高精度な波長多重光信号を出力することができる光通信装置等を提供することである。
 本発明の光通信装置は、互いに異なる波長の光信号を出力する複数の光出力部と、前記複数の光出力部から出力される複数の光信号を合波した波長多重信号を出力する合波部と、基準となる基準光を出力する基準光出力部と、前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成部と、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する波長制御部と、を備える。
 本発明の通信システムは、互いに異なる波長の光信号を出力する複数の光出力部と、前記複数の光出力部から出力される複数の光信号を合波した波長多重信号を出力する合波部と、基準となる基準光を出力する基準光出力部と、前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成部と、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する波長制御部と、を備える光通信装置と、前記光通信装置に対して、所定のタイミングで、前記複数の光出力部の少なくとも1つが出力する光信号の波長の制御を実行する旨を指示する制御装置とを含む。
 本発明の光通信方法は、互いに異なる波長の光信号を出力し、前記複数の光信号を合波した波長多重信号を出力し、基準となる基準光を出力し、前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力し、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御することを特徴とする。
 本発明のプログラムの記録媒体は、互いに異なる波長の光信号を出力する処理と、前記複数の光信号を合波した波長多重信号を出力する処理と、基準となる基準光を出力する処理と、前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する処理と、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する処理とをコンピュータに実行させるプログラムを記録する。
 本発明の光通信装置等は、波長間隔がより高精度な波長多重光信号を出力することができるという効果がある。
本発明の第1の実施形態における、光通信装置の構成例を示す図である。 本発明の第1の実施形態における、光通信装置の動作例を示すフローチャートである。 本発明の第2の実施形態における、光通信装置1の構成例を示す図である。 本発明の第2の実施形態における、複数の光出力部10が出力する光信号の周波数の状態と、合波部13が出力する波長多重信号に含まれる複数の光信号の周波数の状態との例を示す図である。 本発明の第2の実施形態における、基準光出力部14が出力する基準光の周波数の状態と、光コム発生器11が発生する複数のサイドバンド光(光コム)の周波数の状態を示す図である。 本発明の第2の実施形態における、光コム発生器11が発生する複数の光信号のうち波長選択部18が選択した光信号の周波数の状態と、波長制御部16が周波数を調整する前後の光出力部10-2の周波数の状態の例を示す図である。 本発明の第2の実施形態における、光通信装置1の動作例を示すフローチャートである。 本発明の第3の実施形態における、光通信装置1の構成例を示す図である。 本発明の第3の実施形態における、光通信装置1の動作例を示すフローチャートである。 本発明の第4の実施形態における、通信システムの構成例を示す図である。 本発明の第4の実施形態における、光通信装置1の構成例を示す図である。 本発明の第4の実施形態における、光通信装置1の動作例を示すフローチャートである。
 <第1の実施形態>
 本発明の第1の実施形態について、図面を参照して説明する。
 図1は、本発明の第1の実施形態における、光通信装置1の構成例を示す図である。図1に示すように、光通信装置1は、複数の光出力部10-1~10-N(特に区別する必要が無い場合、「光出力部10」と記載する)と、合波部13と、基準光出力部14と、波長生成部15と、波長制御部16とを備える。
 複数の光出力部10の各々は、互いに異なる波長の光信号を出力する。
 合波部13は、当該複数の光出力部10から出力される複数の光信号を合波した波長多重信号を光通信装置1の外部に出力する。また、合波部13は、例えば、光カプラ等によって波長多重信号の一部を分岐し、波長制御部16に当該波長多重信号の一部を出力することができる。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる基準光を出力する。光出力部10及び基準光出力部14は、例えば、コヒーレント光を出力することが可能であるレーザ等である。なお、当該レーザは構造等の種類は問わず、例えば、可変波長レーザ等の出力波長を変更することが可能なものであってもよい。
 波長生成部15は、例えば、光伝送路にて伝送される波長多重光信号の各光信号の波長間隔に応じた周波数を有する電気信号に基づき、当該周波数に対応する波長間隔の複数の光を出力する。波長生成部15は、例えば、位相変調器と共振器を組み合わせた光コム発生器により複数の光を出力してもよい。
 波長制御部16は、波長生成部15からの光の波長と合波部13からの波長多重光信号の波長とを比較する。波長制御部16は、例えば、光干渉計のように2つの入力光を直接的に干渉させることで、波長生成部15からの光と合波部13からの波長多重光信号とを比較する。ここで、干渉させる光は、例えば、波長多重光信号の内の一部の光信号でもよいし、波長生成部15からの複数の光の内の一部としてもよい。なお、複数の波長の光から一部の波長の光を取り出すことは、光フィルタ等によって実現可能である。
 波長制御部16は、比較した結果に基づいて、当該比較した波長に対応する光出力部10が出力する光信号の波長を制御する。波長制御部16は、例えば、波長生成部15からの光と合波部13からの波長多重光信号との波長ずれがなくなるように、光出力部10から出力される光信号の波長を制御する。波長制御部16は、例えば、光干渉計を用いた場合、2つの光の干渉が最も強くなるように光出力部10の出力する光信号の波長を制御する。光出力部10から出力される光信号の波長は、例えば、レーザの温度や駆動電流によって変化させてもよいし、可変波長レーザの場合には発振波長を制御してもよい。
 図2は、本発明の第1の実施形態における、光通信装置1の動作例を示すフローチャートである。
 複数の光出力部10の各々が、互いに異なる波長の光信号を出力する(S101)。
 合波部13が、複数の光出力部10から出力される複数の光信号を合波した波長多重信号を光通信装置1の外部に出力するととともに、当該波長多重信号の一部を分岐し、波長制御部16に当該波長多重信号の一部を出力する(S102)。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる基準光を出力する(S103)。
 波長生成部15が、光伝送路にて伝送される波長多重光信号の各光信号の波長間隔に応じた周波数である電気信号に基づき、当該周波数に対応する波長間隔の複数の光を出力する(S104)。
 波長制御部16が、波長生成部15からの光の波長と、合波部13からの波長多重光信号の波長とを比較し、比較した結果に基づいて、光出力部10が出力する光信号の波長を制御する(S105)。
 上記の通り、本発明の第1の実施形態の光通信装置1の波長制御部16は、波長生成部15からの光の波長と、合波部13からの波長多重光信号の波長とを直接比較し、当該比較した波長に対応する光出力部10が出力する光信号の波長を制御する。したがって、本発明の第1の実施形態における光通信装置1は、波長間隔がより高精度な波長多重光信号を出力することができる。
 <第2の実施形態>
 本発明の第2の実施形態について、図面を参照して説明する。なお、本発明の第2の実施形態において、本発明の第1の実施形態と同様の構成については、説明を省略する。
 図3は、本発明の第2の実施形態における、光通信装置1の構成例を示す図である。図3に示すように、本発明の第2の実施形態における光通信装置1は、光出力部10-1~10-5と、合波部13と、基準光出力部14と、波長生成部15と、波長制御部16と、波長選択部18と、波長切替部19とを備える。なお、光出力部10の数は5つに限られず、いくつであってもよい。また、波長生成部15は、光コム発生器11と、マイクロ波発振器12とを含む。また、波長制御部16は、比較部17を備える。
 複数の光出力部10の各々は、互いに異なる波長の光信号を出力する。複数の光出力部10の各々が出力する光信号の波長は、所定の間隔となるように設定されている。しかしながら、複数の光出力部10の各々が出力する光信号の波長は、デバイス固有の光周波数設定確度に起因して、設定されている波長からずれてしまう可能性がある。
 図4は、複数の光出力部10が出力する光信号の波長に対応する周波数の状態と、合波部13が出力する波長多重信号に含まれる複数の光信号の光スペクトルの状態との例を示す図である。なお、図4の例は、光出力部10-2が出力する光信号の周波数が「+Δf」だけずれている場合の例である。なお、光出力部10は、例えば経時変化によって、出力する光信号の周波数が所望の周波数と比較して「+Δf」ずれてしまう。
 図4において、光出力部10-1が出力する光信号の周波数fは「f=f-2×f」と、光出力部10-2が出力する光信号の周波数fは「f=f-f+Δf」と表せる。ここで、fは、基準光出力部14が出力する基準光の周波数である。また、fは、光出力部10から出力される隣接する光信号(すなわち、隣接チャネル間)の周波数間隔である。同様に、光出力部10-3が出力する光信号の周波数fは、「f=f」と、光出力部10-4が出力する光信号の周波数fは「f=f+f」と、光出力部10-5が出力する光信号の周波数fは「f=f+2×f」と表せる。
 図4に示すように、光出力部10-2が出力する光信号の周波数が「+Δf」だけずれると、波長多重信号において隣接チャネル間(光出力部10-2が出力する光信号と、光出力部10-3が出力する光信号)の光スペクトルが重なってしまう。
 そこで、本発明の第2の実施形態の光通信装置1は、複数の光出力部10が出力する光信号の波長を、光コム発生器11が発生する光のうちの少なくとも1つの光の波長に一致させるよう、複数の光出力部10の少なくとも1つが出力する光信号の波長を制御する。
 なお、本発明の第2の実施形態において、複数の光出力部10は、隣接するチャネル間において光スペクトルが重なる程度以上には、ずれないように制御される。複数の光出力部10は、例えば温度管理等がなされている。このため、当該隣接チャネル間における光スペクトルが重なる程度の波長(当該波長に対応する周波数)のずれを考慮すれば足りる。
 合波部13は、複数の光出力部10の各々が出力した光信号を合波した波長多重信号を光通信装置1の外部に出力する。また、合波部13は、例えば、光カプラ等によって波長多重信号の一部を分岐し、比較部17に当該波長多重信号の一部を出力することができる。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる、周波数fに対応する波長の基準光を出力する。基準光出力部14が出力した基準光は、光コム発生器11に入力される。
 波長生成部15内のマイクロ波発振器12は、周波数Fのクロック信号(電気信号)を出力する。周波数Fは、例えば、50GHzや40GHzである。クロック信号の周波数Fは、複数の光出力部10が出力する複数の光信号の波長間隔に対応する。マイクロ波発振器12が出力したクロック信号は、光コム発生器11に入力される。なお、マイクロ波発振器12には、例えば、特許第3444958号公報に記載の変調用発振器を用いることができる。
 光コム発生器11は、マイクロ波発振器12から入力されるクロック信号により駆動し、周波数fに対応する波長の基準光を入力した場合、当該周波数fを中心に周波数F間隔に対応する波長の複数のサイドバンド光(光コム)を発生させる。
 ここで、光コム発生器11には、特許第3444958号公報に記載の光コムジェネレータを用いることができる。当該特許第3444958号公報に記載の光コムジェネレータは、波長安定化光源から出射されたレーザ光の光周波数を中心にfmの光周波数間隔で並ぶ数百本の光スペクトル線から成る光コムを出力する。
 図5は、基準光出力部14が出力する基準光の周波数の状態と、光コム発生器11が発生する光コムの周波数の状態を示す図である。図5に示すように、光コム発生器11から出力される複数の光は、基準光の周波数fを中心に、周波数F間隔の光コムである。光コム発生器11が発生する当該光コムの周波数間隔は高精度に管理されており、マイクロ波発振器12から入力されるクロック信号の周波数Fに高精度で一致する。
 波長選択部18は、光コム発生器11が発生する光コムに含まれる複数の光のうち、波長切替部19から指定された波長の光を、比較部17に入力する。波長選択部18には、例えば、特許第4748514号公報に記載の波長選択スイッチを用いることができる。当該波長選択スイッチは、入力された複数の光のうち、所望の波長の光を出力することができる。当該波長選択スイッチは、基板上に形成された光導波路回路と当該光導波路回路に熱変動を加えて光信号経路の切り替え制御を行う制御手段を有し、出力する光の波長を的確に制御することができる。
 比較部17は、波長生成部15からの光の波長と合波部13からの波長多重光信号の波長とを比較する。具体的には、比較部17は、波長多重信号に含まれる光出力部10-2が出力した光信号の波長に対応する周波数「f=f-f+Δf」と、波長選択部18から入力された光の波長に対応する周波数「f-2×F」とを比較する。比較部17には、特許第2758556号公報に記載の光信号検出装置を用いることができる。特許第2758556号公報に記載の光信号検出装置は、入力された2つの光信号の差である干渉強度(干渉成分)を測定する。比較部17は、比較の結果、両者の光信号の周波数の差(「Δf」)に対応する波長の差を検出する。
 波長制御部16は、比較部17が検出した波長の差(ずれ)を補償するように、光出力部10の出力する光信号の波長を制御する。ここで、光出力部10には、例えば、特許第3197869号公報に記載の波長可変レーザ装置を用いることができる。特許第3197869号公報に記載の波長可変レーザは、波長選択素子として回折格子が用いられており、当該回折格子の角度を調節することにより、出力する(選択する)波長を変化させることができる。
 波長切替部19は、波長選択部18が選択する波長を指定し、当該指定した波長の光を出力することを波長選択部18に要求する。また、波長切替部19は、指定した波長の光信号を出力する光出力部10を特定し、特定した光出力部10(例えば、光出力部10-2)を波長制御部16に通知する。
 図6は、光コム発生器11が発生する複数の光のうち波長選択部18が選択した(波長切替部19が指定した)光の波長に対応する周波数の状態を示す図である。また、図6は、波長制御部16が波長のずれを制御する前後における、光出力部10-2が出力する光信号の波長に対応する周波数の状態を示す図である。
 なお、図6は、光出力部10-2が出力する光信号が周波数Δfに対応する波長分だけずれており、波長制御部16が当該周波数Δfに対応する波長成分を補償する場合の例である。
 図6に示すように、波長制御部16は、光出力部10-2が出力する光信号の周波数のずれ「Δf」(に対応する波長のずれ)を補償する。波長制御部16は、光出力部10-2が出力する光信号の周波数を、波長選択部18が選択した光の周波数「f-F」に一致させるように制御することで、両者の波長のずれを補償する。
 波長切替部19は、制御対象の光出力部10-1~10-5と、波長選択部18で選択する光とを順番に切り替えながら、全ての光出力部10に対して、出力する光信号の波長を制御してもよい。これによって、光通信装置1は、光出力部10-1~10-5の各々が出力する光信号の波長間隔を、光コム発生器11が発生する複数のサイドバンド光(光コム)の周波数間隔である「F」に対応する波長間隔とすることができる。
 図7は、本発明の第2の実施形態における、光通信装置1の動作例を示すフローチャートである。なお、図7の例は、光出力部10-2が出力する光信号の波長が、周波数「+Δf」に対応する波長分だけずれており、当該光出力部10-2が出力する光信号の波長を補償する場合の例である。
 複数の光出力部10の各々が、互いに異なる波長の光信号を出力する(S201)。
 複数の光出力部10から出力される複数の光信号を合波した波長多重信号を光通信装置1の外部に出力するととともに、当該波長多重信号の一部を分岐し、比較部17に当該波長多重信号の一部を出力する(S202)。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる、周波数fの基準光を出力する(S203)。
 波長生成部15が、基準光出力部14が出力する周波数fに対応する波長の基準光に基づいて、当該周波数fを中心とした周波数F間隔に対応する波長の複数の光を発生する(S204)。
 波長選択部18は、発生した複数の光信号のうち、波長切替部19から指定された波長の光を、波長制御部16内の比較部17に入力する(S205)。
 比較部17は、波長生成部15からの光の波長と合波部13からの波長多重光信号の波長とを比較し、当該比較の結果、両者の周波数の差(「Δf」)に対応する波長の差を検出する(S206)。
 波長制御部16は、比較部17が検出した波長の差(ずれ)を補償するように、光出力部10-2が出力する光信号の波長を制御する(S207)。
 上記の通り、本発明の第2の実施形態の光通信装置1の波長制御部16は、波長生成部15からの光の波長と、合波部13からの波長多重光信号の波長とを直接比較し、当該比較した波長に対応する光出力部10が出力する光信号の波長を制御する。したがって、本発明の第1の実施形態における光通信装置1は、波長間隔がより高精度な波長多重光信号を出力することができる。
 <第3の実施形態>
 本発明の第3の実施形態について、図面を参照して説明する。
 本発明の第3の実施形態では、光通信装置1はコヒーレント検波部を備える。そして、波長多重信号と基準光との干渉特性を用いて、光出力部10内のLD101が出力する光信号の周波数が制御される。
 図8は、本発明の第3の実施形態における、光通信装置1の構成例を示す図である。図8に示すように、本発明の第3の実施形態における光通信装置1は、比較部17の代わりに、コヒーレント検波部20と、波長ずれ検出部21とを含む。また、光通信装置1は、分岐器22を備える。また、光通信装置1は、LD(Laser Diode)101-1~101-5(特に区別する必要が無い場合、「LD101」と記載する)と、光変調器102―1~102-5(特に区別する必要が無い場合、「光変調器102」と記載する)とを含む。
 LD101は、所定の周波数の光信号を出力する。なお、なお、複数のLD101の各々が出力する光信号の波長は、所定の間隔となるように設定されている。ここで、LD101が出力する光信号の波長は、LD101のデバイス固有の光周波数設定確度のために、設定された波長に対して所定のずれが生じる場合がある。
 光変調器102は、LD101が出力した光信号に対してデータ変調を行い、合波部13に出力する。
 合波部13は、複数の光出力部10から出力される複数の光信号を合波した波長多重信号を分岐部22に出力する。
 分岐器22は、合波部13から出力される波長多重信号を分岐し、一方を伝送路に出力し、他方をコヒーレント検波部20に出力する。
 波長選択部18は、光コム発生器11が発生する光コムに含まれる複数の光(サイドバンド光)のうち、波長切替部19から指定された波長の光を、コヒーレント検波部20に入力する。
 コヒーレント検波部20は、分岐器22から入力された波長多重信号と、波長選択部18から入力された所定の波長の光とをコヒーレント検波する。コヒーレント検波部20は、分岐器22から入力された波長多重信号と、当該波長選択部18から入力された光との干渉信号を、波長ずれ検出部21に出力する。
 コヒーレント検波部20は、分岐器22から入力された波長多重信号と、波長選択部18から入力された光とを干渉させるコヒーレントミキサーと呼ばれる90度ハイブリッドミキサー(図示されていない)を備える。当該コヒーレントミキサーは、分岐器22から入力された波長多重信号と、波長選択部18から入力された光とが干渉した信号(干渉信号)を出力する。
 波長ずれ検出部21は、入力される干渉信号に基づいて、波長多重信号のうち波長選択部18から入力された波長多重信号に含まれる光信号の少なくとも1つと、波長選択部18から入力された光との波長の差(ずれ)を検出する。
 ここで、波長ずれ検出部21には、特許第5146285号公報に記載の周波数オフセット補償装置における周波数オフセット推定器を用いることができる。周波数オフセットは、入力光とローカル光との周波数の差である。当該周波数オフセット推定器は、フロントエンド回路からベースバンド電気信号を入力し、当該ベースバンド電気信号に含まれる周波数オフセットを推定し、推定した周波数オフセットを電気信号として後段の装置へ出力する。なお、本発明の第3の実施形態では、波長ずれ検出部21は、推定した周波数オフセットに対応する波長の差(ずれ)を電気信号として出力する。
 波長制御部16は、波長ずれ検出部21が検出した波長の差(ずれ)を補償するように、複数の光出力部10のうち波長切替部19から指定された光出力部10が出力する光信号の波長を調整する。複数の光出力部10には、第2の実施形態と同様、例えば特許第3197869号公報に記載の波長可変レーザ装置を用いることができる。
 図9は、本発明の第3の実施形態における、光通信装置1の動作例を示すフローチャートである。なお、図9の例は、光出力部10-2が出力する光信号の波長が、周波数「+Δf」に対応する波長分だけずれており、当該光出力部10-2が出力する光信号の波長を補償する場合の例である。
 複数の光出力部10内のLD101の各々が、互いに異なる波長の光信号を出力する(S301)。
 光変調器102の各々が、LD101が出力した光信号に対してデータ変調を行い、合波部13に出力する(S302)。
 合波部13が、複数の光出力部10の各々が出力した光信号を合波し、波長多重信号を出力する(S303)。
 分岐器22は、合波部13から出力される波長多重信号を分岐し、一方を伝送路に出力し、他方をコヒーレント検波部20に出力する(S304)。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる、周波数fの基準光を出力する(S305)。
 波長生成部15が、基準光出力部14が出力する周波数fに対応する波長の基準光に基づいて、当該周波数fを中心とした周波数F間隔に対応する波長の複数の光を発生する(S306)。
 波長選択部18は、発生した複数の光信号のうち、波長切替部19から指定された波長の光を、コヒーレント検波部20に入力する(S307)。
 コヒーレント検波部20は、波長選択部18からの光の波長と合波部13からの波長多重光信号の波長とが干渉した信号(干渉信号)を、波長ずれ検出部21に出力する(S308)。
 波長ずれ検出部21は、干渉信号に基づいて、波長多重信号に含まれる光信号の少なくとも1つと、波長選択部18から入力された光との波長の差(ずれ)を検出する(S309)。
 波長制御部16は、波長ずれ検出部21が検出した波長の差(ずれ)を補償するように、光出力部10-2内のLD101-2が出力する光信号の波長を制御する(S310)。
 上記の通り、本発明の第3の実施形態の光通信装置1はコヒーレント検波部20を備え、波長多重信号と基準光とを直接干渉させ、干渉特性を用いて光出力部10内のLD102を制御する。したがって、本発明の第3の実施形態における光通信装置1は、波長間隔がより高精度な波長多重光信号を出力することができる。
 <第4の実施形態>
 本発明の第4の実施形態について、図面を参照して説明する。
 本発明の第4の実施形態は、光通信装置1に対して波長の制御を行うタイミングを指示する制御装置を備えるものである。
 図10は、本発明の第4の実施形態における、通信システムの構成例を示す図である。図10に示すように、本発明の第4の実施形態における通信システムは、光通信装置1―1~1-4(特に区別する必要が無い場合、「光通信装置1」と記載する)と、伝送路2と、制御装置3とを備える。なお、図10の例では、光通信装置1は4つであるが、光通信装置1の数は4つに限られず、いくつであってもよい。
 伝送路2は、光ファイバで構成され、例えば複数の光ファイバを束ねて構成されていてもよい。
 制御装置3は、所定のタイミングで、光通信装置1に対して、複数の光出力部10の少なくとも1つが出力する光信号の波長の制御を実行する旨を指示する。波長の制御を行うタイミングは、例えば、LD101の経時変化に基づいて予め定められた周期である。
 また、制御装置3は、波長の制御を行う光出力部10を指定しても良い。この場合において、制御装置3は、波長切替部19に対して、波長の制御を行う光出力部10を指定する。そして、光通信装置1は、制御装置3から指定された光出力部10が出力する光信号の波長を制御する。
 また、波長の制御を行うタイミングは、光通信装置1において、光出力部10に対する波長の割り当てを変更した場合(チャネルの割り当てを変更した場合)であってもよい。複数の光出力部10の各々は、互いに異なる波長が割り当てられており、当該割り当てられた波長の光信号に対してデータ変調を実行し、当該波長の光信号を出力する。例えば、光通信装置1は、チャネル間隔の変更(例えば、50GHzのチャネル間隔を、40GHzに変更する場合など)に伴い、光出力部10に対する波長の割り当てを変更する。光出力部10に対する波長の割り当てを変更した場合、光出力部10内のLD101(例えば、波長可変レーザ)が発振する光信号の波長を変化させるため、変化後のLD101が出力する光信号の波長が、所望の波長に比べてずれてしまう可能性がある。そこで、制御装置3は、当該波長のずれを解消するために、光通信装置1に対して波長の制御を実行させる。
 なお、波長の制御を行うタイミングは、上記の例に限られず、例えば光通信装置1に新たな光出力部10を追加した場合などに実行してもよい。
 図11は、本発明の第4の実施形態における、光通信装置1の構成例を示す図である。なお、図11の例は、チャネル間隔の変更(例えば、50GHzから40GHzへの変更)を行う際に、光出力部10が出力する波長の制御を行う場合の例である。
 図11に示すように、チャネル間隔の変更を行う場合、光通信装置1の光出力部10の各々は、制御装置3から、新たに割り当てられた波長を通知される。光出力部10の各々は、制御装置3からの通知に基づいて、出力する光信号の波長を変更する。
 また、光通信装置1のマイクロ波発振器12は、制御装置3から、出力するクロック信号の周波数Fの変更を要求される。マイクロ波発振器12は、制御装置3からの要求に応じて、クロック信号の周波数Fを変更する(例えば、50GHzから40GHzに変更する)。光コム発生器11はマイクロ波発振器12から入力されるクロック信号により駆動されるため、当該光コム発生器11が出力する光コムの周波数間隔Fが変化する(例えば、周波数間隔が50GHzから40GHzに変化する)。
 また、光通信装置1の波長切替部19は、制御装置3から、複数の光出力部10の各々に設定された波長(複数の光出力部10の各々が出力する光信号の波長)の通知を受ける。波長切替部19は、制御装置3から通知された波長に基づいて、波長選択部18が選択する光の波長を指定する。波長選択部18は、波長切替部19が指定した波長の光を、波長生成部15が生成した複数の光から選択して、コヒーレント検波部20に入力する。また、波長切替部19は、制御装置3からの通知に基づいて、当該指定した波長に対応する光信号を出力する光出力部10を特定し、特定した光出力部10を波長制御部16に通知する。波長制御部16は、波長切替部19から通知に基づいて、当該特定した光出力部10が出力する光信号の波長を制御する。
 図12は、本発明の第4の実施形態における、光通信装置1の動作例を示すフローチャートである。なお、図12の例は、チャネル間隔の変更(例えば、50GHzから40GHzへの変更)を行う際に、光出力部10が出力する波長を制御する場合の例である。
 複数の光出力部10内のLD101の各々は、制御装置3から通知された波長の割り当ての変更に基づいて、出力する光信号の波長を変更する(S401)。
 光変調器102の各々が、LD101が出力した光信号に対してデータ変調を行い、合波部13に出力する(S402)。
 合波部13が、複数の光出力部10の各々が出力した光信号を合波し、波長多重信号を出力する(S403)。
 分岐器22は、合波部13から出力される波長多重信号を分岐し、一方を伝送路に出力し、他方をコヒーレント検波部20に出力する(S404)。
 基準光出力部14は、各光出力部10が出力する光信号の波長の基準となる、周波数fの基準光を出力する(S405)。
 マイクロ波発振器12は、制御装置3からの要求に基づいて、光コム発生器11に出力するクロック信号の周波数Fを変更する(S406)。
 光コム発生器11は、基準光出力部14が出力する周波数fに対応する波長の基準光に基づいて、当該周波数fを中心とした周波数F間隔に対応する波長の複数の光を発生する(S407)。
 波長選択部18は、光コム発生器11が発生した複数の光信号のうち、波長切替部19から指定された波長の光を、コヒーレント検波部20に入力する(S408)。
 コヒーレント検波部20は、波長選択部18からの光の波長と合波部13からの波長多重光信号の波長とが干渉した信号(干渉信号)を、波長ずれ検出部21に出力する(S409)。
 波長ずれ検出部21は、干渉信号に基づいて、波長多重信号に含まれる光信号の少なくとも1つと、波長選択部18から入力された光との波長の差(ずれ)を検出する(S410)。
 波長制御部16は、波長ずれ検出部21が検出した波長の差(ずれ)を補償するように、光出力部10-2内のLD101-2が出力する光信号の波長を制御する(S411)。
 上記の通り、本発明の第4の実施形態は、光通信装置1に対して波長の制御を行うタイミングを指示する制御装置3を備え、光通信装置1は、当該制御装置3からの指示に基づいて、光出力部10から出力する光信号の波長を制御する。したがって、光通信装置1は、制御装置3が指示するタイミングにより波長の制御を行うことができ、波長の制御を行うタイミングを柔軟に制御することが可能となる。
 (第5の実施形態)
 本発明の第5の実施形態について、説明する。第5の実施形態において、光通信装置1のコンピュータ、CPU(Central Processing Unit)又はMPU(Micro-Processing Unit)等は、上述した各実施形態で説明された機能を実現するソフトウェア(プログラム)を実行する。
 本発明の第5の実施形態において、光通信装置1は、例えばCD-R(Compact Disc Recordable)等の、一時的なものでない、各種の記憶媒体又はネットワークを介して、上述した各実施形態の機能を実現するソフトウェア(プログラム)を取得する。光通信装置1が取得するプログラム、又は、該プログラムを記憶した記憶媒体は、本発明を構成することになる。なお、該ソフトウェア(プログラム)は、例えば、光通信装置1に含まれる所定の一時的なものでない記憶部に、予め記憶されていてもよい。
 光通信装置1のコンピュータ、CPU又はMPU等は、取得したソフトウェア(プログラム)のプログラムコードを読み出して実行する。したがって、当該光通信装置1は、上述した各実施形態における光通信装置1の処理と同一の処理を実行する。
 本発明の第5の実施形態によれば、光通信装置1のコンピュータ、CPU又はMPU等に実現するためのプログラムといった用途に適用できる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 [付記1]
 互いに異なる波長の光信号を出力する複数の光出力部と、
 前記複数の光出力部から出力される複数の光信号を合波した波長多重信号を出力する合波部と、
 基準となる基準光を出力する基準光出力部と、
 前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成部と、
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する波長制御部と、
を備える光通信装置。
 [付記2]
 前記波長制御部は、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とを比較する比較部を含むことを特徴とする付記1に記載の光通信装置。
 [付記3]
 前記波長制御部は、
  前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とをコヒーレント検波するコヒーレント検波部と、
  コヒーレント検波部から入力した干渉信号に基づいて、前記波長多重信号に含まれる光信号の少なくとも1つの光信号の波長と、前記複数の光のうち少なくとも1つの光の波長との差分を検出する波長ずれ検出部と
を含むことを特徴とする付記1又は2に記載の光通信装置。
 [付記4]
 前記波長生成部が生成する複数の光から、少なくとも1つの波長の光を選択する波長選択部を備えることを特徴とする付記1乃至3のいずれかに記載の光通信装置。
 [付記5]
 前記波長選択部に対して、選択させる前記少なくとも1つの波長を指示する波長切替部を備えることを特徴とする付記4に記載の光通信装置。
 [付記6]
 前記波長生成部は、
  所定の周波数のクロック信号を出力するマイクロ波発振器と、
  前記基準光に基づいて、前記所定の周波数に応じた波長間隔を持つ複数の光を出力する光コム発生器と
を備えることを特徴とする付記1乃至5のいずれかに記載の光通信装置。
 [付記7]
 前記波長切替部は、前記波長選択部に指示した少なくとも1つの波長に基づいて、前記複数の光出力部のうち出力する光信号の波長を制御する光出力部を前記波長制御部に通知し、
 前記波長制御部は、前記波長切替部から通知された前記光出力部が出力する光信号の波長を制御する
ことを特徴とする付記6に記載の光通信装置。
 [付記8]
 前記波長切替部は、前記波長選択部に指示する少なくとも1つの波長と、前記波長制御部に通知する光出力部とを順次変更し、
 前記波長制御部は、前記波長切替部から通知された前記光出力部が出力する光信号の波長を順次制御する
ことを特徴とする付記6又は7に記載の光通信装置。
 [付記9]
  互いに異なる波長の光信号を出力する複数の光出力部と、
  前記複数の光出力部から出力される複数の光信号を合波した波長多重信号を出力する合波部と、
  基準となる基準光を出力する基準光出力部と、
  前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成部と、
  前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力部が出力する光信号の波長を制御する波長制御部と、
を備える光通信装置と、
 前記光通信装置に対して、所定のタイミングで、前記複数の光出力部の少なくとも1つが出力する光信号の波長の制御を実行する旨を指示する制御装置と
を含む光通信システム。
 [付記10]
 前記制御装置は、前記光信号の波長を制御する光出力部を指定し、前記指定した光出力部を前記光通信装置に通知することを特徴とする付記9に記載の光通信システム。
 [付記11]
 前記所定のタイミングは、前記制御装置が前記複数の光出力部が出力する光信号の波長の割り当てを変更するタイミングであることを特徴とする付記9又は10に記載の光通信システム。
 [付記12]
 前記所定のタイミングは、前記制御装置が前記複数の光出力部が出力する光信号の波長間隔を変更するタイミングであることを特徴とする付記9乃至11のいずれかに記載の光通信システム。
 [付記13]
 前記制御装置は、前記波長間隔を変更したことに応じて、前記波長生成部が生成する複数の光の波長間隔を変更する旨を前記光通信装置に指示することを特徴とする付記12に記載の光通信システム。
 [付記14]
 互いに異なる波長の光信号を出力し、
 前記複数の光信号を合波した波長多重信号を出力し、
 基準となる基準光を出力し、
 前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力し、
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記出力する光信号の波長を制御する
ことを特徴とする光通信方法。
 [付記15]
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とを比較することを特徴とする付記14に記載の光通信方法。
 [付記16]
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とをコヒーレント検波し、
 前記コヒーレント検波して得られた干渉信号に基づいて、前記波長多重信号に含まれる光信号の少なくとも1つの光信号の波長と、前記複数の光のうち少なくとも1つの光の波長との差分を検出する
ことを特徴とする付記14又は15に記載の光通信方法。
 [付記17]
 前記生成する複数の光から、少なくとも1つの波長の光を選択することを特徴とする付記14乃至16のいずれかに記載の光通信方法。
 [付記18]
 前記選択させる前記少なくとも1つの波長を指示することを特徴とする付記17に記載の光通信方法。
 [付記19]
 所定の周波数のクロック信号を出力し、
 前記基準光に基づいて、前記所定の周波数に応じた波長間隔を持つ複数の光を出力する
ことを特徴とする付記14乃至18のいずれかに記載の光通信方法。
 [付記20]
 互いに異なる波長の光信号を出力する処理と、
 前記複数の光信号を合波した波長多重信号を出力する処理と、
 基準となる基準光を出力する処理と、
 前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する処理と、
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記出力する光信号の波長を制御する処理と
をコンピュータに実行させることを特徴とするプログラム。
 [付記21]
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とを比較する処理を含むことを特徴とする付記20に記載のプログラム。
 [付記22]
 前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とをコヒーレント検波する処理と、
 前記コヒーレント検波して得られた干渉信号に基づいて、前記波長多重信号に含まれる光信号の少なくとも1つの光信号の波長と、前記複数の光のうち少なくとも1つの光の波長との差分を検出する処理と
を含むことを特徴とする付記20又は21に記載のプログラム。
 [付記23]
 前記生成する複数の光から、少なくとも1つの波長の光を選択する処理を含むことを特徴とする付記20至22のいずれかに記載のプログラム。
 [付記24]
 前記選択させる前記少なくとも1つの波長を指示する処理を含むことを特徴とする付記23に記載のプログラム。
 [付記25]
 所定の周波数のクロック信号を出力する処理と、
 前記基準光に基づいて、前記所定の周波数に応じた波長間隔を持つ複数の光を出力する処理と
を含むことを特徴とする付記20乃至24のいずれかに記載のプログラム。
 以上、実施形態を参照して本願発明の実施形態を説明した。しかし、本願発明が適用可能な形態は上述した実施形態に限定されない。本願発明の構成や詳細説明には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年3月27日に出願された日本出願特願2014-065011を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、1-1、1-2、1-3、1-4 光通信装置
 2 伝送路
 3 制御装置
 10、10-1、10-2、10-3、10-4、10-5 光出力部
 11 光コム発生器
 12 マイクロ波発振器
 13 合波部
 14 基準光出力部
 15 波長生成部
 16 波長制御部
 17 比較部
 18 波長選択部
 19 波長切替部
 20 コヒーレント検波部
 21 波長ずれ検出部
 22 分岐器
 101 LD
 102 光変調器

Claims (15)

  1.  互いに異なる波長の光信号を出力する複数の光出力手段と、
     前記複数の光出力手段から出力される複数の光信号を合波した波長多重信号を出力する合波手段と、
     基準となる基準光を出力する基準光出力手段と、
     前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成手段と、
     前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力手段が出力する光信号の波長を制御する波長制御手段と、
    を備える光通信装置。
  2.  前記波長制御手段は、前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とを比較する比較手段を含むことを特徴とする請求項1に記載の光通信装置。
  3.  前記波長制御手段は、
      前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光とをコヒーレント検波するコヒーレント検波手段と、
      コヒーレント検波手段から入力した干渉信号に基づいて、前記波長多重信号に含まれる光信号の少なくとも1つの光信号の波長と、前記複数の光のうち少なくとも1つの光の波長との差分を検出する波長ずれ検出手段と
    を含むことを特徴とする請求項1又は2に記載の光通信装置。
  4.  前記波長生成手段が生成する複数の光から、少なくとも1つの波長の光を選択する波長選択手段を備えることを特徴とする請求項1乃至3のいずれかに記載の光通信装置。
  5.  前記波長選択手段に対して、選択させる前記少なくとも1つの波長を指示する波長切替手段を備えることを特徴とする請求項4に記載の光通信装置。
  6.  前記波長切替手段は、前記波長選択手段に指示した少なくとも1つの波長に基づいて、前記複数の光出力手段のうち出力する光信号の波長を制御する光出力手段を前記波長制御手段に通知し、
     前記波長制御手段は、前記波長切替手段から通知された前記光出力手段が出力する光信号の波長を制御する
    ことを特徴とする請求項5に記載の光通信装置。
  7.  前記波長切替手段は、前記波長選択手段に指示する少なくとも1つの波長と、前記波長制御手段に通知する光出力手段とを順次変更し、
     前記波長制御手段は、前記波長切替手段から通知された前記光出力手段が出力する光信号の波長を順次制御する
    ことを特徴とする請求項5又は6に記載の光通信装置。
  8.  前記波長生成手段は、
      所定の周波数のクロック信号を出力するマイクロ波発振器と、
      前記基準光に基づいて、前記所定の周波数に応じた波長間隔を持つ複数の光を出力する光コム発生器と
    を備えることを特徴とする請求項1乃至7のいずれかに記載の光通信装置。
  9.   互いに異なる波長の光信号を出力する複数の光出力手段と、
      前記複数の光出力手段から出力される複数の光信号を合波した波長多重信号を出力する合波手段と、
      基準となる基準光を出力する基準光出力手段と、
      前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する波長生成手段と、
      前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力手段が出力する光信号の波長を制御する波長制御手段と、
    を備える光通信装置と、
     前記光通信装置に対して、所定のタイミングで、前記複数の光出力手段の少なくとも1つが出力する光信号の波長の制御を実行する旨を指示する制御装置と
    を含む光通信システム。
  10.  前記制御装置は、前記光信号の波長を制御する光出力手段を指定し、前記指定した光出力手段を前記光通信装置に通知することを特徴とする請求項9に記載の光通信システム。
  11.  前記所定のタイミングは、前記制御装置が前記複数の光出力手段が出力する光信号の波長の割り当てを変更するタイミングであることを特徴とする請求項9又は10に記載の光通信システム。
  12.  前記所定のタイミングは、前記制御装置が前記複数の光出力手段が出力する光信号の波長間隔を変更するタイミングであることを特徴とする請求項9乃至11のいずれかに記載の光通信システム。
  13.  前記制御装置は、前記波長間隔を変更したことに応じて、前記波長生成手段が生成する複数の光の波長間隔を変更する旨を前記光通信装置に指示することを特徴とする請求項12に記載の光通信システム。
  14.  互いに異なる波長の複数の光信号を光出力手段から出力し、
     前記複数の光信号を合波した波長多重信号を出力し、
     基準となる基準光を出力し、
     前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力し、
     前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力手段が出力する光信号の波長を制御する
    ことを特徴とする光通信方法。
  15.  互いに異なる波長の光信号を出力する処理と、
     前記複数の光信号を合波した波長多重信号を出力する処理と、
     基準となる基準光を出力する処理と、
     前記基準光に基づいて、所定の周波数に応じた波長間隔を持つ複数の光を出力する処理と、
     前記波長多重信号と、前記複数の光のうち少なくとも1つの波長の光との干渉成分に応じて、前記光出力手段が出力する光信号の波長を制御する処理と
    をコンピュータに実行させるためのプログラムを記録した、プログラムの記録媒体。
PCT/JP2015/001578 2014-03-27 2015-03-20 光通信装置、光通信システム及び光送信方法 WO2015146105A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/127,586 US10038515B2 (en) 2014-03-27 2015-03-20 Optical communication device, optical communication system and optical transmission method
EP15769740.0A EP3125447A4 (en) 2014-03-27 2015-03-20 Optical communication device, optical communication system and optical transmission method
JP2016510009A JP6260689B2 (ja) 2014-03-27 2015-03-20 光通信装置、光通信システム及び光送信方法
CN201580016853.7A CN106134106B (zh) 2014-03-27 2015-03-20 光通信设备、光通信系统、光通信方法和非瞬时程序记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-065011 2014-03-27
JP2014065011 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146105A1 true WO2015146105A1 (ja) 2015-10-01

Family

ID=54194655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001578 WO2015146105A1 (ja) 2014-03-27 2015-03-20 光通信装置、光通信システム及び光送信方法

Country Status (5)

Country Link
US (1) US10038515B2 (ja)
EP (1) EP3125447A4 (ja)
JP (1) JP6260689B2 (ja)
CN (1) CN106134106B (ja)
WO (1) WO2015146105A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111193A1 (ja) * 2015-01-05 2016-07-14 三菱電機株式会社 通信装置および搬送波周波数制御方法
JP2017073780A (ja) * 2015-10-10 2017-04-13 富士通株式会社 チャネル間隔の検出装置、方法及びシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146105A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光送信方法
WO2016161638A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种相干光源频偏估计和补偿的相干接收机、方法和系统
US10763959B2 (en) * 2015-11-20 2020-09-01 Solid, Inc. Auxiliary device for setting wavelength and method for setting optical wavelength of optical network unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663822A (en) * 1995-06-14 1997-09-02 Mci Corporation Optical comb generator using optical white noise source
JP2010154062A (ja) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および送信波長設定方法
JP2012023607A (ja) * 2010-07-15 2012-02-02 Nec Corp 波長多重光伝送システムおよび波長間隔設定方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772605B2 (ja) * 1992-10-15 1998-07-02 国際電信電話株式会社 光周波数多重キャリヤ制御装置
JPH08181660A (ja) 1994-12-22 1996-07-12 Toshiba Corp 光周波数自動制御方法および光周波数自動制御装置
JPH0993194A (ja) * 1995-09-27 1997-04-04 Nec Corp 波長安定回路
JP4405598B2 (ja) * 1996-07-09 2010-01-27 富士通株式会社 信号光出力装置及び信号光出力装置を有する光伝送システム
JPH1063350A (ja) * 1996-08-14 1998-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> 光周波数安定化装置
JP3047855B2 (ja) * 1997-04-25 2000-06-05 日本電気株式会社 波長分割多重光送信装置
US6389046B1 (en) * 1999-04-12 2002-05-14 Agere Systems Guardian Corp. Method to sense laser array power and wavelength and reduce drift for wavelength selection and stabilization
JP2001053379A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd 光送信装置
JP2001203643A (ja) * 2000-01-21 2001-07-27 Hitachi Ltd 波長安定化光送信装置
JP3739987B2 (ja) * 2000-02-18 2006-01-25 財団法人神奈川科学技術アカデミー トモグラフィー装置
US6631019B1 (en) * 2000-07-05 2003-10-07 Sri International Reconfigurable multichannel transmitter for dense wavelength division multiplexing (DWDM) optical communication
US7061943B2 (en) * 2000-06-29 2006-06-13 Agility Communications, Inc. Controller calibration for small form factor sampled grating distributed Bragg reflector laser
JP3654170B2 (ja) * 2000-09-29 2005-06-02 日本電気株式会社 出力監視制御装置および光通信システム
US6735395B1 (en) * 2000-09-29 2004-05-11 Futurewei Technologies, Inc. WDM communication system utilizing WDM optical sources with stabilized wavelengths and light intensity and method for stabilization thereof
GB2381121A (en) * 2001-06-07 2003-04-23 Univ London Optical Frequency Synthesizer
JP2003060578A (ja) * 2001-08-13 2003-02-28 Matsushita Electric Ind Co Ltd 光送信機、光受信機及び光波長多重システム
US20030072336A1 (en) * 2001-09-13 2003-04-17 Spectra-Physics Lasers, Inc. Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications
US7881620B2 (en) * 2005-05-04 2011-02-01 Ofs Fitel, Llc Stabilized optical fiber continuum frequency combs using post-processed highly nonlinear fibers
US8285147B2 (en) * 2008-07-31 2012-10-09 Lg-Ericsson Co., Ltd. Bulk modulation of multiple wavelengths for generation of CATV optical comb
US8611750B2 (en) * 2009-10-14 2013-12-17 Futurewei Technologies, Inc. Wavelength locker for simultaneous control of multiple dense wavelength division multiplexing transmitters
WO2013016249A2 (en) * 2011-07-22 2013-01-31 Insight Photonic Solutions, Inc. System and method of dynamic and adaptive creation of a wavelength-continuous and prescribed wavelength versus time sweep from a laser
US8989581B2 (en) * 2012-03-22 2015-03-24 Fujitsu Limited Wavelength reassignment in optical networks
WO2015146105A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光送信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663822A (en) * 1995-06-14 1997-09-02 Mci Corporation Optical comb generator using optical white noise source
JP2010154062A (ja) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および送信波長設定方法
JP2012023607A (ja) * 2010-07-15 2012-02-02 Nec Corp 波長多重光伝送システムおよび波長間隔設定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI KODA ET AL.: "Channel selection by optical injection locking in frequency-comb based DWDM transmission", 2012 17TH OPTO- ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC, pages 831 - 832, XP032223211 *
See also references of EP3125447A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111193A1 (ja) * 2015-01-05 2016-07-14 三菱電機株式会社 通信装置および搬送波周波数制御方法
JPWO2016111193A1 (ja) * 2015-01-05 2017-04-27 三菱電機株式会社 通信装置および搬送波周波数制御方法
US10027421B2 (en) 2015-01-05 2018-07-17 Mitsubishi Electric Corporation Communication apparatus and carrier wave frequency control method
JP2017073780A (ja) * 2015-10-10 2017-04-13 富士通株式会社 チャネル間隔の検出装置、方法及びシステム

Also Published As

Publication number Publication date
JP6260689B2 (ja) 2018-01-17
EP3125447A1 (en) 2017-02-01
US20170134112A1 (en) 2017-05-11
CN106134106A (zh) 2016-11-16
JPWO2015146105A1 (ja) 2017-04-13
EP3125447A4 (en) 2018-03-21
US10038515B2 (en) 2018-07-31
CN106134106B (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6260689B2 (ja) 光通信装置、光通信システム及び光送信方法
Cugini et al. Push-pull defragmentation without traffic disruption in flexible grid optical networks
EP2506476B1 (en) Method of operating an optical network element and optical network element
JP6107166B2 (ja) 波長可変光フィルタのモニタ装置およびモニタ方法
US10903932B2 (en) Method and apparatus for hardware-configured network
JP6123337B2 (ja) 光信号処理装置、送信装置、及び光信号処理方法
US8818207B2 (en) Optical transmitter
US9240856B2 (en) Network system, network apparatus, and method of controlling network
US20160381441A1 (en) Optical transmission device, optical transmission system, and optical transmission method
CA2575595C (en) Multiple wavelength light source, and generation method for multiple wavelength light
US9634787B2 (en) Optical add-drop multiplexer
JP4312698B2 (ja) 波長多重伝送システムを適用した光伝送ネットワーク設計方法
US9577781B2 (en) Optical transmission apparatus and optical transmission control method
TW201501483A (zh) 用於混合分時和波多工的被動光存取網路(twdm-pon)的波長可調的發射器和光網路單元
JP3305137B2 (ja) 光送信装置、光送受信装置、光通信システム、送信波長制御方法、及び光通信方法
Meloni et al. Software-defined defragmentation in space-division multiplexing with quasi-hitless fast core switching
Proietti et al. Quasi-hitless defragmentation technique in elastic optical networks by a coherent RX LO with fast TX wavelength tracking
WO2016148717A1 (en) Transceiver nodes coupled to arrayed waveguide gratings
KR101672394B1 (ko) 다중 파장 수동형 광통신 네트워크를 위한 파장 튜닝 시간 측정 장치 및 방법
Cugini et al. Experimenting push-pull defragmentation in flexible optical networks with direct detection
US20230269002A1 (en) Apparatus and method for maintaining wavelength interval of light sources
US20240094470A1 (en) Optical transceiver, optical transceiver device using the same, and method of controlling light source wavelengths
US10230474B1 (en) Dispersion compensation apparatus and driving method thereof
JP2015185761A (ja) 光マルチキャリア発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510009

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015769740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15127586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE