WO2015145505A1 - 導光部材及びその製造方法並びに照明ユニット - Google Patents

導光部材及びその製造方法並びに照明ユニット Download PDF

Info

Publication number
WO2015145505A1
WO2015145505A1 PCT/JP2014/005882 JP2014005882W WO2015145505A1 WO 2015145505 A1 WO2015145505 A1 WO 2015145505A1 JP 2014005882 W JP2014005882 W JP 2014005882W WO 2015145505 A1 WO2015145505 A1 WO 2015145505A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide member
light guide
transparent bar
cover
Prior art date
Application number
PCT/JP2014/005882
Other languages
English (en)
French (fr)
Inventor
小泉 秀樹
大野 達司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016509616A priority Critical patent/JP6600820B2/ja
Publication of WO2015145505A1 publication Critical patent/WO2015145505A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light guide member, and more particularly, to a long light guide member used in an edge light type illumination unit, a manufacturing method thereof, and an illumination unit.
  • a light-emitting device as shown in Patent Document 1 is known.
  • This light-emitting device is an edge light type illumination unit, and a light guide member used in the light-emitting device is composed of a long transparent bar whose one end in the longitudinal direction is an incident surface of light from a light source.
  • a front surface which is a part of the surface is an emission surface, and a rear surface is a diffusion surface.
  • the light incident from the incident surface is diffused by the rear diffusion surface while traveling along the longitudinal direction, and the diffused light is extracted from the front emission surface.
  • the long light guide member having the edge light system as described above is usually attached to a target location through a cover.
  • the cover is a long body like the light guide member, and the diffusion surface as the rear surface of the light guide member is in contact with a part of the cover over the entire length in the longitudinal direction.
  • the diffusion surface is formed with a plurality of grooves arranged at predetermined intervals along the longitudinal direction, and a flat surface remains between the grooves, and light is emitted from the front emission surface on the flat surface. Reflected toward the side.
  • the present invention has been made to solve the above-described problems, and its object is to provide a flat surface that remains between a plurality of grooves forming a diffusion surface, and a surface that faces the diffusion surface in a cover that supports the light guide member. Protects against surface roughness present in the surface and maintains the intended reflection of light on the flat surface, so that uniform light is extracted from the exit surface by the diffused light on the diffusion surface consisting of a combination of grooves and flat surfaces. It is providing the light guide member which can be.
  • the light guide member of the present invention is made in order to solve the above-mentioned problems, and the light guide member is composed of a long transparent bar, and one end in the longitudinal direction of the transparent bar is an external light source. From which light from the light is incident. A pair of cross-sectional contours perpendicular to the longitudinal direction of the transparent bar are extended on the front exit surface, the rear diffusion surface facing the exit surface, and both sides between the exit surface and the diffusion surface. And a reflective surface. The light incident from the incident surface travels in the longitudinal direction while repeating internal reflection on the inner peripheral surface including the reflecting surface and the emitting surface of the transparent bar, and the light reaching the diffusion surface during that time becomes diffused light. It is taken out from the exit surface.
  • the transparent bar is accommodated in the cover with the exit surface exposed, and the diffusion surface remains between a plurality of grooves arranged at intervals in the longitudinal direction of the transparent bar and adjacent grooves. And a plurality of spacer protrusions that protrude outward and abut against the inner surface of the cover and form a space between the inner surface of the cover. With this spacer protrusion, the light guide member can be positioned with respect to the cover, and the flat surface between the plurality of grooves can be protected from the roughness on the facing surface of the cover. As a result, uniform light can be emitted from the emission surface while maintaining the intended diffusion effect.
  • a plurality of spacer protrusions are formed along the opening edge of the groove.
  • the plurality of grooves have a length in a direction intersecting with the longitudinal direction of the transparent bar, and are provided in parallel with a space between each other.
  • the light traveling along the longitudinal direction inside the transparent bar has an increased opportunity to be reflected by the plurality of grooves, and can provide a uniform diffusion effect over the entire length in the longitudinal direction.
  • the groove has a V-shaped cross section, and the groove surface is an inclined surface.
  • the light guide member manufacturing method of the present invention is a light guide member manufacturing method in which a plurality of spacer protrusions are formed along the opening edges of the grooves, and the grooves and the spacer protrusions are simultaneously irradiated by laser irradiation. It is characterized by forming. Thereby, the groove
  • the illumination unit of the present invention is characterized by including a light guide member, a cover, and a light source provided at an end portion in the longitudinal direction of the cover. Thereby, the intended diffusion effect is maintained, and uniform light can be emitted from the emission surface.
  • the light guide member of the present invention can be positioned with respect to the cover, the flat surface between the plurality of grooves can be protected from the roughness on the facing surface of the cover, and the intended diffusion effect is maintained. Thus, uniform light can be emitted from the emission surface.
  • a light guide member having a plurality of grooves and spacer protrusions therebetween can be easily manufactured by laser irradiation.
  • the illumination unit of the present invention light from the light source is incident on the light guide member accommodated in the cover, and the intended diffusion effect is maintained, and uniform light can be emitted from the exit surface of the light guide member. .
  • the perspective view of the light guide member which is the 1st Embodiment of this invention Top view when LEDs are arranged at both ends of the light guide member Sectional view of the same light guide member
  • the perspective view which accommodated the same light guide member in the cover The perspective view which shows the light source module of the illumination unit which uses a light guide member same as the above Sectional drawing of the groove
  • the light guide member of the present invention is used in combination with a light source such as an LED, for example, in an indoor lighting or lighting unit embedded in a ceiling, a wall, or various furniture.
  • a light source such as an LED
  • the light guide member of the present embodiment is assembled integrally with a cover 40 that holds an LED 30 serving as a light source to form the illumination unit 1.
  • the light guide member is a long body made of a synthetic resin that transmits light from the LED 30, and a longitudinal axis L, a width direction axis W, and a front-rear direction axis D that are orthogonal to each other.
  • a transparent bar 10 has a uniform cross-sectional shape perpendicular to the longitudinal direction over the entire length in the longitudinal direction, and the transverse cross-sectional shape is symmetrical with respect to the longitudinal axis D.
  • the outline of the cross section is defined by an emission surface 14 located in front of the front-rear direction, a rear diffusion surface 16 facing the emission surface 14, and a pair of reflection surfaces 18.
  • the diffusion surface 16 is formed by a plurality of grooves 60 that are regularly arranged along the longitudinal axis. Each groove 60 is formed in a direction along the width direction axis W.
  • the diffusion surface 16 basically diffuses the light traveling in the transparent bar 10 toward the emission surface 14, and as a result, the light is extracted from the emission surface 14.
  • the light incident from the incident surface 12 reaches the diffusion surface 16 while repeating internal reflection on the inner peripheral surface of the transparent bar 10 including the reflecting surface 18 and the emitting surface 14 and traveling along the longitudinal direction of the transparent bar 10.
  • the light that has reached the diffusing surface 16 is diffused toward the exit surface 14 here, and this diffused light is extracted from the exit surface 14.
  • the pair of reflecting surfaces 18 couples both ends of the diffusing surface 16 and both ends of the emitting surface 14 in the cross section.
  • the reflecting surface 18 is a curved surface that is smoothly curved as a whole, and reflects the light incident from the incident surface 12 toward the diffusion surface 16 while proceeding along the longitudinal direction of the transparent bar 10 and resulting diffusion. Light is emitted from the emission surface 14 to the front of the transparent bar 10.
  • the exit surface 14 is finished to a concave curved surface that is recessed inward. Further, when the width of the emission surface 14 is W1 and the width of the diffusion surface 16 is W2, the width W1 of the emission surface 14 is larger than the width W2 of the diffusion surface 16. A part of each reflecting surface 18 adjacent to both ends of the diffusing surface 16 is a shoulder portion 20 curved outward. As shown by a broken line X in FIG. 4, the shoulder 20 efficiently reflects the light diffused by the diffusion surface 16 toward the emission surface 14 and proceeds in the longitudinal direction while repeating internal reflection in the transparent bar 10. It functions to collect light on the diffusion surface 16 side.
  • the distance between the emission surface 14 and the diffusing surface 16, that is, the front-rear dimension of the transparent bar 10, is larger than the width W1 of the emission surface 14, and is twice or more the width W1.
  • the transparent bar 10 has a front half including the emission surface 14 and a rear half including the diffusion surface 16 along the front-rear direction axis D, and bumps 24 are formed on each reflection surface 18 included in the front half.
  • the distance between the pair of reflecting surfaces 18 in the rear half that is, the width dimension gradually increases from the shoulder 20 toward the front, and diffused light from the diffusing surface 16 is reduced. Opportunities for reflection toward the exit surface 14 are increased.
  • the bump 24 is a triangular protrusion protruding outward in the cross section of the transparent bar 10, and covers the entire length along the longitudinal direction of the transparent bar 10.
  • the bumps 24 are used for holding the transparent bar 10 on the cover 40. That is, as shown in FIG. 5, the transparent bars 10 are held by the cover 40 by accommodating the bumps 24 in the recesses 44 provided in the both leg pieces 42 of the cover 40.
  • the cover 40 is also a long body and is U-shaped with a cross-sectional shape opened forward. In the state where the transparent bar 10 is held by the cover 40, a portion excluding the emission surface 14 of the transparent bar 10 is covered with the cover 40.
  • the bump 24 is not only used for coupling with the cover 40, but also functions to increase the emission efficiency from the emission surface 14.
  • the bump 24 has a triangular cross section, and one surface serving as a hypotenuse of the triangle is inclined with respect to the width direction axis W of the transparent bar 10.
  • the bump 24 increases the amount of light diffused on the diffusion surface 16 by increasing the opportunity to reflect the light traveling in the longitudinal direction toward the diffusion surface 16 while repeating internal reflection in the transparent bar 10, and as a result, the light is emitted. A large amount of diffused light emitted from the surface 14 is secured to increase the emission efficiency.
  • one surface of the bump 24 is inclined. The amount of light traveling toward the diffusing surface 16 is increased by reflection on the inclined one surface.
  • the bump 24 breaks the trap of light that travels along the longitudinal direction in the transparent bar 10 within the transverse section and escapes from the end face in the longitudinal direction, and is trapped without the bump 24.
  • the light functions toward the diffusion surface 16 side. For this reason, the opportunity for the light traveling in the longitudinal direction on the front end side of the transparent bar 10 to travel toward the diffusion surface 16 increases, and as a result, the diffusion light can be increased and the emission efficiency can be increased.
  • the exit surface 14 is a concave curved surface, and the reflection on the concave curved surface also causes the above-described light trap to be destroyed. Therefore, combined with the effect of the bump 24, the output efficiency of the diffused light is increased. Yes.
  • the cover 40 holds the transparent bar 10 at the front end portion thereof, and is joined to other members at the rear end portion.
  • the cover 40 is a long body whose front end portion has a U-shaped cross section, and the transparent bar 10 exposes its emission surface 14 and its diffusion surface 16 is close to the bottom piece 41 of the cover 40. It is accommodated between the 40 leg pieces 42.
  • light source modules 50 that hold the LEDs 30 are attached to both ends in the longitudinal direction of the cover 40, and the transparent bar 10 is integrated with the LEDs 30 and the cover 40 to constitute an illumination unit.
  • light from the LED 30 is incident on the incident surfaces 12 at both ends in the longitudinal direction of the transparent bar 10 and is reflected in the longitudinal direction while repeating reflection on the inner peripheral surface including the reflecting surface 18 and the emitting surface 14 of the transparent bar 10.
  • the traveling light is diffused by the diffusing surface 16, and diffused light is guided forward from the emitting surface 14.
  • the diffusion surface 16 is formed by a plurality of grooves 60 arranged in the longitudinal direction of the transparent bar 10.
  • the grooves 60 run to have a length in a direction intersecting the longitudinal axis L of the transparent bar 10 and are provided parallel to each other with a space therebetween.
  • each groove 60 has a substantially V-shaped cross section, and the groove surface is formed as an inclined surface 62 that is inclined with respect to the transverse section of the transparent bar 10.
  • channel 60 is formed using a laser processing machine.
  • the laser processing machine is provided in a production line for extruding the transparent bar 10.
  • the production line includes an extruder.
  • the transparent bar 10 is formed by being extruded by an extrusion molding machine and cut into a predetermined length by a laser cutting machine or the like.
  • a large number of grooves 60 are formed by irradiating the diffusion surface 16 of the transparent bar 10 with a laser from a laser processing machine.
  • Laser irradiation by the laser processing machine is performed, for example, on the transparent bar 10 that moves in the extrusion direction after extrusion and before cutting. That is, the process of forming the groove 60 is performed in-line with the process of extruding the transparent bar 10.
  • the arrow shown by A in FIG. 11 has shown the moving direction (extrusion direction) of the transparent bar 10.
  • the laser irradiated from the laser processing machine is, for example, a carbon dioxide laser.
  • the laser system of the laser processing machine is, for example, a galvano scanning system.
  • the laser processing machine includes a laser oscillator 80, a beam expander 81, a galvano scanner 82, and an f ⁇ lens 83.
  • the scanning of the laser irradiated from the laser processing machine is controlled by driving the mirror 820 of the galvano scanner 82. This scanning is performed based on a preset processing pattern, whereby the groove 60 has a desired size, direction, and interval, and the directivity of the diffused light is determined under these conditions regarding the groove 60.
  • the grooves 60 are arranged at intervals along the longitudinal direction of the transparent bar 10, and the flat surface 70 remains between the adjacent grooves 60.
  • the light is advanced along the longitudinal axis L of the transparent bar 10 by internal reflection of the flat surface 70.
  • the grooves 60 and the flat surfaces 70 are alternately arranged along the longitudinal direction of the transparent bar 10, and protrude outward from the ends of all or some of the flat surfaces 70, that is, the edges of the adjacent grooves 60.
  • Spacer protrusions 65 are formed. The spacer protrusions 65 are separated along the longitudinal direction of the transparent bar 10 and come into contact with the bottom piece 41 of the cover 40 to form a space between the flat surface 70 and the inner surface of the cover 40. This prevents contact with the bottom piece 41 of 40.
  • each groove 60 is shortened from the center in the longitudinal direction of the transparent bar 10 toward the incident surfaces 12 at both ends in a direction orthogonal to the longitudinal axis L, and light from the LED 30 incident from the incident surfaces 12 at both ends is transparent.
  • the bar 10 is distributed over the entire length of the diffusion surface 16.
  • each groove 60 has a uniform V-shaped cross section with a rounded lower end, spacer projections 65 having the same height project at both ends of the flat surface 70, and each spacer projection 65 itself is As shown by the arrows in FIG. 7, it contributes to the diffusion of light.
  • a laser processing machine is used to form the groove 60 in the transparent bar 10.
  • the laser processing machine is provided in a production line for extruding the transparent bar 10.
  • the production line includes an extruder.
  • the transparent bar 10 is formed by being extruded in the direction A in FIG. 11 by an extrusion molding machine and cut into a predetermined length by a laser cutting machine or the like. Laser irradiation by the laser processing machine is performed, for example, on the transparent bar 10 that moves in the extrusion direction after extrusion and before cutting. That is, the process of forming the groove 60 is performed in-line with the process of extruding the transparent bar 10.
  • the laser processing machine is configured to irradiate one surface of the transparent bar 10 with a laser beam generated from the laser generation source 70.
  • the laser beam is synchronized with the movement of the transparent bar 10 along its longitudinal direction.
  • a plurality of grooves 60 are created by scanning.
  • the laser light from the laser generation source 70 is irradiated to the transparent bar 10 through the beam expander 71, the two mirrors 720, and the f ⁇ lens 73, and the angle of the mirror 720 is controlled by the galvano scanner 72.
  • a groove 60 is formed along. Laser irradiation is performed based on a control pattern that matches the shape, direction, and interval of the desired groove 60.
  • the laser irradiated from the laser processing machine is, for example, a carbon dioxide laser.
  • the mirror 820 includes a first mirror 820a that determines a first irradiation angle and a second mirror 820b that determines a second irradiation angle.
  • the first mirror 820a is provided with an axis D1 parallel to the longitudinal axis D of the transparent bar 10, and rotates within a certain range around the axis D1.
  • the certain range refers to a range in which light refracted by the first mirror 820a hits the second mirror 820b.
  • the maximum irradiation angle and the minimum irradiation angle of the first irradiation angle are determined by this certain range.
  • the second mirror 820b includes an axis L1 parallel to the longitudinal axis L of the transparent bar 10, and rotates within a certain range about the axis L1.
  • the certain range means a range in which the light refracted by the second mirror 820b hits the f ⁇ lens 83.
  • the maximum irradiation angle and the minimum irradiation angle of the second irradiation angle are determined based on the certain range.
  • spacer protrusion 65, and minute protrusion 66 are formed.
  • the directivity of the diffused light is also determined.
  • the spacer protrusion 65 is also formed along the opening edge of the groove 60 by laser irradiation.
  • the groove 60 and the spacer protrusion 65 can appear at the same time by laser ablation by laser irradiation, and the diffusion surface 16 provided with the spacer protrusion 65 can be easily created.
  • the minute protrusion 66 protrudes from the edge of the flat surface 70 connected to the upper end of the inclined surface 62 having the larger inclination.
  • the height and width of the minute protrusion 66 is smaller than that of the spacer protrusion 65, and light is diffused by the minute protrusion 66 itself as shown in FIG.
  • the diffusion surface 16 is formed so that a plurality of grooves 60 are aligned in the vertical direction in a cross-sectional shape, that is, formed so that the depth directions of all the grooves 60 are aligned in the vertical direction.
  • the mirror 820 may be rotated within a certain range so as to include a groove 60 whose depth direction is inclined as shown in FIG. Good.
  • the spacer protrusion 65 is in contact with the bottom piece 41 of the cover 40, so that the light guide member is positioned with respect to the cover 40 and the flat surface 70 is in contact with the bottom piece 41 of the cover 40.
  • the flat surface 70 can be protected from the roughening of the bottom piece 41 facing the flat surface 70, and the light diffusion effect by the plurality of spacer protrusions 65 itself is combined to maintain the intended diffusion effect and emit light. Uniform light can be emitted from the surface 14.
  • two LEDs 30 are arranged along the front-rear direction axis D so as to face the incident surface 12, one being the latter half and the other being the first half. It is arranged corresponding to the part.
  • the usage pattern of the present invention is not limited to this, and a light source that makes light incident on a part or the whole of the incident surface in the front-rear direction may be used.
  • LED30 in this embodiment is hold
  • the light source module 50 is attached to the end of the cover 40.
  • the light source module 50 has a long concave portion 54 at the front and rear, and the two LEDs 30 are housed side by side in the concave portion 54 and are held in a state of facing the incident surface 12 of the transparent bar 10 with a predetermined interval.
  • the light guide member of this embodiment is used in the lighting unit 1 in combination with the LED 30.
  • FIG. 13 shows a light guide member according to the second embodiment of the present invention.
  • the transparent bar 10 in this light guide member is different from the first embodiment in the configuration of the grooves 60 constituting the diffusion surface 16, and the other configurations are the same as those in the first embodiment.
  • the plurality of grooves 60 are inclined with respect to the longitudinal axis L of the transparent bar 10, and the length of each groove 60 is shortened from the center in the length direction of the transparent bar 10 toward the incident surfaces 12 at both ends. Yes.
  • FIG. 14 shows a light guide member according to a third embodiment of the present invention.
  • the transparent bar 10 in this light guide member is different from the first embodiment in the configuration of the grooves 60 constituting the diffusion surface 16, and the other configurations are the same as those in the first embodiment.
  • the plurality of grooves 60 are formed to have a length over the entire width of the diffusing surface 16, and the interval between the grooves 60, that is, the width of the flat surface 70 is the incident surface on both ends from the center in the length direction of the transparent bar 10. As you go to 12, it gets bigger.
  • LED is arrange
  • an illumination unit is provided by including any one of the light guide members described above, the cover 40, and the LED 30 provided at the end of the cover 40 in the longitudinal direction.
  • the light guide member is positioned with respect to the cover 40, and the flat surface 70 between the plurality of grooves 60 can be protected from the roughness on the opposing surface of the cover 40, and the light guide housed in the cover 40 can be protected.
  • Light from the LED 30 is incident on the optical member, the intended diffusion effect is maintained, and uniform light can be emitted from the emission surface 14 of the light guide member.
  • the lighting unit 1 is provided on the ceiling 50 of the bathroom 5, for example, as shown in FIG.
  • the transparent bar 10 is arranged with the emission surface 14 facing downward in the bathroom 5. Thereby, the inside of the bathroom 5 can be illuminated using the illumination unit 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

 本発明の導光部材は、入射面(12)から入射された光が、透明バー(10)の反射面(18)及び出射面(14)を含む内周面で内部反射を繰り返しながらその内部を長手方向に進み、その間に拡散面(16)に到達した光が拡散光となって出射面(14)から取り出される。透明バー(10)は、出射面(14)を露出させた状態でカバー内に収容されるものであって、拡散面(16)は、透明バー(10)の長手方向に間隔をあけて並ぶ複数の溝と、隣り合う溝の間に残存する平坦面と、を有し、平坦面に、外方へ突出してカバーの内面に当接し、カバーの内面との間にスペースを形成する複数のスペーサ突起が形成されている。

Description

導光部材及びその製造方法並びに照明ユニット
 本発明は、導光部材、更に詳しくは、エッジライト方式の照明ユニットに使用される長尺の導光部材及びその製造方法並びに照明ユニットに関する。
 従来から、特許文献1に示されるような発光装置が知られている。この発光装置は、エッジライト方式の照明ユニットであって、これに使用される導光部材は、長手方向の一端が光源からの光の入射面とされた長尺の透明バーで構成され、周面の一部である前面が出射面、後面が拡散面とされている。この場合、入射面から入射された光は、長手方向に沿って進む間に、後面の拡散面で拡散され、この拡散された光が前面の出射面から取り出される。
特開2012-89442号公報
 上記のようなエッジライト方式となる長尺の導光部材は、通常、カバーを介して対象となる場所に取り付けられる。カバーは導光部材と同様に長尺体であり、導光部材の後面となる拡散面がその長手方向の全長にわたってカバーの一部に接することになる。この拡散面は、複数の溝が長手方向に沿って所定の間隔に並んで形成されており、溝と溝との間には平坦面が残され、この平坦面においても光を前方の出射面側に向けて反射させるようになっている。
 ここで、出射面の長手方向にわたってより均質な光を出射させるためには、平坦面での光の反射を考慮して拡散面を形成することが求められる。しかしながら、導光部材をその後面となる拡散面がカバーに接する形でカバーに取り付ける場合、この接触面となるカバーの一部の表面が荒れていると、ときには平坦面に傷が付く。そうなると、平坦面での意図した光の反射が崩れ、その結果、期待通りの拡散効果が得られず、長手方向にわたって均質な光を出射面から取り出すことが難しくなるという問題を生じる。
 本発明は、上記問題を解消するためになされたもので、その目的は、拡散面を形成する複数の溝間に残る平坦面を、導光部材を支持するカバーにおいてこの拡散面と対向する面に存在する表面の荒れから保護し、平坦面での意図した光の反射を維持することで、溝と平坦面との組み合わせからなる拡散面での拡散光によって、出射面から均質な光を取り出すことができる導光部材を提供することである。
 本発明の導光部材は、上記の課題を解決するために成されたものであり、この導光部材は、長尺な透明バーで構成され、透明バーの長手方向の一端が、外部の光源からの光が入射される入射面とされる。透明バーの長手方向に直交する横断面の輪郭が、前側の出射面と、この出射面に対向する後側の拡散面と、出射面と拡散面との間の両側各々で延出される一対の反射面と、で規定される。入射面から入射された光は、透明バーの反射面及び出射面を含む内周面で内部反射を繰り返しながらその内部を長手方向に進み、その間に拡散面に到達した光が拡散光となって出射面から取り出される。透明バーは、出射面を露出させた状態でカバー内に収容されるものであり、拡散面は、透明バーの長手方向に間隔をあけて並ぶ複数の溝と、隣り合う溝の間に残存する平坦面と、を有し、平坦面に、外方へ突出してカバーの内面に当接し、カバーの内面との間にスペースを形成する複数のスペーサ突起が形成されていることを特徴とする。このスペーサ突起により、カバーに対して導光部材を位置決めすることができ、複数の溝間の平坦面をカバーの対向面における荒れから保護することができる。その結果、意図した拡散効果を維持して出射面から均質な光を出射させることができる。
 本発明の好ましい形態では、複数のスペーサ突起が、溝の開口縁に沿って形成されている。これにより、この開口縁に沿ったスペーサ突起自体の光拡散効果を得ることができ、その結果、出射面から均質な光を出射させる効果を更に高めることができる。
 また、本発明の好ましい形態では、複数の溝は、透明バーの長手方向と交差する方向に長さを有し、相互に間隔をあけて平行に設けられている。これにより、透明バーの内部を長手方向に沿って進む光は、この複数の溝において反射する機会が増大され、長手方向の全長に亘って一様な拡散効果を与えることができる。
 さらに本発明の好ましい形態では、溝は、その断面形状がV字状で、その溝表面が傾斜面である。れにより、透明バーの内部を長手方向に沿って進む光は、出射面側へ効率よく反射される、その結果、出射面を通して外部へ光が出射される効率が高められる。
 また、本発明の導光部材の製造方法は、複数のスペーサ突起が、溝の開口縁に沿って形成されている導光部材の製造方法であって、溝とスペーサ突起とをレーザー照射により同時に形成することを特徴とする。これにより、簡易にスペーサ突起を有する溝を形成することができる。
 また、本発明の照明ユニットは、導光部材と、カバーと、カバーの長手方向の端部に設けられる光源と、を備えることを特徴とする。これにより、意図した拡散効果が維持され、出射面から均質な光を出射させることができる。
 本発明の導光部材においては、カバーに対して導光部材を位置決めすることができ、複数の溝間の平坦面をカバーの対向面における荒れから保護することができ、意図した拡散効果を維持して出射面から均質な光を出射させることができる。
 本発明の導光部材の製造方法においては、複数の溝とその間にスペーサ突起とを有する導光部材を、レーザー照射によって簡単に製造することができる。
 本発明の照明ユニットにおいては、カバー内に収容された導光部材に光源からの光が入射され、意図した拡散効果が維持されて導光部材の出射面から均質な光を出射させることができる。
本発明の第1の実施形態である導光部材の斜視図 同上の導光部材の両端にLEDを配置したときの平面図 同上の導光部材の断面図 同上の導光部材における出光する光の経路を説明する図 同上の導光部材をカバーに収納した斜視図 同上の導光部材を使用する照明ユニットの光源モジュールを示す斜視図 同上の導光部材における溝の断面図 カバーに収納した同上の導光部材の断面図 同上の導光部材における溝の変形例を示す断面図 同上の導光部材の変形例を示す断面図 本発明の一実施形態である導光部材の溝を形成する様子を示した説明図 同上の溝を形成する変形例の様子を示した概略説明図 本発明の第2の実施形態である導光部材の平面図 本発明の第3の実施形態である導光部材の平面図 本実施形態の照明ユニットを浴室に配置した状態を示す説明図
 本発明の導光部材は、LED等の光源と組み合わされて、例えば、室内の天井や壁、或いは、種々の家具等に埋め込まれるエッジライト方式の照明ユニットに使用される。
 以下、本発明の第1の実施形態に係る導光部材を、図面に基づいて説明する。図5に示すように、本実施形態の導光部材は、光源となるLED30を保持するカバー40と一体に組み付けられて照明ユニット1を形成する。
 図1、図2に示すように、導光部材は、LED30からの光を透過させる合成樹脂でできた長尺体であり、互いに直交する長手方向軸L、幅方向軸W、前後方向軸Dを有し、以下、透明バー10と記載する。透明バー10は、長手方向に直交する横断面形状が長手方向の全長に亘って一様であり、この横断面形状は前後方向軸Dを基準にして左右対称である。
 透明バー10の長手方向の一端は、LED30からの光が入射される入射面12となっている。横断面の輪郭は、前後方向の前方に位置する出射面14と、この出射面14に対向する後方の拡散面16と、一対の反射面18と、で規定される。拡散面16は、長手方向軸に沿って規則的に並ぶ複数の溝60によって形成される。それぞれの溝60は、幅方向軸Wに沿った方向に形成されている。拡散面16は、基本的に、透明バー10内を進む光を出射面14側に向けて拡散させ、この結果、出射面14から光が取り出される。入射面12から入射した光は、反射面18や出射面14を含む透明バー10の内周面で内部反射を繰り返して透明バー10の長手方向に沿って進みながら拡散面16に到達する。拡散面16に到達した光は、ここで出射面14側に向けて拡散されることにより、出射面14からこの拡散光が取り出される。
 一対の反射面18は、横断面において、それぞれ拡散面16の両端と出射面14の両端とを結合する。反射面18は全体として滑らかに湾曲した曲面であり、入射面12から入射する光を反射させて透明バー10の長手方向に沿って進めながら拡散面16側に向けて反射させ、その結果生じる拡散光が出射面14から透明バー10の前方に出射される。
 図3、図4に示すように、出射面14は内方に凹んだ凹曲面に仕上げられている。また、出射面14の幅をW1、拡散面16の幅をW2とすると、出射面14の幅W1は拡散面16の幅W2よりも大きい。拡散面16の両端に隣接する各反射面18の一部は、外方に向けて湾曲した肩部20となっている。肩部20は、図4中の破線Xで示すように、拡散面16で拡散される光を効率良く出射面14側に反射させると共に、透明バー10内で内部反射を繰り返しながら長手方向に進む光を拡散面16側に集めるように機能する。出射面14と拡散面16との距離、すなわち、透明バー10の前後寸法は、出射面14の幅W1よりも大きく、この幅W1の2倍以上である。透明バー10は、前後方向軸Dに沿って、出射面14を含む前半部と、拡散面16を含む後半部と、を有し、前半部に含まれる各反射面18にバンプ24が形成される。
 また、透明バー10の横断面において、後半部における一対の反射面18間の距離、すなわち、幅寸法は、肩部20から前方へ行くに従って次第に増加しており、拡散面16からの拡散光を出射面14側に向けて反射させる機会を多くしている。
 バンプ24は、透明バー10の横断面において、外方に突出する三角形状の突条であり、透明バー10の長手方向に沿って全長にわたる。このバンプ24は、透明バー10をカバー40に保持させるために利用される。すなわち、図5に示すように、カバー40の両脚片42に設けた凹所44に各バンプ24が収められることで、透明バー10はカバー40に保持される。カバー40も長尺体で、横断面形状が前方に開口したU字型である。この透明バー10は、カバー40に保持された状態において、透明バー10の出射面14を除く部分がカバー40で覆われる。
 図3、図4に示すように、バンプ24は、カバー40との結合に用いられるだけでなく、出射面14からの出射効率を高めるようにも機能する。このバンプ24は、その断面が三角形状とされ、三角形の斜辺となる一表面が透明バー10の幅方向軸Wに対して傾斜している。
 バンプ24は、透明バー10内で内部反射を繰り返しながら長手方向に進む光を拡散面16に向けて反射させる機会を増大させて、拡散面16で拡散される光量を増大させ、その結果、出射面14から出射される拡散光を多く確保して、出射効率を高める。この機会を与えるために、バンプ24の一表面は傾斜している。この傾斜した一表面での反射により、拡散面16へ向かう光の量を増大させる。
 ここで、バンプ24は、透明バー10内を長手方向に沿って進む光が横断面内に閉じ込められて長手方向の端面から抜けてしまう光のトラップを崩し、バンプ24が無ければ閉じ込められてしまう光を拡散面16側に向かわすように機能する。このため、透明バー10の前端部側で長手方向に進む光が拡散面16側に向かう機会は増大し、結果として、拡散光を増やし、出射効率を高めることができる。更に、出射面14は凹曲面とされ、この凹曲面での反射もまた、上述した光のトラップを崩す要因となるので、バンプ24による効果と相俟って、拡散光の出射効率を高めている。
 図5に示すように、カバー40はその前端部分に透明バー10を保持し、その後端部分で他の部材に結合される。このカバー40は、その前端部分が断面U字型となった長尺体であり、透明バー10がその出射面14を露出させると共にその拡散面16をカバー40の底片41に近接させる形でカバー40の両脚片42の間に収められる。カバー40の長手方向両端には、図6に示すように、それぞれLED30を保持する光源モジュール50が取り付けられて、透明バー10はLED30やカバー40と一体化されて照明ユニットを構成する。この照明ユニットにおいては、透明バー10の長手方向両端の入射面12においてLED30からの光が入射され、透明バー10の反射面18及び出射面14を含む内周面で反射を繰り返しながら長手方向に進む光が拡散面16で拡散して、出射面14から前方へ拡散光が導き出される。
 図2に示すように、拡散面16は、透明バー10の長手方向に並ぶ複数の溝60によって形成されている。この溝60は透明バー10の長手方向軸Lと交差する方向に長さを有するように走り、相互に間隔をあけて平行に設けられている。図7に示すように、各溝60は断面形状が略V字状で、その溝表面が透明バー10の横断面に対して傾斜する傾斜面62として形成されている。
 また、図11に示すように、各溝60は、レーザー加工機を用いて形成される。レーザー加工機は、透明バー10を押出成形する生産ラインに設けられる。図示は省略するが、生産ラインは押出成形機を備える。透明バー10は、押出成形機によって押し出され、レーザー切断機等によって所定の長さに切断することで形成される。
 多数の溝60は、レーザー加工機から透明バー10の拡散面16にレーザーを照射することで形成される。レーザー加工機によるレーザーの照射は、例えば押出成形後で且つ切断前において押出方向に移動する透明バー10に対して行われる。つまり、溝60を形成する工程は、透明バー10を押出成形する工程とインラインで行われる。なお、図11においてAで示した矢印は、透明バー10の移動方向(押出方向)を示している。
 レーザー加工機から照射するレーザーは、例えば炭酸ガスレーザーである。レーザー加工機のレーザー方式は、例えばガルバノスキャニング方式である。レーザー加工機は、レーザー発振器80、ビームエキスパンダー81、ガルバノスキャナー82、及びfθレンズ83を備えている。
 レーザー加工機から照射するレーザーは、ガルバノスキャナー82のミラー820を駆動することにより走査を制御される。この走査は予め設定された加工パターンに基づいて行われることで、溝60は、所望の大きさ、方向、間隔が得られ、溝60に関するこれ等条件で、拡散光の指向性を決定する。
 図8に示すように、溝60は透明バー10の長手方向に沿って間隔をおいて並び、隣り合う溝60の間に平坦面70が残存する。この平坦面70の内部反射で、透明バー10の長手方向軸Lに沿って、光を進めるようになっている。溝60と平坦面70とは透明バー10の長手方向に沿って交互に並び、全てのまたはいくつかの平坦面70の両端、すなわち、隣接する溝60の端縁から外方に向けて突出するスペーサ突起65が形成される。スペーサ突起65は、透明バー10の長手方向に沿って離間し、カバー40の底片41に当接することで、平坦面70とカバー40の内面との間にスペースを形成し、平坦面70がカバー40の底片41に接触することを防ぐ。
 図2に示すように、複数の溝60は、透明バー10の長手方向軸Lに沿って等間隔で平行に並ぶ。各溝60は長手方向軸Lに対して直交する方向で、透明バー10の長手方向中央から両端の入射面12に行くに従って短くされ、両端の入射面12から入射されるLED30からの光を透明バー10の全長にわたって拡散面16に行き渡らせる。図7に示すように、各溝60は下端が丸くなった一様なV字形の断面を有し、同じ高さのスペーサ突起65が平坦面70の両端において突出し、各スペーサ突起65自体も、図7の矢印で示すように、光の拡散に寄与している。
 また、図11に示すように、透明バー10への溝60の形成は、レーザー加工機を使用する。レーザー加工機は、透明バー10を押出成形する生産ラインに設けられる。図示は省略するが、生産ラインは押出成形機を備える。透明バー10は、押出成形機によって図11中のA方向に押し出され、レーザー切断機等によって所定の長さに切断することで形成される。レーザー加工機によるレーザーの照射は、例えば押出成形後で且つ切断前において押出方向に移動する透明バー10に対して行われる。つまり、溝60を形成する工程は、透明バー10を押出成形する工程とインラインで行われる。
 レーザー加工機は、レーザー発生源70から発生させるレーザー光を透明バー10の一面に照射するように構成されており、透明バー10をその長手方向に沿って移動させることに同期させて、レーザー光をスキャンすることで、複数の溝60を作り出す。レーザー発生源70からのレーザー光は、ビームエキスパンダー71、2つのミラー720、fθレンズ73を経て、透明バー10に照射され、ガルバノスキャナー72でミラー720の角度を制御することで、所定の方向に沿って溝60を形成する。レーザー照射は、所望する溝60の形状、方向、間隔に合わせた制御パターンに基づいて実行される。なお、レーザー加工機から照射するレーザーは、例えば炭酸ガスレーザーである。
 ミラー820は、第一の照射角を決める第一のミラー820aと、第二の照射角を決める第二のミラー820bと、を有する。
 第一のミラー820aは、透明バー10の前後方向軸Dと平行な軸D1を備え、その軸D1を中心にして一定の範囲で回転する。ここで、一定の範囲とは、第一のミラー820aで屈折した光が第二のミラー820bに当たる範囲のことをいう。この一定の範囲により、第一の照射角の最大照射角と最小照射角が決定される。
 また、第二のミラー820bは、透明バー10の長手方向軸Lと平行な軸L1を備え、その軸L1中心にして一定の範囲で回転する。ここで、一定の範囲とは、第二のミラー820bで屈折した光がfθレンズ83に当たる範囲のことをいう。この一定の範囲により、第二の照射角の最大照射角と最小照射角が決定される。
 このレーザーの第一の照射角及び第二の照射角が最大照射角と最小照射角の間で変化することにより、図9、図10、図12に示すように、深さ方向が傾斜した溝60とスペーサ突起65と微小突起66を形成する。
 すなわち、溝60に関するこれ等の条件を調整することで、拡散光の指向性も決定される。ここでは、レーザー照射によって、スペーサ突起65も溝60の開口縁に沿って形成される。この場合、レーザー照射によるレーザーアブレーションによって、溝60とスペーサ突起65とを同時に出現させることが可能となり、スペーサ突起65を備えた拡散面16を容易に作り出すことができる。
 この場合、横断面に対して傾斜する傾斜溝60において、傾斜が大きい方の傾斜面62の上端につながる平坦面70の端縁から微小突起66が突出する。この微小突起66の高さと幅はスペーサ突起65よりも小さく、図9に示すように、微小突起66自体でも光を拡散させる。
 また、拡散面16は、図8に示すように、複数の溝60が断面形状で上下方向に配向するように形成され、すなわち、全ての溝60の深さ方向が鉛直方向で揃うように形成される以外に、図11、図12に示すように、ミラー820を一定の範囲で回転させることによって、図12に示すように、深さ方向が傾斜した溝60を含むように形成してもよい。
 したがって、本実施形態の導光部材では、スペーサ突起65がカバー40の底片41に当接されるので、カバー40に対して導光部材は位置決めされ、平坦面70がカバー40の底片41に接触することも防がれて、平坦面70をこれに対向する底片41の荒れから保護することができ、複数のスペーサ突起65自体による光拡散効果もあいまって、意図した拡散効果を維持して出射面14から均質な光を出射させることができる。
 また、本実施形態では、入射面12からの光量を多くするために、二つのLED30を前後方向軸Dに沿って並べて入射面12に対向させ、一つを後半部、他の一つを前半部に対応させて配置している。しかしながら、本発明の使用形態はこれのみに限定されず、入射面の前後方向の一部または全体に光を入射させる光源が使用されてもよい。
 ところで、本実施形態におけるLED30は、図2、図6に示すように、透明バー10の長手方向の両端の外側に配置される光源モジュール50に保持されるもので、各光源モジュール50はカバー40の長手方向の両端に取り付けられている。図5、図6に示すように、光源モジュール50は、カバー40の端部に取り付けられる。光源モジュール50は前後に長い凹部54を有し、この凹部54に二つのLED30が前後方向に並んで収められて透明バー10の入射面12と所定の間隔をあけて対向される状態で保持される。このようにして、本実施形態の導光部材は、LED30と組み合わされて照明ユニット1に使用される。
 図13は、本発明の第2の実施形態に係る導光部材を示す。この導光部材における透明バー10は、拡散面16を構成する溝60の構成が第1の実施形態と異なり、その他の構成は第1の実施形態と同じである。これ等複数の溝60は、透明バー10の長手方向軸Lに対して傾斜し、各溝60の長さが透明バー10の長さ方向の中央から両端の入射面12に行くに従って短くされている。
 図14は、本発明の第3の実施形態に係る導光部材を示す。この導光部材における透明バー10は、拡散面16を構成する溝60の構成が第1の実施形態と異なり、その他の構成は第1の実施形態と同じである。これ等複数の溝60は、拡散面16の全幅に渡る長さに形成され、各溝60の間隔、すなわち、平坦面70の幅が、透明バー10の長さ方向の中央から両端の入射面12に行くに従って大きくされている。
 なお、上記の実施形態では、透明バー10の長手方向の両端にLED30を配置した形態を示したが、本発明は必ずしもこの形態に限定されず、透明バーの長手方向の一端のみにLEDを配置してもよい。
 また、上記いずれかの導光部材と、カバー40と、カバー40の長手方向の端部に設けられるLED30と、を備えることで、照明ユニットとなる。この照明ユニットにおいては、カバー40に対して導光部材が位置決めされ、複数の溝60間の平坦面70をカバー40の対向面における荒れから保護することができ、カバー40内に収容された導光部材にLED30からの光が入射され、意図した拡散効果が維持されて導光部材の出射面14から均質な光を出射させることができる。
 ところで、照明ユニット1は、例えば、図15に示すように、浴室5の天井50に設けられる。透明バー10は、出射面14を浴室5内下方に向けて配置されている。これにより、照明ユニット1を利用して浴室5内を照明することができる。
10  透明バー
12  入射面
14  出射面
16  拡散面
18  反射面
30  LED(光源)
40  カバー
60  溝
62  傾斜面
65  スペーサ突起
70  平坦面

Claims (6)

  1.  長尺な透明バーで構成され、
     前記透明バーの長手方向の一端が、外部の光源からの光が入射される入射面とされ、
     前記透明バーの長手方向に直交する横断面の輪郭が、前側の出射面と、この出射面に対向する後側の拡散面と、前記出射面と前記拡散面との間の両側各々で延出される一対の反射面と、で規定され、
     前記入射面から入射された光は、前記透明バーの前記反射面及び前記出射面を含む内周面で内部反射を繰り返しながらその内部を長手方向に進み、その間に前記拡散面に到達した光が拡散光となって前記出射面から取り出される導光部材であって、
     前記透明バーは、前記出射面を露出させた状態でカバー内に収容されるものであり、
     前記拡散面は、前記透明バーの長手方向に間隔をあけて並ぶ複数の溝と、隣り合う前記溝の間に残存する平坦面と、を有し、
     前記平坦面に、外方へ突出して前記カバーの内面に当接し、前記カバーの内面との間にスペースを形成する複数のスペーサ突起が形成されていることを特徴とする導光部材。
  2.  前記複数のスペーサ突起が、前記溝の開口縁に沿って形成されていることを特徴とする請求項1記載の導光部材。
  3.  前記複数の溝は、前記透明バーの長手方向と交差する方向に長さを有し、相互に間隔をあけて平行に設けられていることを特徴とする請求項1又は2記載の導光部材。
  4.  前記溝は、その断面形状がV字状で、その溝表面が傾斜面であることを特徴とする請求項1~3のいずれか一項記載の導光部材。
  5.  請求項2記載の導光部材の製造方法であって、
     レーザー照射により、前記溝と前記スペーサ突起とを同時に形成することを特徴とする導光部材の製造方法。
  6.  請求項1~4のいずれか一項記載の導光部材と、前記カバーと、前記カバーの長手方向の端部に設けられる前記光源と、を備えることを特徴とする照明ユニット。
PCT/JP2014/005882 2014-03-28 2014-11-25 導光部材及びその製造方法並びに照明ユニット WO2015145505A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509616A JP6600820B2 (ja) 2014-03-28 2014-11-25 導光部材及びその製造方法並びに照明ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069516 2014-03-28
JP2014069516 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145505A1 true WO2015145505A1 (ja) 2015-10-01

Family

ID=54194107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005882 WO2015145505A1 (ja) 2014-03-28 2014-11-25 導光部材及びその製造方法並びに照明ユニット

Country Status (3)

Country Link
JP (1) JP6600820B2 (ja)
TW (1) TWI547728B (ja)
WO (1) WO2015145505A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205881A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd エッジライト式照明装置及びその設置構造
JP2010103068A (ja) * 2008-10-27 2010-05-06 Kuroda Denki Kk 導光板の製造方法、導光板及び光源装置
JP2012164576A (ja) * 2011-02-08 2012-08-30 Alps Electric Co Ltd 導光シートおよび導光シートの製造方法
JP2012174445A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 導光部材及びこれを備えた発光装置
JP2013145742A (ja) * 2011-12-12 2013-07-25 Mitsubishi Rayon Co Ltd 面光源装置用導光体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158960B1 (ko) * 2008-08-13 2012-06-21 우시오덴키 가부시키가이샤 도광체 및 2분기 선 형상 광원 장치
JP5573107B2 (ja) * 2009-11-04 2014-08-20 ウシオ電機株式会社 照明装置
JP5858660B2 (ja) * 2011-06-29 2016-02-10 ニスカ株式会社 照明装置及びこの照明装置を用いた画像読取装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205881A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd エッジライト式照明装置及びその設置構造
JP2010103068A (ja) * 2008-10-27 2010-05-06 Kuroda Denki Kk 導光板の製造方法、導光板及び光源装置
JP2012164576A (ja) * 2011-02-08 2012-08-30 Alps Electric Co Ltd 導光シートおよび導光シートの製造方法
JP2012174445A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 導光部材及びこれを備えた発光装置
JP2013145742A (ja) * 2011-12-12 2013-07-25 Mitsubishi Rayon Co Ltd 面光源装置用導光体の製造方法

Also Published As

Publication number Publication date
JP6600820B2 (ja) 2019-11-06
JPWO2015145505A1 (ja) 2017-04-13
TW201537246A (zh) 2015-10-01
TWI547728B (zh) 2016-09-01

Similar Documents

Publication Publication Date Title
JP4458359B2 (ja) レンズおよびレンズユニット並びにそれらを具備する灯具
CN106338032B (zh) 导光透镜和灯具
JP2009032564A (ja) 車両用灯具、及び、車両用灯具に用いられる導光レンズ
JP6616669B2 (ja) 導光体及び車両用灯具
JP2017174657A (ja) 車両用灯具
JP2014154524A (ja) 灯具
JP6437252B2 (ja) 光束制御部材、発光装置および照明装置
JP5780277B2 (ja) ライン照明装置および光源装置
JP6340599B2 (ja) 導光部材及びその製造方法
JP6082264B2 (ja) 導光レンズ及び灯具
US20160245973A1 (en) Light guiding rod and illumination device including the same
JP2016157542A (ja) 車両用灯具
JP6600820B2 (ja) 導光部材及びその製造方法並びに照明ユニット
JP2016024855A (ja) 車両用信号灯
JP6340598B2 (ja) 導光部材
TWI524101B (zh) 導光構件及導光構件之製造方法
JP6539484B2 (ja) 車両用導光体、車両用灯具
JP5447785B2 (ja) 車両用灯具レンズ
JP6935998B2 (ja) サイドマーカーランプ
JP6300143B2 (ja) 導光部材及びその製造方法
JP6757619B2 (ja) 灯具
JP6459110B2 (ja) 導光部材の製造方法
JP5745297B2 (ja) レンズ及び灯具
JP2013033622A (ja) 灯具
JP2018014279A (ja) 光学レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887023

Country of ref document: EP

Kind code of ref document: A1