WO2015146071A1 - 画像表示装置および画像表示調整方法 - Google Patents
画像表示装置および画像表示調整方法 Download PDFInfo
- Publication number
- WO2015146071A1 WO2015146071A1 PCT/JP2015/001477 JP2015001477W WO2015146071A1 WO 2015146071 A1 WO2015146071 A1 WO 2015146071A1 JP 2015001477 W JP2015001477 W JP 2015001477W WO 2015146071 A1 WO2015146071 A1 WO 2015146071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- range
- unit
- display image
- output
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3129—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
- H04N9/3135—Driving therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3191—Testing thereof
- H04N9/3194—Testing thereof including sensor feedback
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
Definitions
- the present invention relates to an image display device and an image display adjustment method.
- a laser scan type image display device is known in which laser light is reflected by a MEMS (Micro Electro Mechanical System) mirror to scan and project an image.
- MEMS Micro Electro Mechanical System
- a head-up display (HUD) that presents a virtual image to a user by projecting the image display device on a windshield or a combiner of an automobile is also known.
- Patent Document 1 discloses a technique for detecting a laser beam used for HUD in a laser irradiation state at an invisible position in a housing and adjusting an output value of the laser beam.
- the laser beam for adjusting the output value of the laser beam is irradiated with the laser beam for adjusting the output value of the laser beam shielded with a housing or the like so as not to leak into the image drawing range.
- the laser beam reflected by may be scattered as stray light and affect the drawn image.
- the image display device is used as a HUD mounted on a vehicle, the influence of stray light may be noticeable when an image is drawn in an environment with a small amount of peripheral light such as at night.
- the present invention has been made to solve such a problem, and it is difficult for the user to notice the influence of stray light on a drawn image, and an image display device and an image that can present a high-quality HUD display.
- An object is to provide a display adjustment method.
- An image display device includes a laser light source unit, a scanning mirror unit that reflects and scans laser light output from the laser light source unit, and a range narrower than the scanning range of the scanning mirror unit based on input display image data.
- a display control unit for controlling the laser light source unit so that a display image is drawn, and a range serving as a reference for setting a position at which the laser beam for adjusting the output of the laser beam is output,
- a detection unit for detecting the laser beam based on the scanning mirror unit, for adjusting the output of the laser light at a position outside the range in which the display image is drawn in the scanning range of the scanning mirror unit and based on the range detected by the detection unit
- an output adjustment control unit that controls the laser light source unit so that the laser beam is output.
- the image display adjustment method of the present invention includes a detection step of detecting a range serving as a reference for setting a position at which laser light for adjusting the output of laser light is output based on input display image data, the display image
- a drawing control step for controlling the laser light source unit so that a display image is drawn in a range narrower than a scanning range of a scanning mirror unit that reflects and scans the laser light output from the laser light source unit based on the data;
- the laser beam is output so that the laser beam for adjusting the output of the laser beam is output at a position outside the range where the display image is drawn by the control step and based on the range detected by the detection step.
- an image display device and an image display adjustment method capable of presenting a high-quality HUD display that is difficult for the user to notice the influence of stray light on a rendered image.
- FIG. 1 is a block diagram illustrating a configuration of an image display device according to a first embodiment of the present invention. It is the figure which showed typically the structure for measuring the light quantity of the laser beam of the image display apparatus which concerns on this invention. It is a figure which represents typically the scanning range by the image display apparatus which concerns on this invention. It is the figure which showed typically the relationship between the light emission unit of the image display apparatus which concerns on this invention, a housing
- an image presented as a virtual image is an image intended for route guidance, an image intended for warning, an image based on content reproduction,
- images related to various UI User Interface
- These images may be still images or moving images.
- the image display apparatus 100 includes a control unit 110, a DDR (Double Data Rate) memory 150, a flash memory 152, a microcomputer 154, an EEPROM (Electrically / Erasable / and Programmable / Read / Only Memory) 156, a laser driver 160, a laser diode 162, and a scanning mirror unit 170.
- the control unit 110 includes a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array).
- the control unit 110 operates programs stored in the flash memory 152, the EEPROM 156, and the like, and performs various processes.
- the control unit 110 includes an image processing unit 120, a laser light control unit 130, and a scanning control unit 140 as functions that operate according to a program.
- the control unit 110 receives display image data.
- the DDR memory 150 is a frame buffer that temporarily stores image data input to the image processing unit 120.
- the DDR memory 150 may be DDR2, DDR3, or other SDRAM (Synchronous Dynamic Random Access Memory).
- the flash memory 152 is a non-volatile storage unit that stores data and programs necessary for the operation of the image processing unit 120.
- the microcomputer 154 causes the scanning control unit 140 to generate a drive signal for operating the scanner driver 173.
- the EEPROM 156 is a nonvolatile storage unit that stores data and programs necessary for the operation of the scanning control unit 140.
- the image processing unit 120 adjusts the image data input from the DDR memory 150 in accordance with a predetermined dot clock so that the laser light control unit 130 can drive the laser light based on the image data. 130 and the scanning control unit 140.
- the luminance detection unit 122 detects a high luminance range for the image data input from the DDR memory 150. Specifically, the luminance detection unit 122 divides the image data and acquires a luminance for each division, thereby detecting a high luminance division. The luminance detection process by the luminance detection unit 122 will be described later.
- the drawing control unit 132 controls the laser driver 160 based on the image data input from the DDR memory 150 so that the laser light is output at an appropriate timing and an appropriate output value. Specifically, each laser diode 162 is turned on / off and the laser output value is controlled by the laser driver 160 so that an image based on the image data is drawn. Further, the drawing control unit 132 controls the laser driver 160 so that a display image is drawn in a range narrower than the scanning range 200 of the scanning mirror unit 170 described later.
- the output adjustment control unit 134 performs control to adjust the output value of the laser beam output from the laser diode 162 (hereinafter, APC: Auto Power Control). Specifically, the output adjustment control unit 134 outputs a laser beam for APC to the blanking area 204 outside the range where the display image in the scanning range 200 of the scanning mirror unit 170 is drawn. 160 is controlled. Further, the output adjustment control unit 134 controls the laser driver 160 so that the APC laser beam is output in the vicinity of the high luminance range detected by the luminance detection unit 122.
- APC Auto Power Control
- the scanning control unit 140 controls the deflection angle and the scanning frequency of each of the horizontal scanning mirror 178 and the vertical scanning mirror 179 constituting the scanning mirror unit 170.
- the scanning control unit 140 generates a driving voltage waveform so that the scanning mirror unit 170 can obtain a desired deflection angle, frequency, and the like, and supplies the waveform to the scanner driver 173.
- the laser driver 160 drives the laser diode 162 based on the control of the laser light control unit 130. Specifically, the laser diode 162 is driven with the lighting timing and the drive current based on the control of the laser light control unit 130. Further, when the laser diode 162 is composed of a plurality of laser diodes, the laser driver 160 drives each laser diode.
- the laser diode 162 outputs a laser beam as a light source.
- the laser diode 162 is configured by a red laser diode 162R, a green laser diode 162G, and a blue laser diode 162B, but a laser diode that outputs laser light of other colors may be added, and is configured by a single laser diode. Also good.
- the laser light source unit 164 is a module including a laser driver 160 and a laser diode 162, and synthesizes laser beams output from the red laser diode 162R, the green laser diode 162G, and the blue laser diode 162B. And a mirror for guiding the laser beam to the scanning mirror unit 170.
- the laser light output from the laser diode 162 is controlled by the laser light control unit 130 by controlling the laser driver 160, whereby the drive current and drive time of each laser diode are controlled, and various drawing colors and drawing forms are presented. Can do.
- the measuring unit 180 is a photodiode for measuring the amount of laser light output from the laser diode 162.
- the configuration of the laser light source unit 164 and the measurement unit 180 is shown in FIG.
- FIG. 2 shows a configuration in which the laser beam of each of the red laser diode 162R, the green laser diode 162G, and the blue laser diode 162B provided in the laser light source unit 164 is detected by the measurement unit 180.
- the measurement unit 180 may be configured as a part of the laser light source unit 164.
- the laser light source unit 164 includes a dichroic mirror 102 for guiding the laser light output from each of the laser diodes 162 to both the scanning mirror unit 170 and the measurement unit 180.
- the dichroic mirror 102R has a characteristic of reflecting almost 100% of the red wavelength laser beam. Therefore, the dichroic mirror 102R reflects almost 100% of the laser light output from the red laser diode 162R and guides it to the dichroic mirror 102G.
- the red laser diode 162R may be arranged to directly output laser light to the dichroic mirror 102G without using the dichroic mirror 102R.
- the dichroic mirror 102G has a characteristic of transmitting almost 100% of the red wavelength laser beam and reflecting almost 100% of the green wavelength laser beam. Therefore, the dichroic mirror 102G transmits almost 100% of the laser light output from the red laser diode 162R and guides it to the dichroic mirror 102B, and reflects almost 100% of the laser light output from the green laser diode 162G to reflect the dichroic mirror 102B. Lead to.
- the dichroic mirror 102B reflects about 98% of the red wavelength laser beam and the green wavelength laser beam and transmits the remaining about 2%, and transmits about 98% of the blue wavelength laser beam and the remaining about 2%. It has the property of reflecting. For this reason, the dichroic mirror 102B reflects about 98% of the laser light output from the red laser diode 162R and the green laser diode 162G and guides it to the scanning mirror unit 170, and also outputs the laser output from the red laser diode 162R and the green laser diode 162G. About 2% of the light is transmitted and guided to the measurement unit 180.
- the dichroic mirror 102B transmits about 98% of the laser light output from the blue laser diode 162B and guides it to the scanning mirror unit 170, and reflects about 2% of the laser light output from the blue laser diode 162B to reflect the measurement unit. Lead to 180.
- the measurement unit 180 can measure the output light amount of each laser diode 162.
- the scanner driver 173 operates the scanning mirror constituting the scanning mirror unit 170 based on the control of the scanning control unit 140.
- the scanning mirror unit 170 includes a horizontal scanning mirror 178 and a vertical scanning mirror 179
- the scanner driver 173 includes a horizontal scanner driver 176 and a vertical scanner driver 177.
- the horizontal scanner driver 176 supplies a driving voltage for swinging the horizontal scanning mirror 178 at a predetermined frequency to the horizontal scanning mirror 178 under the control of the scanning control unit 140.
- the vertical scanner driver 177 supplies a driving voltage for swinging the vertical scanning mirror 179 at a predetermined frequency to the vertical scanning mirror 179 under the control of the scanning control unit 140.
- the scanning mirror unit 170 draws a display image by reflecting the laser light output from the laser light source unit 164 while oscillating at a predetermined frequency.
- the scanning mirror unit 170 includes a horizontal scanning mirror 178 that performs scanning corresponding to the horizontal direction of the display image, and a vertical scanning mirror 179 that performs scanning corresponding to the vertical direction of the display image.
- the horizontal scanning mirror 178 scans the laser beam output from the laser light source unit 164 in the horizontal direction based on the horizontal driving voltage supplied from the image processing unit 120.
- the horizontal scanning mirror 178 is a MEMS mirror or the like formed by performing a process such as etching on an SOI (Silicon On On Insulator) substrate. Further, the horizontal scanning mirror 178 includes a piezoelectric element in its configuration, and swings at a predetermined frequency when the driving voltage supplied from the horizontal scanner driver 176 drives the piezoelectric element.
- the vertical scanning mirror 179 scans the laser beam scanned by the horizontal scanning mirror 178 in the vertical direction based on the vertical driving voltage supplied from the image processing unit 120.
- the vertical scanning mirror 179 includes a silicon mirror and a drive coil on a flexible substrate.
- the vertical scanning mirror 179 is oscillated at a predetermined frequency by the magnetic force of a magnet (not shown) when the driving voltage supplied from the vertical scanner driver 177 is applied to the driving coil.
- the horizontal scanning mirror 178 and the vertical scanning mirror 179 detect the swing angle and frequency by using a piezoelectric film, a Hall element, or the like as a configuration.
- the scanning control unit 140 acquires the detected swing angle and frequency and feeds back to the scanning control.
- the optical path of the laser light output from the laser light source unit 164 is scanned by the vertical scanning mirror 179 after scanning by the horizontal scanning mirror 178.
- the scanning order of the horizontal scanning mirror 178 and the vertical scanning mirror 179 is as follows. The reverse may be possible. Further, the vertical scanning mirror and the horizontal scanning mirror may be integrated.
- the range in which the laser beam can be scanned by the scanning of the horizontal scanning mirror 178 and the vertical scanning mirror 179 is a scanning range 200.
- a range for drawing a display image is a drawing area 202
- a range other than the drawing area 202 in the scanning range 200 is a blanking area 204.
- FIG. 3 is a diagram schematically showing the scanning range.
- the scanning range 200 is a range in which laser light can be scanned by the swing angles of the horizontal scanning mirror 178 and the vertical scanning mirror 179.
- the laser beam scans in the vertical direction while scanning the horizontal direction to the left and right as the laser scanning locus 206 by the swing of the horizontal scanning mirror 178 and the vertical scanning mirror 179. Since FIG. 3 is a schematic diagram, the number of scans of the laser scanning trajectory 206 is described as being small, but actually, the number of scans is determined by the resolution of each frame of the display image.
- the horizontal scanning mirror 178 swings and the horizontal laser scanning trajectory 206 is scanned for 240 reciprocations for one frame drawing, and thus 480 laser scanning trajectories 206 are scanned.
- the vertical scanning mirror 179 swings once in one up-and-down direction with respect to one frame drawing, but by performing 60 reciprocations per second, an image of 60 frames per second is drawn.
- the drawing area 202 is a range in which laser light is emitted to draw a display image in the scanning range 200. Specifically, the laser beam is not emitted on the entire surface of the drawing area 202, and the drawing control unit 132 determines that the display image is displayed in the drawing area 202 according to the shape and color tone of the display image.
- the output level and light emission timing of each of the red laser diode 162R, the green laser diode 162G, and the blue laser diode 162B are controlled.
- the blanking area 204 is not used for drawing a display image, but a laser beam for APC is output at a predetermined scanning position of the blanking area 204.
- a predetermined scanning position where laser light is output for APC is hereinafter referred to as an APC area 208.
- the position of the APC area 208 will be described later.
- the image display device 100 of the present invention is used for a head-up display or the like, and the laser light in the drawing area 202 presents a virtual image to the user, it is necessary to project the laser beam so that the user can see it.
- the blanking area 204 in which the APC area 208 is formed needs to be configured so as not to be visually recognized by the user.
- a structure for preventing the user from visually recognizing the laser beam output in the blanking area 204 will be described with reference to FIGS. 4 and 5.
- FIG. 4 is a diagram schematically showing the relationship between the light emitting unit 190 of the image display apparatus 100, the casing 300 surrounding the light emitting unit 190, and the scanning range of the laser light, and is a top view.
- the light emission unit 190 is a module provided inside the image display apparatus 100, and includes a laser light source unit 164 and a scanning mirror unit 170 as modules. Since FIG. 4 is a schematic diagram, it is described that the laser light output from the scanning mirror unit 170 reaches the projection surface 400 directly, but actually, the laser light passes through a plane mirror (not shown). Is configured to reach the projection surface.
- the projection surface here is an intermediate image screen.
- the housing 300 is formed in a box shape using a metal plate or the like, and a light emitting unit 190 is disposed therein.
- the housing 300 includes an opening 310 in a direction in which the laser light scanned by the scanning mirror unit 170 is emitted.
- the shape of the opening 310 is rectangular as shown in FIG. 5 and matches or substantially matches the shape of the drawing area 202 at the position of the opening 310.
- the laser beam that scans the drawing area 202 of the laser beam scanned by the scanning mirror unit 170 passes through the opening 310 and reaches the projection surface 400. Further, the laser beam that scans the blanking area 204 is shielded by the presence of the casing 300 in the traveling direction thereof, and therefore does not reach the projection surface 400. For this reason, even if a laser beam is output at any position in the blanking area 204, the laser beam is shielded by the casing 300, and the user cannot visually recognize the laser beam. However, as described above, the laser light output in the blanking area 204 is reflected at a position near the opening 310 of the housing 300. For this reason, the reflected stray light affects the display image of the drawing area 202 that has passed through the opening 310.
- FIG. 6 is a flowchart for explaining the operation of APC by the image display apparatus 100.
- the output adjustment control unit 134 determines whether it is time to execute APC (step S10).
- the timing at which APC is executed is arbitrary. Specifically, it is performed every predetermined time or every predetermined frame during image display. For example, every 60 seconds or every 3600 frames. Alternatively, it may be performed when the image display apparatus 100 is activated. When the image display device 100 is activated, it is the timing at which adjustment by APC is most needed, such as when the temperature of the environment in which the image display device 100 is used is low.
- step S10 When it is determined in step S10 that it is the timing at which APC is executed (step S10: Yes), the output adjustment control unit 134 displays a frame image (n-th frame) constituting the display image displayed at the APC execution timing.
- the APC area is determined based on the detection result of the luminance detection unit 122 based on the image) (step S11). The process of step S11 will be described with reference to FIG.
- the luminance detection unit 122 acquires a frame image immediately after the timing for executing APC in step S10, and divides the frame image into predetermined divided areas (step S20).
- the division area in the process of step S20 is a predetermined division form, but the division form may be changed as appropriate depending on the content of the display image.
- the luminance detection unit 122 acquires the brightness for each divided area (step S21). Specifically, the luminance detection unit 122 acquires luminance information for each pixel constituting the display image, and calculates the total luminance for each divided area. When the areas of the divided areas differ from one divided area to another, it is possible to make an appropriate comparison target by dividing the luminance sum by the area ratio of the divided areas and the number of pixels constituting the divided areas.
- FIG. 8 is a diagram schematically showing the divided areas divided in step S20 and the APC areas that are targets to be determined in step S22.
- the frame image to be divided is replaced with a drawing area 202 in which a display image is drawn.
- the luminance detection unit 122 divides the frame image constituting the display image to be divided into nine. An image divided into nine is shown as a divided area 203. As the processing in step S21, the luminance detection unit 122 obtains the brightness for each divided area by calculating the sum of the luminances of the divided areas 203a to 203h existing on the outer periphery of the image as divided areas.
- step S22 the output adjustment control unit 134 compares the brightness of the divided areas 203a to 203h to identify the brightest divided area and determine the vicinity of the brightest divided area as the APC area. . For example, when it is determined that the divided area 203a is the brightest divided area, the APC area 208a is determined as the APC area for performing the APC operation.
- APC areas 208a to 208h are set corresponding to the divided areas 203a to 203h. For this reason, when it is determined that any of the divided areas 203a to 203h is the brightest divided area, any of the corresponding APC areas 208a to 208h is determined as an APC area for performing the APC operation. Is done.
- a divided area having a large drawing area for each divided area may be determined as a divided area with high luminance.
- drawing may not be performed on the entire surface of the drawing area 202 but may be partially drawn in the drawing area 202.
- the background of the character information or symbol information to be drawn may be in a range where drawing with laser light is not performed. Setting a divided area having a large drawing area as a divided area having a high luminance is appropriate when drawing mainly using characters and symbols based on display image data or when there is little change in the drawn image.
- FIG. 9 illustrates another example of processing for determining the APC area.
- a frame image immediately after the timing for executing APC is acquired and divided into predetermined divided areas. (Step S30).
- the luminance detection unit 122 acquires a drawing area for each divided area (step S31). Specifically, the luminance detection unit 122 acquires the presence / absence of display information for each pixel constituting the display image, and calculates the number of pixels with display information for each divided area.
- a pixel having display information is a pixel irradiated with laser light based on the display information.
- an appropriate comparison target can be obtained by dividing the number of pixels with display information by the area ratio of the divided areas or the number of pixels constituting the divided area.
- the number of pixels with display information for each divided area indicates the image drawing area for each divided area.
- the output adjustment control unit 134 compares the image drawing areas in the respective divided areas acquired by the luminance detection unit 122 in the process of step S31, and determines the divided area with the largest image drawing area as the divided area with the highest luminance. And its neighborhood is determined as an APC area (step S32).
- FIG. 10 and 11 are diagrams schematically showing another example of the divided area and the APC area.
- FIG. 10 shows a form divided into four, and APC areas 208i to APC areas 208l are set corresponding to the divided areas 203i to 203l.
- FIG. 11 shows an example in which only the peripheral portion of the display image is set as a divided area, and APC areas 208m to 208x are set corresponding to the divided areas 203m to 203x.
- the APC area 208 is shown as a rectangle. Actually, however, the APC area 208 is a range in which the laser beam is output in the scanning locus of the laser beam that passes through the APC area 208. In some cases, the shape is not limited to a rectangle.
- the output adjustment control unit 134 scans the red laser diode in the specified APC area when scanning the nth frame image in which the APC area is specified.
- the laser driver 160 is controlled so that 162R outputs a laser beam (step S12).
- the measurement unit 180 measures the laser beam of the red laser diode 162R output in step S12, and the output adjustment control unit 134 acquires the measured value (step S13).
- the output adjustment control unit 134 acquires the measured value of the green laser diode 162G when scanning the n + 1-th frame image (step S14, step S15). Similarly, the output adjustment control unit 134 acquires the measurement value of the blue laser diode 162B when scanning the (n + 2) th frame image (steps S16 and S17).
- the measurement order of the laser diodes 162 for each color is arbitrary.
- the output adjustment control unit 134 uses a drive current that causes the laser diodes 162 for each color to emit light with an appropriate amount of light based on the measurement values.
- the laser driver 160 is controlled so as to be driven (step S18).
- FIG. 12 is an example of a display image 500 for route guidance that is presented as a virtual image when the image display device 100 of the present invention is used as a head-up display used in a vehicle.
- a display image 500 is supplied from the navigation device to the image display device 100.
- a display image 500 illustrated in FIG. 12 includes a character display unit 502 indicating a name of a point serving as a pointer based on a route guidance result, an arrow display unit 504 indicating a moving direction at a point serving as a pointer as a symbol such as an arrow,
- the map display unit 506 is configured to superimpose a traveling direction including a certain point on a map image.
- the character information of the character display unit 502 and the arrow display unit 504 and the background of the arrow image are often achromatic.
- the laser beam scans the lines and surfaces constituting the character information and the arrow image, the laser beam is output only at the position corresponding to the character information and the arrow image, and when the laser beam scans the background, the laser beam is Not output.
- lines and surfaces indicating roads, surfaces indicating ground other than roads, surfaces indicating sky, lines and surfaces forming buildings are often colored, and these components are laser-selected. When light scans, laser light is output with appropriate luminance and color tone.
- FIG. 13 is a flowchart for explaining a modification example of the APC operation by the image display apparatus 100.
- the output adjustment control unit 134 determines whether or not it is the timing at which APC is executed (step S10), and the frame image (n-th frame image) constituting the display image displayed at the APC execution timing is determined. Based on the detection result of the luminance detection unit 122, the APC area is determined (step S11).
- the processes up to step S10 and step S11 are the same as those in the embodiment shown in FIG.
- step S40 the output adjustment control unit 134 sets an APC period based on the luminance information in the APC area determined in step S11 (step S40).
- a processing example of step S40 is shown in FIG.
- the output adjustment control unit 134 calculates the sum of luminance in the divided area with the highest luminance determined in step S11 (step S50). For the process of step S50, the value obtained in the process of step S21 shown in FIG. 7 may be used.
- the output adjustment control unit 134 compares the luminance sum acquired in step S50 with a preset threshold value, and determines the magnitude relationship with respect to the threshold value (steps S51 and S52).
- the first threshold value and the second threshold value are used, but the threshold values to be compared may be a single threshold value or a larger threshold value. Further, the threshold value may be a fixed value or a fluctuation value corresponding to the amount of light outside the image display device 100.
- the example described in FIG. 14 uses the first threshold value and the second threshold value, and if the sum of the luminances in the divided area with the highest luminance is less than the first threshold value, the period for emitting the APC light is greater than the default value. Shorten it (step S53). Moreover, if it is more than a 1st threshold value and less than a 2nd threshold value, let the period which emits APC light be a default value (step S54), and if it is more than a 2nd threshold value, the period which emits APC light will be a default value. A longer time is set (step S55).
- each of the laser diodes 162 is output in the specified APC area in the same manner as in steps S12 to S17 in FIG. 134. At this time, the output period of each laser diode 162 is the period set in step S40.
- FIG. 15A shows an example of the APC area 208i when the APC light scanning period is set as a default value in the process shown in FIG.
- the APC light scanning period set here is such that the stray light of the APC light does not affect other divided areas in the vicinity of the brightest divided area 203i in the horizontal amplitude scanned by the horizontal scanning mirror 178. Is the period.
- FIG. 15B shows an example of the APC area 208i when the APC light scanning period is set shorter than the default value in the processing shown in FIG.
- the divided area with the highest luminance is determined to be the divided area 203i.
- the scanning period of the APC light is set short. By performing such processing, the influence of the APC light caused by the stray light can be further reduced by shortening the emission period of the APC light at the time of dark video drawing where the influence caused by the stray light caused by the APC light is conspicuous. .
- FIG. 15C shows an example of the APC area 208i when the scanning period of the APC light is set longer than the default value in the process shown in FIG.
- the divided area with the highest luminance is determined to be the divided area 203i, and at least the luminance of the divided area 203i is a display image higher than normal, and thus the APC light scanning period is set to be long.
- FIG. 16 is a block diagram showing a configuration of an image display device 800 according to the second embodiment of the present invention.
- the image display device 800 is specifically a head-up display device.
- components different from the image display device 100 according to the first embodiment shown in FIG. 1 will be described.
- the control unit 110 includes an image processing unit 120, a laser light control unit 130, a scanning control unit 140, and a gaze range detection unit 145 as functions operated by a program.
- the functions of the image processing unit 120 and the scanning control unit 140 are the same as those described in the first embodiment.
- the output adjustment control unit 134 provided as a function of the laser light control unit 130 performs APC in the blanking area 204 outside the range in which the display image in the scanning range 200 of the scanning mirror unit 170 is drawn as control for executing APC.
- the APC laser beam is output to a position separated from the high gaze degree range detected by the gaze range detection unit 145.
- the laser driver 160 is controlled.
- the gaze range detection unit 145 detects a range with a high gaze degree for the image data input from the DDR memory 150. Specifically, the gaze range detection unit 145 classifies the image data, and acquires a gaze degree parameter defined for each component in the image for each section, thereby detecting a section having the highest gaze degree.
- the gaze range detection processing by the gaze range detection unit 145 can be performed by other methods, and will be described later in detail.
- FIG. 17 is a flowchart for explaining the operation of APC by the image display device 800.
- the output adjustment control unit 134 determines whether it is time to execute APC (step S60).
- the timing at which APC is executed is arbitrary. Specifically, it is performed every predetermined time or every predetermined frame during image display. For example, every 60 seconds or every 3600 frames. Alternatively, it may be performed when the image display apparatus 800 is activated. When the image display device 800 is activated, it is the timing at which adjustment by APC is most necessary, such as when the temperature of the environment in which the image display device 800 is used is low.
- step S60 when it is determined that it is not the timing for executing APC (step S60: No), the determination in step S60 is executed again. Depending on the setting of the timing at which APC is executed, a step of determining whether a predetermined time has elapsed after the determination of No in step S60 may be included. If the timing at which APC is executed is set after activation of the image display device 800, the processing of step S60 may be omitted, and step S61 and subsequent steps may be executed after activation of the image display device 800.
- step S60 If it is determined in step S60 that it is time to execute APC (step S60: Yes), the gaze range detection unit 145 displays a frame image (n-th frame) that constitutes a display image displayed at the APC execution timing. Based on (image), a range with a high gaze degree is detected (step S61).
- FIG. 18 is a flowchart of a detection process example of a range with a high gaze degree in step S61.
- the gaze range detection unit 145 acquires the frame image immediately after the timing for executing the APC in step S60 and divides it into predetermined divided areas (step S110).
- the division area in the process of step S110 is a predetermined division form, but the division form may be appropriately changed depending on the content of the display image.
- the gaze range detection unit 145 acquires a gaze degree parameter defined for each component included in the image for each divided area, with respect to the image for each divided area divided by the process of step S110. (Step S111).
- the gaze degree parameter in the present embodiment is a parameter defined in advance based on the importance or visibility of the user viewing for each component of the image.
- the gaze degree parameter is set based on the importance of the display content is that the highly important information is a range in which the user gazes frequently and the user's line of sight is easily concentrated. For this reason, the range which shows highly important information is made into the range with a high gaze degree, and a user becomes difficult to notice the stray light of APC light by setting an APC area in the position away from the range with a high gaze degree.
- the reason for setting the gaze degree parameter based on the visibility of the display content is that information with good visibility requires a short time for the user to recognize the information, and the display area and complexity of the displayed content increase. Thus, it takes a long time for the user to recognize information, and the user's line of sight tends to concentrate. For this reason, the range which requires time for information recognition is set as a high gaze degree range, and the APC area is set at a position separated from the high gaze degree range, thereby making it difficult for the user to notice the stray light of the APC light.
- the setting of the gaze degree parameter is not limited to the importance and visibility of the display content, and other elements may be used as parameters. A parameter combining a plurality of elements may be used. Further, in the embodiment described later, the gaze degree parameter is, for example, “high”, “medium”, “low” or “3”, “2”, “1” such as a character or numerical value indicating a level. However, it may be shown as another form, and the stage is not limited to three stages.
- the information indicated by the arrow display unit 504 is information that is most necessary to be transmitted to the user who is the driver at the time of display. Is set. Further, since the information shown in the map display unit 506 is detailed information including the peripheral information of the information shown in the arrow display unit 504, it is less important than the arrow display unit 504, but grasps the surrounding situation centering on the intersection. Therefore, the degree of gaze “medium” or “2” is set.
- the information shown in the character display unit 502 is information supplementing the information shown in the arrow display unit 504 and the information shown in the map display unit 506, the information is less important than the arrow display unit 504 and the map display unit 506.
- the diopter is set to “low” or “1”.
- the gaze degree parameter based on the visibility of the display content will be described using the display image 500 shown in FIG.
- the display image 500 in FIG. 19 when the user who is the driver views the display image 500 presented as a virtual image by the head-up display during driving, the information shown in the arrow display unit 504 is displayed as information. Since the displayed area is large and the amount of information displayed is small, the user can visually recognize the display content in a short time, so the gaze degree is set to “low” or “1”.
- the information displayed on the character display unit 502 has a small area in which information is displayed and the display content is less complicated, the information is character information. Therefore, the user needs more time to recognize information than the information displayed on the arrow display unit 504.
- the gaze degree is set to “medium” or “2”. Furthermore, since the information displayed on the map display unit 506 has a large display area but a large amount of information, and the display content is complicated, the user can recognize information from the information displayed on the arrow display unit 504 and the information displayed on the character display unit 502. Since more time is required, the gaze degree is set to “high” or “3”.
- a setting example of a gaze degree parameter combining importance and visibility of display contents will be described using a display image 500 shown in FIG.
- the arrow display unit 504 has a gaze degree “3” due to importance and a gaze degree “1” due to visibility.
- the added gaze degrees are the gaze degree “5” for the map display unit 506 and the gaze degree “3” for the character display unit 502.
- the display information density for each divided area may be used.
- the gaze degree is set higher as the display information density is higher.
- the frequency of movement and the magnitude of movement per unit time of displayed information may be used. In this case, the gaze degree is set higher as the frequency and magnitude of information movement are larger.
- a gaze degree is obtained for each component, and an average value or a sum total for each divided area may be used as the gaze degree of the divided area.
- step S61 images for a plurality of frames are referred to for each divided area, a divided area having a large movement between the plurality of frames is set as a divided area having a high gaze degree, and a divided area having a small movement has a gaze degree.
- a processing form with a low divided area is also applicable.
- the division of the image by the gaze range detection unit 145 is not limited to the division for each display section as shown in FIG.
- the division of the image by the gaze range detection unit 145 may be division by a predetermined division size such as nine divisions.
- the display image 510 is divided into nine sections of divided areas 511a to 511i.
- a gaze degree parameter is acquired for divided areas 511a to 511h in nine sections.
- the gaze range detection unit 145 obtains the divided area with the highest gaze degree parameter acquired in the process of step S111, and specifies the APC area that is farthest from the divided area with the highest gaze degree parameter (step S112).
- the most distant APC area here is appropriately set as an APC area located in the vicinity of a divided area that is line-symmetric or point-symmetric from the divided area having the highest gaze degree parameter.
- FIG. 21 is a diagram showing an arrangement example of a plurality of APC areas 208 set in the blanking area 204.
- a plurality of APC areas 208 are set around the drawing area 202 where the display image is drawn.
- the APC area 208f farthest from the position where the map display unit 506 illustrated in FIG. 19 is drawn is set as the APC area used for adjusting the output of the laser beam.
- the coordinates serving as the center point of the map display unit 506 are obtained, and the center point of the map display unit 506 and the plurality of APC areas shown in FIG.
- the method is not particularly limited.
- the position of the center of gravity of the plurality of divided areas having a high gaze degree parameter is used as a reference, and the APC area farthest from the reference point is output from the laser beam. You may make it set as an APC area used in order to adjust.
- the positions of the plurality of APC areas 208 are set in advance, and it has been described that the selection is made from the plurality of APC areas 208 by the process of step S112. However, the position of the APC area 208 is not set in advance.
- the APC area 208 may be set at an appropriate position as appropriate.
- the APC area 208f is specified as the APC area farthest from the map display unit 506 having the gaze degree parameter “high”.
- the output adjustment control unit 134 determines the APC area specified by the gaze range detection unit 145 in the process of step S61 as an APC area for adjusting the output of the laser beam (step S62).
- the APC process is executed using the APC area determined in (Step S63).
- the image display apparatuses 100 and 800 of the present invention can affect the influence of stray light on the rendered image even during the APC operation. It can be made difficult for the user to notice.
- the scanning mirror unit 170 includes the vertical scanning mirror 179 and the horizontal scanning mirror 178, and is driven by the drive signals of the vertical scanner driver 177 and the horizontal scanner driver 176.
- the horizontal scanning mirror 178 may be configured to self-oscillate the horizontal scanner driver 176.
- the scanning mirror unit 170 may be configured to scan in the horizontal direction and the vertical direction using a single scanning mirror.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
画像表示装置(100,800)は、レーザ光源部(164)、走査ミラー部(170)、描画制御部(132)、検出部(122,145)、及び出力調整制御部(134)を備える。描画制御部(132)は、入力された表示画像データに基づき、走査ミラー部(170)の走査範囲より狭い範囲において表示画像が描画されるように、レーザ光源部(164)を制御する。検出部(122,145)は、レーザ光の出力を調整するためのレーザ光が出力される位置を設定する基準となる範囲を、表示画像データに基づき検出する。出力調整制御部(134)は、走査ミラー部(170)の走査範囲における表示画像が描画される範囲外であり、且つ検出部(122,145)によって検出された範囲に基づいた位置で、レーザ光の出力を調整するためのレーザ光が出力されるように、レーザ光源部(164)を制御する。
Description
本発明は、画像表示装置および画像表示調整方法に関する。
レーザー光をMEMS(Micro Electro Mechanical System)ミラーに反射させることにより走査させ、画像を投映するレーザスキャン方式の画像表示装置が知られている。また、この画像表示装置を、自動車のウィンドシールドやコンバイナに投映することにより、ユーザに虚像を提示するヘッドアップディスプレイ(HUD:Head Up Display)も知られている。
特許文献1には、HUDに用いられるレーザ光を、筐体内の不可視位置へのレーザ照射状態で検出し、レーザ光の出力値を調整する技術が開示されている。
レーザ光の出力値を調整するために、レーザ光の出力値調整用のレーザ光を画像が描画される範囲に漏れないように筐体等で遮蔽して照射する場合であっても、筐体内で反射したレーザ光が迷光として散乱し、描画画像に影響することがある。例えば、画像表示装置を車両に搭載するHUDとして用いる場合、夜間など周辺光量が少ない環境で画像を描画すると、迷光の影響が目立つ場合がある。
本発明は、このような問題を解決するためになされたものであり、描画される画像に対する迷光の影響をユーザが気付きにくく、高品位なHUD表示を提示することができる、画像表示装置および画像表示調整方法を提供することを目的とする。
本発明の画像表示装置は、レーザ光源部、前記レーザ光源部が出力したレーザ光を反射させて走査する走査ミラー部、入力された表示画像データに基づき、前記走査ミラー部の走査範囲より狭い範囲において表示画像が描画されるように、前記レーザ光源部を制御する描画制御部、レーザ光の出力を調整するためのレーザ光が出力される位置を設定する基準となる範囲を、前記表示画像データに基づき検出する検出部、前記走査ミラー部の走査範囲における前記表示画像が描画される範囲外であり、且つ前記検出部によって検出された範囲に基づいた位置で、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する出力調整制御部、を備えることを特徴とする。
本発明の画像表示調整方法は、入力された表示画像データに基づき、レーザ光の出力を調整するためのレーザ光が出力される位置を設定する基準となる範囲を検出する検出ステップ、前記表示画像データに基づき、レーザ光源部が出力したレーザ光を反射させて走査する走査ミラー部の走査範囲より狭い範囲において表示画像が描画されるように、前記レーザ光源部を制御する描画制御ステップ、前記描画制御ステップによって前記表示画像が描画される範囲外であり、且つ前記検出ステップによって検出された範囲に基づいた位置で、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する出力調整制御ステップ、を備えることを特徴とする。
本発明によれば、描画される画像に対する迷光の影響をユーザが気付きにくく、高品位なHUD表示を提示することができる、画像表示装置および画像表示調整方法を提供することができる。
以下、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態である画像表示装置100の構成を示すブロック図である。画像表示装置100は、具体的にはヘッドアップディスプレイ装置であり、主に車両に搭載され、ユーザである運転者等に各種情報を虚像として提示する。
画像表示装置100が、ヘッドアップディスプレイ装置として用いられる場合は、虚像として提示される画像として、経路案内を目的とした画像や、警告を目的とした画像、さらには、コンテンツ再生に基づく画像や、各種UI(User Interface)に関する画像などである。また、これらの画像は、静止画または動画を問わない。
画像表示装置100は、制御部110、DDR(Double Data Rate)メモリ150、フラッシュメモリ152、マイコン154、EEPROM(Electrically Erasable and Programmable Read Only Memory)156、レーザドライバ160、レーザダイオード162、走査ミラー部170、スキャナドライバ173および測定部180を備える。
制御部110は、CPU(Central Processing Unit)およびFPGA(Field Programmable Gate Array)等によって構成される。制御部110は、フラッシュメモリ152やEEPROM156などに記憶されたプログラムを動作させ、各種処理を行う。制御部110は、プログラムによって動作する機能として、画像処理部120、レーザ光制御部130、走査制御部140を備える。また、制御部110は、表示画像データが入力される。
DDRメモリ150は、画像処理部120に入力される画像データを一時的に保存するフレームバッファである。DDRメモリ150は、DDR2やDDR3、その他のSDRAM(Synchronous Dynamic Random Access Memory)であってもよい。
フラッシュメモリ152は、画像処理部120の動作に必要なデータやプログラムなどを記憶する不揮発性記憶部である。
マイコン154は、走査制御部140に、スキャナドライバ173を動作させるための駆動信号を生成させる。EEPROM156は、走査制御部140の動作に必要なデータやプログラムなどを記憶する不揮発性記憶部である。
画像処理部120は、DDRメモリ150から入力された画像データを、レーザ光制御部130が画像データに基づいたレーザ光の駆動が可能となるよう、所定のドットクロックに合わせて、レーザ光制御部130および走査制御部140に出力する。
輝度検出部122は、DDRメモリ150から入力された画像データに対して、輝度の高い範囲を検出する。具体的には、輝度検出部122は、画像データを区分し、区分毎の輝度を取得することにより、輝度の高い区分を検出する。輝度検出部122による輝度検出処理は、後述する。
レーザ光制御部130は、DDRメモリ150から入力された画像データに基づき、レーザダイオード162から適切にレーザ光が出力されるように、レーザドライバ160を制御する。レーザ光制御部130は、その機能に基づき、描画制御部132および出力調整制御部134を備える。
描画制御部132は、DDRメモリ150から入力された画像データに基づき、適切なタイミングおよび適切な出力値でレーザ光が出力されるように、レーザドライバ160を制御する。具体的には、画像データに基づく画像が描画されるように、レーザドライバ160によるレーザダイオード162各々のオン・オフ、およびレーザ出力値の制御を行う。また、描画制御部132は、後述する走査ミラー部170の走査範囲200より狭い範囲において表示画像が描画されるように、レーザドライバ160を制御する。
出力調整制御部134は、レーザダイオード162が出力するレーザ光の出力値調整(以下、APC:Auto Power Control)を実行する制御を行う。具体的には、出力調整制御部134は、走査ミラー部170の走査範囲200における表示画像が描画される範囲外であるブランキングエリア204に、APC用のレーザ光を出力するように、レーザドライバ160を制御する。また、出力調整制御部134は、輝度検出部122が検出した輝度の高い範囲の近傍に、APC用のレーザ光を出力するように、レーザドライバ160を制御する。
走査制御部140は、走査ミラー部170を構成する水平走査ミラー178および垂直走査ミラー179の各々の振れ角および走査周波数等の制御を行う。走査制御部140は、走査ミラー部170が所望の振れ角および周波数等を得られるように、駆動電圧の波形の生成を行い、スキャナドライバ173に供給する。
レーザドライバ160は、レーザ光制御部130の制御に基づき、レーザダイオード162を駆動する。具体的には、レーザ光制御部130の制御に基づく点灯タイミングおよび駆動電流でレーザダイオード162を駆動する。また、レーザドライバ160は、レーザダイオード162が複数のレーザダイオードで構成される場合は、各々のレーザダイオードを各々駆動する。
レーザダイオード162は、光源としてのレーザ光を出力する。レーザダイオード162は、赤色レーザダイオード162R、緑色レーザダイオード162G、青色レーザダイオード162Bにより構成されるが、他色のレーザ光を出力するレーザダイオードを加えてもよく、単一のレーザダイオードで構成されてもよい。
レーザ光源部164は、レーザドライバ160およびレーザダイオード162を含むモジュールであり、赤色レーザダイオード162R、緑色レーザダイオード162G、青色レーザダイオード162Bの各々から出力されたレーザ光を合成するために、各々の光路を導くミラー、および走査ミラー部170へレーザ光を導くためのミラーを備える。
レーザダイオード162から出力されるレーザ光は、レーザ光制御部130がレーザドライバ160を制御することにより、各レーザダイオードの駆動電流および駆動時間を制御され、様々な描画色や描画形態を提示することができる。
測定部180は、レーザダイオード162が出力したレーザ光の光量を測定するためのフォトダイオードである。レーザ光源部164および測定部180の構成を図2に示す。
図2は、レーザ光源部164に備えられる赤色レーザダイオード162R、緑色レーザダイオード162G、青色レーザダイオード162Bの各々のレーザ光を測定部180によって検出する構成を示す。測定部180は、レーザ光源部164の一部として構成されてもよい。
レーザ光源部164は、レーザダイオード162の各々から出力されたレーザ光を、走査ミラー部170および測定部180の双方に導くためのダイクロイックミラー102を備える。
ダイクロイックミラー102Rは、赤色波長のレーザ光をほぼ100%反射させる特性を有する。このため、ダイクロイックミラー102Rは、赤色レーザダイオード162Rが出力したレーザ光をほぼ100%反射してダイクロイックミラー102Gへ導く。赤色レーザダイオード162Rは、ダイクロイックミラー102Rを用いずに直接ダイクロイックミラー102Gへレーザ光を出力させる配置であってもよい。
ダイクロイックミラー102Gは、赤色波長のレーザ光をほぼ100%透過させるとともに、緑色波長のレーザ光をほぼ100%反射させる特性を有する。このため、ダイクロイックミラー102Gは、赤色レーザダイオード162Rが出力したレーザ光をほぼ100%透過してダイクロイックミラー102Bへ導くとともに、緑色レーザダイオード162Gが出力したレーザ光をほぼ100%反射してダイクロイックミラー102Bへ導く。
ダイクロイックミラー102Bは、赤色波長のレーザ光および緑色波長のレーザ光を約98%反射させて残りの約2%を透過させるとともに、青色波長のレーザ光を約98%透過させ残りの約2%を反射させる特性を有する。このため、ダイクロイックミラー102Bは、赤色レーザダイオード162Rおよび緑色レーザダイオード162Gが出力したレーザ光を約98%反射して走査ミラー部170へ導くとともに、赤色レーザダイオード162Rおよび緑色レーザダイオード162Gが出力したレーザ光の約2%を透過させ測定部180へ導く。また、ダイクロイックミラー102Bは、青色レーザダイオード162Bが出力したレーザ光を約98%透過させて走査ミラー部170へ導くとともに、青色レーザダイオード162Bが出力したレーザ光の約2%を反射して測定部180へ導く。
このような構成により、レーザダイオード162が出力したレーザ光の約98%は走査ミラー部170へ向い、残りの約2%は測定部180が受光し光量が検出される。測定部180に入射され検出されるレーザ光の光量は、各々のレーザダイオード162が出力したレーザ光の光量に比例しているため、測定部180は各々のレーザダイオード162の出力光量を測定できる。
図1に戻り、スキャナドライバ173は、走査制御部140の制御に基づき、走査ミラー部170を構成する走査ミラーを動作させる。本実施形態においては、走査ミラー部170として、水平走査ミラー178および垂直走査ミラー179を備えているため、スキャナドライバ173は、水平スキャナドライバ176および垂直スキャナドライバ177により構成される。
水平スキャナドライバ176は、走査制御部140の制御により、水平走査ミラー178を所定の周波数で揺動させるための駆動電圧を、水平走査ミラー178に供給する。垂直スキャナドライバ177は、走査制御部140の制御により、垂直走査ミラー179を所定の周波数で揺動させるための駆動電圧を、垂直走査ミラー179に供給する。
走査ミラー部170は、所定の周波数で揺動しながら、レーザ光源部164から出力されたレーザ光を反射することにより、表示画像を描画させる。走査ミラー部170は、表示画像の横方向に対応する走査を行う水平走査ミラー178、および表示画像の縦方向に対応する走査を行う垂直走査ミラー179を備える。
水平走査ミラー178は、画像処理部120が供給した水平方向の駆動電圧に基づき、レーザ光源部164から出力されたレーザ光を、水平方向に走査する。水平走査ミラー178は、SOI(Silicon On Insulator)基板をエッチング等の処理を行うことにより形成されたMEMSミラー等である。また、水平走査ミラー178は、その構成に圧電素子を備え、水平スキャナドライバ176から供給される駆動電圧が圧電素子を駆動することにより、所定の周波数で揺動する。
垂直走査ミラー179は、画像処理部120が供給した垂直方向の駆動電圧に基づき、水平走査ミラー178が走査したレーザ光を、垂直方向に走査する。垂直走査ミラー179は、フレキシブル基板上に、シリコンミラー等および駆動コイルを備える構成である。垂直走査ミラー179は、垂直スキャナドライバ177から供給される駆動電圧が駆動コイルに印加され、図示しない磁石の磁力によって、所定の周波数で揺動する。
また、水平走査ミラー178および垂直走査ミラー179は、その構成として圧電膜やホール素子等により、揺動角や周波数を検出する。走査制御部140は、これら検出された揺動角や周波数を取得し、走査制御にフィードバックさせる。
上記説明においては、レーザ光源部164から出力されたレーザ光の光路を、水平走査ミラー178による走査後、垂直走査ミラー179による走査としたが、水平走査ミラー178および垂直走査ミラー179の走査順は逆であってもよい。また、垂直走査ミラーと水平走査ミラーは一体であってもよい。
水平走査ミラー178および垂直走査ミラー179の走査により、レーザ光を走査可能となる範囲を、走査範囲200とする。また、走査範囲200において、表示画像を描画するための範囲を、描画エリア202とし、走査範囲200における描画エリア202以外の範囲を、ブランキングエリア204とする。
次に、図3により、走査範囲200における表示画像の描画について説明する。図3は、走査範囲を模式的に示した図である。走査範囲200は、水平走査ミラー178および垂直走査ミラー179の揺動角により、レーザ光を走査可能な範囲である。レーザ光は、水平走査ミラー178および垂直走査ミラー179の揺動により、レーザ走査軌跡206のように、水平方向を左右に走査しながら垂直方向の走査を行う。図3は模式図であるため、レーザ走査軌跡206の走査数を少なく記載しているが、実際には、走査数は、表示画像の1フレーム毎の解像度によって決められる。具体例としては、水平走査ミラー178の揺動により、1フレームの描画に対して、水平方向のレーザ走査軌跡206が240往復分、従って480本のレーザ走査軌跡206が走査される。また、垂直走査ミラー179の揺動は、1フレームの描画に対して上下方向1往復であるが、毎秒60往復の走査を行うことにより、毎秒60フレームの画像を描画する。
描画エリア202は、走査範囲200において、表示画像を描画するためにレーザ光が発光する範囲である。具体的には、描画エリア202の全面においてレーザ光が発光しているわけではなく、表示画像が描画エリア202に表示されるよう、表示画像の形状や色調に応じて、描画制御部132が、赤色レーザダイオード162R、緑色レーザダイオード162G、青色レーザダイオード162Bの各々の出力レベル、発光タイミングを制御している。
ブランキングエリア204は、表示画像の描画には用いられないが、ブランキングエリア204の所定の走査位置において、APCのためのレーザ光が出力される。APCのためにレーザ光が出力される所定の走査位置を、以下APCエリア208とする。APCエリア208の位置については、後述する。
本発明の画像表示装置100は、ヘッドアップディスプレイ等に用いられるため、また、描画エリア202のレーザ光は、ユーザに虚像を提示するため、ユーザに視認可能なように投映する必要が有る。しかし、APCエリア208が形成されるブランキングエリア204は、ユーザに視認されない構成とする必要がある。以下、図4および図5により、ブランキングエリア204においてレーザ光が出力されても、ユーザに視認されないための構造について説明する。
図4は、画像表示装置100の光射出ユニット190と光射出ユニット190を囲う筐体300、およびレーザ光の走査範囲の関係を模式的に示した図であり、上面図である。光射出ユニット190は、画像表示装置100の内部に備えられているモジュールであり、レーザ光源部164および走査ミラー部170を各々モジュールとして備える。図4は、模式図であるため、走査ミラー部170から出力されたレーザ光が、直接投映面400まで達するように記載されているが、実際には、図示しない平面ミラーを介して、レーザ光は投映面に達する構成となる。ここでいう投映面とは、中間像スクリーンである。
筐体300は、金属板等を用いて箱状に構成され、その内部に光射出ユニット190が配置されている。筐体300は、走査ミラー部170によって走査されたレーザ光が出射する方向に、開口部310を備える。開口部310の形状は、図5に示すように矩形であり、開口部310の位置における描画エリア202の形状に一致またはほぼ一致する。
走査ミラー部170で走査されたレーザ光は、描画エリア202を走査するレーザ光のみが開口部310を通過して、投映面400に達する。また、ブランキングエリア204を走査するレーザ光は、その進行方向に筐体300が存在することにより遮光されるため投映面400には到達しない。このため、ブランキングエリア204のいずれの位置においてレーザ光が出力されても、筐体300によってレーザ光は遮光され、ユーザが視認できない構成となっている。しかし、上述したように、ブランキングエリア204において出力されたレーザ光は、筐体300の開口部310に近い位置で反射する。このために、反射した迷光が開口部310を通過した描画エリア202の表示画像に影響してしまう。
次に、第1の実施形態におけるAPCの動作について、図6から図11により説明する。
図6は、画像表示装置100による、APCの動作を説明したフロー図である。先ず、出力調整制御部134は、APCが実行されるタイミングであるか否かを判断する(ステップS10)。APCが実行されるタイミングは、任意である。具体的には、画像表示中における所定時間毎または所定フレーム毎に行う。例えば、60秒毎や3600フレーム毎などである。また、画像表示装置100の起動時に行ってもよい。画像表示装置100の起動時は、画像表示装置100の利用環境の温度が低い場合など、APCによる調整が最も必要とされるタイミングである。
ステップS10において、APCが実行されるタイミングではないと判断された場合(ステップS10:No)、再度ステップS10の判断を実行する。APCが実行されるタイミングの設定によっては、ステップS10がNoの判断の後、所定時間経過を判断するステップを含んでもよい。また、APCが実行されるタイミングが、画像表示装置100の起動後に設定されている場合は、ステップS10の処理を省略し、画像表示装置100の起動後に、ステップS11以降を実行してもよい。
ステップS10において、APCが実行されるタイミングであると判断された場合(ステップS10:Yes)、出力調整制御部134は、APC実行タイミングに表示される表示画像を構成するフレーム画像(n番目のフレーム画像)に基づく、輝度検出部122の検出結果により、APCエリアを確定させる(ステップS11)。ステップS11の処理を、図7により説明する。
図7において、輝度検出部122は、ステップS10においてAPCを実行するタイミングとなった直後のフレーム画像を取得し、所定の分割エリアに分割する(ステップS20)。ステップS20の処理における分割エリアは、予め定められた分割形態であるが、表示画像の内容によっては、適宜分割形態を変化させてもよい。
ステップS20の処理後、輝度検出部122は、分割エリア毎の明るさを取得する(ステップS21)。具体的には、輝度検出部122は、表示画像を構成する画素毎の輝度情報を取得し、分割エリア毎の輝度の総和を算出する。分割エリアの面積が分割エリア毎に異なる場合は、輝度の総和に対して、分割エリアの面積比や分割エリアを構成する画素数で割ることで、適切な比較対象とすることができる。
次に、出力調整制御部134は、ステップS21の処理で輝度検出部122により取得された各分割エリアの明るさを比較して、最も明るい分割エリアの近傍を、APCエリアとして確定する(ステップS22)。
ステップS20からステップS22の処理を、図8を用いて説明する。図8は、ステップS20において分割された分割エリアおよびステップS22において確定される対象である、APCエリアを模式的に示した図である。また、図8においては、分割されるフレーム画像を、表示画像が描画される描画エリア202に置き換えて示している。
ステップS20の処理として、輝度検出部122は、分割する対象の表示画像を構成するフレーム画像を9分割する。9分割された画像は、分割エリア203として示す。ステップS21の処理として、輝度検出部122は、分割エリアとして画像の外周に存在する、分割エリア203a~分割エリア203hの輝度の総和を算出することにより、分割エリア毎の明るさを取得する。
ステップS22の処理として、出力調整制御部134は、分割エリア203a~分割エリア203hの明るさを比較して、最も明るい分割エリアを特定するとともに、最も明るい分割エリアの近傍を、APCエリアとして確定する。例えば、分割エリア203aが最も明るい分割エリアであると判断された場合、APCエリア208aをAPC動作を行うためのAPCエリアとして確定する。
図8に示すように、分割エリア203a~分割エリア203hに対応してAPCエリア208a~APCエリア208hが設定されている。このため、分割エリア203a~分割エリア203hのいずれかが最も明るい分割エリアであると判断された場合、対応するAPCエリア208a~APCエリア208hのいずれかが、APC動作を行うためのAPCエリアとして確定される。
また、ステップS11の他の実施形態としては、図7で説明した処理に代えてまたは加えて、分割エリア毎の描画面積が多い分割エリアを輝度の高い分割エリアと判断してもよい。画像表示装置100は、ヘッドアップディスプレイとして用いられる場合、描画エリア202の全面に対して描画が行われず、描画エリア202において部分的に描画されることがある。具体例としては、文字情報や記号情報が描画される場合、描画される文字情報または記号情報の背景は、レーザ光による描画が行われない範囲となる場合がある。描画面積が多い分割エリアを輝度の高い分割エリアとすることは、表示画像データに基づいて、文字や記号を主とした描画を行う場合や、描画画像の変化が少ない場合に適切である。
図9は、APCエリアを確定させる他の処理例を説明しており、図7におけるステップS20同様に、APCを実行するタイミングとなった直後のフレーム画像を取得し、所定の分割エリアに分割する(ステップS30)。
ステップS30の処理後、輝度検出部122は、分割エリア毎の描画面積を取得する(ステップS31)。具体的には、輝度検出部122は、表示画像を構成する画素毎の表示情報有無を取得し、分割エリア毎の表示情報がある画素数を算出する。表示情報がある画素は、その表示情報に基づきレーザ光が照射される画素である。分割エリアの面積が分割エリア毎に異なる場合は、表示情報がある画素数を分割エリアの面積比や分割エリアを構成する画素数で割ることで、適切な比較対象とすることができる。また、分割エリア毎の表示情報がある画素数は、分割エリア毎の画像描画面積を示す。
次に、出力調整制御部134は、ステップS31の処理で輝度検出部122により取得された各分割エリアにおける画像描画面積を比較して、最も画像描画面積の多い分割エリアを最も輝度の高い分割エリアであると判断し、その近傍を、APCエリアとして確定する(ステップS32)。
図6におけるステップS11の処理においては、図7で説明したAPCエリア確定処理および図9で説明したAPCエリア確定処理を組合せた処理としてもよい。また、描画エリア202における輝度の高い範囲を検出する手法は、これらの処理に限定される必要はない。
図10および図11は、分割エリアおよびAPCエリアの他の例を模式的に示した図である。図10は、4分割された形態であり、分割エリア203i~分割エリア203lに対応してAPCエリア208i~APCエリア208lが設定されている。図11は、表示画像の周辺部分のみを分割エリアとして設定した例であり、分割エリア203m~分割エリア203xに対応してAPCエリア208m~APCエリア208xが設定されている。
図8、図10および図11においては、APCエリア208を矩形として示したが、実際には、APCエリア208は、APCエリア208を通過するレーザ光の走査軌跡において、レーザ光を出力する範囲であるため、矩形に限らない場合もある。
図6に戻り、ステップS11においてAPCエリアが特定された後、出力調整制御部134は、APCエリアが特定されたn番目のフレーム画像を走査する際に、特定されたAPCエリアにおいて、赤色レーザダイオード162Rがレーザ光を出力するよう、レーザドライバ160を制御する(ステップS12)。
ステップS12において出力された赤色レーザダイオード162Rのレーザ光を、測定部180が測定し、その測定値を出力調整制御部134が取得する(ステップS13)。
ステップS12およびステップS13の処理と同様に、緑色レーザダイオード162Gの測定値を、n+1番目のフレーム画像を走査する際に、出力調整制御部134が取得する(ステップS14、ステップS15)。同様に、青色レーザダイオード162Bの測定値を、n+2番目のフレーム画像を走査する際に、出力調整制御部134が取得する(ステップS16、ステップS17)。各色のレーザダイオード162の測定順は、任意である。
ステップS12からステップS17までの処理において、各色のレーザダイオード162の測定値を取得した後、出力調整制御部134は、測定値に基づいて各色のレーザダイオード162が適切な光量で発光する駆動電流で駆動されるように、レーザドライバ160を制御する(ステップS18)。
以上の説明に基づき、図12により具体的な表示画像の例として説明する。図12は、本発明の画像表示装置100を、車両において用いられるヘッドアップディスプレイとして利用した場合に、虚像として提示される、経路案内を目的とした表示画像500の例である。このような表示画像500は、ナビゲーション装置から画像表示装置100に供給される。
図12に例示した表示画像500は、経路案内結果に基づき指針となる地点名などを示す文字表示部502、指針となる地点における移動方向などを矢印などの記号として示す矢印表示部504、指針となる地点を含む進行方向などを地図画像に重畳させて示す地図表示部506から構成される。
ヘッドアップディスプレイにより、図12に例示したような表示画像500を虚像として提示する場合は、文字表示部502および矢印表示部504の文字情報および矢印画像の背景は、無彩色であることが多い。つまり、文字情報および矢印画像を構成する線や面をレーザ光が走査する場合、文字情報および矢印画像に対応する位置のみレーザ光が出力され、背景をレーザ光が走査する場合は、レーザ光は出力されない。
地図表示部506については、道路を示す線および面や、道路以外の地面を示す面、空を示す面、建物を構成する線と面は、彩色されることが多く、これらの構成要素をレーザ光が走査する場合は、適切な輝度と色調によりレーザ光が出力される。
したがって、図12に例示した表示画像500を、図8に示した分割エリア203およびAPCエリア208に対応づけると、地図表示部506における左上方向である、空を主に構成している部分、図8においては分割エリア203aが最も明るいと判断される。このため、本発明の処理によって、分割エリア203aに対応するAPCエリア208aを用いて、APCの処理を行う。
次に、第1の実施形態であるAPCの動作の変形例について、図13から図15を用いて説明する。図13は、画像表示装置100による、APCの動作の変形例を説明したフロー図である。
先ず、出力調整制御部134は、APCが実行されるタイミングであるか否かを判断し(ステップS10)、APC実行タイミングに表示される表示画像を構成するフレーム画像(n番目のフレーム画像)に基づく、輝度検出部122の検出結果により、APCエリアを確定させる(ステップS11)。ステップS10およびステップS11までの処理は、図6に示した実施形態と同一である。
次に、出力調整制御部134は、ステップS11で確定したAPCエリアにおける輝度情報に基づいて、APC期間を設定する(ステップS40)。ステップS40の処理例を図14に示す。
先ず、出力調整制御部134は、ステップS11において確定された最も輝度の高い分割エリアにおける輝度の総和を算出する(ステップS50)。ステップS50の処理は、図7に示すステップS21の処理において求められた値を用いてもよい。
次に、出力調整制御部134は、ステップS50で取得した輝度の総和を、予め設定された閾値と比較し、閾値に対する大小関係を判断する(ステップS51、ステップS52)。本実施形態においては、第一の閾値および第二の閾値を用いているが、対比する閾値は、単一の閾値であってもさらに多い閾値であってもよい。また、閾値は固定値であっても、画像表示装置100の外部における光量に対応する変動値であってもよい。
図14に説明した例は、第一の閾値および第二の閾値を用い、最も輝度の高い分割エリアにおける輝度の総和が第一の閾値未満であれば、APC光を出射する期間をデフォルト値より短くする(ステップS53)。また、第一の閾値以上且つ第二の閾値未満であれば、APC光を出射する期間をデフォルト値とし(ステップS54)、第二の閾値以上であれば、APC光を出射する期間をデフォルト値より長く設定する(ステップS55)。
図13に戻り、ステップS41からステップS48の処理として、図6におけるステップS12からステップS17と同様に、各々のレーザダイオード162を、特定されたAPCエリアで出力させ、その測定値を出力調整制御部134が取得する。その際に、各々のレーザダイオード162の出力期間は、ステップS40で設定された期間となる。
図15A,図15B及び図15Cは、図13におけるステップS41、ステップS43およびステップS45の処理として、ステップS40の処理で設定されたAPC期間による発光の例である。図15A,図15B及び図15Cの例は、最も輝度の高い分割エリアが分割エリア203iであると判断され、APC動作を行うためのAPCエリアがAPCエリア208iとして確定された場合の例である。
図15Aは、図14に示した処理でAPC光の走査期間をデフォルト値として設定された場合のAPCエリア208iの例を示している。ここで設定されているAPC光の走査期間は、水平走査ミラー178が走査する水平方向振幅における、最も輝度の高い分割エリア203iの近傍且つ他の分割エリアにAPC光の迷光による影響を与えない程度の期間である。
図15Bは、図14に示した処理でAPC光の走査期間がデフォルト値より短く設定された場合のAPCエリア208iの例を示している。この場合、最も輝度の高い分割エリアは分割エリア203iと判断されているが、描画エリア202全体の表示画像が暗めの画像であるため、APC光の走査期間は短く設定される。このような処理を行うことにより、APC光の迷光による影響が目立ちやすい暗めの映像描画時においては、APC光の出射期間を短くすることで、APC光の迷光による影響をさらに低減することができる。
図15Cは、図14に示した処理でAPC光の走査期間がデフォルト値より長く設定された場合のAPCエリア208iの例を示している。この場合、最も輝度の高い分割エリアは分割エリア203iと判断され、少なくとも分割エリア203iの輝度は通常より高い表示画像の場合であるため、APC光の走査期間は長く設定される。このような処理を行うことにより、APC光の迷光による影響が目立ちにくい明るい映像描画時においては、APC光の出射時間を長くすることで、APC光の迷光による影響が少ない状態のままAPC光の測定精度を向上させることができる。
次に、本発明の第2の実施形態について説明する。第2の実施形態の説明において、第1の実施形態と構成または処理が共通する場合は、適宜説明を省略する。
図16は、本発明の第2の実施形態である画像表示装置800の構成を示すブロック図である。画像表示装置800は、具体的にはヘッドアップディスプレイ装置であり、以下、図1に示す第1の実施形態における画像表示装置100と異なる構成要素について説明する。
制御部110は、プログラムによって動作する機能として、画像処理部120、レーザ光制御部130、走査制御部140および注視範囲検出部145を備える。
画像処理部120、走査制御部140の機能は、第1の実施形態における説明と同一である。レーザ光制御部130が機能として備える出力調整制御部134は、APCを実行する制御として、走査ミラー部170の走査範囲200における表示画像が描画される範囲外であるブランキングエリア204に、APC用のレーザ光を出力するように、レーザドライバ160を制御する処理に加えて、注視範囲検出部145が検出した注視度の高い範囲から離間した位置に、APC用のレーザ光を出力するように、レーザドライバ160を制御する。
注視範囲検出部145は、DDRメモリ150から入力された画像データに対して、注視度の高い範囲を検出する。具体的には、注視範囲検出部145は、画像データを区分し、区分毎の画像における構成要素毎に定義された注視度のパラメータを取得することにより、注視度の最も高い区分を検出する。また、注視範囲検出部145による注視範囲検出処理は、他の手法も可能であるため、詳細は後述する。
次に、出力調整制御部134による、APC制御の動作について、図17から図22により説明する。
図17は、画像表示装置800による、APCの動作を説明したフロー図である。先ず、出力調整制御部134は、APCが実行されるタイミングであるか否かを判断する(ステップS60)。APCが実行されるタイミングは、任意である。具体的には、画像表示中における所定時間毎または所定フレーム毎に行う。例えば、60秒毎や3600フレーム毎などである。また、画像表示装置800の起動時に行ってもよい。画像表示装置800の起動時は、画像表示装置800の利用環境の温度が低い場合など、APCによる調整が最も必要とされるタイミングである。
ステップS60において、APCが実行されるタイミングではないと判断された場合(ステップS60:No)、再度ステップS60の判断を実行する。APCが実行されるタイミングの設定によっては、ステップS60がNoの判断の後、所定時間経過を判断するステップを含んでもよい。また、APCが実行されるタイミングが、画像表示装置800の起動後に設定されている場合は、ステップS60の処理を省略し、画像表示装置800の起動後に、ステップS61以降を実行してもよい。
ステップS60において、APCが実行されるタイミングであると判断された場合(ステップS60:Yes)、注視範囲検出部145は、APC実行タイミングに表示される表示画像を構成するフレーム画像(n番目のフレーム画像)に基づき、注視度の高い範囲を検出する(ステップS61)。
ここで、ステップS61の処理例を図18から図21を用いて説明する。図18は、ステップS61における注視度の高い範囲の検出処理例のフロー図である。
図18において、注視範囲検出部145は、ステップS60においてAPCを実行するタイミングとなった直後のフレーム画像を取得し、所定の分割エリアに分割する(ステップS110)。ステップS110の処理における分割エリアは、予め定められた分割形態であるが、表示画像の内容によっては、適宜分割形態を変化させてもよい。
図19は、ステップS61の処理を説明するための具体的な表示形態例である。図19に例示した表示画像500は、経路案内結果に基づき指針となる地点名などを示す文字表示部502、指針となる地点における移動方向などを矢印などの記号として示す矢印表示部504、指針となる地点を含む進行方向などを地図画像に重畳させて示す地図表示部506から構成される。注視範囲検出部145は、このような表示画像500を構成する表示区分を、分割エリアとして分割する。したがって、図19における表示画像500は、文字表示部502、矢印表示部504、および地図表示部506に分割される。
ステップS110の処理後、注視範囲検出部145は、ステップS110の処理によって分割された分割エリア毎の画像に対し、分割エリア毎の画像に含まれる構成要素毎に定義された注視度パラメータを取得する(ステップS111)。本実施形態における注視度パラメータとは、画像の構成要素毎に、ユーザが視認することの重要性や視認性などに基づき、予め定義されたパラメータである。
ステップS111において取得される注視度パラメータは、図19に示す表示形態例のように、表示画像500が複数の区画によって構成されている場合は、複数の区画毎に注視度パラメータが設定されている。注視度パラメータは、一例として区画毎の表示内容に対する重要性または視認容易性に基づき設定される。
注視度パラメータを表示内容の重要性に基づき設定する理由としては、重要性の高い情報は、ユーザが注視する頻度が高くユーザの視線が集中しやすい範囲である。このため、重要性の高い情報を示す範囲を注視度の高い範囲とし、注視度の高い範囲から離間した位置にAPCエリアを設定することで、ユーザはAPC光の迷光に気付きにくくなる。
また、注視度パラメータを表示内容の視認性に基づき設定する理由としては、視認性の良い情報は、ユーザが情報の認識に要する時間が短く、表示される内容の表示面積や煩雑さが増すことで、ユーザが情報の認識に要する時間が長くなり、ユーザの視線が集中しやすくなる。このため、情報の認識に時間を要する範囲を注視度の高い範囲とし、注視度の高い範囲から離間した位置にAPCエリアを設定することで、ユーザはAPC光の迷光に気付きにくくなる。
注視度パラメータの設定は、表示内容の重要度や視認性に限らず、他の要素をパラメータとして用いてもよい。また、複数の要素を組み合わせたパラメータを用いてもよい。また、注視度のパラメータを、後述する実施例においては一例として「高」,「中」,「低」、又は「3」,「2」,「1」のように、レベルを示す文字や数値して表したが、他の形態として示してもよく、段階も3段階に限定されない。
次に、図19に示す表示画像500を用いて、表示内容の重要性に基づいた注視度パラメータの設定例について説明する。図19における表示画像500の例においては、矢印表示部504に示す情報は、表示されている時点で運転者であるユーザに最も伝える必要のある情報であるため、注視度「高」または「3」と設定される。また、地図表示部506に示す情報は、矢印表示部504に示す情報の周辺情報も含む詳細情報であるため、矢印表示部504よりは重要性は低いが、交差点を中心に周辺状況を把握するために必用な情報であるため、注視度「中」または「2」と設定される。さらに、文字表示部502に示す情報は、矢印表示部504に示す情報および地図表示部506に示す情報を補足する情報であるため、矢印表示部504および地図表示部506よりは重要性が低く、注視度「低」または「1」と設定される。
同様に、図19に示す表示画像500を用いて、表示内容の視認性に基づいた注視度パラメータの設定例について説明する。図19における表示画像500の例においては、運転者であるユーザが運転中にヘッドアップディスプレイによる虚像として提示される表示画像500を目視した場合、矢印表示部504に示す情報は、情報が表示される面積が大きく、表示される情報量が少ないため、ユーザは短時間の目視で表示内容を視認できるため、注視度「低」または「1」と設定される。また、文字表示部502に示す情報は、情報が表示される面積が小さく、表示内容の煩雑さは少ないが文字情報であるために、ユーザは矢印表示部504に示す情報より情報の認識に時間を要するため、注視度「中」または「2」と設定される。さらに、地図表示部506に示す情報は、表示面積は大きいが情報量が多く表示内容が煩雑であるため、ユーザは矢印表示部504に示す情報および文字表示部502に示す情報より情報の認識にさらに時間を要するため、注視度「高」または「3」設定される。
さらに、図19に示す表示画像500を用いて、表示内容の重要性および視認性を組み合わせた注視度パラメータの設定例について説明する。矢印表示部504は、重要性による注視度「3」、視認性による注視度「1」であるため、加算すると注視度「4」となる。同様に加算された注視度は、地図表示部506は注視度「5」、文字表示部502は注視度「3」となる。
注視度パラメータを設定する要素の他の例としては、例えば、分割エリア毎の表示情報密度を用いてもよい。この場合、表示情報密度が高いほど注視度が高く設定される。また、他の例としては、表示される情報の単位時間当たりの動きの頻度や動きの大きさを用いてもよい。この場合、情報の動きの頻度や大きさが大きいほど注視度が高く設定される。また、1つの分割エリアに複数の構成要素を含む場合は、構成要素毎に注視度を求め、分割エリア毎の平均値や総和を、その分割エリアの注視度としてもよい。
同様に、ステップS61の処理例として、複数フレーム分の画像を分割エリア毎に参照し、複数フレーム間で動きの大きい分割エリアを注視度が高い分割エリアとし、動きの少ない分割エリアを注視度が低い分割エリアとする処理形態も適用可能である。
また、注視範囲検出部145による画像の分割は、図19に示したように表示区画毎の分割に限らない。注視範囲検出部145による画像の分割は、例えば、9分割など予め定められた分割サイズによる分割であってもよい。図20の例においては、表示画像510を、分割エリア511a~分割エリア511iの9区画に分割した例である。この場合、9区画のうち、分割エリア511a~分割エリア511hに対して、注視度パラメータを取得する。
次に、注視範囲検出部145は、ステップS111の処理において取得した注視度パラメータの最も高い分割エリアを求め、注視度パラメータの最も高い分割エリアから最も離間したAPCエリアを特定する(ステップS112)。ここでいう最も離間したAPCエリアとは、注視度パラメータの最も高い分割エリアから線対称または点対称の位置にある分割エリアの近傍に位置するAPCエリアが設定されることが適切である。
図21は、ブランキングエリア204において設定される複数のAPCエリア208の配置例を示した図である。図21の例においては、ブランキングエリア204において、表示画像が描画される描画エリア202の周辺に複数のAPCエリア208が設定されている。この場合、図19に例示した地図表示部506が描画される位置から最も離間したAPCエリア208fが、レーザ光の出力を調整するために用いるAPCエリアとして設定される。地図表示部506から最も離間したAPCエリア208の判断処理例としては、地図表示部506の中心点となる座標を求め、地図表示部506の中心点と、図21に示した複数のAPCエリアを示す各々の座標との距離に基づき判断するが、手法は特に限定しない。
また、注視度パラメータの高い複数の分割エリアが存在する場合は、注視度パラメータの高い複数の分割エリアによる重心位置などを基準とし、その基準点から最も離間したAPCエリアを、レーザ光の出力を調整するために用いるAPCエリアとして設定するようにしてもよい。
APCエリア208の位置は、予め複数のAPCエリア208の位置が設定されており、ステップS112の処理により、複数のAPCエリア208から選択することとして説明したが、APCエリアの位置を予め設定せず、適宜適切な位置にAPCエリア208が設定されるようにしてもよい。
ステップS112の処理を図19に例示した表示画像500に適用した場合、注視度パラメータが「高」である地図表示部506から最も離間したAPCエリアとして、APCエリア208fが特定される。
図17に戻り、ステップS61の処理において注視範囲検出部145により特定されたAPCエリアを、出力調整制御部134は、レーザ光の出力を調整するためのAPCエリアとして確定し(ステップS62)、ここで確定されたAPCエリアを用いてAPC処理を実行する(ステップS63)。
ここで、ステップS63の処理例を図22に記載するが、図22のステップS130からステップS136は、第1の実施形態における図6のステップS12からステップS18と同一であるため、説明を省略する。
上述した第1の実施形態および第2の実施形態のような処理を行うことで、本発明の画像表示装置100および800は、APC動作中であっても、描画される画像に対する迷光の影響を、ユーザが気付きにくくすることができる。
なお、本発明は、上記実施の形態に限られたものではなく、主旨を逸脱しない範囲で適宜変更することが可能である。上記実施形態として、表示画像を複数フレーム画像によって構成される静止画を前提として説明したが、複数フレーム画像によって構成される動画像であってもよい。この場合、輝度検出部122および注視範囲検出部145は、それぞれ、所定期間の動画像を構成する全フレームを対象に、積算した分割エリア毎の明るさおよび積算した注視度を取得する。
また、上記実施の形態においては、走査ミラー部170の構成として垂直走査ミラー179および水平走査ミラー178を備え、垂直スキャナドライバ177および水平スキャナドライバ176の駆動信号により駆動される構成とした。このような構成において、水平走査ミラー178は、水平スキャナドライバ176を自励発振する構成にしてもよい。また、走査ミラー部170は、単一の走査ミラーを用いて、水平方向および垂直方向を走査する形態であってもよい。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2014年3月28日に出願された日本出願特願2014-067975、2014年3月28日に出願された日本出願特願2014-067976、2014年12月15日に出願された日本出願特願2014-252875、及び、2014年12月15日に出願された日本出願特願2014-252876を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100、800 画像表示装置
102 ダイクロイックミラー
110 制御部
120 画像処理部
122 輝度検出部
130 レーザ光制御部
132 描画制御部
134 出力調整制御部
140 走査制御部
145 注視範囲検出部
150 DDRメモリ
152 フラッシュメモリ
154 マイコン
156 EEPROM
160 レーザドライバ
162 レーザダイオード
162R 赤色レーザダイオード
162G 緑色レーザダイオード
162B 青色レーザダイオード
164 レーザ光源部
170 走査ミラー部
173 スキャナドライバ
176 水平スキャナドライバ
177 垂直スキャナドライバ
178 水平走査ミラー
179 垂直走査ミラー
180 測定部
190 光射出ユニット
200 走査範囲
202 描画エリア
203、511 分割エリア
204 ブランキングエリア
206 レーザ走査軌跡
208 APCエリア
300 筐体
310 開口部
400 投映面
500 表示画像
502 文字表示部
504 矢印表示部
506 地図表示部
102 ダイクロイックミラー
110 制御部
120 画像処理部
122 輝度検出部
130 レーザ光制御部
132 描画制御部
134 出力調整制御部
140 走査制御部
145 注視範囲検出部
150 DDRメモリ
152 フラッシュメモリ
154 マイコン
156 EEPROM
160 レーザドライバ
162 レーザダイオード
162R 赤色レーザダイオード
162G 緑色レーザダイオード
162B 青色レーザダイオード
164 レーザ光源部
170 走査ミラー部
173 スキャナドライバ
176 水平スキャナドライバ
177 垂直スキャナドライバ
178 水平走査ミラー
179 垂直走査ミラー
180 測定部
190 光射出ユニット
200 走査範囲
202 描画エリア
203、511 分割エリア
204 ブランキングエリア
206 レーザ走査軌跡
208 APCエリア
300 筐体
310 開口部
400 投映面
500 表示画像
502 文字表示部
504 矢印表示部
506 地図表示部
Claims (11)
- レーザ光源部、
前記レーザ光源部が出力したレーザ光を反射させて走査する走査ミラー部、
入力された表示画像データに基づき、前記走査ミラー部の走査範囲より狭い範囲において表示画像が描画されるように、前記レーザ光源部を制御する描画制御部、
レーザ光の出力を調整するためのレーザ光が出力される位置を設定する基準となる範囲を、前記表示画像データに基づき検出する検出部、
前記走査ミラー部の走査範囲における前記表示画像が描画される範囲外であり、且つ前記検出部によって検出された範囲に基づいた位置で、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する出力調整制御部、
を備えることを特徴とする、画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像の輝度の高い範囲を検出し、
前記出力調整制御部は、前記走査ミラー部の走査範囲における前記表示画像が描画される範囲外であり、且つ前記検出部によって検出された輝度の高い範囲の近傍に、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する、
請求項1に記載の画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像において前記レーザ光による描画面積が多い範囲を、輝度の高い範囲として検出する、
請求項2に記載の画像表示装置。 - 前記検出部は、前記表示画像を複数エリアに区分し、前記複数エリアのうち、前記表示画像の辺部に位置するエリア毎の輝度に基づき、輝度の高い範囲を検出する、
請求項2または請求項3に記載の画像表示装置。 - 前記出力調整制御部は、前記検出部が検出した範囲の輝度に応じて、レーザ光の出力を調整するためのレーザ光を出力する期間を変更する、
請求項2から請求項4のいずれか1項に記載の画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像の注視度の高い範囲を検出し、
前記出力調整制御部は、前記走査ミラー部の走査範囲における前記表示画像が描画される範囲外であり、且つ前記検出部によって検出された注視度の高い範囲から離間した位置に、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する、
請求項1に記載の画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像を構成する構成要素に基づいて、注視度の高い範囲を検出する、
請求項6に記載の画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像を構成する構成要素の重要性に基づいて、注視度の高い範囲を検出する、
請求項6または請求項7に記載の画像表示装置。 - 前記検出部は、前記表示画像データに基づく表示画像を構成する構成要素の視認性に基づいて、注視度の高い範囲を検出する、
請求項6から請求項8のいずれか1項に記載の画像表示装置。 - 前記走査ミラー部の反射により走査されたレーザ光の投射方向に開口部を備える筐体をさらに備え、
前記筐体は、前記走査ミラー部の走査範囲における前記表示画像が描画される範囲のレーザ光を前記開口部により通過させ、前記表示画像が描画される範囲を除いた範囲を遮蔽する、
請求項1から請求項9のいずれか1項に記載の画像表示装置。 - 入力された表示画像データに基づき、レーザ光の出力を調整するためのレーザ光が出力される位置を設定する基準となる範囲を検出する検出ステップ、
前記表示画像データに基づき、レーザ光源部が出力したレーザ光を反射させて走査する走査ミラー部の走査範囲より狭い範囲において表示画像が描画されるように、前記レーザ光源部を制御する描画制御ステップ、
前記描画制御ステップによって前記表示画像が描画される範囲外であり、且つ前記検出ステップによって検出された範囲に基づいた位置で、レーザ光の出力を調整するためのレーザ光が出力されるように、前記レーザ光源部を制御する出力調整制御ステップ、
を備えることを特徴とする、画像表示調整方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15769143.7A EP3125223B1 (en) | 2014-03-28 | 2015-03-17 | Image display device and image display adjustment method |
US15/276,266 US9794531B2 (en) | 2014-03-28 | 2016-09-26 | Image display apparatus and image display adjusting method |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014067975 | 2014-03-28 | ||
JP2014067976 | 2014-03-28 | ||
JP2014-067975 | 2014-03-28 | ||
JP2014-067976 | 2014-03-28 | ||
JP2014252876A JP6269463B2 (ja) | 2014-03-28 | 2014-12-15 | 画像表示装置および画像表示調整方法 |
JP2014-252875 | 2014-12-15 | ||
JP2014252875A JP6269462B2 (ja) | 2014-03-28 | 2014-12-15 | 画像表示装置および画像表示調整方法 |
JP2014-252876 | 2014-12-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/276,266 Continuation US9794531B2 (en) | 2014-03-28 | 2016-09-26 | Image display apparatus and image display adjusting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146071A1 true WO2015146071A1 (ja) | 2015-10-01 |
Family
ID=54194622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001477 WO2015146071A1 (ja) | 2014-03-28 | 2015-03-17 | 画像表示装置および画像表示調整方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015146071A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017102406A (ja) * | 2015-12-04 | 2017-06-08 | 株式会社Jvcケンウッド | 描画装置及び描画方法 |
EP3226065A1 (de) * | 2016-03-31 | 2017-10-04 | Fisba AG | Lichtmodul und verfahren zur überwachung von laserdioden in einem lichtmodul |
CN109782424A (zh) * | 2017-11-15 | 2019-05-21 | 南京科技职业学院 | 一种适用于眼镜光学装置的可调式反射镜组合结构 |
US10490112B2 (en) | 2015-09-03 | 2019-11-26 | Jvckenwood Corporation | Drawing apparatus and drawing method for reduced influence of leakage on visibility of a display image |
US10852533B2 (en) | 2015-12-10 | 2020-12-01 | Ricoh Company, Ltd. | Optical scanning device, image display device, and vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009058590A (ja) * | 2007-08-30 | 2009-03-19 | Hitachi Ltd | 画像表示装置、及び画像表示装置における反射鏡の振動状態調整方法 |
JP2009175428A (ja) * | 2008-01-24 | 2009-08-06 | Funai Electric Co Ltd | レーザプロジェクタ |
WO2010058462A1 (ja) * | 2008-11-20 | 2010-05-27 | Hoya株式会社 | 走査型投影装置 |
JP2010237536A (ja) * | 2009-03-31 | 2010-10-21 | Brother Ind Ltd | 画像表示装置 |
JP2013200475A (ja) * | 2012-03-26 | 2013-10-03 | Jvc Kenwood Corp | 画像表示装置、および、画像表示装置の制御方法 |
-
2015
- 2015-03-17 WO PCT/JP2015/001477 patent/WO2015146071A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009058590A (ja) * | 2007-08-30 | 2009-03-19 | Hitachi Ltd | 画像表示装置、及び画像表示装置における反射鏡の振動状態調整方法 |
JP2009175428A (ja) * | 2008-01-24 | 2009-08-06 | Funai Electric Co Ltd | レーザプロジェクタ |
WO2010058462A1 (ja) * | 2008-11-20 | 2010-05-27 | Hoya株式会社 | 走査型投影装置 |
JP2010237536A (ja) * | 2009-03-31 | 2010-10-21 | Brother Ind Ltd | 画像表示装置 |
JP2013200475A (ja) * | 2012-03-26 | 2013-10-03 | Jvc Kenwood Corp | 画像表示装置、および、画像表示装置の制御方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10490112B2 (en) | 2015-09-03 | 2019-11-26 | Jvckenwood Corporation | Drawing apparatus and drawing method for reduced influence of leakage on visibility of a display image |
JP2017102406A (ja) * | 2015-12-04 | 2017-06-08 | 株式会社Jvcケンウッド | 描画装置及び描画方法 |
EP3385773A4 (en) * | 2015-12-04 | 2018-12-26 | JVC KENWOOD Corporation | Rendering device and rendering method |
US10884235B2 (en) | 2015-12-04 | 2021-01-05 | Jvckenwood Corporation | Drawing apparatus and drawing method |
US10852533B2 (en) | 2015-12-10 | 2020-12-01 | Ricoh Company, Ltd. | Optical scanning device, image display device, and vehicle |
EP3226065A1 (de) * | 2016-03-31 | 2017-10-04 | Fisba AG | Lichtmodul und verfahren zur überwachung von laserdioden in einem lichtmodul |
CN109782424A (zh) * | 2017-11-15 | 2019-05-21 | 南京科技职业学院 | 一种适用于眼镜光学装置的可调式反射镜组合结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6269462B2 (ja) | 画像表示装置および画像表示調整方法 | |
US9794531B2 (en) | Image display apparatus and image display adjusting method | |
JP6269463B2 (ja) | 画像表示装置および画像表示調整方法 | |
US9857668B2 (en) | Head-up display device for vehicle displaying a virtual image ahead of a virtual line of an observer | |
WO2015146071A1 (ja) | 画像表示装置および画像表示調整方法 | |
US9936176B2 (en) | Image protection device and adjustment method | |
US10659740B2 (en) | Image rendering apparatus, head up display, and image luminance adjusting method | |
JP2016097818A (ja) | ヘッドアップディスプレイ装置 | |
EP3348433B1 (en) | Information display device and vehicle apparatus | |
JP6676953B2 (ja) | 画像表示装置、画像表示方法及びプログラム | |
JP2013130832A (ja) | 表示装置 | |
JP5976925B2 (ja) | 投影装置、ヘッドアップディスプレイ、制御方法、プログラム及び記憶媒体 | |
JP2017083631A (ja) | 表示装置、制御方法、プログラム及び記憶媒体 | |
JP2009086371A (ja) | 画像表示装置 | |
US10310259B2 (en) | Image rendering apparatus, head up display, and image luminance adjusting method | |
WO2010103974A1 (ja) | 画像表示装置 | |
JP2018146761A (ja) | 表示装置及び投影装置 | |
JP2018039407A (ja) | ヘッドアップディスプレイ装置 | |
JP2010145923A (ja) | 画像形成装置、及び、ヘッドアップディスプレイ装置 | |
US11195439B2 (en) | Head-up display apparatus | |
JP6991905B2 (ja) | ヘッドアップディスプレイ装置 | |
JP7115046B2 (ja) | 光源装置、表示装置、表示システム、移動体および光量制御方法 | |
WO2015159847A1 (ja) | シースルー型表示装置およびその表示方法 | |
JP2021086106A (ja) | 表示装置、表示システム、移動体および光量制御方法 | |
JP2019164219A (ja) | ヘッドアップディスプレイ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15769143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015769143 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015769143 Country of ref document: EP |